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Abstract

The classification of scalar Ito equations with a single noise source which admit a so
called standard symmetry and hence are – by the Kozlov construction – integrable is
by now complete. In this paper we study the situation, occurring in physical as well as
biological applications, where there are two independent noise sources. We determine
all such autonomous Ito equations admitting a standard symmetry; we then integrate
them by means of the Kozlov construction. We also consider the case of three or more
independent noises, showing no standard symmetry is present.
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1 Introduction

Stochastic differential equations [1–8] are ubiquitous in Physics. These can be met in
a variety of forms, but here we focus on those written in Ito form (for which a sound
complete mathematical theory exists [5]), i.e. as

dxi = f i(x, t) dt +
ℓ∑

k=1

σik(x, t) dw
k (i = 1, ..., n) , (1)

where the wk = wk(t) are independent Wiener processes.

Such equations can in general only be studied per se (that is, apart from the study of
the associated diffusion – Fokker-Planck or Kolomogorov – equation) numerically, or at
best qualitatively. But in a very small number of cases they are integrable. In practice,
this means that they can be set, through a change of variables y = Φ(x, t;w), in the form

dyi = F i(t) dt +
ℓ∑

k=1

Si
k(t) dw

k ; (2)

equations in this form are then immediately integrated as

yi(t) = yi(0) +

∫ t

0
F i(τ) dτ +

ℓ∑

k=1

∫ t

0
Si

k(τ) dw
k(τ) ; (3)

inverting the change of variables allows to obtain x(t) = Φ−1[y(t)].
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Note that contrary to deterministic integrable systems, in this case integrability does
not entails that we are able to predict the state of the system at time t > 0 once we know
its initial state at t = 0. In fact, the state x(t) also depends on the realization of the
Wiener processes wk(τ); thus prediction of x(t) requires to know x(0) and the realizations
of the Wiener processes. On the other hand, when one is dealing with these equations in
the description of a physical (or biological) phenomenon, it is possible to use the explicit
expression for the solution to test a posteriori – thus, knowing what the realization of
the Wiener processes in the particular run of the experiment has been – that the physical
system is indeed described by the integrable equation.1

In the case of systems, it may happen there one can eliminate the dependence on, say,
y1, ..., yk in the drift and noise coefficients of the transformed system (3); in this case
we are effectively reduced to an n− k-dimensional system. That is, if {yk+1(t), ..., yn(t)}
are determined, then the equations for y1, ..., yk are explicitly integrable reconstruction
equations. In this sense we speak of reduction, or also partial integrability, as in the case
of deterministic equations [10–15].2

It turns out that, similarly to what happens in the deterministic case [10–15], integra-
bility of Ito equations is strongly related to their symmetry properties [16–33]. In fact,
once a symmetry of (1) of a suitable form (see below for details) is known, there is a
standard way of constructing the integrating change of variables, known as the Kozlov
substitution (so named after Roman Kozlov, who first devised it [19–24]).

It should be noted that a somewhat weaker form of integrability also exists; that is, in
some case – depending on the functional form of the symmetry – one will not be able to
map the equation under study into (2), but only into an equation of the form

dyi = F i(t,w) dt +
ℓ∑

k=1

Si
k(t,w) dwk . (4)

This can still be formally integrated as

yi(t) = yi(t0) +

∫ t

t0

F i[τ,w(τ)] dτ +
ℓ∑

k=1

∫ t

t0

Si
k[τ,w(τ)] dwk(τ) . (5)

The equations (1) are rather general. In many cases, one is interested in autonomous
equations, and quite often scalar ones (note that we are considering a scalar random
variable x(t), but allow this to be driven by several Wiener processes wk(t)):

dx = f(x) dt +
ℓ∑

k=1

σk(x) dw
k . (6)

1For example, it is known that for several species the birth rate may depend on the temperature, and in
some cases even the sex ratio among newborn is a function of the temperature [9]; the temperature itself
is a random variable, and in the case of an equation describing birth rate as a function of the temperature
one can study a posteriori, once the temperature fluctuations are known, the correspondence between
these and fluctuations in the birth rate. Similarly, one can consider experiments where particles – photons,
electrons, etc – are emitted by some electricity-driven apparatus, but random fluctuations in the electric
current are present and taken into consideration; once this have been measured in a real run, correlation
among them and those in the flow of emitted particles can be studied, and the model validated.

2In the following we will mainly focus on scalar equations, for which the notion of partial integrability
plays no role, but this would be relevant in higher-dimensional extensions of our work; see also the discussion
in Section 5 of [27] (Section 5 therein).
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This is the class of equations we consider in the present paper.

Moreover, albeit all forms of the noise terms σik(x, t) or σ
i
k(x) or σk(x, t) are in prin-

ciples allowed, in most physical applications one is concerned with special forms of these,
which we write in formulas (with s a constant in each case) referring to (6) for ease of
notation:

• additive noise: σ(x) = s;

• multiplicative noise: σ(x) = sx;

• Poisson noise3: σ(x) = s
√
x.

• More generally, one can consider simple noise: σ(x) = sxk (k a constant, say with
k 6= 0, 1/2, 1 as these correspond to the previous special cases).

Later on, we will focus specially on these forms of noise.

We want to stress that a single system can be subject to different sources of noise: for
example in Population Dynamics one will have fluctuations due to fluctuating environ-
mental parameters (in this case one speaks in that context of environmental noise, which
is actually multiplicative noise in mathematical terms) and fluctuations due to intrinsic
fluctuations in the birth and death processes, and these lead to Poisson noise (known in
that context as demographical noise).

Similarly, in situations where one is counting particles (electrons, photons, neutrons,
quasi-particles, etc) reaching a detector, there will be a Poisson noise due to intrinsic
fluctuations in the flow, but there can as well be multiplicative noise due to fluctuations
in the operating conditions of the apparatus producing the particles or quasi-particles.

In such cases, where different sources of noise are present, such sources are in general
not correlated and the corresponding Wiener processes in the Ito equation should be seen
as independent ones. This lead us to the form (1) seen above; or to (6) if we have a single
variable x(t).

In the simplest setting, one has a single variable x and a single driving Wiener process
w(t).

In this context, it has been recently shown that the so called stochastic reaction equation
of chemical reaction theory (also known as logistic equation in Population Dynamics) with
multiplicative noise, i.e. the (scalar, autonomous) Ito equation

dx = A x (1− x) dt + s x dw , (7)

is integrable. For this result, and the actual integration, see [25]. Search for more general
integrable scalar stochastic differential equations with multiplicative noise ensued, and
these have been classified in [32].

Another classification, devoted to integrable scalar equations with general simple noise
(that is, for noise term of the form sxk, with k 6= 1 – this case being covered by the work
mentioned above, and also being degenerate in several ways) was given recently [34]. This
classification covers, as said above, any simple noise and hence also the special cases of

3Also known as fluctuational noise, RMS noise, demographical noise (in population dynamics), shot
noise (in signal transmission theory), Schottky noise (in solid state Physics).
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additive noise and of Poisson noise. (This classification actually covers also the case of a
general – i.e. non-simple – noise, but in a rather implicit manner.)

In this sense, at present we know all we would like to know about integrable scalar
autonomous Ito equations with a single noise source.

The goal of this study is to investigate the situation for systems described by a single
random variable x(t) subject to multiple noise sources. In particular, we will consider the
case where the noise is a combination of two of the special types of noise listed above:
additive, multiplicative and Poisson; or general simple noise as well.

