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ABSTRACT

We present posterior sample-based cosmic microwave background (CMB) constraints from Planck LFI and WMAP observations as
derived through global end-to-end Bayesian processing within the BeyondPlanck framework. We first used these samples to study
correlations between CMB, foreground, and instrumental parameters. We identified a particularly strong degeneracy between CMB
temperature fluctuations and free-free emission on intermediate angular scales (400 . ` . 600), mitigated through model reduction,
masking, and resampling. We compared our posterior-based CMB results with previous Planck products and found a generally good
agreement, however, with notably higher noise due to our exclusion of Planck HFI data. We found a best-fit CMB dipole amplitude of
3362.7± 1.4 µK, which is in excellent agreement with previous Planck results. The quoted dipole uncertainty is derived directly from
the sampled posterior distribution and does not involve any ad hoc contributions for Planck instrumental systematic effects. Similarly,
we find a temperature quadrupole amplitude of σTT

2 = 229 ± 97 µK2, which is in good agreement with previous results in terms of
the amplitude, but the uncertainty is one order of magnitude greater than the naive diagonal Fisher uncertainty. Concurrently, we find
less evidence of a possible alignment between the quadrupole and octopole than previously reported, due to a much larger scatter in
the individual quadrupole coefficients that is caused both by marginalizing over a more complete set of systematic effects – as well as
by requiring a more conservative analysis mask to mitigate the free-free degeneracy. For higher multipoles, we find that the angular
temperature power spectrum is generally in good agreement with both Planck and WMAP. At the same time, we note that this is the
first time that the sample-based, asymptotically exact Blackwell-Rao estimator has been successfully established for multipoles up to
` ≤ 600. It now accounts for the majority of the cosmologically important information. Overall, this analysis demonstrates the unique
capabilities of the Bayesian approach with respect to end-to-end systematic uncertainty propagation and we believe it can and should
play an important role in the analysis of future CMB experiments. Cosmological parameter constraints are presented in a companion
paper.
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1. Introduction

Detailed measurements of the cosmic microwave background
(CMB) have revolutionized modern cosmology over the last
three decades. Offering a unique and clear view of the

baby Universe only 380 000 years after the Big Bang (e.g.,
Bennett et al. 2013; Planck Collaboration I 2020), its minuscule
temperature fluctuations allow scientists to measure a range
of cosmological parameters with subpercent accuracy and this
work has culminated in a tremendously successful standard
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model of cosmology known as ΛCDM (e.g., Hinshaw et al.
2013; Planck Collaboration VI 2020). According to this model,
the Universe began with a hot Big Bang some 13.8 billion years
ago: it was filled with Gaussian random density fluctuations dur-
ing a cataclysmic quantum mechanical process called inflation
taking place only some 10−34 s after the beginning, when it grew
exponentially in size. Today it is populated by about 65% dark
energy (Λ), 30% cold dark matter (CDM), and only 5% ordinary
baryonic matter.

While this model is extremely successful in terms of pre-
dicting cosmological observations quantitatively, it leaves funda-
mental questions unanswered, for instance, regarding what dark
matter is made of and what dark energy is. Additionally, the
biggest question of all might simply pertain to what exactly hap-
pened during the very first moments of the Big Bang. As of 2022,
cosmic inflation (e.g., Kamionkowski & Kovetz 2016) has repre-
sented a basic paradigm for this process that is widely accepted
by the community, simply because it is able to heuristically
explain a range of important observations in modern cosmol-
ogy, including cosmological isotropy, flatness, and the absence
of topological defects; also, its predictions are largely consis-
tent with CMB measurements, such as Gaussianity and a nearly
scale-invariant, but slightly tilted, spectrum of initial perturba-
tions. At the same time, inflation as a general concept is both
heavily criticized for being overly flexible (e.g., Penrose 1989;
Ijjas et al. 2014), to the extent that there is an ongoing debate
over whether it has any predictive power and it has also been
said to lack a robust theoretical foundation, which may require a
proper theory of quantum gravity.

To make progress in this area, more data are desperately
needed. And the most promising path to such is through
deep measurements of large-scale CMB polarization (e.g.,
Kamionkowski & Kovetz 2016). A firm prediction of the infla-
tionary paradigm is that there ought to be evidence of a back-
ground of primordial gravitational waves that were excited
during the period of exponential expansion. If this were so,
these super-horizon gravitational waves would also be expected
to make an imprint on the CMB field in the form of so-called
B-mode polarization. The amplitude of this signal is typically
measured in terms of the tensor-to-scalar ratio, r, and differ-
ent inflationary models (corresponding to different inflationary
potentials) predict different values for r, with typical values vary-
ing between 10−4 and 0.1 for large model spaces. The strongest
upper limit today is r < 0.0321 at 95% confidence, as measured
by the combination of Bicep2/Keck and Planck (Tristram et al.
2022). A robust positive detection of r > 0 would rank among
the greatest discoveries in cosmology, providing a unique sig-
nature of ultra-high energy physics almost at the Planck energy
scale. As a reflection of the fundamental importance of such a
detection, billions of dollars, euros, and yen are currently being
invested in efforts to detect this signal (Gerakakis et al. 2023).

However, the technical challenges involved in making such a
discovery are massive. For a typical value of r ∼ 10−3, the ampli-
tude of the B-mode polarization signal will not be more than
a few tens of nanokelvins on large angular scales. All sources
of systematic errors must therefore be controlled to unprece-
dented levels, no matter whether they are of instrumental or
astrophysical origin, and the corresponding uncertainties must
be accurately propagated throughout the entire analysis process.
Underestimating the integrated uncertainty on r by, say, a factor

1 Evaluated at a pivot scale of 0.05 Mpc−1.

of two could turn an innocent 2.5σ fluke into a fatal 5σ false
claim of new physics.

Most pre-Planck and early Planck CMB analysis pipelines
have effectively relied on systematic errors being relatively
small compared both with the target signal and the noise
level of the given experiment (e.g., Bennett et al. 2013;
Planck Collaboration I 2014). In many cases, it has been an
acceptable approximation to account primarily for (correlated
and white) noise uncertainties on the instrument side and sample
and cosmic variance on the CMB side. The impact of astrophysi-
cal foregrounds, whether caused by Milky Way or extra-galactic
sources, has typically been minor and could often be accounted
for through simple template fitting or internal linear combination
methods (e.g., Bennett et al. 2003; Planck Collaboration XII
2014). However, as the signal-to-noise ratio of a given dataset
increases, the relative importance of systematic errors increases,
to the point that they eventually totally dominate the error bud-
get. A key example of this is the strong coupling between cal-
ibration and astrophysical foregrounds; since high-sensitivity
CMB experiments, such as Planck, directly exploit the CMB
dipole to estimate their gain, it is key to establish a robust
model of any Galactic foreground that may obscure this sig-
nal. At the same time, such a foreground model can only
be derived from the same high-sensitivity dataset, leading to
a highly nonlinear analysis problem. For Planck, this insight
eventually led to the development of highly integrated analy-
sis pipelines (Delouis et al. 2019; Planck Collaboration Int. LVII
2020) that jointly fit both instrumental and astrophysical param-
eters as part of the mapmaking process. It is safe to assume that
similar integrated approaches will be even more important for
next-generation inflationary B-mode experiments, due to their
extreme precision requirements.

To understand how error propagation may be improved for
next-generation experiments, it is worth noting that two funda-
mentally different modes of operations have seen widespread
applications in the CMB field up through our day, correspond-
ing either to the use of simulations or Bayesian statistics, respec-
tively. In the simulation approach, it is assumed that we precisely
know the cosmological model, the astrophysical foregrounds,
and the instrument, and then we would derive as many realistic
time-ordered data (TOD) simulations as possible of the dataset
in question (e.g., Planck Collaboration XII 2016). Each simula-
tion is then processed with exactly the same algorithms as the
real data and the scatter in the final quantity is taken as the
uncertainty of the point estimate derived from the data. This
mode of operation has traditionally dominated all lower-level
aspects of CMB data processing, including calibration, mapmak-
ing, and component separation (e.g., Planck Collaboration VII
2016; Planck Collaboration IV 2020).

In contrast, the key elements in the Bayesian approach consist
of explicit models for the data and likelihood in question, and the
analysis process simply amounts to mapping out the correspond-
ing posterior distribution. In practice, this is typically done using
modern Markov chain Monte Carlo (MCMC) methods, due to the
high dimensionality of the data model. This approach is typically
preferred for the high-level aspects of the analysis and, in particu-
lar, for cosmological parameter estimations (e.g., Lewis & Bridle
2002). One main reason for this is that it allows for a more natu-
ral and efficient exploration of degeneracies between parameters.
For Planck, the Bayesian approach was used for the final cos-
mological parameter stage, integrating a limited instrumental and
astrophysical model directly into the corresponding likelihood
(Planck Collaboration V 2020), allowing for a joint exploration of
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a few hundred free parameters (Planck Collaboration VI 2020).
However, most instrumental uncertainties were still estimated
using the low-level simulation approach.

In this paper, we consider error propagation within the
context of a novel end-to-end Bayesian analysis framework
called BeyondPlanck (BeyondPlanck Collaboration 2023).
This pipeline is, in principle, equivalent to the Bayesian cosmo-
logical parameter approach described above, but with one critical
difference: In BeyondPlanck, the entire pipeline is integrated
into the core Monte Carlo sampler (BeyondPlanck Collaboration
2023). As such, the number of free model parameters does not
amount to hundreds, but billions, in fact – and there is no separa-
tion between low-level and high-level analysis. Two key advan-
tages of this global integrated approach are: firstly, a joint explo-
ration of all free parameters and, secondly, seamless end-to-end
error propagation. In short, it is the ultimate logical extension of
Planck’s approach of adding a handful of critical instrumental
and astrophysical parameters to the CMB likelihood. It is also
interesting to note that this approach was in fact first suggested
almost 20 years ago by Jewell et al. (2004) and Wandelt et al.
(2004). It took almost two decades of algorithmic and computer
developments before it could be realized in practice.

In this paper, we present CMB results derived from within
the BeyondPlanck pipeline, while a series of companion
papers describes the individual instrumental (Herman et al.
2023a; Ihle et al. 2023; Gjerløw et al. 2023; Galloway et al.
2023a; Svalheim et al. 2023a) and astrophysical components
(Andersen et al. 2023; Svalheim et al. 2023b; Herman et al.
2023b). An important common feature in all of these papers,
however, is the fact that each free parameter is quantified in the
form of a set of “samples” drawn from the joint posterior dis-
tribution. At first glance, these look very similar to the simu-
lations produced in the traditional low-level approach, but they
have a fundamentally different statistical interpretation: While a
simulation represents one possible instrument configuration in a
random universe, unconstrained by the actual measurements, a
posterior sample represents one possible instrument configura-
tion in our universe, as constrained by the actual measurements.

An important consequence of this difference is that the two
approaches cover different aspects of the full analysis problem in
which they excel. For questions that may be formulated in terms
of numerical parameter estimates that require a robust error
assessment, for instance “the best-fit value of r”, the Bayesian
approach is ideal. For questions that may be formulated in terms
of statistical agreement with a general paradigm, such as “how
likely it is for the CMB Cold Spot to appear in a Gaussian
and isotropic universe”, the simulation-based approach is ideal.
That is not to say that either of the two methods cannot address
questions in the other category – but they are complementary
and generally better suited to answer specific questions. Going
forward, we consider it very likely that most next-generation
experiments will strive to implement both pipeline types and
cross-validate their results between them.

In this paper, we demonstrate the use of these novel posterior
samples for several classic CMB analysis applications, including
the CMB dipole estimation, power spectrum estimation, and low-
` anomaly studies, with special attention paid to robust error prop-
agation. However, we stress that the current BeyondPlanckpro-
cessing primarily focuses on Planck LFI data and, in particular,
it does not include Planck HFI observations in the 100−217 GHz
range (BeyondPlanck Collaboration 2023). The results are there-
fore significantly less sensitive than the main Planck results in
most respects. In general, the main purpose of the current paper is
to demonstrate the sample-based CMB analysis from an algorith-

mic point-of-view, while leaving the full integration of additional
state-of-the-art datasets to a future work.

The paper is organized as follows. In Sect. 2, we briefly
review the BeyondPlanck data model and show how CMB
samples are derived within this framework. In Sect. 3, we inspect
the raw outputs from the algorithm in the form of posterior sam-
ples, quantify correlations among the various parameters, and
identify one particularly strong degeneracy with respect to free-
free emission. In Sect. 4, we consider posterior mean maps and
power spectra and compare their properties with those presented
by earlier analyses. In Sect. 5, we present the first fully Bayesian
estimate of the CMB Solar dipole from Planck data, before we
revisit selected low-` anomalies in Sect. 6. We present our con-
clusions in Sect. 7.

2. BeyondPlanck and end-to-end CMB analysis

2.1. General model and Gibbs sampling scheme

The starting point of the LFI-oriented Bayesian
BeyondPlanck analysis framework is an explicit para-
metric model of the time-ordered data of the following form
(BeyondPlanck Collaboration 2023),

d j,t = g j,tPtp, j

[
Bsymm

pp′, j ssky
p′, j + sorb

j,t + sfsl
j,t

]
+ s1 Hz

j,t + ncorr
j,t + nw

j,t, (1)

≡ stot + nw
j,t. (2)

In this expression, j is a detector index, t is a time index, and
p is a sky pixel index. Furthermore, g represents the time-
variable instrumental gain, P is a matrix that describes the satel-
lite pointing, Bsymm denotes a (assumed azimuthally symmet-
ric) beam convolution operator, ssky represents the total astro-
physical sky signal, sorb is the orbital CMB dipole, sfsl are the
far sidelobe corrections, and s1 Hz represents electronic 1 Hz
spike corrections, while ncorr and nw represent the correlated and
white noise, respectively. Both noise terms are well described
by zero-mean Gaussian distributions with different covariances,
reflecting their different physical origins. In particular, the main
contribution to ncorr are gain fluctuations. Splitting the total
instrument noise into correlated and white parts allows for a
particularly efficient algorithm that jointly samples g and ncorr

(BeyondPlanck Collaboration 2023; Ihle et al. 2023). For the
convenience of later notation, the last line defines all time-
ordered data components, except the white noise, as stot.

