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ABSTRACT

We present Planck Low Frequency Instrument (LFI) frequency sky maps derived within the BeyondPlanck framework. This frame-
work draws samples from a global posterior distribution that includes instrumental, astrophysical, and cosmological parameters, and
the main product is an entire ensemble of frequency sky map samples, each of which corresponds to one possible realization of the
various modeled instrumental systematic corrections, including correlated noise, time-variable gain, as well as far sidelobe and band-
pass corrections. This ensemble allows for computationally convenient end-to-end propagation of low-level instrumental uncertainties
into higher-level science products, including astrophysical component maps, angular power spectra, and cosmological parameters. We
show that the two dominant sources of LFI instrumental systematic uncertainties are correlated noise and gain fluctuations, and the
products presented here support – for the first time – full Bayesian error propagation for these effects at full angular resolution. We
compared our posterior mean maps with traditional frequency maps delivered by the Planck Collaboration, and find generally good
agreement. The most important quality improvement is due to significantly lower calibration uncertainties in the new processing, as
we find a fractional absolute calibration uncertainty at 70 GHz of ∆g0/g0 = 5 × 10−5, which is nominally 40 times smaller than that
reported by Planck 2018. However, we also note that the original Planck 2018 estimate has a nontrivial statistical interpretation, and
this further illustrates the advantage of the new framework in terms of producing self-consistent and well-defined error estimates of
all involved quantities without the need of ad hoc uncertainty contributions. We describe how low-resolution data products, including
dense pixel-pixel covariance matrices, may be produced from the posterior samples directly, without the need for computationally
expensive analytic calculations or simulations. We conclude that posterior-based frequency map sampling provides unique capabili-
ties in terms of low-level systematics modeling and error propagation, and may play an important role for future Cosmic Microwave
Background (CMB) B-mode experiments aiming at nanokelvin precision.
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1. Introduction

The current state of the art in all-sky cosmic microwave
background (CMB) observations is provided by the Planck
satellite (Planck Collaboration I 2020), which observed the

microwave sky in nine frequency bands (30–857 GHz) between
2009 and 2013. This experiment followed in the footsteps
of Cosmic Background Explorer (COBE, Mather 1982) and
Wilkinson Microwave Anisotropy Probe (WMAP, Bennett et al.
2003), improving frequency coverage, sensitivity, and angular
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resolution, and ultimately resulted in constraints on the primary
CMB temperature fluctuations that are limited by cosmic vari-
ance, rather than instrumental noise or systematics.

The Planck consortium produced three major data releases,
labeled 2013, 2015, and 2018 (Planck Collaboration II 2014,
2016, 2020), respectively, each improving the quality of the
basic frequency maps in terms of the overall signal-to-noise
ratio and systematics control. Several initiatives to further
improve the quality of the Planck maps also began after
the Planck 2018 legacy release, as summarized by SRoll2
(Delouis et al. 2019), Planck PR4 (sometimes also called NPIPE;
Planck Collaboration Int. LVII 2020), and BeyondPlanck
(BeyondPlanck Collaboration 2023).

The BeyondPlanck project builds directly on experi-
ences gained during the last years of the Planck analysis, and
focuses in particular on the close relationship between the var-
ious steps involved in the data analysis, including low-level
time-ordered data processing, mapmaking, high-level compo-
nent separation, and cosmological parameter estimation. As
described in BeyondPlanck Collaboration (2023), the main goal
of BeyondPlanck is to implement and deploy a single statis-
tically coherent analysis pipeline to the Planck Low-Frequency
Instrument (LFI; Planck Collaboration II 2020), processing raw
uncalibrated time-ordered data into final astrophysical compo-
nent maps and angular CMB power spectra within one single
code, without the need for intermediate human intervention. This
is achieved by implementing a Bayesian end-to-end analysis
pipeline, which for convenience is integrated in terms of a soft-
ware package called Commander3 (Galloway et al. 2023a). The
current paper focuses on the 30, 44, and 70 GHz LFI frequency
maps, and compares these novel maps with previous versions,
both from Planck 2018 and PR4.

Map-making in a CMB analysis chain compresses time-
ordered data (TOD) into sky maps. These TOD contain con-
tributions from many instrumental effects, and those strongly
affect the statistical properties of the resulting maps. For LFI,
instrumental effects have traditionally been modeled in terms
of three main components, namely white (uncorrelated) ther-
mal noise, 1/ f (correlated) noise, and general systematics
(Mennella et al. 2010; Zacchei et al. 2011). The white noise is,
by definition, uncorrelated between pixels, and its statistical
properties are therefore straightforward to characterize and prop-
agate to higher-level science products. In contrast, the corre-
lated 1/ f noise component manifests itself as extended stripes
in maps, which significantly correlate pixels along the scanning
path of the main beam. The same also holds true for general
classes of systematic effects, including, for instance, gain fluc-
tuations or bandpass mismatch between detectors. The goal of
mapmaking is to suppress these effects as much as possible,
while ideally leaving the astrophysical signal and white noise
unchanged.

Traditionally, the actual mapmaking step in CMB analysis
pipelines has primarily focused on the correlated noise com-
ponent (e.g., Tegmark et al. 1997; Ashdown et al. 2007, and
references therein), while general systematics corrections have
been applied in a series of preprocessing steps. One particu-
larly flexible method that has emerged during this work is the
so-called destriping (Delabrouille 1998; Burigana et al. 1999;
Maino et al. 1999, 2002; Keihänen et al. 2004, 2005, 2010;
Kurki-Suonio et al. 2009), in which the 1/ f noise component is
modeled by a sequence of constant offsets, often called base-
lines. Furthermore, in generalized destriping, as for instance
implemented in the Madam code (Keihänen et al. 2005, 2010),
prior knowledge of noise properties can be utilized to better

constrain the baseline amplitudes, at which point the optimal
maximum-likelihood solution may be derived as a limiting case.

Toward the end of the Planck analysis period, however,
a major effort was undertaken to include the treatment of
some instrumental systematic effects (other than 1/ f noise)
directly into the pipeline, and several codes that simultaneously
account for mapmaking, systematic error mitigation and com-
ponent separation were developed. In particular, these integrated
approaches were pioneered by SRoll (Planck Collaboration III
2020) and Planck PR4 (Planck Collaboration Int. LVII 2020),
both of which adopted a template-based linear regression algo-
rithm to solve the joint problem.

In contrast, the BeyondPlanck framework described in
BeyondPlanck Collaboration (2023) and its companion papers
adopts a more general approach, in which a full joint posterior
distribution is sampled using standard Markov chain Monte Carlo
methods. In this framework, the correlated noise is simply sam-
pled as one of many components, together with corrections for
gain fluctuations, bandpass mismatch, etc., and for each iteration
in the Markov chain a new frequency map is derived. This ensem-
ble of frequency maps then serves as a highly compressed repre-
sentation of the full posterior distribution that can be analyzed in a
broad range of higher-level analyses. Indeed, this approach imple-
ments for the first time a true Bayesian end-to-end error propaga-
tion for high-resolution CMB experiments, from raw uncalibrated
time-ordered data to final cosmological parameter estimates.

The rest of the paper is organized as follows. In Sect. 2 we
give an introduction to and overview of the BeyondPlanck
analysis framework, focusing on the aspects that are most rele-
vant for mapmaking and systematic error propagation. In Sect. 3
we inspect the Markov chains that result from the posterior sam-
pling process, and quantify correlations at the frequency map
level. Next, in Sect. 4 we present the resulting BeyondPlanck
posterior mean frequency maps, and in Sect. 5 we compare these
with previous Planck analyses. In Sect. 6 we consider end-to-
end error propagation, both in the form of individual posterior
samples and conventional covariance matrices, and in Sect. 7
we summarize the various systematic error corrections that are
applied to each frequency map. Finally, we conclude in Sect. 8.

2. BeyondPlanck mapmaking and end-to-end error
propagation

2.1. Statistical framework

The BeyondPlanck framework may be succinctly summa-
rized in terms of a single parametric model that includes
both astrophysical and instrumental components. The motiva-
tion and derivation of the specific BeyondPlanck data model
is described in BeyondPlanck Collaboration (2023), and takes
the following form,

d j,t = g j,tPtp, j

Bsymm
pp′, j

∑
c

Mc j(βp′ ,∆
j
bp)ac

p′ + Basymm
j,t

(
sorb

j + sfsl
t

) +

+ s1 Hz
j,t + ncorr

j,t + nw
j,t, (1)

where j is a radiometer label, t is a time sample, p is a pixel
on the sky, and c is an astrophysical component. Further, d j,t
is the measured data; g j,t is the instrumental gain; Ptp, j is the
NTOD × 3Npix pointing matrix; B j denotes the beam convolu-
tion; Mc j(βp,∆bp) is an element of a foreground mixing matrix
that depends on both a set of nonlinear spectral energy density
parameters, β, and instrumental bandpass parameters, ∆bp; ac

p
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Fig. 1. Time-ordered data segment for the 30 GHz LFI 27M radiometer. From top to bottom, the panels show 1) raw calibrated TOD, d/g; 2) sky
signal, ssky; 3) calibrated correlated noise, ncorr/g; 4) orbital CMB dipole signal, sorb; 5) sidelobe correction, ssl; 6) electronic 1 Hz spike correction,
s1 Hz; 7) leakage mismatch correction, sleak; and 8) residual TOD, dres = (d − ncorr − s1 Hz)/g − ssky − sorb − sleak − ssl.

is the amplitude of a sky signal component; sorb
j is the orbital

CMB dipole signal; sfsl
j is a contribution from far sidelobes; s1 Hz

j,t
represents an electronic 1 Hz spike correction; ncorr

j,t is correlated
instrumental noise; and nw

j,t is uncorrelated (white) instrumental
noise, which is assumed to be Gaussian distributed with covari-
ance Nwn.

To build intuition regarding the various terms involved in
Eq. (1), Fig. 1 shows an arbitrarily selected 3-minute segment
of the various TOD components for one LFI radiometer. The top
panel shows the raw radiometer measurements, d, while the sec-
ond panel shows the sky model contribution described by the first
term on the right-hand side in Eq. (1) for signal parameters cor-
responding to one randomly selected sample. The slow oscilla-

tions in this function represent the CMB (Solar and orbital) dipole,
while the sharp spikes correspond to the bright Galactic plane
signal. The small fluctuations super-imposed on the slow CMB
dipole signal are dominated by CMB fluctuations, and measur-
ing these is the single most important goal of any CMB experi-
ment. The third panel shows the correlated noise, ncorr, which is
stochastic in nature, but exhibits long-term temporal correlations.
The fourth panel shows the orbital CMB dipole, sorb, which rep-
resents our best-known calibration source. However, it only has
a peak-to-peak amplitude of about 0.5 mK, and is as such non-
trivial to measure to high precision in the presence of the sub-
stantial correlated noise and other sky signals seen above. The
fifth panel shows the far sidelobe response, which is generated by
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convolving the sky model with the 4π instrument beam after
nulling a small area around the main beam. The last term in Eq. (1)
is the contribution from electronic 1 Hz spikes, s1 Hz, and is shown
in the sixth panel. The seventh panel shows a correction term for
so-called bandpass and beam leakages, sleak, which accounts for
differing response functions among the radiometers used to build
a single frequency map. This is not a stochastic term in its own
right, but rather given deterministically by the combination of the
sky model and the instrument bandpasses and beams. The bottom
panel shows the difference between the raw data and all the indi-
vidual contributions, which ideally should be dominated by white
noise. Intuitively, the BeyondPlanck pipeline simply aims to
estimate the terms shown in the second to sixth panels in this figure
from the top panel.