As stressed above, beside restricting to the case of scalar equations, we will focus on
the physically relevant case of autonomous Ito equations. Thus our subject of study will
be equations of the form

dx = f(x) dt +

ℓ∑

k=1

σk(x) dw
k , (8)

actually with ℓ = 2.

We will from now on routinely use the Einstein summation convention, albeit in some
cases we may prefer to write again explicitly the summations for greater clarity. Moreover
we will write ∂x for ∂/∂x and the like. In later sections, when we deal with only one
random variable x but several driving Wiener processes wi, we will sometimes write ∂k
for ∂/∂wk.

Plan of the paper

The plan of the paper is as follows. In Section 2 we recall some facts about symmetry
and integrability – and the interrelations between the two – of Ito equations. This also
identifies the class of relevant symmetries in the present context, and we will then restrict
to consider only these, dibbed simply as “symmetries” in this description of the plan
of the paper. We pass then, in Section 3, to discuss the case where there are two noise
sources (driving Wiener processes); this is the core of the paper, and albeit we focus on the
(physically more relevant, as discussed above in this Introduction) case of two noises, the
methods used here are promptly extended to the case of multiple noise sources. In Section
3.1 we find a compatibility condition which must be satisfied by the two noise terms; this
leads to a general result: if we are considering simple noises, then for a symmetry to
exist one of the two noises must be a multiplicative one. We pass then to consider the
most relevant – in terms of Physics applications – combination of noise types (including
combinations for which the aforementioned general results implies no symmetry can be
present, checking this result by a different approach): additive and multiplicative, additive
and Poisson, Poisson and multiplicative, multiplicative and general simple noise. For each
of these cases, we classify the symmetric equations – that is, the allowed drift term and
possibly relations between the constant appearing in the noise coefficients of the given
functional type corresponding to an equation admitting symmetries – and for these we
also determine the symmetries. In the following Section 4 we will use these symmetries
to integrate, via the Kozlov substitution, the symmetric equations. It is well known that
when dealing with an Ito equation a standard substitution [19–21] allows to set one of the
noise terms to unity. One could use this approach in studying equations with two noise
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terms, thus reducing these to a kind of “standard form”; in Section 5 we use this approach
to double check our results described before. Section 6 briefly discusses the case of a
scalar (autonomous) Ito equation with N noises; it turns out that there is no symmetry
for N > 2, so that our classification is complete. Finally, in Section 7 we discuss our
findings and draw our conclusions.

The paper is completed by three Appendices. In Appendix A we recall, following also
our recent paper [34] (but extending the scope of the discussion given there to the case of
multiple noises), how the second order symmetry determining equations can be cast in first
order form by considering the Stratonovich drift for the Ito equation. Appendix B is de-
voted to justifying the restriction, in the main body of the paper, to standard symmetries
(see Sect.2), excluding so called W-symmetries [30]. In Appendix C we provide the de-
tailed computations showing that no standard symmetry can arise for autonomous scalar
equations with three independent noises, so that our classification is actually complete –
not only for two noises but for multiple independent noises in general.

2 Symmetry and integrability of scalar Ito equations.

General aspects

In this Section we review some well know facts about symmetry and integrability of Ito
equations, applying these to the case of interest here.

2.1 Symmetry

A time-preserving symmetry of a general scalar Ito equation with possibly multiple sources
of noise4 is a vector field

Y = ϕ(x, t;w) ∂x + (Rw)i ∂wi (9)

which satisfies the determining equations

ϕt + f ϕx − ϕfx +
1

2
∆(ϕ) = 0 , (10)

ϕwi + σi ϕx − ϕσix − (Ri
k σ

k) = 0 (i = 1, ..., ℓ); (11)

here and in the following, ∆ is the Ito Laplacian, which in this simple scalar case reads

∆(φ) :=

ℓ∑

k=1

φwkwk + 2

ℓ∑

k=1

σk φxwk +

(
ℓ∑

k=1

σ2k

)
φxx . (12)

Moreover, R is a constant matrix belonging to the Lie algebra of the conformal linear
group in ℓ dimensions. When R = 0, we speak of standard symmetries, while for R 6= 0 we
have proper W-symmetries5. Moreover we distinguish two types of standard symmetries:

4The restriction to scalar equations is inessential from the mathematical point of view, but handy here
in that: (i) this is the case we will treat; (ii) it allows to provide slightly simpler formulas. See e.g. [29] for
the fully general case.

5In the usual nomenclature, standard symmetries are a special case of W-symmetries; this is why when
R 6= 0, hence we have a symmetry which is not a standard one, we speak of proper W-symmetries.
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when ϕ = ϕ(x, t) we speak of a deterministic standard symmetry, while if ϕ depends on
(at least some of) the wi, we have a random symmetry.

It should be noted that standard symmetries lead, through the Kozlov substitution,
to (full or partial) integration of the equation via a change of variables which maps the
equation at hand into a new (fully or partially integrable; see the Introduction) stochastic
equation, of Ito type in the case of deterministic standard symmetries and of a related type
in the case of random standard symmetries. In the case of W-symmetries the situation
is less well defined, see [30, 34] for details; actually, we will show in Appendix B that W-
symmetries can not be used for integration of Ito equations though a change of variables;
so they will not be considered by our study.

In the present setting, we should solve (10), (11) for given σk as an equation for both
the drift f and {ϕ,R} (the coefficients of the symmetry vector field).

Note that our system is a system of linear equations for ϕ, and for R = 0 this is
a homogeneous system; thus – at least in this R = 0 case, i.e. standard symmetries,
which is the one we will deal with – ϕ can always be multiplied by a constant; in our
forthcoming concrete computations we will set this to unity, i.e. disregard this unessential
multiplicative constant.

2.2 Integrability

If a standard symmetry (exists and) has been determined, we consider the so called Kozlov
transformation, i.e. define the function

Φ(x, t;w) =

∫
1

ϕ(x, t;w)
dx , (13)

and operate the change of variables

y = Φ(x, t;w) . (14)

It is well known that this explicitly integrates our equation [20]; we will however provide
a brief description of how the proof goes, for the sake of completeness. (We refer to our
recent paper [34] for details).

We will use the shorthand notation

ϕk :=
∂ϕ

∂wk
.

Applying Ito formula, the new random variable y satisfies the Ito equation

dy =
∂Φ

∂x
dx +

∂Φ

∂t
dt +

∂Φ

∂wk
dwk +

1

2
∆(Φ) dt . (15)

We should now substitute for dx according to (8). In this way we obtain an equation
of the form

dy = F dt + Sk dw
k , (16)

and by explicit computations we have

F =
f

ϕ
−
∑

k

(
σk ϕk

ϕ2
+

σ2kϕx

2ϕ2

)
− 1

2

∑

k

(∫
ϕϕkk − 2ϕ2

k

ϕ3
dx

)
−
∫

ϕt

ϕ2
dx ;

Sk =
σk
ϕ

−
∫
ϕk

ϕ2
dx .
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Note that in these formulas the r.h.s. is written as a function of x; this should be thought
as x = Φ−1(y), but as we will see in a moment we do not actually need to perform the
substitution in order to show that F and the Sk only depend on t, and possibly on the
wk, but not on y.

In order to check that F and S do not depend on y, we should apply the y derivative
on these expressions; that is, in view of the change of variables we have performed (in
which t and wk are unaffected), we should consider the operator

∂

∂y
=

(
∂x

∂y

)
∂

∂x
= ϕ

∂

∂x
.

Thus, if (∂F/∂x) = 0, (∂Sk/∂x) = 0, we are automatically guaranteed to have (∂F/∂y) =
0, (∂Sk/∂y) = 0 as well.