The total sky signal may be decomposed into individual
astrophysical emission mechanisms and we assume the follow-
ing expression in the current analysis,

ssky =
(
aCMB + aquad(ν)

) x2ex

(ex − 1)2 , (3)

+ as
(
ν

ν0,s

)βs

, (4)

+ aff
(ν0,ff

ν

)2 gff(ν; Te)
gff(ν0,ff ; Te)

, (5)

+ aame
(ν0,ame

ν

)2 fame

(
ν · 30.0 GHz

νp

)
fame

(
ν0,ame ·

30.0 GHz
νp

) , (6)

+ ad
(
ν

ν0,d

)βd+1 ehν0,d/kBTd − 1
ehν/kBTd − 1

, (7)

+ UmJy

Nsrc∑
j=1

a j,src

(
ν

ν0,src

)α j,src−2

, (8)
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Table 1. Summary of main BeyondPlanck model free parameter families.

Symbol Parameter nd.o.f. Reference

ncorr Correlated noise time-domain amplitude ndet · ntod ∼ O(1011) Ihle et al. (2023)
ξn Noise power spectral density 3 · ndet · nPID ∼ O(107) Ihle et al. (2023)
g Instrumental gain ndet · nPID ∼ O(106) Gjerløw et al. (2023)
∆bp Detector bandpass correction ndet ∼ O(101) Svalheim et al. (2023a)
aCMB CMB pixel amplitude map (I,Q,U) npol · npix ∼ O(108) This work, Paradiso et al. (2023)
C` CMB angular power spectrum `max ∼ O(103) This work, Paradiso et al. (2023)
as Synchrotron pixel amplitude map (I,Q,U) npol · npix ∼ O(108) Andersen et al. (2023), Svalheim et al. (2023b)
βs Synchrotron spectral index 5 Andersen et al. (2023), Svalheim et al. (2023b)
aff Free-free pixel amplitude map (I) npix ∼ O(107) Andersen et al. (2023)
aame AME pixel amplitude map (I) npix ∼ O(107) Andersen et al. (2023)
νp AME characteristic frequency 1 Andersen et al. (2023)
ad Thermal dust pixel amplitude map (I,Q,U) npol · npix ∼ O(108) Andersen et al. (2023), Svalheim et al. (2023b)
βd Thermal dust spectral index 2 Andersen et al. (2023), Svalheim et al. (2023b)
a j,src Radio source amplitudes and spectral indices 2 · nsrc ∼ O(104) Andersen et al. (2023)

Notes. For the sake of notation, some symbols denote a collection of heterogeneous parameters defining the corresponding quantity, for instance,
the noise power spectral density, ξn, is minimally specified by a normalization, σ0, a characteristic frequency, fknee, and a slope, α. See the specific
papers for additional details on each parameter family.

where h is Planck’s constant, kB is Boltzmann’s constant, and
x ≡ hν/kBTCMB, where TCMB = 2.7255 K is the mean CMB
temperature (Fixsen 2009). Each line in this expression repre-
sents one specific astrophysical component, each of which is
defined in terms of an amplitude map, a, and a spectral energy
density, f (ν; β), that describe the strength of the component as a
function of frequency, relative to some reference frequency, ν0,
and some set of free spectral parameters, β. From top to bot-
tom, the six lines describe respectively CMB (including a rel-
ativistic quadrupole correction), synchrotron, free-free, AME,
and thermal dust emission, and, finally, a discrete set of point
sources. We assume that only the CMB, synchrotron, and ther-
mal dust emission are polarized. For further information regard-
ing any of these astrophysical foreground components, we refer
to Andersen et al. (2023) and Svalheim et al. (2023b). In prac-
tice, each of these terms is integrated separately with respect to
the instrumental bandpass of each detector, which itself also is
associated with a free correction parameter, ∆bp, as discussed by
Svalheim et al. (2023a).

It is convenient to decompose the CMB sky map into spher-
ical harmonics:

aCMB(n̂) =

`max∑
`=0

∑̀
m=−`

a`mY`m(n̂), (9)

where `max denotes an harmonic-space bandwidth limit and a`m
are the spherical harmonics coefficients. It is common to assume
that the CMB field is statistically isotropic, in the case of which
the CMB covariance matrix may be defined as:

S CMB
`m,`′m′ ≡ 〈a`ma∗`′m′〉 ≡ C`δ``′δmm′ , (10)

where the brackets indicate an ensemble average and C` is called
the angular power spectrum. We note that for simplicity, this
notation applies only to CMB temperature analysis, but the
generalization to polarization is straightforward and described
by Zaldarriaga & Seljak (1997). The angular power spectrum
plays a particularly important role in CMB analysis, as this pro-
vides a computationally efficient path to cosmological parameter
estimations (e.g., Lewis & Bridle 2002). Estimating the power
spectrum distribution P(C` | d), marginalized over all relevant

systematic effects, may in fact be considered the single most
important goal of any CMB analysis pipeline.

Given this parametric signal model, the BeyondPlanck
approach to CMB analysis follows well-established Bayesian
methods. We start by defining ω ≡ {a, β, g,∆bp, ncorr,C`, . . .} to
be the set of all free parameters in the model; instrumental, astro-
physical, and cosmological. By Bayes’ theorem, the joint poste-
rior distribution may then be written as:

P(ω | d) =
P(d | ω)P(ω)

P(d)
∝ L(ω)P(ω), (11)

where L(ω) ≡ P(d | ω) is called the likelihood and P(ω) is a
set of user-specified priors. The likelihood is defined simply by
noting that the white noise, which is equal to d− stot (Eq. (2)), is
assumed to be Gaussian and therefore:

−2 lnL(ω) =
(
d − stot(ω)

)t
N−1

wn

(
d − stot(ω)

)
, (12)

where Nwn is the white noise covariance matrix. The prior, P(ω),
is less well defined, and must be specified by the user. Table 1 lists
the main BeyondPlanck free parameter families. Other model
parameters not included in the table are kept fixed to a reference
value. We refer to the individual papers for more detail on spe-
cific parameter families, while for a summary of the priors adopted
in the current analysis, we refer to BeyondPlanck Collaboration
(2023).

It is important to note that ω includes a vast number of
parameters with different impact on the final posterior. For
instance, the correlated noise, ncorr, contains in principle billions
of degrees of freedom, one for each time sample. However,
ncorr represents a non-stationary sky signal that is significantly
constrained by a power spectral density prior, and each ncorr

sample therefore affects higher-level quantities almost negligi-
bly. In contrast, each astrophysical sky map contains millions
of degrees of freedom on orders of magnitude fewer than the
correlated noise, but these are all sky-stationary, and they there-
fore have a larger effect on the full posterior. Finally, there
are a handful of global parameters that affect every single sky
pixel at once, such as the absolute gain and bandpass correc-
tions, and these have a massive impact on almost all other model
parameters.
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Both the vast number of free parameters and their complex
relationships make it a significant computational challenge to
map out the posterior distribution efficiently. The only compu-
tationally feasible approach suggested to date is Gibbs sampling
(Geman & Geman 1984), which allows the user to draw samples
from a joint distribution by iterating over all corresponding con-
ditional distributions. For BeyondPlanck, this process may be
formally written in terms of the following Gibbs chain:

g ← P(g | d, ξn,∆bp, a, β, C`), (13)
ncorr ← P(ncorr | d, g, ξn,∆bp, a, β, C`), (14)
ξn ← P(ξn | d, g, ncorr, ∆bp, a, β, C`), (15)

∆bp ← P(∆bp | d, g, ncorr, ξn, a, β, C`), (16)
β ← P(β | d, g, ncorr, ξn,∆bp, C`), (17)
a ← P(a | d, g, ncorr, ξn,∆bp, β, C`), (18)

C` ← P(C` | d, g, ncorr, ξn,∆bp, a, β ), (19)

where ← indicates sampling from the distribution on the right
hand side and a stands for the collection of all map ampli-
tude degrees of freedom (e.g., aCMB, aff , . . .), which are sampled
jointly for better efficiency (see Sect. 2.2). The Bayesian CMB
analysis as implemented within the BeyondPlanck framework
is nothing but repeated sampling from each of these distributions
and the main product from this process is a discrete set of sam-
ples drawn from the joint posterior distribution, P(ω | d), which
naturally and seamlessly allows for detailed instrumental sys-
tematics and astrophysical foreground marginalization.

The CMB sky map and power spectrum estimation are
accounted for in the above Gibbs loop in Eqs. (18) and (19),
respectively, and explicit expressions for these were first derived
by Jewell et al. (2004) and Wandelt et al. (2004). All other
steps describe either instrumental or astrophysical effects, and
only affect the CMB estimates indirectly. Sampling algo-
rithms for each of those distributions are described in detail in
BeyondPlanck Collaboration (2023) and references therein, and
in the following we only briefly review the sampling algorithms
for Eqs. (18) and (19).

2.2. CMB sky map sampling, P(aCMB | d, g, β,C`, . . .)

To derive an appropriate sampling algorithm for P(aCMB |

d, g, β, . . .), we start with the general data model defined in
Eqs. (2) and (3) and aim to isolate the component amplitude, a,
parameter. In principle, we could even isolate the aCMB parame-
ter alone, but since it generally leads to a shorter Monte Carlo
correlation length to sample partially degenerate components
jointly, we aim to derive a joint sampling step for both CMB and
astrophysical foreground amplitudes; we refer to Andersen et al.
(2023) for further details.

The first step in the algorithm corresponds essentially to
mapmaking. Because all instrumental parameters are condi-
tioned on in this distribution, we may deterministically form the
following residual:

r j,t ≡
d j,t − (s1 Hz

j,t + ncorr
j,t )

g j,t
− Ptp, j

[
sorb

j,t + sfsl
j,t

]
, (20)

= Ptp, jBpp′, js
sky
p′, j + nw

j,t/g j,t, (21)

which now represents TOD that contain only astrophysical sig-
nal signal convolved with an (implicitly assumed azimuthally
symmetric, see BeyondPlanck Collaboration 2023, for an in
depth discussion) beam and white noise, all in calibrated bright-
ness temperature units. This residual may be compressed nearly

losslessly into a pixelized sky map, mν, by solving the so-called
mapmaking equation,∑

j

Pt
jN
−1
j,wnP j

 mν =
∑

j

Pt
jN
−1
j,wnr j. (22)

For Planck, this equation may be solved pixel-by-pixel, and it is
therefore computationally very fast.

The second step in the algorithm corresponds essentially to
component separation. Given the above frequency maps, the data
model described by Eqs. (2) and (3) may now be rewritten com-
pactly in terms of sky maps:

mν = Bsymm
ν Mν,ca + nwn

ν , (23)

where Mν,c is called the mixing matrix and encodes the bandpass-
integrated SEDs for the various astrophysical components in
each column; when multiplied by the amplitude vector, this
matrix generates the full sky signal at frequency, ν, in the appro-
priate units for that channel.

It is now straightforward to sample a, again based on the
observation that the white noise component is Gaussian, and,
therefore, that mν−Bsymm

ν Mν,ca is Gaussian with the same covari-
ance. The necessary sampling equation for this step is therefore
structurally identical to the mapmaking equation in Eq. (22),
except that it has an additional fluctuation term in order to prop-
agate the noise uncertainties:∑

ν

Bt
νM

t
νN
−1
ν,wnMνBν

 a =
∑
ν

Bt
νM

t
νN
−1
ν,wnmν +

∑
ν

Bt
νM

t
νN
− 1

2
ν,wnην,

(24)

where ην is a random vector of N(0, 1) stochastic variates;
for a full derivation of this equation, we refer to Appendix A
in BeyondPlanck Collaboration (2023). A computationally effi-
cient Conjugate Gradient (CG) solver for this equation was pre-
sented by Seljebotn et al. (2019).

Equation (24) does not account for priors on a. We support
Gaussian priors in our analyses, as defined in terms of some
mean map, µ, and a corresponding prior covariance matrix, S.
The purpose of this prior is two-fold; firstly, for the CMB compo-
nent it directly defines the connection to the angular power spec-
trum and cosmological parameters, as described by the CMB
covariance matrix in Eq. (10). Secondly, for astrophysical fore-
grounds it both allows us to introduce useful information in the
form of prior knowledge from other datasets to break particularly
difficult degeneracies and it allows us to impose smoothness on
small angular scales. With such a Gaussian prior in place, the
full sampling equation for a is expressed as:S−1 +

∑
ν

Bt
νM

t
νN
−1
ν,wnMνBν

 a =
∑
ν

Bt
νM

t
νN
−1
ν,wnmν + S−1µ

+
∑
ν

Bt
νM

t
νN
− 1

2
ν,wnην + S−

1
2 η0.

(25)

A derivation of this expression is given in Appendix A
in BeyondPlanck Collaboration (2023) and a detailed discus-
sion of foreground priors in BeyondPlanck is presented in
Andersen et al. (2023).

It is worth noting that all of the above equations are gen-
eral in terms of basis sets and can be applied equally well to
objects defined in terms of pixels or spherical harmonics or
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any other complete basis on the sphere. In practice, our current
codes model all diffuse components in terms of spherical har-
monics up to some band limit `max. The main reason for this
choice is simply that harmonics are more efficient in terms of
the number of free parameters than pixels; for a HEALPix2 map
(Górski et al. 2005) with a given Nside resolution parameter, there
are 12 N2

side pixels, while for a typical maximum band limit of
`max = 3 Nside, there are only (`max + 1)2 ≈ 9 N2

side spherical
harmonic coefficients. In addition, it is easier to impose addi-
tional smoothness on a given foreground component in harmonic
space, simply by reducing `max for that component. We empha-
size, however, that this is only a practical choice, not a funda-
mental one; the algorithm works equally well with both bases.