For notational simplicity, we define ω ≡

{a, β, g,∆bp, ncorr, . . .} to be the set of all free parameters in
Eq. (1), and we fit this to d by mapping out the posterior distri-
bution, P(ω | d). According to Bayes’ theorem, this distribution
may be written

P(ω | d) =
P(d | ω)P(ω)

P(d)
∝ L(ω)P(ω), (2)

where L(ω) ≡ P(d | ω) is the likelihood, and P(ω) is some
set of priors. The likelihood may be written out explicitly by
first defining stot(ω) to be the full expression on the right-hand
side of Eq. (1), except the white noise term, and then noting that
d − stot = nwn, and therefore

−2 lnL(ω) =
(
d − stot(ω)

)t
N−1

wn

(
d − stot(ω)

)
. (3)

The priors are less well defined, and for an overview of both
informative and algorithmic priors used in the current analysis,
see BeyondPlanck Collaboration (2023).

It is important to note that P(ω | d) involves billions of free
parameters, all of which are coupled into one highly correlated
and non-Gaussian distribution. As such, mapping out this distri-
bution is computationally nontrivial. Fortunately, the statistical
method of Gibbs sampling (Geman & Geman 1984) allows users
to draw samples from complex joint distribution by iteratively
sampling from each conditional distribution. Using this method
for global CMB analysis was first proposed by Jewell et al.
(2004) and Wandelt et al. (2004), nearly two decades ago. And
has finally been applied here for the first time to real data. As
described in BeyondPlanck Collaboration (2023), we write the
BeyondPlanck Gibbs chain schematically as

g ← P(g | d, ξn, s1 Hz,∆bp, a, β,C`) (4)

ncorr ← P(ncorr | d, g, ξn, s1 Hz,∆bp, a, β,C`) (5)

ξn ← P(ξn | d, g, ncorr, s1 Hz,∆bp, a, β,C`) (6)

s1 Hz ← P(s1 Hz | d, g, ncorr, ξn, ∆bp, a, β,C`) (7)

∆bp ← P(∆bp | d, g, ncorr, ξn, s1 Hz, a, β,C`) (8)

β ← P(β | d, g, ncorr, ξn, s1 Hz,∆bp, C`) (9)

a ← P(a | d, g, ncorr, ξn, s1 Hz,∆bp, β,C`) (10)

C` ← P(C` | d, g, ncorr, ξn, s1 Hz,∆bp, a, β ), (11)

where symbol ← has the meaning that we set variable on the
left-hand side equal to the sample from the distribution on the
right-hand side.

2.2. Mapmaking

In the BeyondPlanck framework, frequency maps are not
independent stochastic variables in their own right, but they
serve rather as a deterministic compression of the full dataset
from TOD into sky pixels, conditioning on other actual stochas-
tic parameters, such as g and ncorr. To derive these compressed
frequency maps, we first compute the residual calibrated TOD
for each detector,

r j,t =
d j,t − ncorr

j,t − s1 Hz
j,t

gt, j
−

(
sorb

j,t + sfsl
j,t + δsleak

j,t

)
, (12)

where

δsleak
j,t ≡ P j

tpB j
pp′

(
ssky

jp′ −
〈
ssky

jp′

〉)
(13)

is the difference between the sky signal as seen by detector j and
the mean over all detectors; this term suppresses so-called band-
pass and beam leakage effects in the final map (Svalheim et al.
2023). To the extent that the data model is accurate, r j,t contains
only stationary sky signal and white noise, given the current esti-
mates of other parameters in the data model. A proper frequency
map may therefore be obtained simply by binning r into a map,
that is, by solving the following equation for each pixel,∑

j∈ν

Pt
j(N

w
j )−1P j

 mν =
∑

j

Pt
j(N

w
j )−1d j. (14)

It is important to note that the residual in Eq. (12) depends
explicitly on ω, and different combinations of g, ncorr, etc., will
result in a different sky map. As such, a frequency map in the
BeyondPlanck framework represents just one possible real-
ization, and in each iteration in the Markov chain a new fre-
quency map is derived. The final result is an entire ensemble
of frequency maps, mi

ν, each with different combinations of sys-
tematic effects. The mean of these samples may be compared
to traditional maximum-likelihood estimates, as indeed is done
in Sect. 5, but it is important to emphasize that the main prod-
uct from the current analysis is the entire ensemble of sky maps,
not the posterior mean. The reason is that only by considering
the full set of individual samples is it possible to fully propagate
uncertainties into high-level results.

It is also important to note that this ensemble by itself
does not propagate white noise uncertainties, as the residual in
Eq. (12) only subtracts instrumental systematic effects. This is a
purely implementational choice, and we could in principle also
have added a white noise fluctuation to each realization. How-
ever, because the white noise is uncorrelated both in time and
between pixels, its 3×3 Stokes {T,Q,U} covariance is very con-
veniently described in terms of the coupling matrix in Eq. (14),
and reads

Nw
p =

∑
j∈ν

Pt
j(N

w
j )−1P j

−1

(15)

=


∑ 1

σ2
0, j

∑ cos 2ψ j,t

σ2
0, j

∑ sin 2ψ j,t

σ2
0, j∑ cos 2ψ j,t

σ2
0, j

∑ cos2 2ψ j,t

σ2
0, j

∑ cos 2ψ j,t sin 2ψ j,t

σ2
0, j∑ sin 2ψ j,t

σ2
0, j

∑ sin 2ψ j,t cos 2ψ j,t

σ2
0, j

∑ sin2 2ψ j,t

σ2
0, j


−1

, (16)

where σ0, j and ψ j,t denote the time-domain white noise rms
per sample and the polarization angle for detector j and sam-
ple t, and the sums run over all samples. This may be evaluated
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and stored compactly pixel-by-pixel, and it allows for computa-
tional efficient and analytical white noise-only error propagation
in higher level analyses. In addition, we note that most external
and already existing CMB analysis tools already expect a mean
map and white noise covariances as inputs, and this uncertainty
description is particularly convenient for those1.

2.3. Resource requirements

In this analysis, we consider only the Planck LFI data, for which
the raw data volume is about 8 TB as provided directly by the
LFI DPC. However, using Huffman compression, and remov-
ing noncritical housekeeping information, this may be reduced
to 861 GB through Huffman compression. Also accounting
for non-TOD objects, the total data volume required for this
full multiband analysis is 1.5 TB, as further detailed by
Galloway et al. (2023a).

The processing time required for initialization is 64 CPU-hrs,
whereas each Gibbs sample takes 164 CPU-hrs, making the ini-
tialization step comparetively small to the sampling step. The
majority of the sampling time (97 CPU-hrs) is spent on low-
level TOD processing, and this includes Huffman decompression
(10 CPU-hrs), sidelobe evaluation (10 CPU-hrs), gain sampling
(6 CPU-hrs), correlated noise sampling (30 CPU-hrs), etc. The
rest of the Gibbs loop time is dominated by component separa-
tion tasks, most notably signal amplitude sampling (24 CPU-hrs)
and spectral parameter (40 CPU-hrs) sampling.

A total of 4000 Gibbs samples are produced in the cur-
rent processing, and the total cost for the full analysis is thus
about 650 000 CPU-hrs. It is important to note that this cost
accounts both for model fitting and error estimation, and there
is no need for separate analysis of Monte Carlo simulations
(Brilenkov et al. 2023), except for algorithm validation. Not-
ing that the overall computational cost of this algorithm scales
roughly linear with data volume (because of TOD segmenting),
these numbers may be used to derive a very rough rule of thumb
for the total cost estimate: Analyzing 1 TB of raw uncompressed
data costs O(105) CPU-hrs.

3. Markov chains and correlations

The algorithm outlined in Eqs. (4)–(11) is a Markov chain,
and must as such be initialized. To reduce the overall burn-in
time and minimize the risk of being trapped in a local non-
physical likelihood minimum, we perform this operation in
stages. Specifically, we first initialize the instrumental param-
eters on the best-fit values reported by the official Planck LFI
Data Processing Center (DPC) analysis (Planck Collaboration II
2020), and we fix the sky model at the Planck 2015 Astrophys-
ical Sky Model (Planck Collaboration X 2016). (The Planck
2018 release did not include separate low-frequency components
– synchrotron, free-free, and AME – which are essential for the
current analysis). Then each frequency channel is optimized sep-
arately, without feedback to the sky model. Once a reasonable fit
is obtained for each channel, the model is loosened up, and a new
analysis is started that permits full feedback between all param-
eters. In practice, multiple runs are required to resolve various
issues, whether they are bug fixes or model adjustments, and in
each case we restart the run at the most advanced previous chain,
to avoid repeating the burn-in process, which can take many

1 We note that the current Commander3 implementation only outputs
the diagonal of the 3 × 3 noise covariance; the off-diagonal elements
will be added in a future update.

weeks. The final results presented in the current data release
correspond to the tenth such analysis iteration, and the param-
eter files and products (Galloway et al. 2023a) are labeled by
“BP10”. We strongly recommend future analyses aiming to add
additional datasets to the current model to follow a similar anal-
ysis path, fixing the sky model on the current BeyondPlanck
chains, and in the beginning only optimize instrumental param-
eters per new frequency channel. This is likely to vastly reduce
both the debug and burn-in time, as it prevents the chains from
exploring obviously nonphysical regions of the parameter space.

The final BP10 results consist of four independent Markov
chains, each with a total of 1000 Gibbs samples. We con-
servatively removed 200 samples from each chain as burn-in
(Paradiso et al. 2023), but it is important to note that we have not
seen statistically compelling evidence for significant chain non-
stationarity after the first few tens of samples. A total of 3200
samples has been retained for full analysis.

Figure 2 shows a small subset of these samples for various
parameters that are relevant for the LFI frequency maps. The
two colors indicate two different Markov chains. From top to
bottom, in the left column the plotted parameters are Stokes I,
Q, and U parameters for each of the 30, 44, and 70 GHz fre-
quency maps for two low-resolutions Nside = 16 pixels, namely
pixels 340 (which is located in a low-foreground region of the
northern high-latitude sky) and 1960 (which is located in a
high-foreground region south of the Galactic center). Similarly,
the right column show synchrotron, free-free, thermal dust, and
CMB amplitudes, as well the bandpass correction and the cor-
related noise parameters for one pointing period (PID) for the
30 GHz 27M radiometer. Overall, we see that the frequency map
pixel values have a relatively short correlation length, and the
chains mix well and appear statistically stationary. In general,
the correlation lengths appear much longer for the instrumental
parameters and some of the astrophysical parameters, in particu-
lar the synchrotron intensity amplitude. This makes intuitively
sense, as we see from the definition of the TOD residual in
Eq. (12) that the frequency maps depend only weakly on the sky
model through the far sidelobe and leakage corrections, both of
which are small in terms of absolute amplitudes (see Fig. 1), and
at second order through the gain, which uses the sky model for
calibration purposes.

