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Abstract: The development of organic room-temperature phosphorescent (ORTP) materials repre-
sents an active field of research due to their significant advantages with respect to their organometallic
counterparts. Two cyclic triimidazole (TT) derivatives bearing one and three hexyl-thiophene moi-
eties, TT-HThio and TT-(HThio)3, have been prepared and characterized. Both compounds display
enhanced quantum yields in their crystalline form with respect to those in a solution state, revealing
crystallization-enhanced emissive (CEE) behavior. Importantly, while single fluorescence is observed
in solution, crystalline powders also feature dual ORTP, whose respective molecular and aggregate
origins have been disclosed through X-ray diffraction analysis and DFT/TDDFT calculations. The
relation between the photophysical properties of TT-HThio and its crystallinity degree has been
confirmed by a decrease in photoluminescent quantum yield (Φ) and loss of vibronic resolution when
its crystals are ground in a mortar, revealing mechanochromic behavior and confirming CEE features.

Keywords: organic room-temperature phosphorescence; crystallization-enhanced emission; nitrogen-
rich emissive compounds

1. Introduction

Single-component organic materials characterized by rich emissive behavior, includ-
ing room-temperature long-lived features, are receiving growing attention from the sci-
entific community due to the benefits they offer with respect to their widely used metal-
containing phosphorescent counterparts, including biocompatibility and low cost. Applica-
tions of organic room-temperature phosphorescence (ORTP) in different fields spanning
bioimaging [1,2], anti-counterfeiting [3,4], catalysis [5] and displays [6] have been assessed.
Many strategies, including π-π stacking interactions [7–10], host-guest systems [11–13],
co-assembly based on macrocyclic compounds [14], crystallization [15,16] and cocrystal-
lization [17], halogen bonding [18,19] and doping in a polymer matrix [20], have been
developed to realize ORTP materials. In parallel, knowledge of the mechanisms involved
in the photophysics of multi-emissive ORTP systems is evolving forward, step by step,
aiming at the materials’ optimization.

In this context, in the last few years, our group has been involved in the preparation
and characterization of various members of a family of compounds with triimidazo[1,2-
a:1’,2’-c:1”,2”-e][1,3,5]triazine, TT [9], as a prototype. TT is characterized by crystallization-
induced emissive (CIE) behavior, displaying, in particular, ultralong phosphorescence
(ORTUP) (up to 1 s) under ambient conditions associated with the presence of strong
π-π stacking interactions in its crystalline structure [7]. The presence of one or multiple
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heavy (Cl, Br and I) atoms or chromophoric fragments, namely 2-fluoropyridine, 2-pyridine
or pyrene, on the TT scaffold greatly modifies both its molecular and solid-state photo-
physical behavior, resulting in a complex, excitation-dependent photoluminescence with
emissions comprising dual fluorescence, molecular phosphorescence and supramolecular
ORTP and ORTUP [10,21–27]. Applications of TT derivatives in different fields including
bio-imaging [26] and explosive detection [28] have been reported, and the identification of
new members with different functionalities appears highly desirable.

Herein, we describe the synthesis and structural and photophysical characterization
of 3-(4-hexylthiophen-2-yl)-triimidazo[1,2-a:1’,2’-c:1”,2”-e][1,3,5]triazine, TT-HThio, and
3,7,11-tri(4-hexylthiophen-2-yl)-triimidazo[1,2-a:1’,2’-c:1”,2”-e][1,3,5]triazine, TT-(HThio)3
(Scheme 1), with the hexylthiophene moiety being chosen for both its electron-donor
properties and the ability to produce organic crystals that can respond to mechanical
stimuli [29,30].
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Scheme 1. Synthesis of TT-HThio and TT-(HThio)3.

TT-HThio and TT-(HThio)3 display enhanced properties in the crystalline form with
respect to their solutions revealing CEE (crystallization-enhanced emissive) behavior. Im-
portantly, while single fluorescence is observed in solution, crystals are also characterized by
dual phosphorescence, whose origin has been disclosed through X-ray diffraction analysis
and DFT/TDDFT calculations.

2. Results

3-(4-hexylthiophen-2-yl)-triimidazo[1,2-a:1’,2’-c:1”,2”-e][1,3,5]triazine, TT-HThio, and
3,7,11-tri(4-hexylthiophen-2-yl)-triimidazo[1,2-a:1’,2’-c:1”,2”-e][1,3,5]triazine, TT-(HThio)3,
have been synthetized by Stille coupling between tributyl(4-hexylthiophen-2-yl)stannane
and the corresponding mono- (TTBr) or tri-brominated (TTBr3) TT derivative (Scheme 1).