2.3. Angular power spectrum sampling, P(C` | d, a, . . .)

Next, we need to derive a sampling algorithm for the power spec-
trum distribution, P(C` | d, a, . . .). This was first presented by
Wandelt et al. (2004) and here we only review the main steps in
the following in brief.

Firstly, we make the trivial observation that
P(C` | d, a, . . .) = P(C` | aCMB); if we already know the CMB
map, aCMB, with infinite precision, no further instrumental or
astrophysical knowledge can possibly provide more information
regarding the CMB power spectrum. Secondly, in the previous
sampling step we assumed only that the CMB SED is defined
by a blackbody spectrum; in this step, we additionally assume
that the CMB is statistically isotropic, namely, that its harmonic
space covariance matrix is diagonal and given by C` and that it
is Gaussian-distributed. With these additional assumptions, the
relevant distribution may be written as follows:

P(C` | a) ∝
e−

1
2 atS−1 a
√
|S|

, (26)

=
e−

1
2
∑
`
|a`m |

2

C`∏
` C

2`+1
2

`

, (27)

=
∏
`

e−
2`+1

2
σ`
C`

C
2`+1

2
`

, (28)

where σ` = 1
2`+1 |a`m|

2 is the observed power spectrum of our
specific universe.

The distribution inside the product in Eq. (28) is called an
inverse Gamma distribution with 2` + 1 degrees of freedom.
Its multivariate generalization of this, which is needed for the
polarization analysis, is called the inverse Wishart distribution
(Larson et al. 2007). Sampling from an inverse Gamma distribu-
tion is trivial; simply draw 2` − 1 independent Gaussian random
variates, ηi, and set C` = σ`/

∑
i η

2
i (Wandelt et al. 2004).

Unfortunately, as discussed by Eriksen et al. (2004a), this
strict Gibbs sampling algorithm for a and C` has a signifi-
cant drawback in the low signal-to-noise regime, namely, that
the Monte Carlo step size between two consecutive C` samples
is determined by cosmic variance alone, while the full poste-
rior width is defined by both cosmic variance, sample variance
(i.e., masking), and instrumental noise. In practice, this algo-
rithm therefore has a prohibitively long correlation length at
high multipoles. This problem was addressed and solved by
Jewell et al. (2009) and Racine et al. (2016), who proposed a
joint sampling step for {a,C`} that moves quickly in the low

2 https://healpix.jpl.nasa.gov

signal-to-noise regime. Unfortunately, this step has not yet been
fully implemented in the latest version of the Commander code
(Galloway et al. 2023b) and it is therefore not used in the
BeyondPlanck processing. This work is, however, on-going,
and will be available in the near future for other projects. An
immediate result of this, however, is that in the following, we only
present a BeyondPlanck temperature power spectrum up to
`max = 600, while higher multipoles are, when needed, taken from
the official Planck processing (Planck Collaboration V 2020).

2.4. BeyondPlanck data selection

As described by BeyondPlanck Collaboration (2023), the
BeyondPlanck program has two main goals. The first goal
is to implement and demonstrate the world’s first end-to-end
Bayesian sampling algorithm for CMB observations. The sec-
ond goal is to resolve a number of outstanding questions regard-
ing the Planck LFI data that remained after the conclusion
of the official Planck consortium. For both of these reasons,
the BeyondPlanck processing includes significantly less data
than if the primary goal had been to establish a new state-
of-the-art sky model and CMB sky map. Explicitly, we only
include Planck LFI 30, 44, and 70 GHz data in the time-domain,
which are the main target of the entire analysis; WMAP Ka, Q,
and V data to constrain low-frequency foregrounds and poorly
observed Planck modes; Haslam 408 MHz measurements to
constrain synchrotron emission; and Planck PR4 measurements
at 857 GHz (in temperature) and 353 GHz (in polarization) to
constrain the thermal dust emission.

Critically, the CMB-dominated HFI and the WMAP K-band
data are not included: even though they would clearly result in
a better and less degenerate sky model, they would also obscure
the impact of the new algorithm because of their high signal-to-
noise ratios and they could also potentially introduce unmodeled
systematic errors into the LFI results. Instead, a gradual integra-
tion of these datasets falls within the scope of the Cosmoglobe3
framework (Gerakakis et al. 2023; Watts et al. 2023), which is
aimed at applying these methods to a broad range of state-of-
the-art datasets in the field.

2.5. Masking, degeneracies, and resampling

For an ideal dataset and a well-constrained model, the above
algorithm could, in principle, be applied without additional mod-
ifications. However, for real-world data, there are several chal-
lenges that must be addressed. The first of these is masking:
despite the notable complexity of the astrophysical data model
described by Eqs. (3)–(8), this is by no means adequate for mod-
eling the actual sky to the statistical precision of the Planck data.
As a result, we have to remove parts of the sky, in particular the
Galactic plane and bright point sources, before actually estimat-
ing the CMB power spectrum.

The CMB confidence mask used for the current
BeyondPlanck processing is shown in Fig. 1 and is generated
in a two-step process. First, we compute data-minus-signal
residual maps for each CMB-dominated frequency. These are
smoothed to 1◦ angular resolution and thresholded in abso-
lute amplitude. These maps serve a similar purpose as absolute
goodness-of-fit tracers as the total χ2 map that was used to define
the Commander confidence mask in for instance the Planck 2018
analysis. However, the total χ2 does not provide information
on the quality of the individual components, but only on the

3 https://cosmoglobe.uio.no
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Fig. 1. Temperature (top) and polarization (bottom) confidence masks
used for BeyondPlanck CMB analysis. The masks allow, respec-
tively, for a sky fraction of 69% and 68%.

capability of the model to describe the full set of frequencies.
By considering only residual maps for the CMB-dominated
frequencies, we instead exclude potential modeling issues that
affect only foreground reconstruction but are irrelevant for CMB
estimation. These partial single-frequency masks are multiplied
together to form an overall confidence mask.

The second mask generation step accounts for the resam-
pling procedure after excluding free-free emission from the
model. As discussed in greater detail in Sect. 3 below, sam-
ple fluctuations in CMB maps are correlated with those in the
free-free component at intermediate scales. Intuitively, we do not
trust any pixel for which the CMB map is significantly different
depending on whether free-free emission is modeled or not. This
idea is implemented in practice by generating a single resam-
pled constrained realization; computing the difference between
this constrained realization (without free-free emission in the
model) and the corresponding CMB map from the main Gibbs
analysis (with free-free emission in the model); computing the
absolute value, and smoothing to 4◦ FWHM; and exclude all
pixels above a 10 µK threshold, corresponding to a ∼3σ fluctua-
tion for the difference map defined above. The resulting mask is
median filtered with a 4 deg radius to exclude isolated “islands”
inside the Galactic plane; and, finally, we exclude point sources
using the Planck LFI template point source mask. For polariza-
tion, we consider the same Planck LFI set of masks described in
Planck Collaboration V (2020) and adopt the R1.8 mask (with
fsky = 0.68) for the polarization cosmological analysis; we refer
to Paradiso et al. (2023) for a discussion.

Formally speaking, applying a confidence mask in the sam-
pling algorithms described in Sects. 2.2 and 2.3 is trivial; one sim-
ply sets the masked pixels in the inverse frequency covariance
matrix, N−1

ν to zero, thereby assigning the removed pixels infi-
nite noise. In practice, however, this also carries a high computa-
tional cost for solving Eq. (24) by CG, as it massively increases the
condition number of the coefficient matrix on the left-hand side

(Seljebotn et al. 2019). At the same time, the Galactic plane region
is critically important to estimate other parameters in the full
data model, for instance, the bandpass corrections (Svalheim et al.
2023a), and simply excluding these regions entirely from the anal-
ysis is therefore both computationally expensive and wasteful in
terms of discarding useful information.

A second complication regards degeneracies between the
various astrophysical components on small angular scales.
As discussed by Andersen et al. (2023), the BeyondPlanck
dataset (comprising Planck LFI, WMAP, two HFI channels, and
Haslam 408 MHz observations) simply is not able to robustly
constrain the astrophysical model on its own on multipoles
above ` & 300; on these scales, the LFI 30 GHz and WMAP
Ka-band beams start to drop off exponentially, and their effec-
tive signal-to-noise ratio falls quickly. Leaving only interme-
diate frequencies to constrain the model, one observes a very
strong degeneracy between CMB, AME, and free-free emission.
To solve this problem, Andersen et al. (2023) introduce infor-
mative Gaussian priors on the free-free and AME components,
effectively using information from Planck HFI to constrain the
spatial morphology of these components on small angular scales.
The impact of these priors on the CMB component are explored
in Sect. 3 in this paper.

To simultaneously mitigate both the masking-induced com-
putational expense and the degeneracy challenges, we introduce
two small but important additions to the Gibbs chain described
in Eqs. (13)–(19) that we refer to as “resampling”. The first step
of this process is to run the algorithm as described in the previ-
ous sections, but without imposing either a confidence mask or
the Gaussian prior on the CMB component. The outputs from
this process are thus full-sky CMB and astrophysical component
maps, together with a full characterization of the various instru-
mental parameters. These preliminary CMB maps are, however,
not suitable for high-precision temperature-based power spec-
trum and cosmological parameter analysis because of unmasked
foreground residuals and the free-free degeneracy on intermedi-
ate scales discussed above; they can, however, be used for large-
angle polarization analysis, as free-free emission is not expected
to be significantly polarized.

To establish CMB intensity maps that actually can be used
for cosmological analysis, we resampled the original chain; that
is, for each sample in the main chain, we resampled the CMB
component while conditioning on the instrumental and nonlin-
ear astrophysical parameters derived in the first main sampling
phase. In practice, this amounts to repeating the sampling steps
defined by Eqs. (18) and (19) for each main chain samples, while
keeping all other parameters fixed at their main chain value for
that same sample. The resulting resampled distribution are there-
fore marginalized over non-CMB degrees of freedom in a man-
ner analogous to main chain samples. During this process, we
make two important changes to the data model: We first apply
the confidence mask, as defined above, to suppress the majority
of the residual foreground contamination. Secondly, we remove
the free-free component in its entirety from the model, leav-
ing only the synchrotron, AME, thermal dust, and point sources
to account for any non-masked signal at the unmasked high
Galactic latitudes. Since the free-free emission is generally more
localized on the sky than synchrotron or thermal dust emission
(Planck Collaboration Int. XLVI 2016; Andersen et al. 2023), it
is possible to eliminate most of this signal by masking. On the
other hand, the confidence mask does have to be considerably
larger than if free-free emission had been explicitly modeled and
this is the main reason that our temperature confidence mask, as
defined above, has a relatively low accepted sky fraction of only
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Fig. 2. Full-resolution CMB temperature constrained realization maps.
Top: single constrained realization, si, drawn from P(s | d,C`, . . .).
Middle: posterior mean map, 〈s〉, as evaluated from the ensemble of
constrained CMB realizations; note that the small-scale signal ampli-
tude inside the mask decreases smoothly to zero with increasing dis-
tance from the edge of the mask. Bottom: CMB posterior standard devi-
ation map, as evaluated pixel-by-pixel from the ensemble of constrained
CMB realizations. This map is dominated by instrumental noise outside
the mask and by random fluctuations informed by the assumptions of
isotropy and Gaussianity inside the mask. The CMB Solar dipole has
been removed from the top two panels.

fsky = 0.64. To account for possible unmasked residual free-free
emission at high latitudes, we also resampled the AME compo-
nent amplitude jointly with the CMB component, such that the
resulting AME component at this stage in reality becomes an
“AME-plus-free-free” component. This is conceptually similar
to the single “low-frequency foreground” component used in the
Planck 2018 Commander analysis, except that in that case, the

synchrotron emission was also included. We note, however, that
this “AME-plus-free-free” component is never used in any fur-
ther analysis, but it is only a pure phenomenological nuisance
parameter as far as the CMB component is concerned. A sin-
gle resampled CMB constrained realization sample is shown in
the top panel of Fig. 2. The middle panel shows the correspond-
ing Wiener filter solution alone, in which structures within the
Galactic plane mask may be partially reconstructed due to the
assumptions of statistical isotropy and Gaussianity. The bottom
panel shows the posterior standard deviation in each pixel.

Finally, we also performed an extra resampling step for the
CMB polarization analysis. In this case, we once again condi-
tioned the instrumental and astrophysical parameters from each
sample in the main Gibbs chain; however, in this case we per-
formed N = 50 additional amplitude-sampling steps for each
main sample, as defined by Eq. (18), each of which is com-
putationally much cheaper than a full sample. This resampling
step thus involves no fundamental modifications of either the
algorithm or data model as such, but is just a computationally
convenient way of marginalizing over white noise and thereby
converging faster at a modest additional computational cost. A
detailed assessment of the impact of this procedure on the con-
vergence of cosmological parameter estimates is presented in
Paradiso et al. (2023).

3. Markov chains and correlations

The full BeyondPlanck Gibbs sampler and data configura-
tion are summarized in BeyondPlanck Collaboration (2023). The
main products from this process are a set of 4000 end-to-end sam-
ples evenly distributed over four chains. The first 200 samples
in each chain are conservatively rejected as burn-in, although we
have not identified strong evidence for non-stationary behavior
after the first few tens of samples. A total of 3200 main Gibbs
samples were retained for science exploitation and we produced
one resampled high-` temperature sample and 50 low-` polariza-
tion samples per main Gibbs sample. The production of a single
main chain sample requires∼164 CPU-h, of which approximately
60% is TOD processing and 40% is component separation, and
∼1.5 TB RAM. The latter requirement is driven by the necessity
of storing the TOD in memory4, avoiding the need to reload the
TOD from disk at each Gibbs iteration. The resampling process is
dominated by the high-` temperature map production and requires
an additional ∼47 CPU-h per sample, while the low-` polariza-
tion resampling step requires only a few CPU-h per iteration. The
total computational cost of the full analysis is about 800 kCPU-h
(Galloway et al. 2023b). The full sample set is made publicly
available through the Cosmoglobe5 web page.