Actually, if we consider the determining equations and substitute for ϕt and for ϕk (and
its differential consequences, i.e. – with an obvious notation – for ϕkk and ϕxk) according
to these, we readily obtain that

∂F

∂x
= 0 ;

∂Sk
∂x

= 0 . (17)

In fact, we immediately get

∂Sk
∂x

=
1

ϕ2
[ϕk + σk ϕx − ϕ (∂σk/∂x)] ;

if ϕ satisfies (11) (recalling we are assuming to have a standard symmetry, i.e. R = 0) it
is immediate to see this vanishes. The computation for F is more involved and will not
be reported here; it makes use of (10) and (11) together with its differential consequences,
and is completely analogous to the one for Sk; it is given in full detail in the Appendix A
to [34].

It should be stressed that proceeding in the same way for W-symmetries we find that

∂Sk
∂x

=
Rkℓσℓ
ϕ2

,

which is nonzero for R 6= 0, i.e. for proper W-symmetries.
The reader has surely noted that we proved only that F and S are independent of x,

and hence of y; not that they are also independent of the wk. In fact, in general they do
depend on these variables. We are guaranteed this is not the case, of course, when ϕ itself
does not depend on the wk, ϕ = ϕ(x, t); that is, when we have a so called deterministic
standard symmetry.

In this case computations are simpler: we do have

F =
f

ϕ
− σ2 ϕx

2ϕ2
−
∫
ϕt

ϕ
dx , (18)

Sk =
σk
ϕ
, (19)

and checking the x-independence of these once we assume ϕ is a solution to the determining
equations (with R = 0) is immediate.
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We refer to [20,27] for detailed proofs, also dealing with more general cases than those
considered in this paper.

It should be stressed again that when F and the Sk do actually depend on the wk, the
transformed equation is not in Ito form; but it is still integrable. In fact we do have the
transformed equation in the form (4), which is integrated as (5).

3 Standard symmetries of scalar Ito equations with two

Wiener processes

As recalled in the Introduction, the results available in the literature – see in particular
our recent paper [34], fully cover the case of a scalar Ito equation with a single noise term.

But a scalar Ito equation can have multiple noise terms, and it is natural to discuss this
class of equations as well. Actually, as discussed in the Introduction, in several physical
or biological situations one has to consider a Ito equation with two noise terms; this is of
course also the simplest case of multiple noise terms.

We will thus from now on consider the framework of a single (autonomous) Ito equation
for a scalar random variable x having two independent driving Wiener processes6. This
would be written in the form (8) with ℓ = 2, but for notational simplicity we will set

σ1(x) = σ(x) , σ2(x) = ̺(x) ; w1 = w , w2 = z .

Thus we write this class of equations explicitly as

dx = f(x) dt + σ(x) dw + ̺(x) dz . (20)

In this case the determining equations consist of a system of three equations:

ϕt + f ϕx − ϕfx +
1

2
∆(ϕ) = 0 , (21)

ϕw + σ ϕx − ϕσx − r11 σ − r12 ̺ = 0 , (22)

ϕz + ̺ϕx − ϕ̺x − r21 σ − r22 ̺ = 0 ; (23)

the Ito Laplacian is now defined considering we have two (independent) driving Wiener
processes, which gives in concrete terms

∆(φ) := φww + φzz + 2 (σ φxw + ̺φxz) +
(
σ2 + ̺2

)
φxx . (24)

For later reference we will group the rij coefficients in a matrix

R =

(
r11 r12
r21 r22

)
.

As in the case of a single noise [34], this system can be replaced by a first order system,
in which the place of (21) is taken by

ϕt + b ϕx − bx ϕ + r11 σ σx + r22 ̺ ̺x +
1

2
(r12 + r21) (σ ̺x + σx ̺) = 0 , (25)

6It is rather clear that in case of linear dependence – which for two noises would simply mean they are
one multiple of the other – we can reduce to consider a smaller number of noise sources. We will thus
always assume, both here and in considering the N noises case in Sect. 6 below, that such dependencies –
and the ensuing reduction – have been taken into account.
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and (22), (23) remain unchanged (see Appendix A for a proof). Note that, as already
remarked, the b thus defined implicitly, and explicitly given by

b = f − 1

2
(σ σx + ̺ ̺x) , (26)

is the Stratonovich drift for our Ito equation [1–8].
The symmetries (corresponding to solutions of the system above) will be of the form

Y = ϕ(x, t;w, z) ∂x + (r11 w + r12 z) ∂w + (r21 w + r22 z) ∂z . (27)

We will from now on, in this Section and the following ones, only deal with the case

R = 0 ; (28)

that is, we will only consider standard symmetries. The reason to exclude proper W-
symmetries is, as mentioned above, that they do not lead to integration of the Ito equation
through a change of variables; this matter will be discussed in detail in Appendix B below.

In this way, eqs. (25), (22) and (23) reduce to

ϕt + b ϕx − ϕbx = 0 ; (29)

ϕw + σ ϕx − ϕσx = 0 , (30)

ϕz + ̺ϕx − ϕ̺x = 0 , (31)

while (21) is of course unchanged. Moreover, the vector field (27) is just Y = ϕ(x, t;w, z) ∂x.
When tackling the system (29), (30), (31), our general approach will consist in first

solving the equations which are independent of f , i.e. (30) and (31); this determines a
general class of functions ϕ. We will then turn our attention to (29), where we have to
determine both f and the exact function ϕ within the class identified before; in general, it
will be convenient to consider differential consequences of (29) providing some separation
of variables (see below for details).

In this section we will just identify symmetrical equations and determine their symme-
try; in the next section we will use the latter to integrate the symmetrical equations.

3.1 Compatibility condition

The equations (30) and (31) admit a common solution only if a certain compatibility
condition between the noise terms σ(x) and ̺(x) is satisfied. Note that we should assume
these to be functionally independent, or the two equations would be equivalent. A special
situation arises in the case of simple noises.

Lemma 1. Let σ(x) and ̺(x) be functionally independent. The equations (30) and (31)
admit a common solution ϕ if and only if the functions

J(x) :=
σ (σ ̺xx − σxx ̺) − σx (σ ̺x − σx ̺)

σ ̺x − σx ̺
, (32)

K(x) =
̺ (σ ̺xx − σxx ̺) − ̺x (σ ̺x − σx ̺)

σ ̺x − σx ̺
, (33)

are actually constant.



132 ]ocnmp[ G. Gaeta & M.A. Rodŕıguez

Proof. Taking the z derivative of (30) and the w derivative of (31), we obtain

ϕwz = σx ϕz − σ ϕxz , (34)

ϕzw = ̺x ϕw − ̺ ϕxw ; (35)

the last term in each equation is obtained differentiating (30) and (31) w.r.t. x, which
gives

ϕxw = ϕσxx − σ ϕxx ,

ϕxz = ϕ̺xx − ̺ϕxx .