In diluted DCM solutions (1 × 10−5 M), TT-HThio displays a single fluorescence (FL)
with photoluminescent quantum yield, Φ, equal to 11%; wavelength of the maximum peak
(λem) = 370 nm and lifetime (τ) = 0.81 ns at 298 K; and λem = 365 nm and τ =1.71 ns at 77 K
(Figures 1, S5 and S6). In PMMA-blended films (0.5 w% TT-HThio), one fluorescence (FL,
Φ = 15%, λem = 365 nm, τ = 0.72 ns at 298 K, Figures 1 and S19) is observed in exactly the
same position as that measured in DCM at 77 K, as expected for a molecular emission in
rigidified media.

Crystals of TT-HThio show, both at 298 (Φ = 26%) and 77 K, an excitation-dependent
PL behavior comprising one fluorescence and two phosphorescences (Figure 2). In par-
ticular, at 298 K, one fluorescence at λem = 376 nm (FL, τ = 1.15 ns, Figure S7) is observed
by exciting at 300 nm, one high-energy phosphorescence (HEP, with vibronic replica at
λem = 425 and 451 nm, τ = 5.91 ms, Figure S8) is visible by exciting at 376 nm and one
low-energy phosphorescence (LEP, at λem = 497, 530 and 578 nm, τ = 50.22 ms, Figure S9)
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appears when exciting at 450 nm. At 77 K, the three components are better resolved vi-
bronically, in almost the same positions but with longer lifetimes with respect to those
measured at room temperature (FL, λem = 368 nm, τ = 1.48 ns; HEP, λem = 420 and 448 nm,
τ = 10.61 ms; LEP, λem = 494, 533 and 577 nm, τ = 132.01 ms, Figures S10, S11 and S12,
respectively). Intriguingly, the corresponding excitation profiles are characterized at low en-
ergy by three contributions recognizable at both 298 and 77 K. Specifically, one low-energy
state (332, 354 nm at 298 K and 335, 347 at 77 K) assigned to singlet molecular excited state
S1 in agreement with structural and theoretical studies (see later), one triplet excited state
of molecular origin (389 nm at 298 K and 390, 403 nm at 77 K), Tmol, and one triplet excited
state of aggregate origin (446 nm at 298 K and 448, 471 nm at 77 K), Tag, are observed. A
mirroring relationship with the corresponding emission is clearly visible at 77 K.
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Figure 1. Normalized photoluminescence, PL, emission (continuous lines) and excitation (dashed–
dotted lines) spectra of TT-HThio. DCM (1 × 10−5 M) at 298 K (black) and 77 K (red); λexc = 300 nm,
λem = 370 nm. PMMA film (0.5% wt) at 298 K (blue); λexc = 300 nm, λem = 365 nm.
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Figure 3. PL emission spectra of TT-HThio in THF with increasing water fractions; exc = 300 nm.  

The relation between the photophysical properties of the sample and its crystallinity 

degree has been confirmed by a decrease in  (18%) and the loss of vibronic components 
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Figure 2. Normalized PL emission (continuous lines) and excitation (dashed–dotted lines) spectra
of crystals of TT-HThio: (a) 298 K, emission at λexc = 300 nm (black), 376 nm (blue), 450 nm (red),
excitation at λem = 376 nm (black), 426 nm (blue), 532 nm (red); (b) 77 K, emission at λexc = 300 nm
(black), 368 nm (blue), 448 nm (red), excitation at λem = 368 nm (black), 420 nm (blue), 533 nm (red).
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Based on the observation that Φ increases from 11%, in diluted DCM solution, to
26%, measured for TT-HThio crystals, we hypothesized possible aggregation-enhanced
emissive (AEE) features; therefore, solvent (THF)/non-solvent (water) experiments have
been performed. Addition of increasing water fractions to TT-HThio in THF (keeping
the concentration equal to 1 × 10−5 M) results, instead, in emission quenching (Figure 3),
indicating that aggregation itself is not sufficient to intensify luminescence, and that proper
molecule organization (i.e., crystallization) is an indispensable condition to enhance emis-
sion from TT-HThio. Similarly, in TT itself, crystallization is a necessary condition to
switch on luminescence [9].
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Figure 3. PL emission spectra of TT-HThio in THF with increasing water fractions; exc = 300 nm.  