A quantitative assessment of the convergence of the main
chain CMB maps is provided by the Gelman-Rubin conver-
gence statistic, R, (Gelman & Rubin 1992) which measures the
ratio between the intra-chain and inter-chain variances, and val-
ues of R < 1.01 typically indicate good convergence. Figure 3
shows R − 1 for the TT power spectrum of main chain CMB
map samples samples. Power spectra have been computed out-
side the BeyondPlanck temperature confidence mask, using
PolSpice6, a fast pseudo-C` based estimator which leverages
pixel-space correlation functions to speed up computations.

4 The full LFI TOD is stored in a compressed format requiring
∼900 GB, almost an order of magnitude reduction from the ∼8 TB
uncompressed data volume.
5 https://cosmoglobe.uio.no
6 http://www2.iap.fr/users/hivon/software/PolSpice/
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Fig. 3. Gelman-Rubin convergence diagnostic, R − 1, for main chain
CMB TT power spectrum, computed on the sky fraction allowed by
BeyondPlanck temperature analysis confidence mask.
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Fig. 4. Main chain CMB TT power spectrum autocorrelation coefficient
for different sample separation values, ∆i, averaged over all chains.

Most multipoles satisfy R − 1 < 0.01, with a few exceptions
displaying values of R − 1 . 0.02, at the lowest multipoles
` < 50, where pseudo-C` based methods are suboptimal (e.g.,
Gerbino et al. 2020).

As an additional diagnostic, we can compute the C` autocor-
relation coefficient as a function of sample separation:

A`(∆i) =

∑i=nsample−∆i

i=1 (C`,i − 〈C`,i〉)(C`,i+∆i − 〈C`,i〉)∑i=nsample

i=1 (C`,i − 〈C`,i〉)2
, (29)

where the index, i, labels the samples within a single chain
after burnin, and 〈. . .〉 denotes sample averaging within that
chain. Figure 4 shows TT autocorrelation coefficients, averaged
between all chains, for three different lags, ∆i = 10, 30, 50. We
can see that for ∆i = 10 the lowest multipoles exhibit a sig-
nificant amount of correlation, which can exceed 50% in a few
isolated cases, decreasing to a few percent level at multipoles
` > 100. Correlation level rapidly decreases with increased sam-
ple separation and, for ∆i = 50, the autocorrelation level drops
to A` = 0.00 ± 0.07 at ` ∈ [2, 800]. We stress that main chain
temperature maps are not directly used for cosmological analy-

Q

0.0  0.020 

U

Gelman−Rubin R−1

Fig. 5. Gelman-Rubin convergence diagnostic for main chain CMB Q,
U maps. Slow convergence pixels in the Galactic plane are excluded
by the BeyondPlanck confidence mask, while high R stripes outside
the plane reflect correlated noise features accounted for by the low-
resolution noise covariance matrix (see Sect. 4).

sis, but rather form the basis for the resampling runs responsible
for the production of the final CMB maps and parameter esti-
mation, which will be discussed in greater detail in Sect. 4 (also
see Paradiso et al. 2023). In addition, cosmological parameters
depend on coherent variations over several tens (or hundreds) of
multipoles, so each individual C` has only a minor impact on the
end science results.

Planck LFI polarization measurements are strongly domi-
nated by instrumental noise, and CMB E-mode signal-to-noise
ratio rapidly drops below 1 at multipoles &10. As such, all
the cosmologically relevant modes can be properly supported
on HEALPix Nside = 8 resolution maps, making it more con-
venient (and numerically feasible) to analyze BeyondPlanck
CMB maps directly in pixel space. Figure 5 shows the Gelman-
Rubin statistics for the low-resolution Q, U map pixels. Most
regions of poor convergence are localized within the Galactic
Plane and excluded by the polarization confidence mask. We can
also see some stripes of slow convergence at higher Galactic lat-
itudes, due to correlated gain and noise fluctuations, modulated
by Planck scanning strategy. In the final cosmological analysis,
these features are properly accounted for by the low resolution
covariance matrix, as discussed in Sect. 4 and in Paradiso et al.
(2023). In Fig. 6, we plot the autocorrelation coefficient,
defined in a manner analogous to Eq. (29), of low-resolution
Q-map pixels, averaged over all chains. With a lag ∆i = 10
samples, most pixels outside the Galactic Plane show a positive
autocorrelation at ∼10% level, dropping to a few percent level
for ∆i = 50, with individual pixels showing both positive and
negative autocorrelation. The U maps display similar features.

Figure 7 shows a collection of trace plots, namely, parameter
values plotted as a function of chain iterations, for various CMB
and selected ancillary parameters. The quantities marked with
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Autocorrelation

Fig. 6. Main chain CMB Q map pixel amplitude autocorrelation coef-
ficient as a function of sample separation, averaged over all chains.
Maps have been downgraded to HEALPix resolution Nside = 8, to better
highlight correlation structure. From top to bottom: the 10, 30, and 50
samples.

subscripts a and b represent sky map pixel values for pixel num-
ber 340 and 1960, respectively, in maps downgraded by straight
averaging to a HEALPix resolution of Nside = 16 with ring
ordering. Pixel 340 is located in the top right quadrant at high
Galactic latitudes, while pixel 1960 is located near the southern
center of the Galactic mask edge. From top to bottom and left
to right: plotted quantities are the three Stokes parameters for
CMB pixels 340 and 1960; the same for thermal dust emission;
the synchrotron spectral index for pixel 1960 in temperature and
polarization; the CMB quadrupole spherical harmonic coeffi-
cient a21 for T , E, and B; the same for a200,100; the three com-
ponents of the CMB dipole in Cartesian coordinates; the CMB
angular temperature power spectrum, D`, for ` = 2, 200, and
500; and the time-independent radiometer gain fluctuation for
the 70 GHz 21M radiometer, ∆g21M. Of course, these represent
only 26 parameters out of billions, but they still convey some
useful intuition regarding the overall behavior of the Gibbs chain
as far as the CMB component is concerned.

The first immediate conclusion that can be drawn from these
plots at a visual level is that the overall correlation length is

relatively short, and the Markov chain mixing is reasonable, in
agreement with the Gelman-Rubin and autocorrelation results
discussed above. Furthermore, all chains appear stationary, sug-
gesting that the burn-in samples have been successfully removed.
Going slightly deeper into detail, we see that while aT

21 appears
significantly non-Gaussian, with a pronounced negative tail, ICMB
looks more Gaussian and symmetric, although with a longer cor-
relation length. As a result, uncertainties and covariances at low
multipoles are generally easier to summarize in pixel space than in
harmonic space. Regarding the power spectrum coefficients, D`,
we note that these are not Gaussian-distributed at all, but rather
follow an inverse Gamma (or inverse Wishart) distribution, which
has a very heavy tail toward positive values at low multipoles. This
behavior is clearly seen for DTT

2 .
In Fig. 8, we show the corresponding matrix of Pearson’s

correlation coefficients for each pair of parameters. The lower
triangular part shows raw correlations, while the upper triangu-
lar part shows correlations after high-pass filtering each Markov
chain with a boxcar window of ten samples; the latter highlights
white noise correlation structures, while the former includes also
long trends.

Overall, most correlations are relatively weak and typically
smaller than 5%, while three are very strong. The first is a 60%
correlation between the x- and z-components of the CMB Solar
dipole. This is caused by the relative orientation of the Galactic
plane mask, which directly aligns with the z-component, and the
diffuse foregrounds at high latitudes that are anti-symmetric with
respect to Galactic longitude l = 0◦ and are therefore coupled to
the x-direction. In contrast, the Galactic plane is symmetric with
respect to Galactic longitudes l = 90◦ and 270◦ and therefore it
is weakly coupled to the y-dipole.

A second strong correlation is between the CMB and
dust Stokes Q and U parameters within a single pixel, which
reflects the internal degeneracies of our sky model given
BeyondPlanck data selection. While here we show only the
CMB and thermal dust correlations, similar levels of correla-
tions affects also the other sky model components, as discussed
in Basyrov et al. (2023) and Andersen et al. (2023).

The third important strong (anti-)correlation in Fig. 8 is seen
between the large-scale CMB harmonic aT

2,1 (as well as individ-
ual temperature pixel values) and the synchrotron spectral index,
βs. While diffuse foregrounds play only a limited role in CMB
temperature reconstruction, as measured relative to CMB cos-
mic variance, and even relatively simple foreground cleaning
methods therefore perform very well (e.g., Bennett et al. 2013;
Planck Collaboration IV 2020), the same foregrounds still play
a very important role as measured relative to the noise level of
the experiment and that is what is probed by these correlations.
For noise-dominated applications, such as CMB B-mode recon-
struction, properly accounting for these foreground uncertainties
is therefore key.

The remaining correlations are, as already mentioned, mod-
est – but not negligible, however. For instance, there is a 10%
correlation between the two CMB intensity pixels, despite the
fact that they are separated by almost 90◦ on the sky, and not
located on the same Planck scanning ring. This correlation is
therefore due to general global parameters, for instance, the over-
all instrument calibration and gains, the CMB dipole parameters,
and the bandpass corrections.

Moving on from individual pixel values to full sky maps,
the two bottom panels in Fig. 9 show pixel-by-pixel cross-
correlations between the CMB Stokes Q parameter and the
time independent part of the 70 GHz 21M and 21S radiome-
ter gain variations, ∆g21M and ∆g21S. We note that there is
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Fig. 7. Trace plots of a set of selected CMB, component separation, and instrument parameters; see main text for full definitions. The different
colors indicate independent Gibbs chains, and ‘a’ and ‘b’ subscripts indicate HEALPix pixel numbers ‘340’ and ‘1960’ at resolution Nside = 16 in
ring ordering, respectively.

nothing special about the 21M and 21S radiometers in this
respect, beyond the fact that they are 70 GHz detectors, and the
BeyondPlanck CMB map is strongly dominated by this fre-
quency channel. In this case, we see coherent large-scale wave
patterns at the 5% level, with a wave direction that is loosely
aligned with the CMB Solar dipole direction. This pattern is
already known, and explained in terms of correlations between
inter-detector gain variations and the Solar dipole. An example
of this is the LFI gain residual template (Planck Collaboration II
2020) shown in the top panel; the morphology of this template
is qualitatively very similar to the correlation structures seen
in the BeyondPlanck CMB–gain cross-correlations. We also

note that the 21M and 21S correlations are anti-correlated, as
expected by the fact that the polarization angles of these two
detectors are rotated internally by 90◦.

In Fig. 10, we plot the skewness and kurtosis of the CMB
Stokes Q and U parameters per HEALPix Nside = 8 pixel, which
is the same resolution as used by the BeyondPlanck low-` like-
lihood. It is important to note that these estimates do not measure
non-Gaussianity of the CMB signal itself, but rather of the uncer-
tainties of the CMB map. Except for a few statistically signifi-
cant non-Gaussian pixel distributions in the center of the Galactic
plane, the skewness and kurtosis maps appear noise dominated,
small in amplitude, and statistically isotropic at high Galactic
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Fig. 8. Correlation coefficients between the same parameters as shown in Fig. 7. The lower triangle shows raw correlations, while the upper
triangle shows correlations after high-pass filtering with a running mean with a ten-sample window. For further explanation of and motivation for
this filtering, see Andersen et al. (2023).

latitudes. We also note that the standard deviation of excess skew-
ness and kurtosis of a random Gaussian sample with Nsamp � 1
are given by

√
6/Nsamp and

√
24/Nsamp, which translate into stan-

dard deviations of 0.043 and 0.086, respectively, for Nsamp =
3200. The observed skewness and kurtosis seen in Fig. 10 are thus
both consistent with zero and this suggests that the CMB posterior
distribution may be well approximated in terms of a multi-variate
Gaussian distribution (Paradiso et al. 2023).

Finally, we conclude this section by measuring the cross-
correlation power spectra between the CMB intensity map
and each of the four diffuse foregrounds included in the
BeyondPlanck data model. These cross-correlations are
defined by:

ρXY
` =

〈
CXY
`√

CXX
`

CYY
`

〉
, (30)

where CXY
` ≡

∑
m |ax

`m(aY
`m)∗|/(2` + 1), X denotes CMB and Y

any one of the foreground components, and 〈. . .〉 denotes aver-
age over the chain samples. We note that the cross-correlations
spectra are computed between the residual maps, mi − 〈mi〉, to
highlight the impact of model degeneracies, rather than chance

correlations between the components. The results from these cal-
culations are summarized in Fig. 11.

Considering these functions in order from weak to strong cor-
relations, we first note that the thermal dust emission (red curve) is
for all practical purposes statistically uncorrelated with the CMB
component. It is important to stress that this does not imply that
the thermal dust component does not induce foreground mod-
elling errors in the CMB mean map. Rather, it just shows that
the thermal dust uncertainty fluctuations are not correlated with
the CMB uncertainty fluctuations. The reason for this is that the
BeyondPlanck analysis (BeyondPlanck Collaboration 2023)
relies on the Planck PR4 857 GHz sky map as a dust tracer, for
which the CMB component is very low, and the only free inten-
sity thermal dust parameter in the entire model is a single full-
sky power law spectral index. As such, there is (in practice) no
feedback from the CMB to the thermal dust component in the
model and we only propagate the thermal dust uncertainties as
predicted by the 857 GHz channel to the CMB component, but
we do not perform a joint fit. In short, the current analysis effec-
tively assumes that the Planck PR4 analysis is accurate as far as
thermal dust emission is concerned.

A similar consideration holds true for the synchrotron com-
ponent (green curve). In this case, the very low frequency of the
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Fig. 9. LFI DPC 30 GHz Stokes Q gain residual template (Planck
Collaboration II 2020) shown in the upper panel. Pixel-by-pixel
cross-correlation coefficients between CMB Stokes Q and the time-
independent absolute gain fluctuation of two 70 GHz radiometers shown
in the lower two panels, along with ∆g21M (middle panel) and ∆g21S
(bottom panel).

