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Oxidative stress enhances the therapeutic action of
a respiratory inhibitor in MYC-driven lymphoma
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Abstract

MYC is a key oncogenic driver in multiple tumor types, but con-
comitantly endows cancer cells with a series of vulnerabilities that
provide opportunities for targeted pharmacological intervention.
For example, drugs that suppress mitochondrial respiration selec-
tively kill MYC-overexpressing cells. Here, we unravel the mecha-
nistic basis for this synthetic lethal interaction and exploit it to
improve the anticancer effects of the respiratory complex I inhibi-
tor IACS-010759. In a B-lymphoid cell line, ectopic MYC activity
and treatment with IACS-010759 added up to induce oxidative
stress, with consequent depletion of reduced glutathione and
lethal disruption of redox homeostasis. This effect could be
enhanced either with inhibitors of NADPH production through the
pentose phosphate pathway, or with ascorbate (vitamin C), known
to act as a pro-oxidant at high doses. In these conditions, ascor-
bate synergized with IACS-010759 to kill MYC-overexpressing cells
in vitro and reinforced its therapeutic action against human B-cell
lymphoma xenografts. Hence, complex I inhibition and high-dose
ascorbate might improve the outcome of patients affected by
high-grade lymphomas and potentially other MYC-driven cancers.
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Introduction

The MYC proto-oncogene and its product, the MYC transcription

factor, have a central role in cellular growth control and are widely

deregulated in many cancers, where they contribute to many facets

of malignant transformation (Hsieh et al, 2015; Kress et al, 2015;

Dhanasekaran et al, 2022) and are generally recognized as adverse

prognostic factors (Kalkat et al, 2017; Donati & Amati, 2022), as best

exemplified by diffuse large B-cell lymphoma (DLBCL; Li

et al, 2018; Bisso et al, 2019; Rosenwald et al, 2019). In particular,

concurrent genomic alterations involving the MYC and BCL2 proto-

oncogenes are present in a small subset of DLBCL (5–10%), tradi-

tionally named “double-hit lymphomas” (DHL; now also catego-

rized as “High-Grade B-cell Lymphoma”; Swerdlow et al, 2016),

characterized by poor therapeutic responses and dismal prognosis

(Bisso et al, 2019; Davies, 2019; Dunleavy, 2021; Zhuang

et al, 2022). MYC-driven tumors show oncogene addiction, indicat-

ing that MYC and a subset of its target genes are required for tumor

maintenance, based on a diversity of cell-intrinsic and -extrinsic

mechanisms (Bisso et al, 2019; Dhanasekaran et al, 2022), and may

thus represent potential therapeutic targets for effective pharmaco-

logical treatment of DHL and other MYC-driven malignancies.

Besides attempts to target MYC directly (Whitfield & Soucek, 2021;

Llombart & Mansour, 2022), much effort in the field was aimed at

the identification of synthetic lethal interactions as means to

develop targeted therapies against MYC-associated tumors (Bisso

et al, 2019; Thng et al, 2021; Donati & Amati, 2022).

Multiple studies linked MYC to mitochondrial biogenesis and

activity (Li et al, 2005; Morrish & Hockenbery, 2014; Wolpaw &

Dang, 2018), in particular via activation of nuclear genes encoding

the mitochondrial RNA polymerase POLRMT (Oran et al, 2016) or

mitochondrial ribosomal proteins (D’Andrea et al, 2016), leading to

enhanced respiratory activity (Donati et al, 2022). Along those lines,

we and others identified inhibition of the mitochondrial ribosome

with the antibiotic tigecycline as a therapeutically viable strategy

against MYC-driven lymphoma (D’Andrea et al, 2016; Oran

et al, 2016). Inhibiting mitochondrial protein synthesis interferes

with the assembly of Electron Transport Chain (ETC) complexes

and ultimately with oxidative phosphorylation (OxPhos; Rudler

et al, 2019), suggesting that the latter might also be a limiting

activity—and hence a direct therapeutic target—downstream of

MYC. In line with this concept, we reported that MYC- and
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OxPhos-associated gene signatures were highly correlated in DLBCL

and that a specific inhibitor of ETC complex I, IACS-010759 (Molina

et al, 2018), selectively killed MYC-overexpressing cells by inducing

intrinsic apoptosis (Donati et al, 2022). Accordingly, the antiapop-

totic protein BCL2 counteracted killing by IACS-010759 and, recipro-

cally, the BCL2 inhibitor venetoclax strongly synergized with IACS-

010759 against DHL (Donati et al, 2022), as also reported with tige-

cycline (Rav�a et al, 2018). Hence, MYC sensitized cells to OxPhos

inhibition, providing new opportunities for targeted drug combina-

tions against aggressive DLBCL subtypes, and possibly other MYC-

associated tumors.