The relation between the photophysical properties of the sample and its crystallinity 

degree has been confirmed by a decrease in  (18%) and the loss of vibronic components 

(a) (b) 

Figure 3. PL emission spectra of TT-HThio in THF with increasing water fractions; λexc = 300 nm.

The relation between the photophysical properties of the sample and its crystallinity
degree has been confirmed by a decrease in Φ (18%) and the loss of vibronic components
when TT-HThio crystals are ground in a mortar, revealing mechanochromic behavior and
confirming CEE features (Figure 4).
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Figure 5. Normalized PL emission (continuous lines) and excitation (dashed–dotted lines) spectra 

of TT-(HThio)3. DCM (1 × 10−5 M) at 298 K (black) and 77 K (red); exc = 300 nm, em = 370 nm. PMMA 
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Figure 4. Normalized PL emission (continuous lines) and excitation (dashed–dotted lines) spectra of
ground crystals of TT-HThio: (a) 298 K, emission at λexc = 300 nm (black), 376 nm (blue), 450 nm (red),
excitation at λem = 365 nm (black), 434 nm (blue), 597 nm (red); (b) 77 K, emission at λexc = 300 nm
(black), 376 nm (blue), 440 nm (red), excitation at λem = 375 nm (black), 443 nm (blue), 513 nm (red).



Molecules 2023, 28, 140 5 of 13

In diluted DCM solutions (1 × 10−5 M), TT-(HThio)3 displays a single fluorescence
(FL, Φ = 5%, λem = 380 nm, τ = 1.17 ns at 298 K and λem = 370 nm, 1.42 ns at 77 K, Figures 5,
S20, S21). In PMMA-blended films (0.5 w% TT-(HThio)3), one fluorescence (FL, Φ = 17%,
λem = 372 nm, τ = 0.90 ns at 298 K, Figures 5 and S28) is observed in exactly the same
position as that measured in DCM at 77 K.
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Figure 5. Normalized PL emission (continuous lines) and excitation (dashed–dotted lines) spectra
of TT-(HThio)3. DCM (1 × 10−5 M) at 298 K (black) and 77 K (red); λexc = 300 nm, λem = 370 nm.
PMMA film (0.5% wt) at 298 K (blue); λexc = 300 nm, λem = 370 nm.

The solid-state photophysical characterization of TT-(HThio)3 has been performed on
crystalline powders (Φ = 22%), while different attempts to prepare single crystals suitable
for XRD analysis failed. Similarly to TT-HThio, TT-(HThio)3 displays at both 298 and
77 K an excitation-dependent PL behavior, comprising FL, HEP and LEP (Figure 6). In
particular, at 298 K, FL at λem = 382, 400 nm (τ = 0.42 ns, Figure S22) is observed by exciting
at 300 nm together with HEP at λem = 428, 453 nm (τ = 15.10 ms, Figure S23). The latter
can be selectively activated by exciting at 384 nm. LEP at λem = 514, 550 nm (τ = 41.51 ms,
Figure S24) becomes visible by exciting at sufficiently low energy (450 nm) to exclude the
otherwise more intense FL and HEP. At 77 K, the three components are still present at
λem = 364, 381 nm (FL, τ = 1.23 ns, Figure S25), λem = 423, 447 nm (HEP, τ = 153.42 ms,
Figure S26) and λem = 492, 513 nm (LEP, τ = 327.16 ms, Figure S27). Again, in excitation
profiles, one S1 state (360 nm at 298 K and 336, 354 at 77 K), one Tmol (387, 408 nm at 298 K
and 386, 407 nm at 77 K), and one Tag (448 nm at 298 K and 438, 468 nm at 77 K) are visible
both at 298 and 77 K. The photophysical parameters of TT-HThio and TT-(HThio)3 are
summarized in Table 1.

Table 1. Photophysical parameters of TT-HThio and TT-(HThio)3.

Compound
298 K 77 K

Φ (%) λem τav λem τav

TT-HThio

DCM 11 370 0.81 ns 365 1.71 ns

PMMA 15 365 0.72 ns

Solid state

Crystals 26

376 1.15 ns 368 1.48 ns

425, 451 5.91 ms 420, 448 10.61 ms

497, 530, 578 50.22 ms 494, 533, 577 132.01 ms
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Table 1. Cont.