This observation is important when comparing frequency
maps generated through Bayesian end-to-end processing
with those generated through traditional frequentist methods;
although the Bayesian maps are formally statistically coupled
through the common sky model, these couplings are indeed
weak, and their correlations are fully quantified through the sam-
ple ensemble. It is also important to note that precisely the
same type of couplings exist in the traditional maps, as they
also depend on a sky model to estimate the gain and perform
sidelobe and bandpass corrections in precisely the same man-
ner as the current algorithm. The only fundamental difference
is that the traditional methods usually only adopt one fixed sky
model for these operations (e.g., Planck Collaboration II 2020;
Planck Collaboration III 2020), and therefore do not propagate
its uncertainties, while the Bayesian approach considers an entire
ensemble of different sky models, and thereby fully propagates
astrophysical uncertainties.

In Fig. 3 we plot the Pearson’s correlation coefficient
between any two pairs of parameters shown in Fig. 2. The
upper triangle shows full correlations computed directly from the
raw Markov chains, while the bottom triangle shows the same
after high-pass filtering each chain with a boxcar filter with a
5-sample window; the latter is useful to highlight correlations
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Fig. 2. Trace plots of a set of selected frequency map parameters and related quantities; see main text for full definitions. The different colors
indicate two independent Gibbs chains, and the 340 and 1960 subscripts indicate HEALPix pixel numbers at resolution Nside = 16 in ring ordering.

within the local white noise distribution (i.e., fast variations in
Fig. 2), while the former accounts also for strong long-distance
degeneracies (i.e., slow drifts in Fig. 2). Monopoles have been
removed from the intensity frequency maps, except in the last
row of Fig. 3, which shows correlations that also including
monopole variations.

Going through these in order of strength, we start with the
correlated noise parameters. As described by Ihle et al. (2023),
the current processing assumes a standard 1/ f noise power spec-
tral density, Pn( f ) = σ2

0(1 + ( f / fkneee)α), for the 70 GHz chan-
nel, which is extended with a log-normal term for the 30 and
44 GHz channels to account for a previously undetected power

excess between 0.1–1 Hz. This additional term introduces a
strong degeneracy with α and fknee at the 0.8–0.9 level after high-
pass filtering. However, the actual frequency map only depends
on the sum of these components, and internal noise PSD degen-
eracies are completely irrelevant for the final sky maps. This is
seen by the fact that the correlation coefficient between any noise
parameter and the sky map pixels is at most 0.06.

The second strongest correlations are seen in the bottom
row, which shows the 30 GHz intensity in pixel a correlated
with all other quantities. Here we see that pixels a and b are
97% correlated internally in the 30 GHz channel map, and pixel
a is also 84% (42%) correlated with the same pixel in the
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Fig. 3. Correlation coefficients between the same parameters as shown in Fig. 2. The subscripts a and b relate to the 340 and 1960 HEALPix pixel
numbers. The lower triangle shows raw correlations, while the upper triangle shows correlations after high-pass filtering with a running mean with
a 10-sample window. For further explanation of and motivation for this filtering, see Andersen et al. (2023).

44 GHz (70 GHz) channel. These strong correlations are due to
the fact that the BeyondPlanck maps have monopoles deter-
mined directly from the astrophysical foreground model, and all
frequency maps therefore respond coherently to changes in, say,
the free-free offset. After removing this strong common mode
the correlations among the frequency maps fall to well below
10%, as seen in the top section of the plot.

Thirdly, we see that there are strong correlations among the
sky model parameters (CMB, synchrotron, free-free, and ther-
mal dust emission), typically at the 0.3–0.6 level, and some
of these also extend to the actual frequency maps. Starting
with the internal sky model degeneracies, strong correlations
between synchrotron, free-free, and AME are fully expected
due to their similar SEDs and the limited dataset used in the
current analysis. Qualitatively similar results were reported by
Planck Collaboration X (2016) and Planck Collaboration XXV
(2016) even when including the intermediate HFI frequencies,
and excluding the HFI data obviously does nothing to reduce

these correlations. The large correlations with respect to the fre-
quency maps are perhaps more surprising, given the statements
above that the frequency maps only depend very weakly on the
sky model parameters. However, it is important to note that the
converse does not hold true; the sky model depends strongly
on the frequency maps, and these dependencies are encoded in
Fig. 3. Two concrete examples are CMB polarization, which is
most tightly correlated with the 70 GHz channel, and the syn-
chrotron polarization amplitude, which is most tightly correlated
with the 30 GHz channel.

The fourth most notable correlation is seen among the three
Stokes parameters for a single pixel, and in particular between Q
and U for which the intrinsic sky signal level is small, and these
effects are therefore relatively more important. Even though white
noise does not contribute to these Markov chains, the correlated
noise and systematic effects also behave qualitatively similar as
white noise with respect to the Planck scanning strategy.
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Table 1. Frequency map comparison between Planck 2018 and BeyondPlanck products.

30 GHz 44 GHz 70 GHz
Quantity Unit Planck bp Planck bp Planck bp

HEALPix pixel resolution, Nside None 1024 512 1024 512 1024 · · ·

Nominal center frequency GHz 28.4 28.6 44.1 · · · 70.4 · · ·

TOD-level array sensitivity µKCMBs1/2 147.9 145.2 174.0 172.7 151.9 153.0
1/ f knee frequency, fknee mHz 113.9 129 53.0 46.0 19.6 20.4
1/ f slope, α None −0.92 −0.84 −0.88 −0.95 −1.20 −1.13
Intermediate frequency noise excess, Ap/σ

2
0 Fraction – 0.53 – 0.28 – –

Total data volume projected into sky maps % 90.99 99.64 91.30 99.76 90.97 99.88
Absolute calibration uncertainty, ∆g0/g0 (10−5) 170 7 120 5 200 5

Notes. Entries marked by − indicate that the value is not available, while entries marked by · · · indicate that the BeyondPlanck value is identical
to the Planck 2018 value.

4. BeyondPlanck frequency maps

4.1. General characteristics

We now turn our attention to the coadded frequency maps,
and compare the BeyondPlanck maps with the corresponding
Planck 2018 maps in terms of various key quantities in Table 1.
Unless noted otherwise, Planck values are reproduced directly
from Planck Collaboration II (2020). Entries marked with three
dots indicate that the BeyondPlanck values are identical to
the Planck values, while dashed entries for Planck indicate that
those values are undefined.

Starting from the top, we see that the BeyondPlanckmaps
adopt a HEALPix2 (Górski et al. 2005) resolution of Nside = 512
for the 30 and 44 GHz channels and Nside = 1024 for the 70 GHz,
while the Planck maps use Nside = 1024 for all three chan-
nels. In this respect, it is worth noting that the beam width of
the three channels are 30′, 27′, and 14′ (Planck Collaboration II
2020), respectively, while the HEALPix pixel size is 7′ at Nside =
512 and 3.4′ at Nside = 1024. A useful rule of thumb for the
HEALPix grid is that maps should have at least 2.5–3 pixels per
beam FWHM to be proper bandwidth limited at `max ≈ 2.5 Nside,
above which HEALPix spherical harmonic transforms gradually
become more nonorthogonal (Górski et al. 2005). With 3.9 pix-
els per beam FWHM, this rule is more than satisfied at Nside =
512 for the 30 and 44 GHz beams, while it would not be sat-
isfied at 70 GHz, with only two pixels per beam FWHM. As
essentially all modern component separation and CMB power
spectrum methods today are anyway required to operate with
multiresolution data, simply to combine data from LFI, HFI and
WMAP, there is little compelling justification for maintaining
identical pixel resolution among the three LFI channels, and we
instead choose to optimize CPU and memory requirements for
the 30 and 44 GHz channels.

The second entry in Table 1 lists the nominal center fre-
quency of each band. As discussed by Svalheim et al. (2023), the
BeyondPlanck model includes the 30 GHz center frequency
as a free parameter, but fixes the 44 and 70 GHz center frequen-
cies at their default values. The overall shift for the 30 GHz
channel is 0.2 GHz, with corresponding implications in terms
of unit conversions, color corrections, and bandpass integra-
tion. In addition to this 30 GHz correction, the BeyondPlanck
processing also includes entirely reprocessed bandpasses for
all detectors, mitigating artifacts from standing waves which
affected bandpass measurements in the prelaunch calibration
campaign (Zonca et al. 2009; Svalheim et al. 2023), and we

2 https://healpix.jpl.nasa.gov

highly recommend using these improved bandpass profiles for
any future processing of either the original Planck or the new
BeyondPlanck LFI maps.

The four next entries in Table 1 list either “typical” (for
Planck 2018; Planck Collaboration II 2020) or frequency- and
time-averaged (for BeyondPlanck; Ihle et al. 2023) noise PSD
parameters. Overall, these agree well between the two analy-
ses. However, it is important to emphasize that whereas the
Planck analysis assumes that the instrumental parameters listed
in lines 3–6 of Table 1 to be constant throughout the full mission
during mapmaking, the BeyondPlanck processing allows for
hourly variations in all these parameters. The BeyondPlanck
method leads as such both to more optimal noise weighting
in the final map, and also to more accurate full-mission white
noise estimates. We also see that the additional log-normal cor-
related noise contribution accounts for as much as 53% of the
white noise level at intermediate frequencies in the 30 GHz chan-
nel, and 28% at 44 GHz (Ihle et al. 2023). This term is neither
included in the Planck noise model nor simulations.

The next entry in Table 1 lists the total data volume that is
actually coadded into the final maps, as measured in units of
detector-hours. In general, the accepted BeyondPlanck data
volume is about 9% larger than the Planck 2018 data vol-
ume, and this is because the current processing also includes
the so-called “repointing” periods, which are short intervals
of about 5–8 minutes between each Planck pointing period.
These data were originally excluded by an abundance of cau-
tion from the official Planck processing because the pointing
model could not be demonstrated to satisfy the arcsecond point-
ing requirements defined at the beginning of the mission. How-
ever, Planck Collaboration Int. LVII (2020) have subsequently
demonstrated that these data perform fully equivalently in terms
of null maps and power spectra as the regular mission data, and
the potential additional arcsecond-level pointing uncertainties
are negligible compared to the overall instrument noise level. We
therefore follow Planck PR4, and include these observations.

The last entry in Table 1 compares the nominal absolute
calibration uncertainties of Planck 2018 and BeyondPlanck
(Svalheim et al. 2023), and this may very well quantify the sin-
gle most important difference between the two sets of products.
For the 70 GHz the nominal absolute BeyondPlanck calibra-
tion uncertainty is as much as 40 times smaller than the Planck
2018 uncertainty, corresponding to a fractional uncertainty of
∆g0/g0 = 5 × 10−5. For the 30 GHz channel, the corresponding
ratio is 24.