Here, we set out to characterize the mechanistic basis for the

synthetic lethal interaction between oncogenic MYC and IACS-

010759. We report that MYC activation and pharmacological inhibi-

tion of the ETC coordinately disrupt redox homeostasis, underlying

induction of the Integrated Stress Response (ISR) and apoptosis by

IACS-010759 (Bajpai et al, 2020; Donati et al, 2022). Most impor-

tantly, this mechanism does not strictly depend on the reliance of

tumor cells upon OxPhos and can be exploited to further enhance

killing of MYC-overexpressing cells by combining IACS-010759 with

other pro-oxidant drugs, improving the therapeutic efficacy against

high-grade lymphomas.

Results

Disruption of redox homeostasis sensitizes MYC-overexpressing
cells to ETC inhibition

We previously showed that ectopic activation of the 4-

hydroxytamoxifen (OHT)-responsive MycERTM chimaera (MycER) in

the lymphoid precursor cell line FL5.12 (hereafter FLMycER cells)

augmented OxPhos-associated gene expression and respiratory

activity and sensitized cells to apoptotic killing by the ETC complex

I inhibitor IACS-010759 (Donati et al, 2022). To unravel additional

MYC-effector pathways that may mediate this synthetic lethal inter-

action, we further queried our previous transcriptomic data (Donati

et al, 2022) with the Ingenuity Pathway Analysis package (IPA; see

Materials and Methods). This analysis pointed to the Nrf2-mediated

oxidative stress response as the top OHT-responsive pathway in

FLMycER cells, regardless of IACS-010759 treatment (Fig 1A). Nrf2 is

a transcription factor that under normal growth conditions is bound

in the cytoplasm by the Keap1-containing ubiquitin ligase complex

and rapidly targeted to degradation. Oxidative stress triggers the

release of Nrf2 from Keap1, resulting in its stabilization and migra-

tion to the nucleus, where it promotes an antioxidant transcription

program (Baird & Yamamoto, 2020). MYC may promote Nrf2 activ-

ity at two levels: indirectly through the production of reactive oxy-

gen species (ROS; Tanaka et al, 2002; Vafa et al, 2002; Cottini

et al, 2015), or through direct transcriptional activation of the Nrf2

locus (Liang et al, 2019). Through the latter, MYC activation may

also lead to ROS reduction, as reported in some settings (DeNicola

et al, 2011).

Based on the above observations, we sought to address whether

—and how—modulation of oxidative stress may underlie the sensi-

tization of MYC-overexpressing cells to IACS-010759. We first

addressed the levels of hydrogen peroxide (H2O2), the most abun-

dant cellular ROS, in FLMycER cells expressing either the cytoplasmic

or the mitochondrial variant of the H2O2 biosensor roGFP2-ORP1

(Gutscher et al, 2009): as assessed by the 405/488 nm fluorescence

ratio, MycER activation led to increased H2O2 levels in both com-

partments, while IACS-010759 treatment showed negligible effects

(Fig 1B and Appendix Fig S1A). Most relevant here, H2O2 is one of

the species that can activate Nrf2 (Baird & Yamamoto, 2020), and

may thus mediate this effect of MycER. Second, we monitored the

superoxide anion O2
��, produced following impairment of the mito-

chondrial ETC, and in particular of complex I (Brand et al, 2004).

Indeed, quantification with the fluorescent probe dihydroethidium

(Rothe & Valet, 1990) revealed that, contrary to H2O2, O2
�� was

induced upon IACS-010759 treatment, with no significant contribu-

tion from MycER (Fig 1C). Notably, while O2
�� is less stable and

abundant than H2O2, the reaction between those two species can

produce the highly reactive ROS Hydroxyl radical (Collin, 2019).

Thus, both MycER activation and IACS-010759 treatment drive the

production of oxidative species, which may underlie their coopera-

tion toward cell killing.