Compound
298 K 77 K

Φ (%) λem τav λem τav

Ground
Crystals 18

376 1.11 ns 375 1.91 ns

428, 441 5.20 ms 423, 443 9.56 ms

500 29.81 ms 492, 513 60.84 ms

TT-(HThio)3

DCM 5 380 1.17 ns 370 1.42 ns

PMMA 17 372 0.90 ns

Crystalline
powders 22

382, 400 0.42 ns 364, 381 1.23 ns

428, 453 15.10 ms 423, 447 153.42 ms

514, 550 41.51 ms 478, 512, 544 327.16 ms
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Figure 6. Normalized PL emission (continuous lines) and excitation (dashed–dotted lines) spectra
of crystalline powders of TT-(HThio)3: (a) 298 K, emission at λexc = 300 nm (black), 384 nm (blue),
450 nm (red), excitation at λem = 382 nm (black), 452 nm (blue), 514 nm (red); (b) 77 K, emission at
λexc = 300 nm (black), 360 nm (blue), 430 nm (red), excitation at λem = 365 nm (black), 423 nm (blue),
513 nm (red).

Single crystals of TT-HThio suitable for X-ray diffraction analysis have been obtained
by the slow evaporation of methanol solutions. TT-HThio crystallizes in the P-1 space
group with two molecules in the asymmetric unit, A and B, forming very long colorless
needles. In both A and B molecules, the TT and Thio moieties are almost coplanar, the
least-squares planes through the two units are 14.12 and 6.00◦ in A and B, respectively
(Figure 7a). The hexyl chain assumes in both cases an all-trans conformation. A and
B molecules are almost orthogonal to each other (Figure 7b), both forming segregated
head-to-head π-stacked aggregates with identical distance, equal to 5.599 Å, between the
triazinic centroids of adjacent molecules. The shortest intermolecular contacts along the
stacks are C1A···C8A1+x,y,z, 3.353(3), S1A···C9A1+x,y,z, 3.344(2) and C5A···C5A1−x,1−y,1−z,
3.376(3) Å (A stack) and S1B···C9B1+x,y,z, 3.388(2) Å (B stack). The TT moiety of molecule A
is connected from both sides to other two centrosymmetry-related A molecules through
quite short C–H···N hydrogen bonds (H5A···N5A−x,1−y,1−z, 2.38 Å; H8A···N1A1−x,−y,1−z,
2.43 Å), forming infinite ribbons from which the thio-hexyl chains depart (Figure 7c). The
columnar aggregates of B molecules develop inside the hexyl chains of A molecules. A
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weak C–H···N hydrogen bond (H7A···N1B−x,1−y,1−z, 2.72 Å) connects A and B molecules
with each other.

Molecules 2022, 27, x FOR PEER REVIEW 7 of 15 
 

 

Table 1. Photophysical parameters of TT-HThio and TT-(HThio)3. 

Compound  
298 K 77 K 

 () em av
 em av

 

TT-HThio 

DCM   11 370 0.81 ns 365 1.71 ns 

PMMA   15 365 0.72 ns   

Solid state 

Crystals 26 

376 1.15 ns 368 1.48 ns 

425, 451 5.91 ms 420, 448 10.61 ms 

497, 530, 578 50.22 ms 494, 533, 577 132.01 ms 

Ground 

Crystals  
18 

376 1.11 ns 375 1.91 ns 

428, 441 5.20 ms 423, 443 9.56 ms 

500 29.81 ms 492, 513 60.84 ms 

TT-(HThio)3 

DCM  5 380 1.17 ns 370 1.42 ns 

PMMA  17 372 0.90 ns   

Crystalline pow-

ders 
 22 

382, 400 0.42 ns 364, 381 1.23 ns 

428, 453 15.10 ms 423, 447 153.42 ms 

514, 550 41.51 ms 478, 512, 544 327.16 ms 

Single crystals of TT-HThio suitable for X-ray diffraction analysis have been ob-

tained by the slow evaporation of methanol solutions. TT-HThio crystallizes in the P-1 

space group with two molecules in the asymmetric unit, A and B, forming very long col-

orless needles. In both A and B molecules, the TT and Thio moieties are almost coplanar, 

the least-squares planes through the two units are 14.12 and 6.00° in A and B, respectively 