Haslam 408 MHz effectively decorrelates the synchrotron and
CMB components, although not quite as strongly as the 857 GHz
map for thermal dust emission. The smooth drop around ` ≈
300 is caused by the algorithmic smoothing prior discussed
by Andersen et al. (2023), which suppresses small-scale syn-
chrotron fluctuations.

Significantly higher correlations are seen for the AME com-
ponent. In this case, there is no single frequency map that gives
a clear picture of the component in question, but the spatial
structure of AME has to be estimated from the same maps
as the CMB itself. The particular data selection adopted for
BeyondPlanck, which focuses on Planck LFI and WMAP
measurements between 30 and 70 GHz, leads to correlations at
the 15−20% range for AME.

It is important to stress that significant correlations, such as
those seen for the AME component, by themselves are no cause
for alarm as far as CMB analysis is concerned, as long as the
assumed statistical model is correct. In this case, the correspond-
ing uncertainties are fully accounted for in terms of the sample
distribution. At the same time, large correlations are neverthe-
less undesirable, because they make the CMB component sus-
ceptible to modeling errors in the correlating component. For
BeyondPlanck, this is most clearly seen in the free-free com-
ponent, which, as seen in Fig. 11, is anti-correlated with the
CMB component at the 50% level between ` ≈ 400 and 600.
The reason for this are two-fold. First, the free-free emission
scales roughly as ν−2, and therefore falls much more slowly with
frequency than both synchrotron emission and AME. Secondly,
it is spatially much more localized than either of the other two
low-frequency components. The maximum multipole required to
model free-free emission without ringing is therefore relatively
high (`max ≈ 800). The only BeyondPlanck frequency chan-
nels that provide useful information at such small angular scales
and high frequencies are, primarily, the LFI 70 GHz channel, and
secondarily the LFI 44 GHz and WMAP V-band channel. These
are also precisely the same channels that are used to constrain the
CMB component – and the two are therefore highly correlated.

As discussed by Andersen et al. (2023), a partial solution to
this problem is the introduction of the HFI-dominated spatial
free-free prior from Planck Collaboration X (2016). While this
is effective at breaking the degeneracy in question, which is nec-
essary for constraining important instrumental parameters such
as calibration and bandpasses, it also introduces an uncontrolled
level of unmodeled systematic errors and uncertainties. This is
both because the LFI and WMAP data were in fact used to gen-
erate the free-free prior template in the first place and because
of unmodeled systematic and statistical uncertainties in the HFI
data. While we consider these unmodeled uncertainties accept-
able for instrument modeling, which only depend weakly on the
free-free model, they are not acceptable for the CMB compo-
nent, which is the main scientific product from the entire analy-
sis. This is a main reason for performing the BeyondPlanck
analysis in a two-step manner, in which the prior-constrained
free-free component is included during the main Gibbs anal-
ysis, but excluded during the CMB resampling stage, while at
the same time applying a large Galactic mask that excludes all
regions with statistically significant free-free emission. For fur-
ther discussion, we refer to Sect. 4.3, Paradiso et al. (2023), and
Andersen et al. (2023).

4. CMB maps, covariance matrices, and power
spectra

4.1. Posterior mean sky maps

The individual parameter samples discussed in the previous
section represent the most fundamental products from the cur-
rent analysis and we strongly recommending using the set of
such individual Gibbs samples for any high-level statistical anal-
ysis. That ensemble provides the most convenient approach to
fully propagate uncertainties into any given statistic. In order to
do so, we must simply analyze all available samples individu-
ally, as if they were ideal CMB map estimates, and then report
the full distribution as final results. Worked examples of this pro-
cedure are given in Sect. 6 for select previously reported low-`
anomalies.

Still, for visualization and comparison purposes it is still con-
venient to consider sample averaged mean and standard deviation
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Fig. 10. Skewness (left column) and kurtosis (right column) of the CMB Stokes Q (top row) and U (bottom row) posterior distributions, evaluated
pixel-by-pixel at a HEALPix resolution of Nside = 8.
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Fig. 11. Cross-correlation spectra between CMB and foreground maps.
Colors indicate cross-correlations with synchrotron (green), free-free
(blue), AME (orange), and thermal dust emission (blue).

maps, which correspond most closely to the best-fit CMB maps
derived with traditional pipelines. These are shown in Fig. 12. In
this figure, each sample is convolved with a Gaussian azimuthally
symmetric beam of 14′ FWHM for temperature and 1◦ FWHM
for polarization, before projecting the data onto sky maps. The
first 200 samples from each chain are conservatively discarded
as burn-in, leaving a total of 3200 samples for actual analysis.
The mean and standard deviation is then evaluated pixel-by-pixel
from these samples. We note that the CMB Solar dipole has been

removed from the temperature maps in these plots (this compo-
nent is discussed separately in the next section).

Starting with the temperature mean map in the top left
panel, we see that this CMB map is visually similar to the
Commander CMB map presented by in the Planck 2015 analysis
(Planck Collaboration X 2016). At high Galactic latitudes, the
familiar isotropic CMB fluctuations are visually obvious, while
at low Galactic latitudes, there is a clear negative foreground
imprint. This is due to over-subtraction of thermal dust and
free-free emission and it can be removed through detailed fore-
ground modeling that also includes Planck HFI observations; see
Planck Collaboration IV (2020) for a Commander-based analysis
that successfully eliminates this effect. For the current analysis,
which does not include HFI observations and only fit the ther-
mal dust SED with a single spectral index, βd, across the full
sky, this foreground leakage represents the main limiting effect
at low Galactic latitudes – and this clearly demonstrates why a
large Galactic mask is needed.

The upper right panel shows the corresponding standard
deviation map and we see that this is dominated by three
main effects. At high latitudes, the dominant feature is the
Planck scanning strategy, and individual features are asso-
ciated with the white noise distribution of the 70 GHz LFI
channel (Basyrov et al. 2023). We may also see a number
of bright dots, corresponding to individual point sources, as
described by Eq. (8). At low Galactic latitudes, the uncertain-
ties are dominated by diffuse foregrounds, and the morphology
is visually dominated by free-free and thermal dust emission
(Andersen et al. 2023).

The two bottom rows show the same for the Stokes Q and
U polarization maps. In these cases, the mean maps are visually
dominated by white noise over most of the sky, as evidenced
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Fig. 12. BeyondPlanck posterior mean (left column) and standard deviation (right column) CMB fluctuation maps. Rows show from top to
bottom the temperature and Stokes Q and U parameters, respectively. The temperature maps are smoothed to 14′ FWHM resolution, while the
polarization maps are smoothed to 1◦ FWHM.

by the fact that one may see the Ecliptic pole regions also in
the mean maps. Of course, this is fully expected, given that the
average standard deviation per pixel is about 20 µK, while the
expected CMB signal for an ideal ΛCDM CMB map smoothed
to 1◦ FWHM is .3 µK. Thus, the signal-to-noise ratio is less than
0.5 per pixel.

The only obvious visually recognizable features are Galactic
plane residuals with an alternating sign, which is a classic signa-
ture of temperature-to-polarization leakage from bandpass mis-
match (Svalheim et al. 2023a). This is, however, confined to a
narrow region of less than 1% of the full sky. The polariza-

tion CMB confidence mask shown in the bottom panel Fig. 1
is more than sufficient to eliminate these residuals from higher-
level analysis.

In Fig. 13 we show difference maps between the Beyond
Planck posterior mean CMB temperature map and
the four foreground-reduced CMB maps presented by
Planck Collaboration IV (2020), generated by Commander
(Eriksen et al. 2008), NILC (Basak & Delabrouille 2012, 2013),
SEVEM (Leach et al. 2008; Fernández-Cobos et al. 2012), and
SMICA (Cardoso et al. 2008), respectively. The gray region
indicates the BeyondPlanck temperature CMB confidence
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Fig. 13. Difference maps between the BeyondPlanck CMB temperature map and those derived from the full Planck 2018 data set
(Planck Collaboration IV 2020). From left to right and from top to bottom, the various panels show differences with respect to Commander,
NILC, SEVEM, and SMICA. All maps are smoothed to a common angular resolution of 1◦ FWHM.

mask, and a constant offset has been removed from each
map outside this mask. First, we note that the color range
is ±10 µK, which is the same range as was used in Figs. 6
and 7 of Planck Collaboration IV (2020) to show differences
between the 2015 and 2018 CMB maps and internally among
the four Planck component separation algorithms. As such, the
BeyondPlanck CMB map agrees about as well with either
of those maps as the Planck maps do internally. However, a
closer comparison of our Fig. 13 with their Fig. 7 reveals two
important differences, namely: a large white noise contribution
at high Galactic latitudes and a blue edge around the Galactic
plane mask. Both of these effects have fundamentally the
same explanation, namely that the current analysis does not
involve the CMB-dominated and high-sensitivity HFI frequency
channels, and the current map therefore has both higher noise
and more free-free and thermal dust contamination. The latter of
these effects dictates our larger confidence mask for high-level
analysis.

4.2. Low-` polarization power spectrum

We now turn our attention to CMB power spectrum estima-
tion, starting with low-` polarization. For this task, we adopted
the well-established machinery of multivariate Gaussian like-
lihood estimation (e.g., Tegmark et al. 1997; Page et al. 2007;
Planck Collaboration V 2020; Gjerløw et al. 2015), and mapped
out the following distribution with respect to C`,

P(C` | ŝCMB) ∝
exp

{
− 1

2 ŝt
CMB [S(C`) + N]−1 ŝCMB

}
√
|S(C`) + N|

, (31)

where ŝCMB denotes the posterior mean CMB map, N is the
corresponding noise covariance matrix, and S(C`) is the signal
covariance matrix, which is fully defined by the angular power

spectrum. For a detailed review of the implementation used in
BeyondPlanck, we refer to Paradiso et al. (2023).

The main scientific goal of the entire BeyondPlanck
framework is precisely to derive estimates of ŝCMB and N for
which astrophysical and instrumental systematic effects are fully
marginalized over. Given the Gibbs samples described above,
this may be done very conveniently as follows:

ŝCMB = 〈si
CMB〉, (32)

N =

〈(
si

CMB − ŝCMB

) (
si

CMB − ŝCMB

)t
〉
, (33)

where i indicates sample number, and brackets denote aver-
ages over all available Monte Carlo samples. As described by
Paradiso et al. (2023), we evaluate both these quantities at a
HEALPix resolution of Nside = 8 after smoothing the temper-
ature component to 20◦ FWHM.

The bottom row of Fig. 14 shows a slice through N, centered
on the Stokes Q pixel marked in gray in the upper right quadrant.
This plot effectively summarizes all the various systematics cor-
rections described in Sect. 2 to the extent that they are significant
for large-scale polarization reconstruction. For comparison, the
top row shows the corresponding CMB covariance matrix slice
computed by the Planck DPC Planck Collaboration II (2020).
We note that this was evaluated at Nside = 16 and also that the
DPC analysis applied an additional cosine smoothing kernel not
used by BeyondPlanck.

Comparing the BeyondPlanck and DPC covariance matri-
ces is useful for building intuition regarding these products.
First, we note that the BeyondPlanck covariance appears
noisier than the DPC matrix. This is due to the fact that it
is constructed by Monte Carlo sampling as opposed to ana-
lytic calculations. A computational disadvantage of the sampling
approach, relative to the analytic approach, is that any high-level
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Fig. 14. Single column of the low-resolution CMB noise covariance matrix, as estimated by the LFI DPC (top row) and BeyondPlanck (bottom
row). The column corresponds to the Stokes Q pixel marked in gray, which is located in the top right quadrant near the ‘Q’ label. We note that the
DPC covariance matrix is constructed at Nside = 16 and includes a cosine apodization filter, while the BeyondPlanck matrix is constructed at
Nside = 8 with no additional filter.

product derived from the covariance matrix must be accompa-
nied by a corresponding convergence analysis that verifies that
the final result is robust with respect to the number of samples;
for BeyondPlanck, this is done explicitly for the optical depth
of reionization, τ, by Paradiso et al. (2023).

However, this minor disadvantage is more than compen-
sated for by the fact that the sampling approach is able to
jointly account for many more systematic effects than the ana-
lytic approach, and this is clearly seen in Fig. 14: while the
DPC matrix only models correlated noise (seen as the ring pass-
ing through the gray pixel) and simple template-based fore-
ground corrections, the BeyondPlanck matrix additionally
accounts for absolute detector calibration differences (seen as
large-scale red and blue regions aligned along the Solar CMB
dipole direction; Gjerløw et al. 2023; Basyrov et al. 2023); time-
dependent gain fluctuations (seen as additional power along
the scanning ring passing through the gray pixel; Gjerløw et al.
2023); and bandpass leakage (seen as the sharp Galactic plane;
Svalheim et al. 2023a). There are also many other effects that
are not as visually obvious, but they still contribute to the
final results, such as spatially varying foreground spectral
indices (Andersen et al. 2023; Svalheim et al. 2023b) and time-
dependent noise power spectral density parameters (Ihle et al.
2023). Propagating all these effects analytically into a final joint
covariance matrix can be for all practical purposes impossible,
while with the novel sampling approach introduced here it is
quite straightforward.