Clearly, when faced with such large uncertainty differences,
two questions must be immediately addressed, namely, 1) “how

A10, page 8 of 32

https://healpix.jpl.nasa.gov


Basyrov, A., et al.: A&A 675, A10 (2023)

reasonable the quoted uncertainties are”, and 2) if they are rea-
sonable, “what the physical and algorithmic origin of these
large differences is” Starting with the first question, it is use-
ful to adopt the CMB Solar dipole amplitude as a reference.
This amplitude depends directly, but by no means exclusively,
on the 70 GHz absolute calibration; other important (and, in
fact, larger) sources of dipole amplitude uncertainties include
foreground and analysis mask marginalization and the uncer-
tainty in the CMB monopole, TCMB = 2.7255 ± 0.0005 mK
(Fixsen 2009; Colombo et al. 2023). For BeyondPlanck, the
total CMB Solar dipole posterior standard deviation is 1.4 µK,
while the conditional uncertainty predicted by the 70 GHz abso-
lute calibration only is 3.36 mK × 5 × 10−5 = 0.2 µK, which is
at least theoretically consistent with a total dipole uncertainty
of 1.4 µK, given the other sources of uncertainty. For Planck
2018, the corresponding predicted conditional dipole uncertainty
is 3.36 mK × 200 × 10−5 = 7 µK, which is more than twice
as large as the corresponding full Solar dipole uncertainty. The
quoted LFI absolute gain uncertainties thus appear to be overly
conservative, and cannot be taken as a realistic absolute gain
uncertainty at face value; the true uncertainty is most likely lower
by at least a factor of two, and possibly as much as an order of
magnitude.

Even after accounting for this factor, it is clear that the
BeyondPlanck uncertainty is still significantly lower. To
understand the origin of this difference, we recall the sum-
mary of the BeyondPlanck calibration approach provided
by Gjerløw et al. (2023): Whereas Planck 2018 processes
each frequency channel independently and assumes the large-
scale CMB polarization signal to be zero during calibration,
BeyondPlanck processes all channels jointly and uses exter-
nal information from WMAP to constrain the large-scale CMB
polarization modes that are poorly measured by Planck alone.
Thus, the BeyondPlanck gain model contains fewer degrees
of freedom than the corresponding Planck 2018 model, and it
uses more data to constrain these degrees of freedom. The net
result is a significantly more well-constrained calibration model.

4.2. Posterior mean maps and uncertainties

Figures 4–6 show the posterior mean Stokes T , Q, and U maps
for each of the 30, 44, and 70 GHz channels. Note that the
BeyondPlanck intensity sky maps retain the CMB Solar dipole.
This is similar to Planck PR4 (Planck Collaboration Int. LVII
2020), but different from Planck 2018. For the remainder of
the paper, we add the Planck 2018 Solar dipole back into the
Planck 2018 frequency maps using the parameters listed by
Planck Collaboration I (2020) when needed.

Figure 7 shows the posterior standard deviation evaluated
pixel-by-pixel directly from the sample set, while Fig. 8 shows
the diagonals of the white noise covariance matrices. The first
point to notice is that the intensity scale of the white noise matri-
ces is 75 µK, while the range for the posterior standard devia-
tion is 2 µK. The Planck LFI maps are thus strongly dominated
by white noise on a pixel level. However, the fundamental dif-
ference between these two sets of matrices is that while the
white noise standard deviations scale proportionally with the
HEALPix pixel resolution, Nside, the posterior standard devia-
tion does not, and the spatial correlations in the latter therefore
dominate on large angular scales.

A visually striking example of such spatial correlations is
directly visible in the 30 GHz intensity panel in Fig. 7, which
actually appears almost spatially homogeneous, and with an
amplitude that is more than three times larger than the other

channels. The reason for this homogeneous structure is that the
per-pixel variance of the 30 GHz channel is strongly dominated
by the same monopole variations seen in the bottom row of
Fig. 3, and only small hints of the scanning pattern variations
(from gain and correlated noise fluctuations) may be seen at high
Galactic latitudes. Consequently, degrading the 30 GHz map to
very low Nside’s will not change the per pixel posterior standard
deviation at all, while the white noise level will eventually drop
to sub-µK values.

Qualitatively speaking, similar considerations also hold for
all the other effects seen in these plots, whether it is the syn-
chrotron emission coupling seen in the 44 GHz intensity map,
the Planck scanning induced gain and correlated noise features
seen in the 30 and 44 GHz polarization maps, or the Galactic
plane features seen in all panels. These are all spatially corre-
lated, and do not average down with smaller Nside as expected
for Gaussian random noise.

It is also interesting to note that the BeyondPlanck
processing mask is clearly seen in the 44 GHz polarization
standard deviations. This is because the TOD-level correlated
noise within this mask is only estimated through a constrained
Gaussian realization using high-latitude information and assum-
ing stationarity (Ihle et al. 2023), and this is obviously less accu-
rate than estimating the correlated noise directly from the mea-
surements. Still, we see that this effect only increases the total
marginal uncertainty by a modest 10–20%.

The motivation for introducing the processing mask during
correlated noise and gain estimation is illustrated in Fig. 9, which
shows the TOD-level residual, dν − stot

ν , binned into sky maps.
These plots summarize everything in the raw TOD that cannot
be fitted by the model in Eq. (1). The clearly dominant features
in these maps are Galactic plane residuals, which are due to a
simplistic foreground model, and these are slightly modulated
by the Planck scanning strategy through gain variations. At high
Galactic latitudes, the dominant residuals are point sources and
Gaussian noise. Regarding the point source residuals, we note
that the current BeyondPlanck data model does not account
for time variability (Rocha et al. 2023), and this should be added
in a future extension. Without a processing mask, these residuals
would bias the estimated gain and correlated noise model, and
thereby also bias even the high-latitude sky. At the same time, it
is important to note that the intensity scale in these plots is very
modest, and by far most of the sky exhibits variations smaller
than 3 µK.

4.3. Peculiar artifacts removed by hand

Before ending this section, we note that a few scanning periods
are removed by hand in the current analysis. These were identi-
fied by projecting the estimated correlated noise into sky maps,
and an example of an older version of the 44 GHz ncorr map is
shown in the top panel of Fig. 10. Overall, this map is dominated
by coherent stripes, as expected for 1/ f -type correlated noise,
and there is also a negative imprint of the Galactic plane, which
is typical of significant foreground residuals outside the process-
ing mask. The latter effect was mitigated through better fore-
ground modeling and a more conservative processing mask in
the final production analysis. However, in addition to these well
understood features, there are also two localized and distinct fea-
tures in this plot. The first is a triangle, marked by PID 6144,
and the second consists of two extended stripes marked by PID
14 416, both identified through a series of bi-section searches.
The corresponding TOD residuals are shown in the bottom two
panels; the black curve shows the raw residual, while the red
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Fig. 4. Posterior mean maps for the 30 GHz frequency channel. From top to bottom: Stokes I, Q and U parameters. Maps have resolution Nside =
512, are presented in Galactic coordinates, and polarization maps have been smoothed to an effective angular resolution of 1◦ FWHM.
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Fig. 5. Posterior mean maps for the 44 GHz frequency channel. From top to bottom: Stokes I, Q and U parameters. Maps have resolution Nside =
512, are presented in Galactic coordinates, and the polarization maps have been smoothed to an effective angular resolution of 1◦ FWHM.
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Fig. 6. Posterior mean maps for the 70 GHz frequency channel. From top to bottom: Stokes I, Q and U parameters. Maps have a HEALPix
resolution of Nside = 1024, are presented in Galactic coordinates, and the polarization maps have been smoothed with a FWHM = 1◦ Gaussian
beam.
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44T 44Q 44U

70T
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Fig. 7. Posterior standard deviation maps for each LFI frequency. Rows show, from top to bottom, the 30, 44 and 70 GHz frequency channels,
while columns show, from left to right, the temperature and Stokes Q and U parameters. The 30 GHz standard deviation is divided by a factor of
3. Note that these maps do not include uncertainty from instrumental white noise, but only variations from the TOD-oriented parameters included
in the data model in Eq. (1).
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Fig. 8. White noise standard deviation maps for a single arbitrarily selected sample. Rows show, from top to bottom, the 30, 44 and 70 GHz
frequency channels, while columns show, from left to right, the temperature and Stokes Q and U parameters. Note that the 70 GHz maps are scaled
by a factor of 2, to account for the fact that this map is pixelized at Nside = 1024, while the two lower frequencies are pixelized at Nside = 512.
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Fig. 9. Posterior mean total data-minus-model residual maps rν = dν − sν for BeyondPlanck LFI 30 (top), 44 (middle), and 70 GHz (bottom).
All maps are smoothed to a common angular resolution of 2◦ FWHM.

curve shows the same after boxcar averaging with a 1-sec win-
dow. Here we see that the triangle feature comprises a series of
20 strong spikes separated by exactly one minute, which is iden-
tical to the Planck spin frequency, while the extended stripes are
due to three slow oscillations.

An inspection of other detector residuals at the same time
shows that the spike event is present in all 44 and 70 GHz detec-
tors. Furthermore, a similar event is also present in PID 6126, and
this is also spatially perfectly synchronized with the PID 6144
event, such that they appear superimposed in the top panel of
Fig. 10. The effect is thus quite puzzling, as it appears naively to be
stationary in the sky, and it was measured by all detectors for two
separate 20-minute periods; but if it were a real signal, it would
have to originate extremely close to the Planck satellite, since dif-
ferent detectors observe the signal in widely separated directions.
It is difficult to imagine any true physical sources that could cre-
ate such a signal, and we, therefore, conclude that it most likely is
due to an instrumental glitch. At the same time, it is very difficult
to explain why it appears as sky stationary at two different times.
We do not have any plausible explanations for this signal, but it
is obviously not a cosmological signal signal, and we, therefore,
remove PIDs 6126 and 6144 by hand from the analysis.

In contrast, the PID 14 416 event takes the form of three slow
oscillations and this looks very much like a thermal or electrical
event on the satellite. We therefore also exclude this by hand. We
note, however, that neither of these artifacts were detected dur-
ing the nominal Planck analysis phase and this demonstrates the
usefulness of the correlated noise and TOD residual maps in the
current analysis as catch-all systematics monitors. Indeed, low-
level analysis in the Bayesian framework may in fact be viewed
as an iterative refinement process in which coherent signals in
these maps are gradually removed through explicit parametric

modeling, and assigned to well-understood physical effects. The
fact that the correlated noise maps in Fig. 9 in Ihle et al. (2023)
appear visually clean of significant artifacts provides some of
the strongest evidence for low systematic contamination in the
BeyondPlanck data products.

5. Comparison with Planck 2018 and PR4

Next, we compare the BeyondPlanck posterior mean LFI
frequency maps with the corresponding Planck 2018 and PR4
products, and we start by showing difference maps in Fig. 11.
All maps are smoothed to a common angular resolution of 2◦

FWHM, and a monopole has been subtracted from the inten-
sity maps. To ensure that this comparison is well defined, the
2018 maps have been scaled by the uncorrected beam efficien-
cies (Planck Collaboration II 2020), and the best-fit Planck 2018
Solar CMB dipole has been added to each map, before computing
the differences; both PR4 and BeyondPlanck maps are intrin-
sically beam efficiency corrected and they retain the Solar dipole.