(Figure 7a). The hexyl chain assumes in both cases an all-trans conformation. A and B 

molecules are almost orthogonal to each other (Figure 7b), both forming segregated head-

to-head -stacked aggregates with identical distance, equal to 5.599 Å , between the tria-

zinic centroids of adjacent molecules. The shortest intermolecular contacts along the 

stacks are C1AC8A1+x,y,z, 3.353(3), S1AC9A1+x,y,z, 3.344(2) and C5AC5A1-x,1-y,1-z, 3.376(3) 

Å  (A stack) and S1BC9B1+x,y,z, 3.388(2) Å  (B stack). The TT moiety of molecule A is con-

nected from both sides to other two centrosymmetry-related A molecules through quite 

short C–HN hydrogen bonds (H5AN5A-x,1-y,1-z, 2.38 Å ; H8AN1A1-x,-y,1-z, 2.43 Å ), form-

ing infinite ribbons from which the thio-hexyl chains depart (Figure 7c). The columnar 

aggregates of B molecules develop inside the hexyl chains of A molecules. A weak C–

HN hydrogen bond (H7AN1B-x,1-y,1-z, 2.72 Å ) connects A and B molecules with each 

other.  

 

(a) (b) 

Molecules 2022, 27, x FOR PEER REVIEW 8 of 15 
 

 

(c) 

Figure 7. Ortep plots of TT-HThio showing: (a) the two molecules (A and B) of the asymmetric unit; 

(b) a fragment of crystal packing with shorter distances between triazinic geometrical centroids 

(green spheres) and C⋯C, C⋯S and C–H⋯π intermolecular contacts shorter than the sum of vdW 

radii (light grey–dashed lines); (c) the hydrogen bonded ribbon formed by A molecules and the -

stacks of B molecules. Ellipsoids at 20% probability. 

3. Discussion 

As previously observed for a series of TT derivatives bearing one to three chromo-

phoric substituents (i.e., 2-pyridine [25], fluoropyridine [24] or pyrene [26,27]) on the TT 

scaffold, the presence of the chromophore switches on fluorescence which is otherwise 

absent in TT itself in solution. From DFT/TDDFT calculations, it was inferred that TT lacks 

low-energy singlet states with non-null oscillator strength (f) due to the high symmetry of 

its electronic system. Analogously, “silent” low-energy singlet states are present in trihal-

ogenated TT derivatives [21,23]. However, in monosubstituted TT derivatives, the dis-

ruption of the molecular symmetry results in S1 and upper levels with medium-to-high 

oscillator strength depending on the nature of the substituent itself. This is also noted for 

TT derivatives functionalized with three equal chromophoric fragments owing to the 

adopted non-planar conformation [27]. For TT-HThio, the S1 level is computed at 258 nm 

(f = 0.49), quite similar to the mono-pyridine TT derivative for which S1 is computed at 

256 nm with f = 0.48. In both cases, S1 is mainly (88%) a HOMO→LUMO transition of 

(π,π*) type and very weak CT character (in the present case from thiophene to TT) (Figure 

8 and Table S2). Moving to TT-(HThio)3 (Figure 9 and Table S3), it should be noted that 

the presence of three, rather than one, chromophoric substituents does not significantly 

affect the absorption and emission properties of the compound, as also observed for the 

mono-, di- and three-pyrene series of TT derivatives [27]. The absence of inter-chromo-

phoric communication in multiple-substituted TT derivatives, evidenced also by electro-

chemical studies on TT and its halogenated derivatives [31], is associated with a splitting 

of the MO levels of the mono-derivative in two or three almost degenerate levels, origi-

nating excited Sn and Tn levels nearly isoenergetic with those of the mono-derivative (Ta-

ble S3). For example, the first singlet levels of TT-(HThio)3 are computed at 258 (S1, f = 

0.005), 257 (S2, f = 0.86) and 257 nm (S3, f = 0.86), all of them of (,*) type with very weak 

CT character. 