Figure 15 shows the corresponding noise-weighted (or
“whitened”) posterior mean map, N−1/2

CMBsCMB; when plotted
directly in terms of sCMB, the maps are dominated by the Planck

scanning pattern and poorly constrained large-scale modes,
which complicates the visual interpretation of actually statisti-
cally significant features. We note that the color scale ranges
over ±3σ. Overall, we see that these maps appear noise domi-
nated, with most pixels having values below 2σ. However, there
are a handful of saturated pixels as well, in particular close to the
Galactic plane and near the Orion complex (lower right quad-
rant). Most likely, these are due to unmodeled foreground errors,
and should in principle be removed. However, since they are iso-
lated, they only contribute with high-` power, well above ` & 10,
and they are therefore of minor concern for the current low-`
focused analysis; Paradiso et al. (2023) explicitly shows that all
main large-scale polarization results are stable with respect to
mask variations, from fsky ≈ 0.25 to 0.75. We do also see
some fainter coherent structures on larger angular scales, but
these are all well below 1.5σ. Some of those structures are real
CMB signal and some are just coherent large-scale noise fluctua-
tions generated by the same effects as are seen in the covariance
matrix slices in Fig. 14. As reported by Paradiso et al. (2023),
the total signal-plus-noise χ2 has a probability-to-exceed of 32%
when evaluated for the best-fit ΛCDM power spectrum with
τ = 0.066± 0.013, which indicates that the data are fully consis-
tent with the model.

Figure 16 compares the low-` BeyondPlanck power spec-
tra with corresponding results reported by Planck (Planck
Collaboration V 2020) and WMAP (Hinshaw et al. 2013).
The BeyondPlanck constraints shown here is computed by
slicing the full probability distribution in Eq. (31) `-by-`,
while fixing all other multipoles at their ΛCDM bestfit value
(Planck Collaboration VI 2020); error bars indicate asymmetric
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Fig. 15. BeyondPlanck low-resolution and “whitened” CMB polarization map, as defined by N−1/2

CMB sCMB at a HEALPix resolution of Nside = 8
and masked with the BeyondPlanck analysis mask. Left and right panels show Stokes Q and U parameters, respectively, and the color scales
span ±3σ.
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Fig. 16. Comparison between low-` angular CMB power spectra,
as derived by the Planck Collaboration using both LFI and HFI
data (blue points; Planck Collaboration V 2020), by the WMAP team
using just WMAP data (red points; Hinshaw et al. 2013), and by
BeyondPlanck using both LFI and WMAP data (black points; this
work). Thin black lines indicate the Planck 2018 best-fit ΛCDM spec-
trum (Planck Collaboration VI 2020). The BeyondPlanck data points
are evaluated by conditionally slicing the posterior distribution `-by-`
with respect to the best-fit ΛCDM model, by holding all other mul-
tipoles fixed at the reference spectrum while mapping out P(C` | d),
to visualize the posterior structure around the peak. For WMAP, the
reported BB octopole amplitude is DBB

3 = 1.12 ± 0.03, which is outside
the plotted range.

68% confidence ranges. Overall, we find good agreement
between BeyondPlanck, Planck, and WMAP. For TT , we see
that the BeyondPlanck uncertainties are generally somewhat
larger than either of the other two, and that is due to the larger
analysis mask. The most notable multipole in this spectrum is

` = 2, with a peak value of 526 µK2, which is substantially
higher than the typical values of about 200 µK2 reported previ-
ously. However, the reason for this is algorithmic in nature, and
driven by our conditioning on ΛCDM T E and EE in this partic-
ular plot; when marginalizing over polarization, we do recover a
quadrupole amplitude of 181 µK2, fully consistent with previous
results; for further discussion of this multipole, see Sect. 6.1.

For both T E and EE, the most notable feature is that our
uncertainties fall between Planck and WMAP in magnitude,
which is expected given that the current analysis include both
WMAP and LFI data, but not HFI. For BeyondPlanck, the
most significant outlier in the full set of results is at ` = 8 in
T B. Planck has not publicly released T B measurements for the
default HFI cross-spectrum based pipeline, while the LFI pixel-
base results show a qualitatively similar outlier at that multipole,
but with a lower statistical significance. We note, however, that
the full probability distribution for this multipole is highly asym-
metric, and a full inspection shows that for BeyondPlanck this
is discrepant with respect to ΛCDM at the 3σ level, with a PTE
of 0.2%. The probability of having one such outlier among 49
measurements by random chance is 9%. This multipole may
thus provide some slight evidence for residual systematics, for
instance associated with the saturated pixels in Fig. 15, but the
statistical significance is low. In the case of EB, WMAP does
not report any results, while both BeyondPlanck and Planck
are consistent with zero, as they are for BB. In the latter case,
WMAP do report results, but with large error bars; note that
` = 3 and ` = 5 fall far outside the plotted range.

4.3. High-` temperature power spectrum

Next, we consider the high-` temperature power spectrum,
and in this case we employ the Gaussianized Blackwell-
Rao (GBR) estimator (Chu et al. 2005; Rudjord et al. 2009;
Planck Collaboration V 2020) to map out the posterior distribu-
tion; for specific details on the BeyondPlanck implementation
of this estimator, see Paradiso et al. (2023). In short, this esti-
mator is defined by averaging the inverse Gamma distribution,
which is the appropriate distribution for the ideal CMB sky:

P(C` | sCMB) =

nsamp∑
i=1

exp(− 2`+1
2

σi
`

C`
)

|C` |
2`+1

2

, (34)
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Fig. 17. Gelman-Rubin convergence statistic for the BeyondPlanck
TT angular power spectrum, as evaluated from four independent σ`

chains. The various curves show results for different total number of
samples included in the analysis. A value lower than 1.01 (dotted line)
typically indicates good convergence. Accordingly, BeyondPlanck
multipoles above ` ∼ 800 should be acceptable for parameter esti-
mation. However, in the current paper, we conservatively include only
modes ` ≤ 600 in the cosmological analysis, see text.

over all available Monte Carlo samples, where σi
` is the

measured full-sky power spectrum of sample i. The result-
ing marginal distribution, P(C` |d) ≈ 〈P(C` | sCMB)〉, is then
Gaussianized through a nonlinear mapping, x`(C`), by matching
percentiles to a standard normal distribution,∫ C`

0
P(C′` |d)dC′` =

1
2

(
1 + erf

(
x`
√

2

))
, (35)

and the final likelihood expression takes the following form,

P(C` | d) ≈

∏
`

∂C`

∂x`

−1

e−
1
2 (x−µ)T C−1(x−µ), (36)

where the first factor denotes the Jacobian resulting from the
change-of-variables.

This expression formed the basis of the default low-` tem-
perature likelihood in both the Planck 2015 and 2018 data
releases (Planck Collaboration XI 2016; Planck Collaboration V
2020) for ` ≤ 30, and was in the latter also used as an exper-
imental likelihood up to ` ≤ 250. The main limitation from
extending it to even higher multipoles stemmed from the fact
that the samples that defined the Planck GBR estimator were
computed from foreground-cleaned CMB maps, and those have
effectively smoothed white noise contributions which are diffi-
cult to describe accurately at high multipoles. In contrast, the
novel BeyondPlanck approach generates the samples from
full-sky foreground-subtracted frequency maps, which do have
unsmoothed white noise contributions. On the one hand, this
implies that these power spectrum estimates are conceptually
different from the pseudo-C` based one of main chain maps
(discussed in Sect. 3), which include a noise contribution and
whose evaluation required the application of a confidence mask
to exclude foreground residuals. On the other hand, there is no
noise modeling limitation associated with the new implementa-
tion, and the GBR estimator can therefore in principle be used to
arbitrary high multipoles.

In practice, however, the effective range of the GBR esti-
mator is limited by Monte Carlo convergence. This is illus-
trated in Fig. 17, which shows the Gelman-Rubin statistic for
each power spectrum multipole for different numbers of Monte
Carlo samples. In this figure, we see that R increases rapidly
above ` ≈ 800, where the CMB signal-to-noise ratio of the
BeyondPlanck dataset falls below unity. This behavior is the-
oretically well understood (e.g., Eriksen et al. 2004a), and may
be solved by introducing additional sampling steps (Jewell et al.
2009; Racine et al. 2016); implementing this in the latest version
of Commander is currently ongoing. For now, we conservatively
restrict the range for which this estimator is used to ` ≤ 600.

The final BeyondPlanck temperature power spectrum is
shown in Fig. 18, together with Planck 2018 and WMAP. The
top panel shows the full power spectrum; the middle panel shows
the difference with respect to the best-fit Planck 2018 ΛCDM
spectrum in units of each estimate’s respective σ`, and the bot-
tom panel shows the fractional difference with respect to ΛCDM
in units of percent. Overall, we see that all three analyses agree
very well. For BeyondPlanck, the most significant outliers is
` = 416, which is anomalous at the 4σ level; we note that this
multipole is also low in the HFI-dominated Planck 2018 spec-
trum, although at a slightly lower significance of about 3σ. The
probability of having one such outlier among 599 trials by ran-
dom chance is about 8%.

Before concluding this section, we return to the issues
of strong free-free correlations and resampling discussed in
Sect. 2.5. Specifically, Fig. 19 compares the angular power spec-
tra derived from chains that samples free-free emission per pixel
(red curve) with the baseline approach that excludes this compo-
nent (for plotting purposes, spectra have been smoothed with a
Gaussian kernel to suppress the cosmic variance scatter). Here,
we see a highly statistically significant excess between ` = 300
and 600, with a general behavior that overall mirrors the CMB-
versus-free-free cross-correlation shown in Fig. 11. The expla-
nation for this behavior is quite simple: taking into account the
beam sizes and white noise levels of the data involved in the
BeyondPlanck analysis, by far most of the constraining power
for ` & 300 comes from the LFI 70 GHz channel alone, with only
slight additional support from the LFI 44 GHz WMAP Q- and
V-bands. This leaves the free-free and CMB components highly
degenerate. At the same time, accurate modeling of free-free
emission on larger scales is key for obtaining a robust calibration
and foreground model. As a temporary solution to this problem,
the current main analysis adopts the (HFI-dominated) Planck
2015 free-free map as a spatial template prior (Andersen et al.
2023). While this prior does regularize the foreground fit as such,
it also biases the CMB component at intermediate angular scales.
For this reason, we only include the prior-constrained free-free
component while estimating the instrumental and astrophysi-
cal parameters, but exclude it when estimating the final CMB
parameters. This issue will of course be resolved in a future
Bayesian end-to-end analysis that jointly analyzes both LFI and
HFI data from scratch.

5. CMB Solar dipole

We now turn our attention to the CMB Solar dipole. In the
BeyondPlanck framework, this component is in principle esti-
mated on completely the same footing as any other mode in the
CMB sky, and is represented in terms of three spherical har-
monic coefficients in sCMB. No special-purpose component sep-
aration algorithms were applied to derive the CMB dipole, nor
did any individual frequency play a more important role than
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Fig. 18. Angular CMB temperature power spectrum, DTT
` , as derived by BeyondPlanck (black), Planck (red), and WMAP (blue), shown at the

top. The best-fit Planck 2018 ΛCDM power spectrum is shown in dashed gray. Residual power spectrum relative to ΛCDM, measured relative to
full quoted error bars, r` ≡ (D` − DΛCDM

` )/σ`, shown in the middle. For pipelines that report asymmetric error bars, σ` is taken to be the average
of the upper and lower error bar. Fractional difference with respect to the Planck ΛCDM spectrum, shown at the bottom. In this panel, each curve
has been boxcar averaged with a window of ∆` = 100 to suppress random fluctuations.

others, except as dictated by the relative instrumental noise level
in each channel.

However, as discussed by Ihle et al. (2023), Gjerløw et al.
(2023), and Basyrov et al. (2023), this apparent algorithmic sim-
plicity does not, by any means, imply that robust CMB dipole
estimation is easy in the BeyondPlanck procedure. Indeed, the
CMB dipole is quite possibly the single most difficult parameter
to estimate in the entire model, simply because it both affects,
and relies on, a wide range of partially degenerate parameters.
The first and foremost of these is the absolute calibration, g0.
This parameter directly scales the amplitude of the entire CMB
map, including the Solar dipole. This parameter is itself con-
strained from the orbital dipole, which is both weaker in terms
of absolute amplitude, and for significant parts of the mission
it is nearly aligned with, and thereby obscured by, the Galactic
plane (Gjerløw et al. 2023).

Secondly, astrophysical foregrounds have in general both
a non-zero dipole moment, as well as higher-order moments
with unknown parameters, and these must be estimated jointly
with the CMB dipole. Considering that the current data set
includes five astrophysical components, each with a free value
in each pixel, and there are only eight significantly indepen-
dent frequency channels, the full system is rather poorly con-

strained. It is therefore possible to add a significant dipole to
the CMB map and subtract appropriately scaled dipoles from
each of the foreground maps, with only a minimal penalty
in terms of the overall χ2. In practice, we observe particu-
larly strong degeneracies between the CMB, AME and free-
free components, when exploring the full system without priors
(Andersen et al. 2023).

Thirdly, correlated noise, ncorr, is only weakly constrained
through its 1/ f -style PSD parameters, and this component is
therefore able to account for a wide range of modeling errors,
including calibration errors (Ihle et al. 2023; Watts et al. 2023).
In particular, incorrectly estimated gains leave a spurious dipole-
like residual in the time-ordered data. Since this residual is
detector-dependent, it will typically be interpreted by the algo-
rithm as correlated noise, thereby exciting a dipolar structure in
ncorr. Coherent large-scale patterns aligned with the Solar CMB
dipole in ncorr is one of the most typical signs of overall calibra-
tion errors.