Overall, we see that the BeyondPlanck maps agree with
the other two pipelines to .10 µK in temperature, and to .4 µK
in polarization. In temperature, we see that the dominant dif-
ferences between Planck PR4 and BeyondPlanck are dipoles
aligned with the Solar dipole, while differences with respect to
the 2018 maps also exhibit a notable quadrupolar pattern. The
sign of the PR4 dipole differences changes with frequency. This
result is consistent with the original characterization of the PR4
maps derived through multifrequency component separation in
Planck Collaboration Int. LVII (2020); that paper reports a rel-
ative calibration difference between the 44 and 70 GHz channel
of 0.31%, which corresponds to 10 µK in the map domain. Over-
all, in temperature BeyondPlanck is thus morphologically
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Fig. 10. Previously undetected TOD artifacts found by visual inspec-
tion of the (preliminary) correlated noise map for the 44 GHz channel
shown in the top panel. The middle and lower panels show a zoom-in
of the source PIDs, namely PID 6144 (for the “triangle feature”) and
PID 14 416 (for the “dashed stripe feature”). In the two latter, the black
curve shows the TOD residual, d − stot, for each sample, and the red
curve shows the same after boxcar averaging with a 1 s window.

similar to PR4, but it improves a previously reported relative cal-
ibration uncertainty between the various channels by performing
joint analysis.

In polarization, the dominant large-scale structures appear
to be spatially correlated with the Planck gain residual template
presented by Planck Collaboration II (2020), and discussed by
Gjerløw et al. (2023). These patterns are thus plausible associ-
ated with the large nominal calibration uncertainties between
Planck 2018 and BeyondPlanck discussed in Sect. 4.1. It is
additionally worth noting that the overall morphology of these
difference maps is similar between frequencies, and that the
amplitude of the differences falls with frequency. This strongly
suggests that different foreground modeling plays a crucial role.
In this respect, two observations are particularly noteworthy:
First, while both the Planck 2018 and PR4 pipelines incor-
porate component separation as an external input as defined
by the Planck 2015 data release (Planck Collaboration X 2016)
in their calibration steps, BeyondPlanck performs a joint fit
of both astrophysical foregrounds and instrumental parameters.
Second, both the LFI DPC and the PR4 pipelines consider only
Planck observations alone, while BeyondPlanck also exploits
WMAP information to establish the sky model, which is particu-
larly important to break scanning-induced degeneracies in polar-
ization (Gjerløw et al. 2023).

We now turn our attention to the angular power spectrum
properties of the BeyondPlanck frequency maps. Figure 12
shows auto-correlation spectra as computed with PolSpice
(Chon et al. 2004) outside the Planck 2018 common component
separation confidence mask (Planck Collaboration IV 2020),
which accepts a sky fraction of 80%. All these spectra are
clearly signal-dominated at large angular scales (as seen by the
rapidly decreasing parts of the spectra at low `’s), and noise-
dominated at small angular scales (as seen by the flat parts of
the spectra at high `’s); note that the “signal” in these maps
includes both CMB and astrophysical foregrounds. Overall, the
three pipelines agree well at the level of precision supported
by the logarithmic scale used here; the most striking differ-
ences appear to be variations in the high-` plateau, suggesting
notably different noise properties between the three different
pipelines.

We therefore zoom in on the high-` parts of the spectra in
Fig. 13. Here the differences become much more clear, and eas-
ier to interpret. In general we note two different trends. First, we
see that the overall noise levels of the BeyondPlanckmaps are
lower than in the Planck 2018 maps, but also slightly higher than
PR4, although the latter holds less true for intensity than polar-
ization. Second, we also note that the BeyondPlanck spectra
are notably flatter than the other two pipelines, and in particular
than PR4, which shows a clearly decreasing trend toward high
multipoles.

These differences are further elucidated in Fig. 14, which
shows the power spectrum ratios between Planck 2018 and PR4,
respectively, and BeyondPlanck. Again, we see that the three
codes generally agree to well within 1% in TT in the signal-
dominated regimes of the spectra, but diverge in the noise-
dominated regimes. Indeed, at the highest multipoles PR4 typi-
cally exhibits about 10% less noise than BeyondPlanck, while
BeyondPlanck exhibits 10% less noise than Planck 2018. As
discussed in Planck Collaboration Int. LVII (2020), Planck PR4
achieves lower noise than Planck 2018 primarily through three
changes. First, PR4 exploits the data acquired during repoint-
ing periods, as explained in Sect. 3, which account for about 8%
of the total data volume. Second, PR4 smooths the LFI refer-
ence load data prior to TOD differencing, and this results in a
similar noise reduction. Third, PR4 includes data from the so-
called “ninth survey” at the end of the Planck mission, which

A10, page 15 of 32



Basyrov, A., et al.: A&A 675, A10 (2023)

A 2018
30T A 2018

30Q A 2018
30U

A DR4
30T A DR4

30Q A DR4
30U

A 2018
44T A 2018

44Q A 2018
44U

A DR4
44T A DR4

44Q A DR4
44U

A 2018
70T A 2018

70Q A 2018
70U

A DR4
70T

10 0 10
K

A DR4
70Q

4 0 4
K

A DR4
70U

4 0 4
K

Fig. 11. Differences between BeyondPlanck and 2018 or PR4 frequency maps, smoothed to a common angular resolution of 2◦ FWHM.
Columns show Stokes T , Q and U parameters, respectively, while rows show pair-wise differences with respect to the pipeline indicated in the
panel labels. A constant offset has been removed from the temperature maps, while all other modes are retained. The 2018 maps have been scaled
by their respective beam normalization prior to subtraction.

accounts for about 3% of the total data volume. In contrast,
BeyondPlanck currently uses the repointing data, but neither
smooths the reference load (essentially only because of limited
time for implementation and analysis), nor includes the ninth
survey. The reason for the latter is that we find that the TOD

χ2 statistics during this part of the mission show greater vari-
ation from PID to PID, suggesting decreased stability of the
instrument.

These effects explain the different white noise levels. How-
ever, they do not necessarily explain the different slopes of the
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Fig. 12. Comparison between angular auto-spectra computed from the BeyondPlanck (black), Planck 2018 (blue), and PR4 (red) full-frequency
maps. Rows show different frequencies, while columns show TT , EE, and BB spectra. All spectra have been estimated with PolSpice using the
Planck 2018 common component separation confidence mask (Planck Collaboration IV 2020).

spectra seen in Fig. 13, which instead indicate that the level of cor-
related noise is significantly lower in the BeyondPlanck maps
as compared to the other two pipelines. The main reason for this
is as follows: While Planck 2018 and PR4 both destripe each
frequency map independently, BeyondPlanck effectively per-
forms joint correlated noise estimation using all available frequen-
cies at once, as described by BeyondPlanck Collaboration (2023)
and Ihle et al. (2023). This is implemented in practice by condi-
tioning on the current sky model during the correlated noise esti-
mation phase in the Gibbs loop in Eqs. (4)–(11), which may be
compared to the application of the destriping projection opera-

tor Z in the traditional pipelines that is applied independently to
each channel. Intuitively, in the BeyondPlanck approach the
30 GHz channel is in effect helped by the 70 GHz channel to
separate true CMB fluctuations from its correlated noise, while
the 70 GHz channel is helped by the 30 GHz channel to sepa-
rate synchrotron and free-free emission from its correlated noise.
And both 30 and 70 GHz are helped by both WMAP and HFI to
separate thermal and spinning dust from correlated noise. Of
course, this also means that the correlated noise component are
correlated between frequency channels, as discussed in Sect. 3,
and it is therefore imperative to actually use the Monte Carlo
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Fig. 13. Same as Fig. 12, but zooming in on the noise-dominated high-` multipole range.

samples themselves to propagate uncertainties faithfully through-
out the system3.

6. Sample-based error propagation

As discussed in BeyondPlanck Collaboration (2023), one of the
main motivations underlying the current Bayesian end-to-end
analysis framework is to support robust and complete error prop-
agation for current and next-generation CMB experiments, and
3 It must of course be noted that the traditional pipelines also exhibit
a correlated noise component between different frequencies, simply
because they use the same foreground sky model to estimate band-
pass and gain corrections at different frequencies. This, however, is
very difficult to both quantify or propagate, because of the substantial
cost of including full component separation within a forward simulation
pipeline.

we use the LFI data as a worked example. In this section, we dis-
cuss three qualitatively different manners in which the posterior
samples may be used for this purpose, namely 1) post-processing
of individual samples; 2) derivation of a low-resolution dense
covariance matrix, and 3) half-mission half-difference maps. We
discuss all three methods, and we start with an intuitive compar-
ison of the Bayesian and the traditional approaches.

6.1. Bayesian posterior sampling versus frequentist
simulations

Traditionally, CMB frequency maps are published in terms of a
single maximum-likelihood map with an error description that
typically takes one of two forms. We may call the first type
“analytical,” and this usually takes the form of either a full-
resolution but diagonal (i.e., “white noise”) or a low-resolution
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Fig. 14. Ratios between the angular auto-spectra shown in Fig. 12, adopting the BeyondPlanck spectra as reference. Planck 2018 results are
shown as blue lines, while Planck PR4 results are shown as red lines. Values larger than unity imply that the respective map has more power than
the corresponding BeyondPlanck spectrum.

but dense covariance matrix, coupled with a single overall cali-
bration factor and a limited number of multiplicative template-
based corrections. This error description aims to approximate
the covariance matrix defined by the inverse coupling matrix in
Eq. (14), within the bounds of computational feasibility. The
main advantage of this type of error estimate is that it may
both be computed and propagated into higher-level analyses
analytically.

The second type of classical error estimate may be referred
to as “simulations”, and is defined in terms of an ensem-
ble of end-to-end forward simulations. Each realization in this
ensemble represents, ideally, one statistically independent set
of specifications for all the astrophysical4 and instrumental
(noise, systematics, scanning strategy) parameters; then, the

4 In practice, the astrophysical sky model is often kept fixed between
realizations for pragmatic reasons.

simulated time-ordered data corresponding to this specification
set is processed in an identical manner as the real data (e.g.,
Planck Collaboration XII 2016). To actually propagate uncer-
tainties based on these simulations into higher-level products,
one can either analyze each realization with the same statistics
as the real data, and form a full histogram of test statistics, or use
the simulations to first generate a covariance matrix, and then
propagate that analytically through higher-level codes.

The Bayesian posterior sampling approach looks very sim-
ilar to the traditional simulation approach in terms of output
products: Both methods produce a large ensemble of sky map
realizations that may be analyzed with whatever higher-level
analysis statistics the end-user prefers. However, the statistical
foundation and interpretation – and therefore their applicability
– of the two methods are in fact very different: While the for-
ward frequentist simulation approach considers a set of random
instruments in a set of random universes, the Bayesian approach
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considers our instrument in our Universe; for an in-depth discus-
sion regarding this issue, see Brilenkov et al. (2023).