Taking these and (30), (31) into account, the difference of (34) and (35) yields

(σ ̺x − σx ̺) ϕx = (σ ̺xx − σxx ̺) ϕ . (36)

Writing for short

Λ(x) := σ ̺x − σx ̺ , (37)

this equation yields

ϕ(x, t;w, z) = Λ(x) h(t; z, w) . (38)

Note that Λ(x) 6= 0 unless σ and ̺ are functionally dependent, which we exclude.
The functional form (38) corresponds to a compatibility condition between (30) and

(31). Plugging this expression for ϕ into (30) and (31), we get

Λ hw + (σ Λx − σx Λ) h = 0 , Λ hz + (̺Λx − ̺x Λ) h = 0 ;

these are also rewritten as

hw
h

=
Λσx − Λx σ

Λ
:= − J ,

hz
h

=
Λ ̺x − Λx ̺

Λ
:= −K . (39)

As h = h(t; z, w), the l.h.s. does not depend on x, and hence J and K defined above must
also not depend on x:

∂J

∂x
= 0 =

∂K

∂x
. (40)

If we express Λ in terms of σ and ̺, see (37), we have precisely the expressions (32)
and (33) given in the statement. △

Corollary 1. If σ and ̺ are simple noises, i.e. (with s, r nonzero real constants)

σ(x) = s xℓ , ̺(x) = r xm , (41)

then the equations (30) and (31) admit a common solution if and only if either ℓ = 1 or
m = 1, i.e. if and only if one of the two noises is a multiplicative noise.
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Proof. This follows by the definition of Λ. In the case (41) we have

Λ = r s (m− ℓ) xℓ+m−1

and hence

J = (m − 1) s xℓ−1 , K = (ℓ − 1) r xm−1 . (42)

These are constant only when either the exponent of x, or the coefficient, is zero. The
statement follows at once. △

It is a trivial remark that this approach, through compatibility conditions, could as
well be pursued with an arbitrary number N of independent noise sources. We will only
consider in detail the combination of two noises, as anticipated. The case of N noises
is then discussed in Section 6; we anticipate that this discussion will show that only the
two-noises case allows nontrivial symmetry properties.

3.2 Equations with additive and multiplicative noise

We start by considering the case where the equation has additive and multiplicative noise,
i.e. we deal with

dx = f(x) dt + s1 dw + s2 x dz . (43)

Lemma 2. An equation of the form (43) admits a standard symmetry if and only if the
drift term f(x) is of the form

f(x) = α + β x , (44)

with α and β real constants. In this case, the symmetry is identified by

ϕ(x, t;w, z) = exp
[
s2 z + (β − s22/2) t

]
. (45)

Proof. In this case the equations (30) and (31) read

ϕw + s1 ϕx = 0 ,

ϕz + s2 x ϕx = s2 ϕ .

These are easily solved by characteristics, yielding

ϕ(x, t;w, z) = exp[s2 z] η(t) . (46)

We have now to deal with (29), which now reads simply

1

2
exp[s2 z]

[
2 η′(t) +

(
s22 − 2 f ′(x)

)]
= 0 ; (47)

dropping the overall factor (1/2) exp[s2z] and differentiating w.r.t. x we get that η 6= 0
requires f(x) to be precisely of the form (44). The equation (47) reads now

2 η′ + (s22 − 2β) η = 0 , (48)
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hence (disregarding as usual the multiplicative constant) we get

η(t) = exp
[
(β − s22/2) t

]
. (49)

This completes the proof. △

Note that the symmetry thus determined is a random standard one; as discussed in
Section 2.2, this will lead to an integrable stochastic equation which is not in Ito form.

3.3 Equations with additive and Poisson noise

We know that in this case no symmetry can be present, see the discussion in Section 3.1.
We will however perform the direct computations to confirm our result.

Let us now consider autonomous scalar Ito equations depending on both additive and
Poisson noise, i.e.

dx = f(x) dt + s1 dw + s2
√
x dz . (50)

Lemma 3. An equation of the form (50) never admits a standard symmetry.

Proof. In this case the determining equations (30) and (31) read respectively

ϕw + s1 ϕx = 0 , (51)

ϕz + s2
√
xϕx =

s2
2
√
x
ϕ . (52)

The first equation yields immediately

ϕ(x, t;w, z) = ψ(t, ζ, z) , ζ := w − x/s1 .

Plugging this into (52) we get the equation

ψz − s2
s1

√
x ψζ =

s2
2
√
x
ψ .

Recalling ψ = ψ(t, ζ, z) we obtain that necessarily ψ = 0 and hence ϕ = 0 as well. △

It should be noted that this also follows from our general result given in Lemma 1;
we have performed this explicit computation as a confirmation of this, also considering
that the one presently considered is a relevant combination of independent noises for the
applications.

3.4 Equations with Poisson and multiplicative noise

We can now consider equations with both Poisson and multiplicative noise. These are

dx = f(x) dt + s1
√
x dw + s2 x dz . (53)

Lemma 4. An equation of the form (53) admits a standard symmetry if and only if the
drift term f(x) is of the form

f(x) = (s21/4) + c2
√
x + c3 x ; (54)
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in this case, the symmetry is identified by

ϕ(x, t;w, z) =
√
x exp

[
1

4

(
2 s2 z + (2 c3 − s22) t

)]
. (55)

Proof. We will start once again by considering eqs. (30) and (31). These now read

ϕw + s1
√
x ϕx =

s1
2
√
x
ϕ , (56)

ϕz + s2 x ϕx = s2 ϕ . (57)

We start by considering (57), which is solved by

ϕ(x, t;w, z) = x χ(t, w, ζ) , ζ := z − log(x)

s2
.

Plugging this into (56) we get

x χw − s1
s2

√
x χζ =

s1
2

√
x χ .

This requires χw = 0, i.e.
χ(t, w, ζ) = ψ(t, ζ) .

The equation (56) is thus reduced to

s1
2 s2

√
x (s2 ψ − 2 ψζ) = 0 , (58)

with solution

ψ(t, ζ) = exp[(s2/2) ζ] η(t) . (59)

We are now ready to tackle (29), which now reads – factoring out an overall term
exp[(s2/2)z]/(8

√
x) – as

8x η′ −
(
s21 − 2 s22 x − 4 f(x) + 8x f ′(x)

)
η = 0 . (60)

Differentiating twice w.r.t. x we have

4 η
[
3 f ′′(x) + 2x f ′′′(x)

]
= 0 .

As we want η 6= 0, this requires

f(x) = c1 + c2
√
x + c3 x .

Having restricted the functional form of f(x), we can go back to (60), which now reads

(
s21 − 4 c1

)
η + x

[(
4 c3 − 2 s22

)
η − 8 η′

]
= 0 . (61)

The terms corresponding to different powers of x must vanish separately, so we have

c1 = s21/4
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from the terms of order zero, which sets f(x) to be precisely of the form (54), while the
term of order one in x yields (disregarding the multiplicative constant)

η(t) = exp

[(
c3
2

− s22
4

)
t

]
.

This completes the proof. △

In this case again we have a random standard symmetry, and as discussed in Section
2.2 this will lead to an integrable equation which is not in Ito form.

3.5 Equations with multiplicative and general simple noise

We have considered above the combinations of noises which more often arise in physical
application. More generally, we could consider the combination of two simple noises (lead-
ing to rather complex direct computations); but our Corollary 1 shows that one of these
should be a multiplicative noise, or no symmetry can be present.

Thus we will now just consider, for the sake of completeness, the combination of a
multiplicative and of a general simple noise, i.e.

σ(x) = s1 x
m , ̺(x) = s2 x .

In other words, we will consider the Ito equations

dx = f(x) dt + s1 x
m dw + s2 x dz . (62)

We stress that we should and will require

m 6= 1 .

In the following computations, we will also assume m 6= 0, m 6= 1/2, as these cases have
already been considered (this will allow to avoid discussing certain degenerations in the
forthcoming general formulas).