Finally, the coupling between the large-scale CMB
quadrupole, foreground, and bandpass corrections all affect
the Solar CMB dipole. While the CMB E-mode polarization
quadrupole by itself is predicted by current ΛCDM models
to have a very small quadrupole, with a variance of typically
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Fig. 19. Comparison of power spectra derived with (red) and without
(gray) including prior-constrained free-free emission in the TT resam-
pling procedure. Spectra have been smoothed with a Gaussian kernel to
highlight the discrepancies between the two runs.

less than 0.05 µK2, there is nothing in the current parametric
BeyondPlanckmodel that explicitly enforces this. This partic-
ular mode therefore opens up a particularly problematic degener-
acy for Planck through coupling with the gain and bandpass shift
as follows: an error in the absolute gain will lead to an appar-
ently wrong orbital dipole. However, this can be countered by
adding a polarized CMB quadrupole, which has the same SED
and nearly the same spin harmonics as the orbital dipole, due to
the Planck scanning strategy that observes along nearly perfect
great circles (see Fig. 1 in Gjerløw et al. 2023)7. Second-order
residuals in the total polarized sky signal as observed at each
frequency can then finally be countered by adjusting the combi-
nation of relative gains, polarized foreground signals, and band-
pass corrections between radiometers, leaving the total χ2 nearly
unchanged. To break this degeneracy, we actually did impose
a ΛCDM power spectrum prior on the E ` = 2 mode dur-
ing gain estimation alone and marginalized over its amplitude;
this prevents the polarization quadrupole from taking on obvi-
ously pathological values. In addition, we note that we included
the large-scale WMAP polarization in the CMB fit and this
also helps in regularizing the large-scale polarization signal. For
comparison, we note that both the Planck LFI DPC and PR4
pipelines set the entire CMB polarization signal to zero dur-
ing the gain estimation process; this is a far more aggressive
approach to resolving this degeneracy, and for Planck PR4 it
results in a non-negligible transfer function on large angular
scales (see Planck Collaboration Int. LVII 2020 for full details).
For the Planck LFI detectors alone, the signal-to-noise ratio is
too low to make any measurable difference during gain calibra-
tion, resulting in an effectively unbiased algorithm for Planck
LFI, even with this strong prior (Planck Collaboration III 2016).

During the initial test phase of the BeyondPlanck pipeline,
the Markov chain was allowed to explore all the above degen-
eracies freely, without any informative or algorithmic pri-
ors. These early runs resulted in a full marginal uncertainty
on the dipole amplitude of more than 40 µK, as compared
to 3 µK reported by Planck LFI for the 70 GHz channel
alone (Planck Collaboration II 2020), or 1 µK as reported by

7 This particular degeneracy does not exist for WMAP, because of its
more complex scanning strategy.

HFI (Planck Collaboration III 2020). Although this value by
itself could be considered acceptable, given the limited cos-
mological importance of the CMB dipole, it was also strik-
ingly obvious that all component maps were compromised by
the poorly constrained calibration, ultimately leading to non-
physical Galactic component maps with large dipolar residu-
als. With the introduction of the spatial free-free and AME pri-
ors discussed by Andersen et al. (2023) and the ΛCDM-based
E-mode quadrupole prior discussed by Gjerløw et al. (2023),
these degeneracies can effectively be broken.

Figure 20 shows the marginal CMB temperature fluctuation
posterior mean map as derived in BeyondPlanck, given both
the data, model, and priors described above. This map is mas-
sively dominated by the CMB Solar dipole, with only a small
imprint of the Galactic plane being visible in the very center.
At high latitudes, CMB temperature fluctuations may be seen as
tiny ripples superimposed on the dipole.

Because of the small but non-negligible Galactic plane resid-
uals, we must impose an analysis mask before estimating final
CMB Solar dipole parameters. For this purpose, we used the
Wiener filter estimator described by Thommesen et al. (2020),
which inpaints the Galactic mask with a constrained realiza-
tion prior to parameter estimation; this is necessary in order
to account for and marginalize over the coupling to higher
order CMB fluctuations. This method was also adopted for
the dipole estimates presented in Planck Collaboration Int. LVII
(2020), although we introduce one significant difference to that
analysis: In the current analysis, we estimate the magnitude
of systematic uncertainties directly from the BeyondPlanck
Gibbs samples, as opposed to putting it in by hand. Specifically,
instead of producing 9000 constrained realizations from a single
maximum likelihood map, as done by Thommesen et al. (2020)
and Planck Collaboration Int. LVII (2020), we now produce 100
constrained realizations from each of the 3200 available end-to-
end Gibbs samples. Since each of these realizations have dif-
ferent gain, correlated noise, and foreground residuals, the full
ensemble accounts seamlessly for all relevant systematic uncer-
tainties. The only additional term we put by hand into to the
error budget is a contribution of 0.7 µK from the CMB monopole
uncertainty (Fixsen 2009).

Using this methodology, we estimate the CMB dipole param-
eters over a series of Galactic masks, ranging in sky fractions
from 20 to 95%. The results from these calculations are shown
in Fig. 21. Overall, we see that the posterior distributions for
dipole amplitude and latitude are quite stable with respect to sky
fraction, while longitude estimates are stable up to ∼80% of the
sky. Furthermore, we note that the uncertainties do not decrease
after fsky ≈ 0.75, as they would if the full error budget could
be described in terms of white noise and sky fraction. Rather,
the weight of the additional sky coverage is effectively reduced
when marginalizing over the various systematic contributions, as
desired. We conservatively adopt a sky fraction of fsky = 0.68 to
define our final dipole estimates, corresponding to the sky frac-
tion close to that used for the main CMB temperature analysis.
The resulting values are plotted as black points in Fig. 21 and
tabulated together with previous estimates in Table 2.

Several points are worth noting regarding these results. First,
we see that the reported best-fit BeyondPlanck dipole ampli-
tude is 3362.7 ± 1.4 µK, which is slightly lower than the latest
LFI 2018 estimate of 3364.4 ± 3.1 µK, which in turn is lower
than the NPIPE estimate of 3366.6 ± 2.6 µK. On the other hand,
it is very close to the latest HFI estimate of 3362.08 ± 0.99 µK,
which is derived from an almost completely independent data
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Fig. 20. Posterior mean CMB BeyondPlanck temperature map, smoothed to an angular resolution of 14′ FWHM.

20 30 40 50 60 70 80 90

Sky fraction [%]

33
55

33
60

33
65

33
70

A
m

p
lit

u
d

e
[µ

K
]

BeyondPlanck

WMAP

COBE

LFI 2015

LFI 2018

HFI 2015

HFI 2018

Planck PR4

Bware HFI

20 30 40 50 60 70 80 90

Sky fraction [%]

26
3.

6
26

3.
8

26
4.

0
26

4.
2

26
4.

4
26

4.
6

L
on

gi
tu

d
e

[d
eg

]

20 30 40 50 60 70 80 90

Sky fraction [%]

48
.0

48
.1

48
.2

48
.3

L
at

it
u

d
e

[d
eg

]

Fig. 21. CMB dipole parameters as a function of sky fraction. From left to right, the panels show the dipole amplitude, longitude, and latitude.
Gray bands indicate 68% posterior confidence regions.

set. Overall, the agreement between these various data sets and
methods is excellent.

Regarding the directional parameters, two observations are
worth pointing out. First, we see that the BeyondPlanck
uncertainties are larger than any of the previous Planck-
dominated results. Here, it is worth recalling again that no addi-
tional systematic error contributions are added by hand to the
BeyondPlanck directional uncertainties and the reported val-
ues are thus the direct result of degeneracies within the model
itself. Perhaps the biggest algorithmic difference in this respect
is the fact that the current implementation explicitly marginalizes
over the full foreground and calibration model, while most other
approaches condition on external constraints. The second obser-
vation is that the BeyondPlanck latitude is very slightly higher
than any of the previous results, except COBE. The statistical
significance of this difference is low, only about 1.5σ, but com-
pared with the remarkable internal agreement between Planck
and WMAP, it is still noteworthy. In this respect, we once again
recall that we are currently using the Planck 2015 free-free map
as an informative prior in the current processing, and CMB and
free-free emission are known to be strongly correlated for the
current data set; see Andersen et al. (2023). Performing a joint

analysis of LFI, HFI, and WMAP without an external free-free
prior might be informative regarding this point.

6. Low-` CMB anomalies
The posterior CMB sky map samples generated by the Gibbs
sampler discussed in Sect. 2 may be used for any scientific
analysis to which standard foreground-reduced CMB maps are
subjected. The main practical difference between these maps
and traditional maximum-likelihood maps is simply that in the
Bayesian case one must analyze an entire ensemble of different
CMB maps, rather than just one, and the resulting answer is typ-
ically defined in terms of a histogram, rather than a single value.

The main advantage of this approach is full propagation of
all modeled systematic effects, some of which are very diffi-
cult to account for with traditional approaches. One important
example of this is time- and detector-dependent gain variations.
As already noted, calibration uncertainties modulate the large
CMB Solar dipole, and can consequently also excite other large-
scale modes through a coupling from the satellite scanning
strategy, noise weighting, and confidence mask. This issue
is particularly pertinent to the question of large-scale CMB
anomalies, several of which were reported after the release
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Table 2. Comparison of Solar dipole measurements from COBE, WMAP, and Planck.

Galactic coordinates
Experiment Amplitude [µKCMB] l [deg] b [deg] Reference

COBE (a),(b) 3358 ± 23 264.31 ± 0.16 48.05 ± 0.09 Lineweaver et al. (1996)
WMAP (c) 3355 ± 8 263.99 ± 0.14 48.26 ± 0.03 Hinshaw et al. (2009)

LFI 2015 (b) 3365.5 ± 3.0 264.01 ± 0.05 48.26 ± 0.02 Planck Collaboration II (2016)
HFI 2015 (d) 3364.29 ± 1.1 263.914 ± 0.013 48.265 ± 0.002 Planck Collaboration VIII (2016)

LFI 2018 (b) 3364.4 ± 3.1 263.998 ± 0.051 8.265 ± 0.015 Planck Collaboration II (2020)
HFI 2018 (d) 3362.08 ± 0.99 264.021 ± 0.011 48.253 ± 0.005 Planck Collaboration III (2020)
Bware 3361.90 ± 0.40 263.959 ± 0.019 48.260 ± 0.008 Delouis et al. (2021)
Planck PR4 (a),(c) 3366.6 ± 2.6 263.986 ± 0.035 48.247 ± 0.023 Planck Collaboration Int. LVII (2020)

BeyondPlanck (e) 3362.7± 1.4 264.11± 0.07 48.279± 0.026 This paper

Notes. (a)Statistical and systematic uncertainty estimates are added in quadrature. (b)Computed with a naive dipole estimator that does not account
for higher-order CMB fluctuations. (c)Computed with a Wiener-filter estimator that estimates, and marginalizes over higher order CMB fluctuations
jointly with the dipole. (d)Higher order fluctuations as estimated by subtracting a dipole-adjusted CMB-fluctuation map from frequency maps prior
to dipole evaluation. (e)Estimated with a sky fraction of 68%. Error bars indicate 1σ uncertainties, and include statistical uncertainties as defined
by the global BeyondPlanck posterior framework; they thus account for instrumental noise, gain fluctuations, parametric foreground variations
etc., but not for potential modeling error uncertainties.
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Fig. 22. Estimates of the realization-specific quadrupole amplitude of
our universe, σ2, from WMAP, Planck, and BeyondPlanck. The gray
background indicate PTEs relative to the best-fit Planck 2018 ΛCDM
model, and the color of the dots indicate the sky fraction used by the
respective analysis. The radius of the dots correspond to the diagonal
Fisher matrix uncertainty reported by Hinshaw et al. (2013), and pro-
vides a very naive noise-only estimate.

of the first WMAP sky maps, including a low quadrupole
amplitude (Bennett et al. 1992), lack of large-scale correla-
tions (Spergel et al. 2003), quadrupole-octopole alignment and
octopole planarity (de Oliveira-Costa et al. 2004), hemispherical
power asymmetry (Eriksen et al. 2004b), a large non-Gaussian
cold spot (Vielva et al. 2004), and a low low-` TT power spec-
trum (Planck Collaboration XV 2014).

Most of these effects are, however, typically only statistically
significant at the 3σ level, and unmodeled systematic errors could
therefore often be relevant in ways that are difficult to quantify
with traditional CMB maps. As such, the new CMB posterior sam-
ples presented in this paper offer a unique opportunity to more
fully assess the significance of these anomalies. In the following,
we consider four examples that are implementationally straight-
forward to evaluate, namely: (1) the low quadrupole amplitude,
(2) quadrupole-octopole alignment, (3) octopole planarity, and (4)

low low-` TT spectrum. We encourage other research groups to
revisit the remaining anomalies using their own tools on the new
posterior products provided here.

6.1. Low quadrupole amplitude

As already mentioned, the TT quadrupole amplitude has been
measured to be relatively weak compared to the ΛCDM pre-
dictions ever since COBE-DMR (Bennett et al. 1992) and this
observation has been confirmed both by WMAP (Hinshaw et al.
2003) and Planck (Planck Collaboration XV 2014). However, it
is interesting to note that the various experiments and analyses
report quite different values when it comes to the precise value
for the quadrupole, as illustrated in Fig. 22. Here we show the
reported quadrupole amplitudes8, σ2, for WMAP, Planck, and
BeyondPlanck; the gray background indicates the PTE rela-
tive to the best-fit Planck 2018 ΛCDM model, while the color
of the dots indicate sky fraction. For reference, Hinshaw et al.
(2013) reports a diagonal Fisher uncertainty for this mode of
9 µK2, which is comparable to the dot radius.

All analyses report a generally low amplitude compared to
ΛCDM, with all PTEs except one being higher than 0.95. At the
same time, it is also striking to note that even very similar anal-
yses that rely on highly correlated datasets tend to use almost
identical techniques and are performed by the same research
group, find results that vary internally by many sigmas: The
seven-year WMAP analysis reports a best-fit value of 201 µK2

(Larson et al. 2011), while the corresponding nine-year analy-
sis reports 151 µK2 (Hinshaw et al. 2013), which are formally
different by more than 5σ. Furthermore, the confidence sky
mask used in these two analyses are identical, and sample vari-
ance does therefore not contribute at all to this difference. Like-
wise, Planck 2013 and 2018 reports values of 299 and 226 µK2,
respectively, discrepant at more than 8σ, as measured by naive
Fisher uncertainties, taking into account Planck’s higher signal-
to-noise ratio.