The relevance and importance of this difference for actual
CMB analysis applications may be illustrated by the following
series of observations. Suppose we are tasked with generating an
optimal simulation suite to analyze a given frequency map. One
important question we have to address is, “what CMB dipole
parameters should we adopt?” The importance of this question is
highlighted in Fig. 11, which shows the differences between the
BeyondPlanck and Planck maps; if completely random CMB
Solar dipole parameters were used, the large coherent structures
in these plots would move around randomly from realization to
realization, to the extent that the simulated uncertainties would
not actually be a useful description of our sky map. For this rea-
son, all CMB analysis pipelines to date have actually used dipole
parameters close to the real sky.

A second important question is, “what Galactic model should
we use?” The same observations hold in this case; if one were to
use random Galactic models for each simulation, the Galactic
plane’s morphology in Fig. 11 would change from realization to
realization, and no longer even be aligned with our Milky Way,
and the simulated ensemble would obviously not be useful to
describe the uncertainties in the real sky map. For this reason, all
CMB pipelines to data have also adopted a Galactic model close
to the real sky.

So far, the discussion has been rather straightforward. How-
ever, the next question that emerges is more controversial,
namely “what CMB fluctuations should we use to generate the
simulations?” In this case, most traditional pipelines actually
adopt statistically independent Λ cold dark matter (CDM) real-
izations that have no coupling to the real sky. This component is
thus treated logically very differently from the CMB dipole and
the Galaxy, and this has important consequences for any cor-
relation structures that result from the simulated ensemble; the
simulations are no longer useful to describe the features seen in
Fig. 11, simply because the coherence between the small-scale
CMB fluctuations and the gain variations, the correlated noise,
the foreground fluctuations etc., has been broken.

This issue does not only apply to the CMB fluctuations, but
also to the instrument parameters. Of course, the basic knowl-
edge of instrument parameters comes from hardware calibration
measurements. However, these inevitably come with an uncer-
tainty, and in the traditional approach these uncertainties are
extremely difficult to propagate through the data analysis. So in
some cases (e.g., bandpasses) the parameters are treated as fixed
values in the pipeline, and the potential bias arising from the
uncertainty in the hardware measurement is evaluated separately
(see, e.g., Figs. 24–26 of Planck Collaboration XII 2016). This
approach is able to quantify the potential impact of the system-
atic effect compared to the signal power spectra, but it does not
control the correlation of the effect with other parameters (in this
case, most notably, astrophysical foreground parameters) thus
preventing a rigorous error analysis. In other cases, such as 1/ f
noise, the relevant parameters (e.g., gain change as a function
of time, or “baseline”) are not derived from hardware measure-
ments, but are chosen randomly from some hyper-distribution,
independent from the real data. However, gain fluctuations cor-
relate with the CMB dipole and fluctuations and the Galactic
model, and consequently they may generate coherent features at
very specific positions in the final frequency map.

In contrast to the frequentist forward simulation approach
that uses random simulations to describe uncertainties, the
Bayesian posterior sampling approach couples every single
parameter to the actual data set in question, and treats the CMB

fluctuations and instrument parameters on the same statistical
footing as the CMB dipole and Galactic signal. Intuitively speak-
ing, the Bayesian sampling approach is identical to the sim-
ulation approach, with the one important difference that the
Bayesian method adopts a constrained realization to generate the
end-to-end simulation for all parameters, while the frequentist
approach uses a random realization (or a mixture of random and
constrained realizations).

The conclusion from this set of observations is that the
Bayesian and frequentist approaches actually addresses two
fundamentally different questions (Brilenkov et al. 2023). The
Bayesian samples are optimally tuned to answer questions like
“what are the best-fit ΛCDM parameters of our specific data
set?”, while the frequentist simulations are optimally tuned to
answer questions like “is our data set consistent with the ΛCDM
model?” The fundamental difference lies in whether the correla-
tion structures between realizations are tuned to describe uncer-
tainties in our specific instrument and Universe, or uncertainties
in a random instrument in a random universe.

It is, however, clear that both the Bayesian posterior sam-
pling and the frequentist simulation approaches have decisive
practical advantages over the analytical method in terms of
modeling complex systematic effects and their interplay. As a
practical demonstration of this, Fig. 15 shows the difference
between two BeyondPlanck frequency map samples for each
frequency channel, smoothed to a common angular resolution of
7◦ FWHM. Here we clearly see correlated noise stripes along
the Planck scan direction in all three frequency channels, as well
as coherent structures along the Galactic plane. Clearly, mod-
eling such correlated fluctuations in terms of a single standard
deviation per pixel is inadequate, and, as we subsequently see
in the next section, these structures also cannot be described as
simply correlated 1/ f noise. End-to-end analysis that simulta-
neously accounts for all sources of uncertainties is key for fully
describing these uncertainties.

6.2. Sample-based covariance matrix evaluation

For several important applications, including low-` CMB likeli-
hood evaluation (e.g., Page et al. 2007; Planck Collaboration V
2020; Paradiso et al. 2023), it is important to have access to
full pixel-pixel covariance matrices. Since the memory required
to store these scale as O(N4

side), and the CPU time required
to invert them scale as O(N6

side), (Sherman & Morrison 1950),
these are typically only evaluated at very low angular resolution;
Planck used Nside = 16 (Planck Collaboration V 2020), while
BeyondPlanck uses Nside = 8 (Paradiso et al. 2023).

In the traditional approach, it is most common to primarily
account for 1/ f -type correlated noise, and the matrix may then
be constructed by summing up the temporal two-point correlation
function between any two sample pairs separated by some max-
imum correlation length. This calculation is implementationally
straightforward, but expensive. In addition, an overall multiplica-
tive calibration uncertainty may be added trivially, and spatially
fixed template corrections (for instance for foregrounds or gain
uncertainties; Planck Collaboration II 2020) may be accounted
for through the Sherman-Morrison-Woodbury formula.

This analytical approach, however, is not able to account
for more complex sources of uncertainty, perhaps most
notably gain uncertainties that vary with detector and time
(Gjerløw et al. 2023), but also more subtle effects such as
sidelobe (Galloway et al. 2023b) or bandpass uncertainties
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Fig. 15. Difference maps between two frequency map samples, smoothed to a common angular resolution of 7◦ FWHM. Rows show, from top
to bottom, the 30, 44 and 70 GHz frequency channels, while columns show, from left to right, the temperature and Stokes Q and U parameters.
Monopoles of 2.8, 1.6, and −0.5 µK have been subtracted from the three temperature components, respectively.

(Svalheim et al. 2023), all of which contribute to the final total
uncertainty budget. To account for these, end-to-end simulations
– whether using random or constrained realizations – are essen-
tial. The resulting covariance matrix may then be constructed
simply by averaging the pixel-pixel outer product over all
samples,

m̂ν = 〈mi
ν〉 (17)

Nν =

〈(
mi
ν − m̂ν

) (
mi
ν − m̂ν

)t
〉
. (18)

In practice, we also follow Planck 2018, and add 2 µK (0.02 µK)
Gaussian regularization noise to each pixel in temperature
(polarization), in order to stabilize nearly singular modes
that otherwise prevent stable matrix inversion and determinant
evaluations.

The importance of complete error propagation is visu-
ally illustrated in Fig. 16, which compares an arbitrarily
selected slice through the Planck 2018 LFI low-resolution
covariance matrix that accounts only for 1/ f correlated noise
with the corresponding BeyondPlanck covariance matrix
(Planck Collaboration V 2020). (Note that the two matrices are
evaluated at different pixel resolution, and that the Planck 2018
matrix applies a cosine apodization filter that is not used in
BeyondPlanck. Also, the T P cross-terms at 70 GHz are set
to zero by hand in the Planck covariance matrices).

When comparing these slices, two obvious qualitative dif-
ferences stand out immediately. First, the BeyondPlanck
matrices appear noisy, while the Planck appear smooth; this is
because the former are constructed by Monte Carlo sampling,
while the latter are constructed analytically. In practice, this
means that any application of the BeyondPlanck covariance

matrices must be accompanied with a convergence analysis that
shows that the number of Monte Carlo samples is sufficient to
reach robust results for the final statistic in question. How many
this is will depend on the statistic in question; for an example of
this as applied to estimation of the optical depth of reionization,
see Paradiso et al. (2023). Second, and even more importantly,
we also see that the BeyondPlanck matrices are far more fea-
ture rich than the Planck 2018 matrices, and this is precisely
because they account for a full stochastic data model, and not
just 1/ f correlated noise.

This is most striking for the 30 GHz channel, for which it is
in fact nearly impossible to see the 1/ f imprint at all. Rather,
the slice is dominated by a large-scale red-blue quadrupolar
pattern aligned with the Solar dipole, and this is an archety-
pal signature of inter-detector calibration differences (see, e.g.,
Planck Collaboration II 2020; Gjerløw et al. 2023). A second
visually striking effect is the Galactic plane, which is due to
bandpass mismatch uncertainties (Svalheim et al. 2023). There
are of course numerous other effects also present in these maps,
although these are generally harder to identify visually.

Figure 17 shows the angular noise power spectra correspond-
ing to these matrices (black for BeyondPlanck, and red for
Planck 2018) in both temperature and polarization. For com-
parison, this plot also includes similar spectra computed from
the end-to-end Planck PR4 simulations (blue). The dashed line
shows the pure white noise contribution in the BeyondPlanck
covariances, while the dotted line shows the best-fit Planck 2018
EE ΛCDM spectrum.

We first note that the temperature component of these covari-
ance matrices is heavily processed by first convolving to 20◦
FWHM, and then adding uncorrelated regularization noise of
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Fig. 16. Single column of the low-resolution 30 (top section), 44 (middle section), and 70 GHz (bottom section) frequency channel covariance
matrix, as estimated analytically by the LFI DPC (top rows) and by posterior sampling in BeyondPlanck (bottom rows). The selected column
corresponds to the Stokes Q pixel marked in gray, which is located in the top right quadrant in the BeyondPlanck maps. Note that the DPC
covariance matrix is constructed at Nside = 16 and includes a cosine apodization filter, while the BeyondPlanck covariance matrix is constructed
at Nside = 8 with no additional filter. The temperature components are smoothed to 20◦ FWHM in both cases, and Planck 2018 additionally sets
the T Q and TU elements by hand to zero for the 70 GHz channel.
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Fig. 17. Comparison of noise power spectra from BeyondPlanck (black), Planck 2018 (red) and PR4 (blue); We report the Planck 2018 best-fit
with a dotted line, and the BeyondPlanck white noise contribution as a dashed line. Each dataset includes a regularization noise of 2 µK/pixel
for temperature, and 0.02 µK/pixel for polarization.

2 µK/pixel; this explains why all curves converge above ` ≈ 10
in temperature. Secondly, we note that Planck PR4 did not inde-
pendently reestimate the LFI 1/ f parameters, but rather adopted
the Planck 2018 values for this. The difference between the blue
and red curves (after taking into account the 15% lower white
noise level in PR4) thus provides a direct estimate of the sum of
other effects than correlated noise in Planck 2018, most notably
gain uncertainties.