Lemma 5. An equation of the form (62) admits a standard symmetry if and only if the
drift term f(x) is of the form

f(x) =
1

2

(
(s22 − 2Q)x + ms21 x

2m−1
)

+ C xm , (63)

with C and Q real constants; in this case, the symmetry is identified by

ϕ(x, t;w, z) = xm exp [(m− 1) (Qt − s2 z)] . (64)

Proof. We start as usual by considering eqs. (30) and (31). These now read

ϕw + s1 x
m ϕx = s1 m xm−1 ϕ , (65)

ϕz + s2 x ϕx = s2 ϕ . (66)
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The equation (66) is solved by

ϕ(x, t;w, z) = x χ(t, θ, w) , θ := z − log(x)

s2
.

Plugging this into (65) we get

s2 x χw − s1 x
m χθ = (m − 1) s2 s1 x

m χ .

This requires χw = 0, i.e.

χ(t, θ, w) = ψ(t, θ) .

The equation (65) is thus reduced, dropping an overall s1x
m factor, to

s2 (m− 1) ψ + ψθ = 0 , (67)

with solution

ψ(t, θ) = exp[− (m− 1) s2 θ] η(t) . (68)

Equations (30) and (31) are thus satisfied, and we are now ready to tackle (29); this
now reads – factoring out an overall term x−m exp[(m− 1)s2z]) – as

2x2 η′(t) + η(t)
[
(m− 1) (ms21 x

2m − s22 x
2) + 2mx f(x) − 2x2 f ′(x)

]
= 0 . (69)

The equation can be separated, and provides

η(t) = q eKt

(we set as usual q = 1), while f must satisfy

− f ′(x) +
m

x
f(x) +

m (m− 1) s21
2

x2(m−1) − (m− 1) s22
2

+ K = 0 .

This is solved by f(x) of the form (63), where C is an arbitrary constant, and we have
written the constant K appearing in η and hence in ϕ as

K = (m− 1)Q .

The function ϕ reads now as (64). The proof is complete. △

The usual remark about this symmetry being a random standard symmetry, and thus
leading to an equation which is integrable but not in Ito form, applies here.

4 Integrating symmetric scalar Ito equations with two Wiener

processes

For the Ito equations with symmetries, we can proceed to integration via use of the Kozlov
transformation. We will now discuss this for the equations identified in Section 3.
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4.1 Equations with additive and multiplicative noise

Let us consider equations of the form (43) with drift of the form (44); as seen above, these
admit a standard symmetry identified by (45).

We will now apply the Kozlov procedure in this setting. This requires to pass to the
variable

y = Φ(x, t;w, z) =

∫
1

ϕ
dx ; (70)

in this case we get

y = exp

[
−
(
β − s22

2

)
t − s2 z

]
x := Φ(x, t;w, z) . (71)

Ito rule implies that

dy =

(
∂Φ

∂t

)
dt +

(
∂Φ

∂x

)
dx +

(
∂Φ

∂w

)
dw +

(
∂Φ

∂z

)
dz +

1

2
∆(Φ) dt . (72)

Computing the derivatives and the Ito Laplacian, and substituting for dx according to
(43), we obtain

dy = exp

[
−
(
β − s22

2

)
t − s2 z

]
(α dt + s1 dw) . (73)

This is of the form

dy = F (t;w, z) dt + S1(t;w, z) dw + S2(t;w, z) dz , (74)

actually with

F = α exp

[
−
(
β − s22

2

)
t − s2 z

]
,

S1 = s1 exp

[
−
(
β − s22

2

)
t − s2 z

]
,

S2 = 0 ,

and is promptly integrated, see Section 2.2.

4.2 Equations with Poisson and multiplicative noise

In the case of Ito equations with Poisson and multiplicative noise, i.e. (53) with drift of
the form (54), we have seen that the standard symmetry is identified by (55).

In this case we get

y = Φ(x, t;w, z) = 2
√
x exp

[
−1

4

(
(2 c3 − s22) t + 2 s2 z

)]
. (75)

Proceeding as above, we get an equation of the form (74), now with

F = c2 exp

[
−1

4

(
(2 c3 − s22) t + 2 s2 z

)]
,

S1 = s1 exp

[
−1

4

(
(2 c3 − s22) t + 2 s2 z

)]
,

S2 = 0 .

These are again directly integrated, as discussed in Section 2.2.
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4.3 Equations with multiplicative and general simple noise

We can finally consider equations with multiplicative and simple noise (say with m 6=
0, 1/2, 1 to discard the trivial case and those already seen above), i.e. equations of the
form (62). In this case symmetric equations are characterized by drift of the form (63) –
with c and Q arbitrary constants – and the symmetry is identified by (64).

In this case we get

y = Φ(x, t;w, z) =
x1−m

1−m
exp [(1 − m) (Qt − s2w)] . (76)

Proceeding with the Kozlov substitution as above, we get an equation of the form (74),
now with

F = C exp [(1 − m) (Qt − s2w)] ,

S1 = s2 exp [(1 − m) (Qt − s2w)] ,

S2 = 0 .

5 Standard form of Ito equations, additive noise and change

of variables

As we have shown in Corollary 1, if one of the noises is additive and the other is sim-
ple, there is no symmetry, as we have shown; however, if we have a simple noise and
a multiplicative one, we could get a symmetry, at least if the compatibility equation is
satisfied.

On the other hand, it is well known (see e.g. [7]) that we can transform any equation
(even those with a multiplicative noise) into one with an additive noise7. The problem is
that in these cases no symmetry should exist.

This leads apparently to a contradiction in our results. In the present Section we will
discuss this point; we will show that there is no contradiction, and actually our discussion
will provide a different approach – through the reduction of the Ito equation to a standard
form, in which one of the noises has a standard (usually additive) form – to the analysis
of Ito equations with two noises, confirming our results.

5.1 Relation between equations with multiplicative and additive noise

Consider the equation

dx = f(x) dt + s1 x
k dw + s2 dz , (k 6= 1) ; (77)

As shown above, there is no symmetry. On the other hand, the equation

dx = f(x) dt + s1
√
x dw + s2 x dz (78)

has a symmetry for some suitable form of the drift. The (apparent) problem is that we
can change this equation (78) into an equation in which z is an additive noise, i.e. has the

7In fact, given the equation dξ = φ(ξ, t)dt + σ(ξ, t)dw, consider the variable x =
∫
(1/σ(ξ, t))dξ. This

satisfies dx = F (x, t)dt+ dw, where F is a function which can be easily determined by Ito calculus.
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form met in (77) (as we will see in a moment, this is only apparent due to what happens
to the w noise). In fact, consider the change of variable

y = Φ(x) =

∫
1

x
dx = log x . (79)

Then
∂Φ

∂x
=

1

x
,
∂2Φ

∂x2
= − 1

x2
,

and we get

dy =

[
f(x)

x
− 1

2x

(
s21 + s22 x

)]
dt +

s1√
x
dw + s2 dz .

The r.h.s. should be expressed in terms of y; this is obtained by writing x = ey. That is,
we get

dy =

[
f(ey)

ey
− 1

2 ey
(
s21 + s22 e

y
)]

dt +
s1√
ey
dw + s2 dz

:= f̃(y) dt + σ̃1 dw + σ̃2 dz . (80)

Here we have defined
σ̃1 =

s1√
ey

, σ̃2 = s2 .

This explicit computation shows that passing to the y variable the z noise (which was
multiplicative for the x variable) is additive; but also that the w noise is now not a simple
one.

Thus there is no contradiction with our previous results. This simple discussion, how-
ever, calls for a look at the situation where we have an additive noise and a non-simple
noise.

5.2 Additive noise and non-simple noise

Consider an Ito equation with an additive noise and a generic (in principle) noise:

dx = f(x) dt + σ(x) dw + s2 dz (81)

Note that if σ(x) is linear we are in the case of a multiplicative noise; we will thus discard
this possibility, and assume σ(x) 6= sx.