To further monitor the oxidative stress induced by OHT and

IACS-010759 in FLMycER cells, we quantified the ratio of reduced to

oxidized glutathione (GSH and GSSG, respectively) after 40 h of

IACS-010759 treatment, a time preceding overt cell death (observed

at ca. 48 h; Donati et al, 2022). Remarkably, each agent alone

caused a moderate decrease in GSH/GSSG ratio, which became

more pronounced in double-treated cells (Fig 2A). Concomitant with

these changes, the net levels of both GSH and GSSG were increased

by both OHT and IACS-010759 treatment (Fig 2B), most likely

reflecting the activation of compensatory mechanisms to maintain

redox homeostasis and favor survival.

We next sought to address whether the observed imbalances in

redox homeostasis might be required for the death of OHT/IACS-

010759-treated FLMycER cells. Supplementation of the cultures with

the ROS scavenger and glutathione precursor N-acetylcysteine

(NAC) reduced the killing of double-treated cells (Fig 2C); of note, a

similar effect of NAC was reported for tigecycline-induced killing of

MYC-overexpressing U2OS cells (Oran et al, 2016). Reciprocally, the

inhibitor of GSH synthesis buthionine sulfoximine (BSO) enhanced

killing (Fig 2D). This effect of BSO in potentiating the cytotoxic

action of IACS-010759 was confirmed in two MYC-rearranged

human lymphoma cell lines, DoHH2 and Ramos, derived from a

double-hit and a Burkitt’s lymphoma (BL), respectively (Appendix

Fig S2A). Finally, time-lapse microscopy on FLMycER cells expressing

Grx1-roGFP2, a biosensor of cytoplasmic glutathione redox potential

(Gutscher et al, 2008), revealed that an abrupt fall in GSH availabil-

ity (as revealed by the increase in 405/488 nm fluorescence ratio)

regularly preceded death in double-treated cells (Fig 2E and

Movie EV1). The observed time window between the drop in GSH

and cell death was variable, ranging from few minutes to hours: this

should be considered the product of a series of stochastic parame-

ters that are variable from cell to cell (Skommer et al, 2011), includ-

ing the expression of pro- and antiapoptotic genes, the time passed

from previous mitotic division (Kirova et al, 2022) and others. Alto-

gether, the above data strongly support a causative role of oxidative

stress in the IACS-010759-induced killing of MYC-overexpressing

cells.

We and others previously showed that the integrated stress

response (ISR) drives cell death in response to IACS-010759 (Bajpai

et al, 2020; Donati et al, 2022). Since ISR signaling can also be
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activated by oxidative stress (Costa-Mattioli & Walter, 2020; Tian

et al, 2021), we tested whether NAC could counteract the action of

IACS-010759 in triggering this response, as assayed by accumulation

of the ISR-associated transcription factors ATF4 and CHOP.

Indeed, while both proteins readily accumulated in IACS-010759

and—to a larger extent—in OHT/IACS-010759-treated cells (Donati
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Figure 1. MycER activation causes ROS production and induces an oxidative stress response.

FLMycER cells, primed or not with OHT (48 h), were treated with 135 nm IACS-010759 (IACS) for 24 (A) or 48 h (B–D).
A Top 10 OHT-activated pathways (highest z-score), as determined by IPA canonical pathway analysis on DEGs from cells treated or not with OHT (72 h), either alone

(left) or in the presence of IACS-010759 (for the last 24 h; right). Note that the RNA-seq data and DEG lists used here are the same as in our previous study (Donati
et al, 2022), while the IPA analysis presented here is new.

B H2O2 quantification, expressed as fold-increase of the 405/488 nm fluorescence ratio in treated vs. untreated FLMycER cells, expressing either the cytoplasmic (left) or
mitochondrial (right) roGFP2-ORP1 biosensor.

C Superoxide anion O2
�� production in treated vs. untreated FLMycER cells, based on dihydroethidium staining.

Data information: *P ≤ 0.05 (one-way ANOVA). Each point in the graphs in (B and C) is from an independent biological replicate, each representing the average of thou-
sands of events (single cells) in a distinct cell population, normalized to the untreated condition. Single-cell measurement distributions from representative experiments
are provided in Appendix Fig S1A and B, respectively.
Source data are available online for this figure.
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et al, 2022), this effect was largely abrogated in the presence of NAC

(Fig 2F). Finally, antibiotics that inhibit the mitochondrial ribosome

and consequently suppress OxPhos activity (e.g., tigecycline and

other tetracyclines) also activate the ISR (Bruning et al, 2014; Sasaki

et al, 2020; Vendramin et al, 2021; Sanchez-Burgos et al, 2022). As

with IACS-010759, tigecycline-dependent induction of the ISR was
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Figure 2. Disruption of redox homeostasis by IACS-010759 induces cell death in MYC-overexpressing cells.