Figure 7. Ortep plots of TT-HThio showing: (a) the two molecules (A and B) of the asymmetric
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3. Discussion

As previously observed for a series of TT derivatives bearing one to three chro-
mophoric substituents (i.e., 2-pyridine [25], fluoropyridine [24] or pyrene [26,27]) on the
TT scaffold, the presence of the chromophore switches on fluorescence which is otherwise
absent in TT itself in solution. From DFT/TDDFT calculations, it was inferred that TT lacks
low-energy singlet states with non-null oscillator strength (f ) due to the high symmetry
of its electronic system. Analogously, “silent” low-energy singlet states are present in
trihalogenated TT derivatives [21,23]. However, in monosubstituted TT derivatives, the
disruption of the molecular symmetry results in S1 and upper levels with medium-to-high
oscillator strength depending on the nature of the substituent itself. This is also noted
for TT derivatives functionalized with three equal chromophoric fragments owing to the
adopted non-planar conformation [27]. For TT-HThio, the S1 level is computed at 258 nm
(f = 0.49), quite similar to the mono-pyridine TT derivative for which S1 is computed at
256 nm with f = 0.48. In both cases, S1 is mainly (88%) a HOMO→LUMO transition of
(π,π*) type and very weak CT character (in the present case from thiophene to TT) (Figure 8
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and Table S2). Moving to TT-(HThio)3 (Figure 9 and Table S3), it should be noted that the
presence of three, rather than one, chromophoric substituents does not significantly affect
the absorption and emission properties of the compound, as also observed for the mono-,
di- and three-pyrene series of TT derivatives [27]. The absence of inter-chromophoric
communication in multiple-substituted TT derivatives, evidenced also by electrochemical
studies on TT and its halogenated derivatives [31], is associated with a splitting of the MO
levels of the mono-derivative in two or three almost degenerate levels, originating excited
Sn and Tn levels nearly isoenergetic with those of the mono-derivative (Table S3). For
example, the first singlet levels of TT-(HThio)3 are computed at 258 (S1, f = 0.005), 257 (S2,
f = 0.86) and 257 nm (S3, f = 0.86), all of them of (π,π*) type with very weak CT character.

The observation of HEP in the solid state for both TT-HThio and TT-(HThio)3 can be
explained by examining the singlet–triplet energy gap, ∆EST, separating S1 and the closer,
lower-energy triplet state (Tn) and the nature of this level. In the DFT freely optimized
geometry of TT-HThio, starting from its X-ray molecular structure, a rather high (0.53 eV)
energy gap is obtained. However, compared with S1, the closer triplet state, T5 (a 50%
HOMO-2→LUMO and 20% HOMO-2→LUMO+9 (π,π*) transition) has a much more
marked CT character, as deduced by looking at the involved HOMO-2 (Figure 8), which
is essentially localized on thiophene only. The corresponding excited state dipoles, in
fact, are 1.90 D (S1) and 3.37 D (T5). The different character of S1 and T5 suggests an easy
intersystem crossing (ISC) which explains the HEP observed in crystals. Moreover, it should
be noted that the optimized structure is characterized by much larger twisting than that
observed in the X-ray structure. In fact, the C1-C2-C10-S1 torsion angle (ω, see Figure 7a for
the atom numbering scheme) measures 38.3◦ in the optimized geometry, to be compared
with the corresponding experimental torsions, 11.1(3)◦ and 7.4(3)◦ for molecules A and
B, respectively, of the asymmetric unit. By fixing ω to the values assumed in the crystal
structure, ∆EST decreases from 0.53 to 0.28 (ω = 11.1◦) and 0.27 eV (ω = 7.4◦), making the
singlet-to-triplet ISC even easier. HEP is therefore associated with radiative decay from
T5 itself or a lower triplet state Tmol after internal conversion (IC) from T5. It is visible in
crystals thanks to the rigidifying effect and protection from oxygen quenching ascribable to
intermolecular interactions.
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The additional phosphorescent emission, LEP, can be associated with the presence of
H-aggregates in the crystal structure, in agreement with previous findings on compounds
with the same triazinic scaffold [9,10,21–27]. The schematic representation of the photo-
physical processes involved in the emissive behavior of both TT-HThio and TT-(HThio)3 is
reported in the Jablonski diagram below (Figure 10). It is interesting to compare the relative
simplicity of this diagram with that, much more complicated, depicted for the analogous
derivative with 2-pyridine, TT-Py [25]. Though the thiophene and pyridine chromophoric
groups share rather similar electronic features, reflected for example in the similar emissive
properties of their TT derivatives in DCM solution (Φ = 11%, λem = 370 nm for TT-HThio;
Φ = 17%, λem = 351 nm for TT-Py), they are responsible for a different emissive behavior in
their solid state. While crystals of both compounds display a high-energy phosphorescence
of molecular origin (at 425, 451 nm for TT-HThio and at 408-418 nm, according to the
crystalline phase, for TT-Py), associated with emission from a 3(π,π*) low-energy triplet
level, TT-Py shows an additional long-lived molecular component, almost overlapped
with the fluorescence. This latter emission was ascribed to radiative decay from a triplet
state of mixed 3(σ/π,π*) symmetry, which is responsible for the observed dual anti-Kasha
phosphorescence [32]. Such triplet states are absent in TT-HThio, whose frontier MOs
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have all π symmetry. Moreover, crystals of TT-Py display an additional low-energy fluores-
cence, associated with the higher mobility of the chromophoric pendant compared with
the hexylthiophene group.
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In summary, two new members of the photophysically intriguing TT family have been
isolated and characterized. The compounds, bearing one or three hexylthiophene fragments,
display CEE behavior comprising fluorescence and heavy-atom-free dual phosphorescence,
associated with molecular and supramolecular features. This work adds a new building
block to the knowledge of this family and to RTP organic phenomena in general. From
these results, the preparation of new multicomponent emitters can be envisaged.