If we write (see also Appendix A)

b(x) = f(x) − 1

2
σ(x)σ′(x) (82)

the determining equations providing the function ϕ for this equation are (recall we disre-
gard W-symmetries in this section, as in previous ones):

ϕt = b′(x)ϕ − b(x)ϕx ; (83)

ϕw = σ′(x)ϕ − σ(x)ϕx , (84)

ϕz = − s2 ϕx . (85)
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Assuming that equations (30) and (31) are satisfied, the functions

J(x) =
σ σ′′ − σ′2

σ′
, K(x) = s2

σ′′

σ′

should be independent from x to allow the existence of a symmetry. From the equation
for K, in the generic case (that is, if σ is not linear), we have

σ(x) = αeγx + β ,

with α and β real constants, and γ = K/s2.
The equation for J yields then

J = β γ .

Equations (84) and (85) are now respectively

ϕw = α γ eγx ϕ − (α eγx + β) ϕx , (86)

ϕz = − s2 ϕx . (87)

The second of these, equation (87), yields immediately

ϕ(x, t;w, z) = h(t, w, ζ) , ζ = x − s2 z ;

now the first, equation (86), becomes

hw = − α (hζ − γ h) eγx − βhζ .

We have to require

hζ − γ h = 0 , h(t, w, ζ) = g(t, w) eγζ (88)

and then,
gw = −β γ g , g(t, w) = η(t) e−βγw .

In conclusion, the solution to our equations is

ϕ(x, t;w, z) = η(t) exp [γ (x − s2 z − β w)] . (89)

We substitute this expression into (83) and get

η′(t) = (bx(x) − γ b(x)) η(t) . (90)

The coefficient of η should be a constant, −γ δ, and this fixes b(x):

bx − γ b = − γ δ , b(x) = ǫ eγx + δ .

Then, the drift f(x) is

f(x) = b(x) +
1

2
σ σx =

1

2
α2 γ e2γx + χ eγx + δ , (91)

where χ is another constant.
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Finally η(t) satisfies (the constant factor can be taken equal to 1):

η′ + γ δ η = 0 , η(t) = e−γ δ t . (92)

We summarize our results as follows:

Lemma 6. The Ito equation (81) with σ(x) 6= sx admits a standard (random) symmetry
if and only if f(x) and σ(x) are of the form

f(x) =
1

2
α2 γ e2γx + χ eγx + δ ,

σ(x) = α eγx + β ,

where α, β, γ, δ, χ are arbitrary constants.

In this case the symmetry vector field X = ϕ∂x is identified by

ϕ(x, t;w, z) = exp [γ (x − s2 z − β w − δ t)] . (93)

6 The case of N noises

We have stated, back in Sect.3.1, that the case of N noises could be analyzed along the
same lines as the case of two noises. We will now briefly discuss the case of N noises,
still keeping to the autonomous case and to standard symmetries; that is, we consider
equations of the form

dx = f(x) dt +

N∑

k=1

σ(k)(x) dw
k . (94)

We assume, to discard trivial cases, that all the σ(k)(x) are functionally independent. Note
that the index of σ is set within brackets to distinguish it from a differentiation symbol.

Lemma 7. The equation (94) can admits a standard symmetry only if all the functions

J(mn) :=
σ(m) ∂x[σ(m) (σ(n))x − (σ(m))x σ(n)] − (∂xσ(m)) [σ(m) (σ(n))x − (σ(m))x σ(n)]

σ(m) (σ(n))x − (σ(m))x σ(n)

(m,n = 1, ..., N) are constant.

Proof. For the equation (94), the determining equations for standard symmetries will be

ϕt + f ϕx − fx ϕ = −(1/2) ∆(ϕ) , (95)

ϕk + σ(k) ϕx − (σ(k))x ϕk = 0 . (96)

It should be noted that now

∆(φ) :=

N∑

k=1

φkk + 2

N∑

k=1

σ(k) φxk +

N∑

k=1

σ2(k) φxx .
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The equation (95) can also be recast in first order form as

ϕt + b ϕx − bx ϕ = 0 , (97)

provided we define

b(x) := f(x) − 1

2

N∑

k=1

σ(k)(x)σ
′

(k)(x) . (98)

Proceeding as in Sect.3, we consider the equations (96) for any two values of the index
k, say k = m and k = n. By cross-differentiating and considering the difference of the two
equations thus obtained, we get

(
σ(m) (σ(n))x − (σ(m))x σ(n)

)
ϕx =

(
σ(m) (σ(n))xx − (σ(m))xx σ(n)

)
ϕ . (99)

Writing for short

Λmn(x) := σ(m) (σ(n))x − (σ(m))x σ(n) , (100)

this equation yields (here and below, no sum on m,n)

ϕ(x, t;w) = Λ(mn)(x) h(mn)(t;w) . (101)

Note that Λ(mn)(x) 6= 0 unless σ(m) and σ(n) are functionally dependent, which we have
excluded. Inserting this expression in (96), we get

Λmn ∂khmn +
(
σ(m) (∂xΛ(mn)) − (∂xσ(m))Λ(mn)

)
h(mn) = 0 , (102)

that is

∂kh(mn)

h(mn)
=

(
(∂xσ(m))Λ(mn) − σ(m) (∂xΛ(mn))

)

Λ(mn)
. (103)

The r.h.s. of this equation is just the function J(mn) defined in the statement.
Now we observe that the h(mn) do not depend on the x variable; thus the l.h.s. of

(103) has vanishing x derivative, and the same holds for its r.h.s.; in other words, we have
proved that the condition for the equations (96) to admit a common solution is that

∂x J(mn) = 0 ∀m,n = 1, ..., N . (104)

Note that this gives no information about common solutions to the equations (96) for
k = 1, ..., N and the equation (95); thus we have a necessary but not sufficient conditions
for the existence of a standard symmetry. This completes the proof. △

Corollary 2. For N ≥ 3, the equation (94) can not admit any standard symmetry if all
the noise terms are simple ones, σk(x) = skx

jk .

Proof. In the case of simple noises, the compatibility condition (104) can be satisfied
only if either jm = 1 or jn = 1; this follows from Corollary 1 in Sect.3.1. As we assumed
the noise coefficients σk(x) are all functionally independent, at most one of them (say the
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one with k = 1) can give a multiplicative noise, and hence all the (N −1)(N −2) functions
J(mn) with both m 6= 1 and n 6= 1 are non-constant. △

We note that our argument does not apply to non-simple noises. However, it turns out
the same result holds in full generality.

Lemma 8. For N ≥ 3 and independent noises, the equation (94) can not admit any
standard symmetry.

Proof. It is clear that it suffices to prove the statement for N = 3. We note preliminarily
that – by the standard transformation discussed above, see Section 5 – we can always
reduce to the case where one of the noises, say the third one, is an additive one (actually
with unit coefficient).

In this case, the statement follows directly from the determining equations. These
determine both the drift and the noise coefficients for the first two noises. The equations
can be solved explicitly, and it turns out that if a standard symmetry exists, then the
noises are necessarily linearly dependent. We refer to Appendix C for full detail of the
required computations. △

7 Discussion and conclusions

The classification of scalar autonomous Ito equation with a single noise source which admit
a standard symmetry and which are hence integrable via the Kozlov substitution has been
recently completed and is available in the literature [19–21,32,34].