Overall, the BeyondPlanck polarization noise spectra
agree well with Planck PR4 at 30 GHz, while they are gener-
ally lower by as much as 20–50% at 44 and 70 GHz. In fact,
we see that the BeyondPlanck 70 GHz noise spectrum almost
reaches the white noise floor around ` ≈ 20, suggesting that the
current processing has succeeded in removing both excess cor-
related noise and gain fluctuations to an unprecedented level.

6.3. Half-mission split maps

Before concluding this section, we also consider error prop-
agation by half-mission split maps, as such maps have been
used extensively by all generations of the Planck pipelines
(Planck Collaboration I 2014, 2016, 2020). These maps are gen-
erated by dividing the full data set into two disjoint sets, typi-
cally either by splitting each scanning period in two (resulting
in half-ring maps); or by dividing the entire mission into two
halves (resulting in half-mission maps); or by dividing detectors
into separate groups (resulting in detector maps). The goal of
each of these splits is the same, namely to establish maps with
similar signal content, but statistically independent noise real-
izations. The resulting maps may then be used for various cross-
correlation analyses, including power spectrum estimation (e.g.,
Planck Collaboration V 2020).
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In general, the usage of cross-correlation techniques is an
implicit admission that our understanding of the instrumen-
tal systematic effects is incomplete, and the main goal of the
current BeyondPlanck processing is precisely to establish
a statistically adequate error propagation model. As such, the
primary CMB results presented by Colombo et al. (2023) and
Paradiso et al. (2023) do not employ cross-correlation tech-
niques at all, but rather rely fully on statistically optimal auto-
spectrum estimation, in which all information is fully exploited.
The current section is therefore included primarily for compari-
son purposes with respect to the original Planck processing.

Before presenting half-mission maps from BeyondPlanck,
we note that Planck 2018 and PR4 adopted different conventions
for how to split the mission into two halves. Specifically, while
Planck 2018 simply divided the mission in two, and made sepa-
rate maps for years 1 + 2 and 3 + 4, Planck PR4 instead chose to
coadd years 1 + 3 and 2 + 4. The main reason for this is that years
3 + 4 do not result in full-sky coverage for the LFI maps, but
leaves a small hole, which is awkward for cross-correlation anal-
yses. The cost of this choice, however, is slightly less indepen-
dent halves, which may lead to additional common modes. An
important example of this is asymmetric beams; as discussed by
Planck Collaboration I (2016), the scanning phase of the Planck
satellite was reversed between years 2 and 3, and this adds addi-
tional beam symmetrization between the first and second half of
the mission. Therefore, the effect of beam asymmetries is maxi-
mized in the Planck 2018 split, but minimized in the Planck PR4
split. In this paper, we choose to follow Planck 2018, and focus
on years 1 + 2 versus 3 + 4 splits.

Technically speaking, half-mission maps may be generated
very straightforwardly in the BeyondPlanck pipeline at the
parameter file level (Galloway et al. 2023a), simply by restrict-
ing the start and end PID of the analysis. In this case, all param-
eters, including the calibration and foreground model, will be
fitted independently in each data set. We generate such half-
mission samples for each frequency channel and compute pair-
wise differences between these. This set of half-mission maps
are denoted “full” in the following, indicating that the full model
is fitted in each half-mission set.

However, it is important to note that this mode differs signif-
icantly from the official Planck implementation. Rather, in the
Planck 2018 case, both the calibration and foreground model are
fixed at their full-mission values, while in the case of Planck
PR4, the foreground model is fixed, and the calibration model is
reestimated. To mimic the Planck 2018 behavior, we therefore
create a second set of BeyondPlanck half-mission maps, in
which all model parameters except the correlated noise are fixed
at their full mission values. We refer to this set as “conditional”
(or “cond”) in the following, indicating that most parameters are
in fact conditioned during generation.

Figure 18 shows half-mission half-difference maps (mhmhd =
(m1 − m2)/2) for the LFI 30 GHz channel for all four cases,
all smoothed to a common angular resolution of 5◦. (Similar
plots for the 44 and 70 GHz channels look qualitatively similar,
and is omitted for brevity). Starting with the two bottom rows
that show BeyondPlanck “cond” and “full”, respectively, we
see that conditioning on the calibration and foreground parame-
ters has a substantial impact in terms of overall variations. The
typical large-scale fluctuation level is at least a factor of two
larger when fitting all parameters freely, and there is signifi-
cantly more pronounced coherent large-scale features. We also
see that these two cases (at least in temperature) bound the
Planck 2018 and PR4 cases, in the sense that the fluctuations
generally increase as more and more parameters are refitted; the

main difference between Planck PR4 and BeyondPlanck is a
large-scale quadrupole pattern, which looks very much like the
familiar bandpass residuals are seen by both Planck 2018 and
PR4 (Planck Collaboration Int. LVII 2020), and may originate
from the foreground and/or beam differences.

In polarization, this trend is less obvious, as in this case the
absolute magnitude of the pipeline-specific residuals is compa-
rable with the level from parameter conditioning. In this case,
the BeyondPlanck “cond” case shows clearly smaller differ-
ences than either of the two Planck implementations, while the
“full” case shows comparable levels.

The sky maps shown in Fig. 18 emphasize the very largest
angular scales. To obtain additional information regarding inter-
mediate and small scales, we show in Fig. 19 the auto-spectra of
each case. For comparison, the dashed curve shows the beam-
convolved best-fit ΛCDM spectrum for each channel. Starting
with the noise-dominated polarization spectra, we see that all
four pipelines result in roughly similar half-mission power, and
this indicates that their abilities to propagate and describe instru-
mental noise alone are very similar. For temperature, the pic-
ture is qualitatively different, and there is a strong excess from
the sky signal, most notably at 30 GHz, that appears to fall
off with the beam smoothing. The fact that Planck 2018 and
BeyondPlanck appears nearly identical in this case, while
Planck PR4 is substantially lower, strongly suggests that asym-
metric beams can account for at least some of this additional
power. At the same time, the fact that BeyondPlanck “full”
and “cond” differ shows that gain fluctuations also play a signifi-
cant role in explaining the full excess. However, the main conclu-
sion from these results is that Planck 2018 and BeyondPlanck
appear to perform similarly in terms of half-mission power on
small scales, and this strongly suggests that both pipelines are
likely to be close to the theoretical noise limit.

7. Systematic error corrections and uncertainties

A significant strength of the novel Bayesian end-to-end frame-
work is that all TOD contributions are modeled in terms of spe-
cific and physically motivated parametric models, and there are
very few “black boxes” that can hide not understood contami-
nants; any contribution is either present in one of the paramet-
ric components, or it shows up in the TOD residual maps. This
physical foundation is useful both when interpreting the results,
and when debugging and tuning the analysis configuration. In
this section, we provide a concrete example of this by presenting
a complete survey of each systematic correction term, both in the
form of projected sky maps and as residual power spectra, for all
three LFI channels.

7.1. Sky map corrections

We start by showing projected systematic effect sky maps at
30 GHz, as summarized in Fig. 20. The top panel shows the raw
TOD binned into a sky map, and this provides intuition regarding
the overall quality of the data before applying any corrections.
Indeed, for the temperature component it is very difficult to spot
major artifacts of any kind; the most notable feature is a few
correlated noise stripes in the lower left quadrant. For polariza-
tion, the dominant effect is the alternating sign along the Galactic
plane as a function of longitude, which is due to bandpass
mismatch.

The second panel shows the correlated noise component.
The most notable features in this map are coherent stripes along
the satellite scanning path. It should also be noted that this
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Fig. 18. Half mission difference maps for the 30 GHz channel. The top row shows the Planck data release 3 maps, while the second top row shows
the difference for the Planck data release 4 maps. The bottom two rows show BP maps. The third row shows the first sample of a conditional run
on astrophysical and instrumental parameters. The bottom row shows the difference between the half mission maps made from two independent
runs that sample over the full model. The latter maps are averaged over 50 samples.

component is the one that is the least constrained from a pri-
ori considerations among all TOD components, and therefore
acts as a “trash can” for possible unmodeled errors; this is the
first place one expects to see residuals from modeling errors.
The fact that this appears statistically clean, and has a morphol-
ogy that is close to that actually expected by 1/ f -type correlated
noise provides very strong evidence that the current processing
has succeeded in cleaning the 30 GHz channel with respect to
most systematic effects.

The third row shows the orbital dipole. For a single PID, this
signal is defined by a perfect dipole along the scanning ring with
an amplitude of about 270 µK, convolved with the 4π LFI beam.
However, when the same ring is observed six months apart, the
phase of the signal is reversed, and the total gain- and noise-
weighted sum is then both smaller and difficult to predict. Also,
although the intrinsic signal is entirely unpolarized, convolution
with far-sidelobes algebraically couples this model to the polar-
ization sector as well. Because of the relatively large amplitude
of this signal, and the fact that it has no free parameters to be fit-
ted in the pipeline, the orbital dipole represents our best available
tracer of gain fluctuations.

The fourth row shows the bandpass and beam leakage cor-
rection. This effect is clearly the strongest among all polariza-
tion corrections, with amplitudes of many tens of µK in the
Galactic plane, while still being almost entirely negligible in
temperature. Morphologically speaking, the archetypal signa-
ture of bandpass mismatch is a variable sign along the Galactic
plane, tracing the specific orientation of the detector polariza-
tion angles as the different detectors observe at slightly different
effective frequencies. At high latitudes, this map is dominated
by temperature-to-polarization leakage resulting from different
radiometers observing the signal model with different beam
FWHMs; large angular scales are dominated by CMB dipole
leakage, while small angular scales are dominated by fore-
grounds and CMB temperature fluctuations.

The fifth row shows the impact of sidelobe pickup. In tem-
perature, the two dominant features are, first, a large-scale pat-
tern broadly aligned with the solar CMB dipole resulting from
interactions with the intermediate sidelobes, and, second, individ-
ual rings created by the far sidelobes hitting the Galactic plane.
The same features are also seen in polarization, but now a more
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Fig. 19. Half-mission half-difference power spectra estimated by Planck 2018 (blue), Planck PR4 (green), and BeyondPlanck. In the case of
BeyondPlanck, orange curves show spectra obtained from maps that are calibrated jointly (or “conditionally” with respect to the signal model),
while red curves show spectra from maps that are processed completely independently. Columns show 30, 44, and 70 GHz results, while rows
show TT , EE, and BB spectra. The dashed black line shows the best-fit Planck 2018 ΛCDM spectrum convolved with the instrument beam.

complicated pattern arises due to the additional modulation by the
relative orientation of the polarization angles at any given time.

The sixth row shows the contribution from electronic 1 Hz
spikes. Two points are important to note regarding this signal.
First and foremost, the color bar only spans 0.3 µK, and this term
is thus very small in absolute magnitude compared to all other, in
agreement with the Planck 2018 analysis. Second, this signal is
also primarily located on small angular scales, and looks almost
like white noise at the level of sky maps.