4. Materials and Methods
4.1. General Information

All reagents were purchased from chemical suppliers and used without further pu-
rification unless otherwise stated. TTBr and TTBr3 were prepared according to published
procedures [10,21]. Tributyl(4-hexylthiophen-2-yl)stannane was prepared according to a
published procedure [33]. 1H and 13C NMR spectra were recorded on a Bruker AVANCE-
400 instrument (400 MHz). Chemical shifts are reported in parts per million (ppm) and
are referenced to the residual solvent peak (CH2Cl2, 1H: δ = 5.32 ppm, 13C: δ = 54.0 ppm);
coupling constants (J) are given in hertz (Hz) and are quoted to the nearest 0.5 Hz. Peak
multiplicities are described in the following way: s, singlet; d, doublet; t, triplet; p, pentet;
m, multiplet.

Films of TT-HThio and TT-(HThio)3 dispersed in polymethylmethacrylate (PMMA)
were prepared by spin coating (2000 rpm, 60 s) a dichloromethane solution (TT-HThio
or TT-(HThio)3/PMMA = 0.5 wt %; PMMA = 10 wt % with respect to the solvent) on a
quartz substrate.

4.2. Synthesis of TT-HThio

TT-HThio was prepared by Stille coupling between TTBr and tributyl(4-hexylthiophen-
2-yl)stannane. In a typical reaction, TTBr (0.580 g; 2.10 mmol), tributyl(4-hexylthiophen-
2-yl)stannane (0.959 g, 2.10 mmol), LiCl (1.000 g, 23.60 mmol), Pd(PPh3)2Cl2 (0.160 g,
0.210 mmol) and dry toluene (10 mL) are transferred inside a 100 mL dry Schlenk flask
equipped with a magnetic stirrer. The mixture is de-aerated by means of three freeze–
pump–thaw cycles. The system is heated under a static nitrogen atmosphere at 120 ◦C for
16 h. The reaction is then cooled to room temperature, filtered on Buchner and the solvent
removed in vacuum. The crude reaction mixture is purified by flash chromatography on
SiO2 with DCM/ACN as eluents (Rf = 0.53 in DCM/ACN = 8/2). The product is further
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purified by precipitation from DCM with hexane to give TT-HThio as a white solid (0.535 g,
1.47 mmol, Yield: 70%). Crystals suitable for X-ray diffraction analysis were obtained by
slow evaporation from a MeOH solution.

NMR data (9.4 T, CD2Cl2, 298 K, δ, ppm): 1H NMR 7.80 (m, 2H), 7.53 (d, J = 1.2 Hz, 1H),
7.26 (m, 2H), 7.22 (d, J = 1.6 Hz, 1H), 7.07 (s, 1H), 2.69 (t, J = 7.1 Hz, 2H), 1.73 (p, J = 7.2 Hz,
2H), 1.46–1.30 (m, 6H), 0.95 (t, J = 6.9 Hz, 3H). 13C NMR 144.3 (C), 136.4 (C), 136.0 (C), 135.8
(C), 132.3 (CH), 129.6 (CH), 129.1 (CH), 129.1 (CH), 128.1 (C), 123.1 (C), 122.3 (CH), 112.1
(CH), 111.7 (CH), 32.3 (CH2), 31.0 (CH2), 29.6 (CH2), 23.2 (CH2), 14.4 (CH3).