We have noted that in many physical situation a system may be subject to multiple
noise sources: e.g. environmental and demographic noise for population dynamics, pro-
duction and shot noise in electronics, etc. With this motivation, and also for its purely
mathematical interest, we have considered scalar autonomous Ito equations with two dif-
ferent – and independent – noise sources. It appears that the methods developed in this
case could be readily extended to an arbitrary number of independent noise sources, but
we limited our investigation to the case of two sources, and considered Ito equations of
the form (20).

First of all, we formulated a compatibility condition between the coefficients of the two
noises, see Section 3.1; a symmetry can be present only if this is satisfied, see Lemma 1.
It is a simple consequence of this that, in the case of simple noises, a symmetry can be
present only if one of the noises is a multiplicative one, see Corollary 1.

We have then considered in detail the combinations of noises which appear more fre-
quently in applications, physical and otherwise, and for each of these we have identified the
equations admitting symmetries, and determined their symmetries. Our results are sum-
marized in Lemma 2 for the combination of additive and multiplicative noise, in Lemma
3 (which confirms in an independent way what was expected from the general result in
Lemma 1 ) for the combination of additive and of Poisson noise, in Lemma 4 for the com-
bination of additive and multiplicative noises. We also considered the combination of a
multiplicative and of a general simple noise – that is a noise term sxm – and the result for
this case is given in Lemma 5.
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As mentioned above, knowledge of a standard symmetry allows to integrate a scalar
Ito equation; this is done through an explicit change of variable, known as the Kozlov
substitution, see Section 4. In the case of a deterministic standard symmetry this maps
the symmetric equation into a new (integrable) Ito equation, while in the case of a random
standard symmetry the equation is mapped into an integrable equation which is not in
Ito form.

The standard symmetries identified by our study, see Lemmas 2, 4 and 5, are actually
random standard symmetries, so we expect the symmetric equations will be mapped into
non-Ito integrable equations, and this is indeed the case.

We have then considered in Section 4 this explicit map and determined the integrable
form of the different symmetric equations.

In Section 5 we discussed an alternative approach, based on the reduction of the Ito
equation to a standard form – in which one of the two noises is an additive one – to check
our results reobtaining them in a different way; this also allowed to emphasize and better
understand the role of the restriction to simple noises for some of our results, stressing
once more they hold for simple noises.

Finally, in Section 6 we have discussed the case of N noises, and show that for an
autonomous equation with N independent noises, be these simple (Lemma 7 ) or of general
form (Lemma 8 ), there is no symmetry for N > 2, see Lemma 8. In other words, for scalar
equations with simple noises the present work provides a complete classification.

We trust our work and results will be of help to anybody dealing with stochastic
equations in which several noise sources are present. Of course the case of integrable
equations is a very special one, and we expect that it occurs in a very limited number –
if any – of applications. But already knowing that the problem at hand is not integrable
can be a help, saving efforts; and moreover, as in the case of deterministic equations,
equations which are near enough to an integrable one can be treated via a perturbation
theory approach.

The work is completed by three Appendices. In Appendix A we recall, following our
previous work [34], how the determining equations for standard symmetries of an Ito
equation (which are in principle a set of second order PDEs) can be cast in first order
form. In Appendix B we show that the restriction to standard symmetry, disregarding
so called proper W-symmetries [30], was indeed harmless, in that these cannot be used
for integration. In Appendix C we give full detail of the computations showing that an
autonomous equation with three independent noises can not admit a standard symmetry.
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A Determining equations in first order form

The determining equations for symmetries of an Ito equation with a single noise source
can be cast in first order form – obtaining the determining equations for the symmetries
of the associated Stratonovich equation – as discussed in detail in our recent paper [34].
Here we discuss how the same approach can be applied to the present case of multiple
noise sources; we will actually limit, for the sake of simplicity, to the case of two noise
sources; but generalization to N noise sources is a simple matter.

Let us thus consider standard symmetries for an Ito equation with two different noises,
σ(x) and ρ(x). These have to satisfy the determining equations

ϕt + f ϕx − ϕfx +
1

2
∆(ϕ) = 0 , (105)

ϕw + σ ϕx − σx ϕ = 0 , (106)

ϕz + ρϕx − ρx ϕ = 0; (107)

where ∆ is the Ito Laplacian, which in this case reads

∆(φ) := φww + φzz + 2 (σ φxw + ρφxz) + (σ2 + ρ2) φxx . (108)

We can proceed as in the single noise case, converting equation (105) into a first order
equation using equations (106) and (107). In fact, these provide

ϕw = σx ϕ − σ ϕx ,

ϕz = ρx ϕ − ρϕx .

Differentiating them, we obtain

ϕxw = σxx ϕ − σ ϕxx ,

ϕww = (σ2x − σ σxx)ϕ − σ σx ϕx + σ2 ϕxx ,

ϕxz = ρxx ϕ − ρϕxx ,

ϕzz = (ρ2x − ρ ρxx)ϕ − ρ ρx ϕx + ρ2 ϕxx .

Substituting in (108) we get

∆ϕ = (σ2x + ρ2x + σ σxx + ρ ρxx)ϕ − (σσx + ρ ρx)ϕx . (109)

Equation (105) is hence written as:

ϕt +

(
f − 1

4
( σ2 + ρ2 )x

)
ϕx −

(
f − 1

4
( σ2 + ρ2 )x

)

x

ϕ = 0 . (110)

With the definition

b := f − 1

4

(
σ2 + ρ2

)
x
,

see (26), it reads

ϕt + b ϕx − bx ϕ = 0 . (111)

This is the same as (29).
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We note that the same approach also allows to express in first order form the deter-
mining equations for W-symmetries, see (21), (22), (23). In this case solving (22) and (23)
for ϕw and ϕz respectively yields

ϕw = ϕσx − σ ϕx + r11 σ + r12̺ ,

ϕz = ϕ̺x − ̺ϕx + r21 σ + r22 ̺ ;

differentiating these we obtain expressions for ϕxw, ϕww, ϕxz, ϕzz ; these can be substituted
in the explicit expression for ∆(ϕ), see (24), within (21). In this way the latter reads

ϕt + b(x, t) ϕx − bx(x, t) ϕ + γ(x, t) = 0 , (112)

where b(x, t) is the Stratonovich drift (26) for our equation. Equation (112) is indeed a
first order equation for ϕ; together with (22) and (23) this forms a first order system.

As for γ(x, t), its explicit expression is

γ = (r11 σ σx + r22 ̺ ̺x) +
1

2
(r12 + r21) (σ ̺x + σx ̺) . (113)

We have thus recovered eq.(25).

B On W-symmetries and integration of Ito equations

We chose to consider only standard symmetries, and disregard so called W-symmetries.
The main reason for this choice is that W-symmetries do not lead to integration of the Ito
equation (see the Introduction in this regard).

In this Appendix we will briefly justify this statement and thus our choice; we will just
discuss the simpler case of a scalar Ito equation depending on a single noise,

dx = f(x, t) dt + σ(x, t) dw . (114)

A W-symmetry has generator X = ϕ(x, t, w)∂x+rw∂w; but we will only consider the even
simpler case of split W-symmetries [30], i.e.

X = ϕ(x, t) ∂x + r w ∂w . (115)

In order to integrate the Ito equation (114), we should find a change of variables

(x, t;w) → (y, τ ; z)

such that in the new variables the symmetry vector field read as

X = ∂y .

This requires to determine functions y = ψ(x, t;w), τ = θ(x, t;w) and z = ζ(x, t;w) such
that

X(ψ) = 1 , X(θ) = 0 , X(ζ) = 0 . (116)

It is immediately apparent that the simplest solution for θ, which we will take, is

τ = t .
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Moreover, again in the search for simple solutions, we can choose ψ and ζ to be independent
of t; i.e. assume ψ = ψ(x,w), ζ = ζ(x,w).