The last row shows the TOD residuals binned into a sky map.
For most of the sky, this is consistent with white noise, but clear
residuals are seen in the Galactic plane, reflecting the structures
seen in the bottom panel of Fig. 1. This indicates that the adopted
foreground and/or instrument model is not statistically adequate
in these very bright regions of the sky, and all higher-level CMB-
oriented analyses should obviously mask these regions prior to
power spectrum or parameter estimation. However, the main
conclusion to be drawn from this plot is indeed that the paramet-
ric data model summarized in the above panels is very efficient
at describing the raw LFI TOD at 30 GHz.

For completeness, Figs. 21 and 22 show corresponding sur-
veys for the 44 and 70 GHz channels. Overall, these behave
very similarly as the 30 GHz channel, with minor variations. For
instance, we see that the bandpass corrections are much smaller
at the two higher frequencies, while the sidelobe correction is
particularly low at 44 GHz, es expected from the optical analy-
sis (Sandri et al. 2010). On the other hand, the electronic 1 Hz
spike signal is larger at 44 GHz than either of the other two
channels, but still very small compared to all other terms. Most
importantly, however, we see once again that the correlated noise
and TOD residual maps appear visually clean of large system-
atic effects at high Galactic latitudes, and this demonstrates that
the parametric model is able to describe also the 44 and 70 GHz
TODs to a very high precision.

7.2. Power spectrum residuals

The maps shown in Figs. 20–22 provide useful intuition regard-
ing the typical amplitude of each systematic effect, but they do
not provide an estimate of the residual uncertainty associated
with each effect. To quantify these residuals, we first compute
the mean of each effect across the full posterior ensemble, and
subtract this from each individual Gibbs sample. We then com-
pute the (pseudo-)power spectrum of each effect, adopting the
CMB analysis mask presented by Colombo et al. (2023), while
correcting for the masked sky fraction. We then plot the standard
deviation of the resulting power spectra in Fig. 23 for each fre-
quency and each polarization spectrum. For comparison, we also
plot the power spectrum of the full posterior mean map (thick
black curves); the standard deviation of the same across all sam-
ples (thick red curves); the white noise level of each channel
(thick gray curves); and the best-fit Planck 2018 ΛCDM spec-
trum (dashed black curves). Thus, this plot provides a fairly
comprehensive description of the various systematic uncertain-
ties modeled by the BeyondPlanck pipeline.

Starting with the 30 GHz TT spectrum, we first note that the
posterior mean sky map (thick black) is reasonably well mod-
eled by CMB (dashed black) and white noise (thick gray) above
` ≈ 100. At lower multipoles, there is a notable excess com-
pared to ΛCDM, and this may be explained in terms of contri-
butions from diffuse Galactic foregrounds; this discrepancy is
much smaller at 44 and 70 GHz.

The red curve shows the sum of all systematic error cor-
rections. In TT , this exceeds white noise below ` . 100–150,
depending on channel, while for EE it dominates for ` . 20
at 30 GHz, and for ` . 7–8 at 70 GHz. The dominant system-
atic uncertainty in EE at 70 GHz on the very largest scales is
the orbital dipole (blue curves), which implies gain fluctuations,
as already noted through visual inspection of the low-resolution
covariance matrices in Sect. 6; in comparison, the contribution
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Fig. 20. Comparison between TOD corrections for the 30 GHz channel for a single Gibbs sample, projected into sky maps. Columns show Stokes
T , Q, and U parameters. Rows show, from top to bottom, 1) raw TOD; 2) correlated noise; 3) the orbital dipole; 4) bandpass and beam mismatch
leakage; 5) sidelobe corrections; and 6) 1 Hz electronic spike correction. The bottom row shows the shows the residual obtained when binning the
sky and systematics subtracted TOD into a sky map. Note that some components have been smoothed to an angular resolution of 1◦ FWHM.
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Fig. 21. Same as Fig. 20, but for the 44 GHz channel.
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Fig. 22. Same as Fig. 20, but for the 70 GHz channel.

from correlated noise (orange curve) is about an order of magni-
tude smaller at these `s.

This only holds true at 70 GHz, however. Both at 30 and
44 GHz, the gain and correlated noise fluctuations are compara-
ble in magnitude in EE, and at 30 GHz also the bandpass leakage
variations (thin red curve) are of the same order of magnitude.

In contrast, this effect is completely negligible at both 44 and
70 GHz.

Next, we see that the sidelobe contribution (green curves)
also appears subdominant at all scales in all frequencies. How-
ever, this picture is incomplete for at least two reasons. First of
all, as discussed by Galloway et al. (2023b), uncertainties in the

A10, page 29 of 32



Basyrov, A., et al.: A&A 675, A10 (2023)

101 102 103

10
8

10
4

10
0

10
4

C
TT l

 [
K2 ]

30 GHz

101 102 103

44 GHz

101 102 103

70 GHz

101 102 103

10
10

10
7

10
4

10
1

10
2

C
EE l

 [
K2 ]

101 102 103 101 102 103

101 102 103

10
10

10
7

10
4

10
1

10
2

C
BB l

 [
K2 ]

101 102 103 101 102 103

101 102 103

10
10

10
7

10
4

10
1

10
2

C
TE l

 [
K2 ]

101 102 103 101 102 103

101 102 103

10
11

10
8

10
5

10
2

10
1

C
EB l

 [
K2 ]

101 102 103 101 102 103

101 102 103

Multipole moment, l

10
10

10
7

10
4

10
1

10
2

C
TB l

 [
K2 ]

101 102 103

Multipole moment, l
101 102 103

Multipole moment, l

CDM
Stot

Stot

nwn

Sorb

ncorr

Ssl

Sleak

S1Hz

Fig. 23. Pseudo-spectrum standard deviation for each instrumental systematic correction shown in Figs. 20–22 (thin colored lines). For comparison,
thick black lines show spectra for the full coadded frequency map; thick red lines show the standard deviation of the same (i.e., the full systematic
uncertainty); gray lines show white noise; and dashed black lines show the best-fit Planck 2018 ΛCDM power spectrum convolved with the
instrument beam. Columns show results for 30, 44 and 70 GHz, respectively, while rows show results for each of the six polarization states
(TT , EE, BB, T E, T B, and EB). All spectra have been derived outside the CMB confidence mask presented by Andersen et al. (2023) using the
HEALPix anafast utility, correcting only for sky fraction and not for mask mode coupling.
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actual sidelobe response function is not propagated in the cur-
rent pipeline, and support for this must clearly be added in a
future extension of the framework. Second, this plot does not
account for the overall mean sidelobe corrections, which, as seen
in Figs. 20–22, has a strong coupling to the CMB Solar dipole,
and thereby the overall calibration, which is accounted for in the
red (orbital dipole) curve. Therefore, the green curve in this par-
ticular figure should not be interpreted as sidelobes being irrele-
vant. On the contrary, sidelobes are important, and their coupling
to the calibration serves as a useful reminder that the entire anal-
ysis process is indeed global in nature, and marginal distribu-
tions, like those shown in Fig. 23, offers a limited view of the
full joint distribution. Only the full sample set provides a com-
plete description of the full posterior.

8. Conclusions

In this paper, we have presented novel Planck LFI frequency
maps as derived through the Bayesian BeyondPlanck end-
to-end analysis pipeline. These maps have both lower absolute
residual systematic uncertainties than the corresponding Planck
2018 products, and a substantially more complete characteriza-
tion of those residual uncertainties. One important example of
the former is the fact that the absolute calibration uncertainty for
BeyondPlanck is, at least nominally, 25–40 times lower than
that of Planck 2018, while an important example of the latter
is provided by the low-resolution covariance matrices of each
pipeline; the BeyondPlanck covariances include all modeled
sources of uncertainty, while the Planck 2018 covariance matri-
ces only include correlated noise and a few template-based cor-
rections for gain and foregrounds.

These advances have been made possible through the devel-
opment of the first end-to-end CMB analysis pipeline, imple-
mented in the form of a statistically well-defined Gibbs sampler.
The main advantage of this framework is that all parame-
ters, including relevant instrumental parameters, are explored
jointly, both in terms of individual frequency channels and
model parameters. Explicitly, rather than first calibrating and
binning each frequency channel separately, and then perform-
ing component separation frequency maps, the current method
performs calibration, mapmaking, and component separation in
one tightly integrated iterative loop in which all parameters com-
municate directly with each other.

The importance of the end-to-end approach is clearly demon-
strated by a careful analysis of the uncertainty budget of residual
systematics for LFI. For the 70 GHz EE spectrum, for instance,
we show that the dominant low-multipole systematic effect is
actually detector- and time-dependent gain variations, and not
1/ f -type correlated noise. For the 30 GHz channel, gain, band-
pass, and correlated noise uncertainties are all of comparable
order of magnitude. These effects are difficult to account for
through traditional approaches, but easy to model in an a tightly
integrated pipeline.

We also argue that the novel Bayesian approach presented here
has a fundamentally different statistical interpretation than the tra-
ditional frequentist simulation approach adopted by most experi-
ments to date. While both approaches are indeed able to model and
propagate systematic uncertainties using end-to-end simulations,
the fundamental difference lies in what parameters are assumed
when generating the simulated TOD in the first place. In the tra-
ditional approach some astrophysical and instrumental parame-
ters are assumed at the start of the analysis with no formal prop-
agation of their errors; other parameters are drawn from random
distributions and propagated through the pipeline with no real-
istic reference to our knowledge of their values. Conversely, in
the novel Bayesian approach, all parameters are derived as con-

strained realization from the real dataset. On the other hand, we
also note that even the traditional approach typically adopts con-
strained realizations for some key parameters, most importantly
the CMB Solar dipole and the diffuse Galactic model, and this
makes its statistical interpretation somewhat nontrivial. Focus-
ing on the main CMB anisotropies, however, we argue that the
two approaches fundamentally address different questions. The
Bayesian approach is optimally tuned to answer questions like
“what are the best-fit ΛCDM parameters of our universe?”, while
the frequentist approach is optimally tuned to answer questions
like “is our dataset compatible with ΛCDM?” For further details
on this topic, see Brilenkov et al. (2023).

Clearly, after more than two decades of building powerful
community-wide analysis tools to analyze frequentist-style sky
maps and simulations, it will require a few code adjustments
before the new posterior-based products presented here will be
used as widely as the traditional products. The main difference
is fortunately straightforward: Rather than computing a given
statistic from a single best-fit sky map, one should now esti-
mate the same statistic from an ensemble of maps; for the current
BeyondPlanck LFI processing, this ensemble consists of 3200
individual maps. As such, code parallelization will be an impor-
tant task going forward, but, fortunately, for many codes this has
already been done in order to analyze the end-to-end simula-
tions provided by Planck. If so, generalization to the Bayesian
approach is indeed straightforward.

Both the current BeyondPlanck code base and the associ-
ated LFI products are made publicly available (Gerakakis et al.
2023), and generalization to various other datasets is currently
ongoing. The most advanced of these is WMAP, as reported by
Watts et al. (2023), for which significant improvements are found
with respect to the official processing. Cosmoglobe5 is an Open
Source initiative aiming to coordinate such work for a wide range
of experiments and datasets, and we highly encourage everybody
interested to participate in this community-wide effort.
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