4.3. Synthesis of TT-(HThio)3

TT-(HThio)3 was prepared by Stille coupling between TTBr3 and tributyl(4-
hexylthiophen-2-yl)stannane. In a typical reaction, TTBr3 (0.400 g; 0.920 mmol), (tributyl(4-
hexylthiophen-2-yl)stannane (1.264 g, 2.769 mmol), LiCl (0.390 g, 9.20 mmol), Pd(PPh3)2Cl2
(0.065 g, 0.092 mmol) and dry toluene (10 mL) are transferred inside a 100 mL dry Schlenk
flask equipped with a magnetic stirrer. The mixture is de-aerated by means of three freeze–
pump–thaw cycles. The system is heated under a static nitrogen atmosphere at 120 ◦C for
16 h. The reaction is then cooled to room temperature, filtered on Buchner and the solvent
removed in vacuum. The crude reaction mixture is purified by flash chromatography on
SiO2 with DCM/hexane as eluents (Rf = 0.72 in hexane/AcOEt = 8/2). The product is
further purified by precipitation from DCM with MeOH to give TT-(HThio)3 as a white
solid (0.390 g, 0.56 mmol, Yield: 61%). Crystals suitable for X-ray diffraction analysis were
obtained by slow evaporation from a MeOH solution.

NMR data (9.4 T, CD2Cl2, 298 K, δ, ppm): 1H NMR NMR data (9.4 T, CD2Cl2, 298 K, d,
ppm): 1H NMR 7.43 (d, 1.10 Hz, 3H), 7.18 (s, 3H), 7.09 (d, 1.10 Hz, 3H), 2.68 (t, J = 7.5 Hz,
6H), 1.68 (p, J = 7.5 Hz, 6H), 1.48–1.30 (m, 18H), 0.90 (t, 6.9, 9H). 13C NMR 143.9 (C), 136.4
(C), 132.3 (CH), 129.2 (CH), 128.0 (C),122.3 (CH), 122.3 (C), 32.1 (CH2), 30.8 (CH2), 29.40
(CH2), 23.0 (CH2), 14.3 (CH3).

4.4. Single-Crystal X-ray Studies

X-ray data of TT-HThio were collected on a Bruker Apex II diffractometer (Bruker AXS
Inc., Madison, WI, US) using MoKα radiation [34]. The structure was solved using direct
methods and refined with SHELXL-14 [35] using a full-matrix least-squares procedure
based on F2 using all data. Hydrogen atoms were placed at geometrically estimated
positions. Details relating to the crystal and the structural refinement are presented in
Table S1. Long bars of TT-HThio were grown at room temperature in a methanol solution
of the compound. Full details of crystal data and structure refinement, in CIF format, are
available as Supplementary Information. CCDC reference number: 1913040.

4.5. Computational Details

DFT and TDDFT calculations on TT-HThio and TT-(HThio)3 were performed with
the Gaussian 16 program (Revision A.03) [36] using the 6-311++G(d,p) basis set. The
geometry of TT-HThio was optimized starting from the experimental molecular structure,
as derived from X-ray studies. For comparison purposes, we adopted the same functional
ωB97X [37] used for calculations of the previously reported parent cyclic triimidazole and
its halogenated derivatives.

4.6. Photophysical Characterization

Photoluminescence quantum yields were measured using a C11347 Quantaurus–
Absolute Photoluminescence Quantum Yield Spectrometer (Hamamatsu Photonics K.K,
Shizuoka, Japan) equipped with a 150 W Xenon lamp, an integrating sphere and a multi-
channel detector. Steady-state emission, excitation spectra and photoluminescence lifetimes
were obtained using an FLS 980 (Edinburgh Instrument Ltd., Livingston, United Kingdom)
spectrofluorimeter. The steady-state measurements were recorded with a 450 W Xenon arc
lamp. Photoluminescence lifetime measurements were performed using an EPLED-300 (Ed-
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inburgh Instrument Ltd.) and microsecond flash Xe-lamp (60W, 0.1÷ 100 Hz) with the data
acquisition devices time-correlated single-photon counting (TCSPC) and multi-channel

scaling (MCS) methods, respectively. Average lifetimes were obtained as τav = ∑ Aiτ
2
i

∑ Aiτi
from

bi-exponential or three-exponential fits. Low-temperature measurements were performed
by immersion of the sample in a liquid N2 quartz dewar.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28010140/s1, Figures S1–S4: 1H and 13C NMR spectra;
Table S1: crystal data; Figures S5–S30: photophysical data; Table S2–S3: computational data.
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