Now the problem amounts to solving two linear PDEs for ψ and ζ,

ϕ
∂ψ

∂x
+ r w

∂ψ

∂w
= 1 ,

ϕ
∂ζ

∂x
+ r w

∂ζ

∂w
= 0 .

These can be tackled by the method of characteristics. Denoting by χ = χ(x,w) the
characteristic variable for the vector field X (note that here we take advantage of our
restriction to split W-symmetries, i.e. of the assumption that ϕ does not depend on w),

χ = w exp

[
−
∫

r

ϕ(x, t)
dx

]
, (117)

the solutions to our system are given by

ψ(x, t;w) =

∫
1

ϕ(x, t)
dx + α(χ, t) , (118)

ζ(x, t;w) = β(χ, t) . (119)

The requirement that these function define a proper change of variables rules out the
possibility to choose β ≡ 0, or more generally β = const (note that we can instead choose
α ≡ 0). Thus the simplest choice is

β(χ, t) = χ .

In any case, it follows from the previous general formulas that the new random variable
z = ζ(x, t;w) is not a Wiener process, and actually its statistical properties depend on
the process x(t) (that is, on the solution to our SDE) itself.

In other words, albeit we will in this way manage to write our equation in the form

dy = F (t; z) dt + S(t; z) dz , (120)

not only this equation will not be in Ito form (since the drift and the noise coefficient will
depend on the driving process z), but moreover the process z(t) will not be a Wiener one.

Thus, in general, W-symmetries – even in the simplest case of split W-symmetries of a
scalar equation – can not be used to integrate a Ito equation.

We have at several points chosen the simplest solution; one could – and maybe should
– wonder if a less simple one would have led to different conclusions, and this point is
worth a brief discussion. First of all, we note that the general solution for X(θ) = 0 would
have been θ = h(t, χ). But a dependence of τ on (x,w) would mean the time is changed
to a random variable itself; this should not be allowed, as discussed in [16, 29, 30]. One
could allow τ = h(t) (with h a monotone function, see again [16, 29, 30]), which leads
to a reparametrization of time. This would produce some more involved formulas, but
no substantial change of our point. Similarly, once we set τ = h(t) we can not take ζ
independent of χ, or the Jacobian of the change of variables would be singular. Once
there is a dependence of ζ on χ, the new driving process is necessarily not a Wiener one.
So the essence of our discussion holds also in the more general case.
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C Non existence of symmetric equations with three inde-

pendent noises

In this Appendix we give full detail of the computations leading to the result stated
in Lemma 8, i.e. the impossibility of equations with three (and hence also of more)
independent noises admitting a standard symmetry.

Consider an autonomous equation with three noises

dx̃ = f̃(x̃) dt +

3∑

i=1

σ̃i(x̃) dwi . (121)

By the standard change of variables

x =

∫
1

σ3(x̃)
dx̃ ,

see Section 5, we can always get one of the three noise coefficients, in this case the one for
w3, to be a constant – so that w3 is an additive noise. That is, we get σ3(x) = c; we can
in fact always take c = 1 (computations would be absolutely the same, with some small
notational complication, for generic c). Thus, we can always reduce to study

dx = f(x) dt + σ1(x) dw1 + σ2(x) dw2 + dw3 . (122)

Moreover, for ease of notation, we write

σ1(x) = σ(x) , σ2(x) = ρ(x) ; ϕk := ∂ϕ/∂wk .

The determining equations for standard symmetries X = ϕ(x, t;w1, w2, w3)∂x are

ϕt + b ϕx − ϕbx = 0 ; (123)

ϕk + σk ϕx − ϕ (σk)x = 0 (k = 1, 2, 3) . (124)

We will now study and solve these.
The equation (124) for k = 3 yields

ϕ(x, t;w1, w2, w3) = χ(t;w1, w2, z) , z := w3 − x . (125)

From now on we will thus set w3 ≡ x+ z.
Looking now at the equation (124) for k = 2, we have

∂χ

∂w2
− ρ

∂χ

∂z
− ρ′ χ = 0 . (126)

Differentiating this in x, we get

ρ′′

ρ′
= − χz

χ
;

as the functions on the two sides depend on different sets of variables, this requires

ρ′′

ρ′
= α = − χz

χ
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with α a constant. These equations yield

ρ(x) = k2 e
αx + c2 , χ(t, w1, w2, z) = e−αz χ̂(t, w1, w2) . (127)

Recall that this follows from a differential consequence of (124) for k = 2; when we look
at the equation itself, we now get

e−αz

(
∂χ̂

∂w2
+ α c2 χ̂

)
= 0 ;

this yields promptly

χ̂(t, w1, w2) = e−α c2 w2 ψ(t, w1) . (128)

We now pass to consider equation (124) with k = 1, which reads

e−α(c2w2+z)

[(
ασ − σ′

)
ψ +

∂ψ

∂w1

]
= 0 .

Differentiating this in x, we get

e−α(c2w2+z) ψ
(
ασ′ − σ′′

)
= 0 .

Requiring ψ 6= 0 (or we would have no symmetry), this requires to have ασ′ = σ′′, which
of course implies

σ(x) = k1 e
αx + c1 . (129)

Again, this follows from a differential consequence of (124) for k = 1, and we should look
at the equation itself, which now reads

e−α(c2w2+z)

(
∂ψ

∂w1
+ α c1 ψ

)
= 0 .

Solving this, we get

ψ(t, w1) = e−α c1 w1 η(t) . (130)

Finally, we should now look at the first determining equation (123). This now reads

1

2
e−α(c1w1+c2w2+z)

[
2 η′(t) + η(t)

(
α2 e2αx (k21 + k22) + 2α f(x) − 2 f ′(x)

)]
= 0 .

Differentiating this in x, and omitting the overall (never vanishing) exponential term, we
get

η
[
α3 e2αx (k21 + k22) + α f ′ − f ′′

]
= 0 .

As we do not want to have η = 0 (this would imply ϕ = 0), we have to solve

α3 e2αx (k21 + k22) + α f ′ − f ′′ = 0 ,

and this yields (with γ and δ arbitrary constants)

f(x) =
1

2
α (k21 + k22) e

2αx + eαx γ + δ . (131)
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Going back to equation (123) itself, this now reads

exp [−α (c1w1 + c2w2 + z)]
(
η′ + α δ η

)
= 0 .

The solution is provided (omitting as usual the overall multiplicative constant) by

η(t) = exp[−α δ t] . (132)

Summarizing, we found that an equation of the form (121) admits a standard symme-
try if and only if the drift coefficient f(x) is of the form (131), and moreover the noise
coefficients are of the forms we have determined ; in this case the symmetry X = ϕ∂x is
identified by

ϕ(x, t, w1, w2, w3) = exp [−α (δt+ c1w1 + c2w2 + w3 − x)] . (133)

However, we should look in more detail at the noise coefficients we have been deter-
mining in the course of our computation. These are

σ1(x) = σ(x) = c1 + k1 e
αx ,

σ2(x) = ρ(x) = c2 + k2 e
αx ,

σ3(x) = 1 .

It is immediate to check that these are linearly dependent.
More precisely, we have q1σ1 + q2σ2 + q3σ3 = 0 with q3 6= 0 an arbitrary number and

q1 =
k2

c2 k1 − c1 k2
q3 , q2 =

k1
c1 k2 − c2 k1

q3 .

We conclude that it is not possible to have an (autonomous, scalar) Ito equation with
three independent noises which admits a standard symmetry.
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