8 Recall that σ2 denotes the realization-specific quadrupole amplitude
of our Universe, while C2 (or D2 = C2 · 6/2π) denotes the ensemble-
averaged quadrupole amplitude.
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Fig. 23. Comparison of the realization-specific quadrupole amplitude
distribution derived from BeyondPlanck (smooth black curve) and
the predicted distribution from the Planck 2018 best-fit ΛCDM power
spectrum (histogram).
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Fig. 24. PTE probability distribution, P(PTE | d), for the realization-
specific quadrupole amplitude, σ2 to exceed the ΛCDM prediction after
marginalizing over all modeled uncertainties.

What these results clearly show is simply that white noise
uncertainties only account for a small fraction of the total CMB
temperature quadrupole uncertainty. With the BeyondPlanck
posterior samples, we are finally in a position where this state-
ment may be quantified more precisely in terms of the full
marginal posterior distribution P(σ2 | d), which now accounts
for important contributions from calibration and foreground
uncertainties, and their correlations. This distribution is shown
in Fig. 23 as a solid smooth curve, while the histogram is
derived from 105 ideal realizations of σ2 drawn from the Planck
2018 best-fit ΛCDM prediction, CΛCDM

2 = 1064.7 µK2. The
posterior distribution may be summarized as a Gaussian with
σ2 = 229 ± 97, and the full marginal uncertainty, including
contributions from the instrument, astrophysics and confidence
mask, is thus more than ten times larger than the naive diagonal
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Fig. 25. Marginal probability distribution of the ensemble-averaged
quadrupole power spectrum, P(C` | d), estimated in BeyondPlanck
(solid line). The vertical line at C2 = 1064.7 indicates the value pre-
dicted by the Planck 2018 best-fit ΛCDM model; 21.7% of the marginal
distribution exceeds this value.

Fisher estimate quoted above, despite the fact that more data are
included in the current analysis.

We are now interested in deriving a total significance for the
low quadrupole amplitude. In a classic frequentist simulation-
based analysis this would be done simply by counting how many
of the simulated realizations in the histogram Fig. 23 have a
lower value than the observed peak posterior value. However,
in our case the PTE of the peak position carries no particular
statistical significance and, instead, the full distribution of pos-
sible σ2 values must be considered. Accordingly, Fig. 24 shows
the probability distribution of PTEs, P(PTE | d) and here we
see that the 95% confidence limit on this PTE is 0.85. Thus, the
observed quadrupole value is certainly on the low side compared
to the ΛCDM prediction, but the effect is not highly significant
with the current dataset. A smaller confidence mask and a better
constrained instrument model are required to shed further light
on the effect.

To conclude this section, we also turn the question around
to consider what the probability distribution for C2 would be
given the measured values of σ2. To answer this, we evalu-
ated the GBR estimator discussed in Sect. 4.3 as a function of
D`, as shown in Fig. 25. The PTE for C2 relative to CΛCDM

2 =

1064.7 µK2 is 21.7%.

6.2. Quadrupole-octopole alignment

A second anomaly regarding the very largest angular scales in
the CMB map was first reported by Tegmark et al. (2003) and
de Oliveira-Costa et al. (2004), who found that the quadrupole
and octopoles appeared morphologically aligned. This was
quantified by first defining a preferred direction, n̂`, for each
mode separately by maximizing the angular momentum disper-
sion of the wave function,

〈ψ|(n̂` · L)2|ψ〉 =
∑

m

m2|a`m(n̂)|2, (37)

and then computing the angular separation between n̂2 for the
quadrupole and n̂3. de Oliveira-Costa et al. (2004) found that
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Fig. 26. Histogram of the quadrupole-octopole alignment, |n̂2 ·

n̂3|. The official WMAP nine-year result reported the value |n̂2 ·

n̂3| = 0.9986 (Bennett et al. 2013) from a misalignment of 3◦,
while Planck (Planck Collaboration XXIII 2014) reported the interval
[0.9663, 0.9877] corresponding to 9 and 13◦, respectively, depending
on the component separation method.

this angle was smaller than the isotropic expectation with a PTE
of 0.984 for the first-year WMAP data. This observation was
qualitatively later confirmed by the WMAP team (Bennett et al.
2013), who found the angle to be around 3◦ in the nine year
data, corresponding to a probability of 0.14% for such an align-
ment or stronger to occur assuming isotropy. The WMAP team
did however note that the foreground removal procedure was a
limiting factor in the measurement of the misalignment. Like-
wise, Planck Collaboration XXIII (2014) reported an alignment
in the interval 9◦ and 13◦ depending on the component separa-
tion method, corresponding to PTEs in between 1.2 and 3.4%,
respectively.

Given the fact that instrumental systematic uncertainties
affect the absolute quadrupole amplitude by a large factor, as
discussed in the previous section, it is reasonable to assume that
also the preferred quadrupole direction is affected by the same
uncertainties. In this section, we therefore apply the methodol-
ogy of de Oliveira-Costa et al. (2004) to the same set of con-
strained CMB realizations discussed above, and derive the full
distribution of alignment PTEs after full systematics marginal-
ization. This is summarized in the form of a histogram in Fig. 26,
with the nine-year WMAP and Planck 2013 results shown as
gray vertical bars. The width of the Planck bar indicates the
uncertainty derived among the four Planck component separa-
tion codes.

In this figure, we see that the agreement between the
BeyondPlanck results and previous results is excellent in
terms of single-point maximum posterior values. However, we
also see that the full BeyondPlanck posterior distribution is
very broad, to the extent that all possible angles are in fact
allowed by the data, from 0 to 90◦. Part of this larger uncer-
tainty does come from the somewhat more conservative analy-
sis mask with fsky = 0.64 employed in the current analysis, as
compared to 0.72 for Planck Collaboration XXIII (2014). At the
same time, we also note that foreground modeling details appear
to have only a small impact of the final results, as very different
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Fig. 27. Histogram of the planarity test statistics, t3, derived from the
set of BeyondPlanck constrained CMB realizations. We also mark
the value of t3 = 94% originally reported by de Oliveira-Costa et al.
(2004) from the first-year WMAP ILC map.

methods reach quite similar conclusions: the WMAP result was
derived from an Internal Linear Combination (ILC) map with
low-resolution foreground eigenmode error propagation, while
the Planck results were derived using four qualitatively different
methods coupled with end-to-end simulations. All these meth-
ods agree internally qualitatively very well and they also agree
with the maximum-posterior BeyondPlanck result.

The fundamental difference between the BeyondPlanck
and previous analyses does not lie in different foreground mod-
eling, but rather in the instrument modelling and the general sta-
tistical treatment and error propagation. Most importantly, while
previous analyses only accounted for relatively simple foreground
and noise uncertainties, the BeyondPlanck processing addi-
tionally accounts for full gain uncertainties and their coupling
to the CMB Solar dipole and foregrounds. When doing so, the
statistical evidence for a quadrupole-octopole alignment dimin-
ishes significantly. Of course, it is also important to emphasize that
a substantial contributor to this additional variance is the exclu-
sion of the Planck HFI measurements, which would allow both
for better CMB constraints (and thereby indirectly also stronger
LFI calibration constraints), as well as a smaller Galactic plane by
properly fitting free-free and thermal dust emission. Future works
that also include HFI data will need to revisit this question.

6.3. Planar octopole

Tegmark et al. (2003) and de Oliveira-Costa et al. (2004) also
noted that not only is the plane of the temperature octopole
closely aligned with the quadrupole, but the octopole is also
intrinsically highly planar. de Oliveira-Costa et al. (2004) quan-
tified this through the test statistic, t3,

t3 ≡ max
n̂

|a3−3(n̂)|2 + |a33(n̂)|2∑3
m=−3 |a3m(n̂)|2

, (38)

which measures the ratio of the total octopole power that may be
contributed to a3±3, maximized over all coordinate systems. This
is shown in terms of a histogram for the BeyondPlanck CMB
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Fig. 28. Best-fit amplitude, q, as a function of maximum multipole,
lmax measured relative to the best-fit Planck ΛCDM power spectrum,
as derived for both Planck 2015 (gray) and BeyondPlanck (black).

samples in Fig. 27 together with the original WMAP measure-
ment of t3 = 94% by de Oliveira-Costa et al. (2004). Once again,
we see that the agreement is very good in terms of the single-
point peak value – but we also see that the distribution is quite
broad when marginalizing over the full set of uncertainties. This
distribution is in qualitatively good agreement with the results
of Rassat et al. (2014), who measured the octopole planarity for
six different foreground-reduced Planck 2013 CMB maps and
found values ranging between 0.84 and 0.95 (corresponding to
PTEs between 7 and 37%) depending on foreground cleaning
and mask details. When additionally marginalizing over instru-
mental systematic effects in BeyondPlanck, we see that the
range broadens further.

6.4. Low-` temperature amplitude

Finally, we revisit the “low low-` temperature power spectrum
anomaly”, first reported by Planck Collaboration XV (2014)9. In
this case, the Planck team fitted the low-` temperature power
spectrum with an amplitude-scaled model C`(q) = qCΛCDM

`
between 2 ≤ ` ≤ `max, and varied `max. In doing so, they
found best-fit amplitudes typically ranging between 0.87 and
0.95, which are low with statistical significance typically at the
1.5−2.5σ level.

Figure 28 shows corresponding results for both Beyond
Planck and Planck 2015. Once again, we see that the results
generally agree well. In this case, we see on the one hand that the
BeyondPlanck mean results are in fact slightly lower than the
Planck results, possibly hinting towards a stronger anomaly. On
the other hand, the uncertainties are also larger due to the larger
confidence mask and more complete instrument error marginal-
ization and the overall significance of the effect is therefore
essentially unchanged.

7. Discussion and conclusions

In this paper, we present the CMB results from the Bayesian
BeyondPlanck analysis (BeyondPlanck Collaboration 2023).

9 An analogous effect on the angular correlation function had been pre-
viously observed in WMAP data, albeit at lower significance level, e.g.
Bennett et al. (2011).

This represents the first example of an end-to-end posterior
sample-based CMB analysis for which the inputs are defined in
terms of raw time-ordered data and the final outputs are CMB
sky maps and power spectra. This method was first suggested in
a CMB setting by Jewell et al. (2004) and Wandelt et al. (2004),
taking almost twenty years of computer hardware and algorithm
development to realize this in practice.

Two of the most fundamental advantages of integrated end-
to-end CMB analysis are full joint exploration of all free param-
eters – instrumental, astrophysical, and cosmological – and true
end-to-end error propagation. In principle, this algorithm has a
similar statistical foundation as the traditional low-` brute-force
CMB likelihood approach used by both WMAP (Hinshaw et al.
2013) and Planck (Planck Collaboration V 2020), but with a few
key differences: rather than just accounting for correlated noise
and template-based foreground residuals at low angular resolu-
tion, this method can account for all degrees of uncertainty at full
angular resolution. It achieves this through Monte Carlo sam-
pling, as opposed to analytic construction of dense covariance
matrices and neither angular resolution nor model complexity
therefore carry a similar prohibitive computational cost as the
traditional method.

It is important to note the Bayesian method, whether imple-
mented analytically or through sampling, is fundamentally dif-
ferent from the frequentist forward simulation-based method that
is commonly used in the CMB field for error propagation. Intu-
itively, the main difference lies in that, while forward simulations
describe some random instrument and universe, the Bayesian
approach describes our instrument and Universe. Because of this
difference, the two methods are naturally geared toward answer-
ing different types of statistical questions. For the Bayesian
approach, it is easy to address such questions as what the most
likely ΛCDM parameters for our Universe would be. However,
it is technically difficult (due to the large dimensionality of the
parameter space) to answer the question of whether our data set
is consistent with the ΛCDM model. For the frequentist sim-
ulation approach, the opposite holds true. It is also interesting
to note that the simulation-based approach becomes indistin-
guishable from the Bayesian approach if constrained realizations
are used to generate the instrument and sky model, as opposed
to statistically independent realizations, as is typically done.
Indeed, the current BeyondPlanck implementation may in
many respects simply be considered as a constrained realization-
based simulator.

In this paper, we use this sampling framework to address
several classical problems in CMB analysis. We study cross-
correlations between the CMB component and instrumental and
astrophysical parameters, and we identify and mitigate a particu-
larly strong degeneracy with free-free emission. We compare the
resulting posterior mean CMB maps and power spectra with pre-
viously published results and found a good agreement. We have
also derived a CMB Solar dipole amplitude of 3362.7 ± 1.4 µK,
which is in excellent agreement with previous results. However,
it is important to note that the quoted uncertainty is derived
directly from the global statistical model and not associated with
any additional Planck-specific systematic error.

Given that all of the above are in good agreement with pre-
vious results, we might wonder what the point of this approach
is, as we have shown that the traditional method works just as
well. The main answer to this question may be formulated in
terms of signal-to-noise ratio: as long as the statistic or quantity
in question is signal-dominated, such as the Planck TT spec-
trum on large and intermediate scales, the current method pro-
vides little or no obvious advantage. However, when the statistic
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in question is either systematics- or noise-dominated, then these
methods become very powerful through their end-to-end error
propagation capabilities. This was explicitly demonstrated in this
paper by revisiting a number of previously reported large-scale
anomalies in the CMB temperature anisotropies. In many cases,
we found that the significance of these anomalies was signifi-
cantly reduced after accounting for both low-level instrumental
parameters and the full non-Gaussian shape of the posterior dis-
tribution. Such effects are very difficult to model accurately by
non-sampling methods.

We posit that the same will also hold true for any next-
generation high-sensitivity CMB B-mode experiment that aims
to detect primordial gravitational waves. These experiments are
looking for a signal that is five or more orders of magnitude
weaker than the CMB dipole and at least a few orders of mag-
nitude weaker than the Galactic diffuse foregrounds. As such,
accurate and joint error propagation of both instrumental and
astrophysical uncertainties will be key to claiming a robust
detection. Indeed, developing methods applicable to this task
was the main motivation behind the BeyondPlanck project
in general. The current work has shown in practice that it is
now possible to implement a computationally viable end-to-end
Bayesian CMB analysis pipeline.
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