FLMycER cells were primed with 100 nM OHT (48 h) and/or treated with 135 nM IACS-010759, as indicated.
A, B Glutathione redox state, given as (A) reduced to oxidized ratio and (B) glutathione quantification in FLMycER cells, measured after 40 h of IACS-010759

treatment.
C Cell viability, as determined by PI staining after 48 h of IACS-010759 treatment, with or without the addition of 10 mM N-acetyl-cysteine (NAC).
D Same as (C), with 50 lM buthionine sulfoximine (BSO).
E Time-lapse, single-cell microscopic analysis of cytoplasmic glutathione redox potential before cell death, assessed as 405/488 nm fluorescence ratio from the Grx1-

roGFP2 biosensor in FLMycER cells treated with OHT and IACS-1010759 (36 h at the onset of filming). The time of death (t = 0) was scored based on the cellular
incorporation of PI, present in the culture medium.

F Immunoblot on lysates from FLMycER cells treated as indicated, with the addition of 10 mM NAC concomitantly with IACS-010759.

Data information: In (A–D) n = 3 biological replicates; error bars: SD. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001 (one-way ANOVA).
Source data are available online for this figure.
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quenched by NAC in FLMycER cells (Appendix Fig S2B). These

results point to a widespread role for ROS in ISR activation when

interfering with OxPhos.

Glucose and the pentose phosphate pathway maintain redox
homeostasis in IACS-010759-treated cells

In all cell types examined so far, including OHT-treated FLMycER

cells, the cytotoxic action of IACS-010759 was suppressed by excess

glucose in the culture medium (Molina et al, 2018; Naguib

et al, 2018; Vangapandu et al, 2018; Donati et al, 2022), an effect

that might be linked to the need to produce ATP through glycolysis

upon blockade of the respiratory chain. Indeed, as assessed by gly-

colytic proton efflux rate (glycoPER) analysis, IACS-010759 treat-

ment increased the basal glycolytic rate and profoundly suppressed

mitochondrial energy production in FLMycER cells (Appendix Fig S3A

and B); however, in contrast with cell killing, this effect of IACS-

010759 was independent from OHT priming. We previously

reported that IACS-010759-induced cell death in OHT-primed cells

was not associated with ATP reduction and energy impairment in

OHT-primed cells (Donati et al, 2022). Altogether, these observa-

tions imply a distinct metabolic requirement for glucose—other than

sustaining glycolysis for ATP production—in blocking the cytotoxic

action of IACS-010759.

Among its multiple metabolic fates, glucose serves to regenerate

NADPH from NADP through the action of G6pd and Pgd, two

enzymes of the oxidative phase of the pentose phosphate pathway

(PPP, Fig 3A). Most relevant in this context, the conversion of

NADPH to NADP serves to recycle GSSG to GSH (Racker, 1955).

Indeed, in parallel with the decline in GSH/GSSG ratio (Fig 2A),

IACS-010759 elicited significant drops in NADPH/NADP ratio

(Fig 3B), an effect reinforced by co-treatment with OHT. Thus, we

hypothesized that glucose might prevent IACS-010759-induced kill-

ing through the maintenance of redox homeostasis. In line with this

concept, monitoring of the Grx1-roGFP2 biosensor revealed that the

fall in GSH availability, which precedes cell death in OHT/IACS-

010759 double-treated FLMycER cells (Fig 2E), was reversed by

adding glucose to the medium (Fig 3C).

To better understand the effects of Myc and IACS-010759 on the

oxidative PPP, we monitored the levels and activities of its two

NADPH-generating enzymes, G6pd and Pgd (Fig 3A). G6pd was

induced upon OHT treatment, with no effect of IACS-010759

(Appendix Fig S3C). Yet, while OHT had only a marginal effect on

G6pd enzymatic activity, IACS-010759 strongly suppressed it

(Appendix Fig S3D). Pgd instead showed no significant variations

with either OHT or IACS-010759 (Appendix Fig S3C and D). Since

G6pd catalyzes the rate-limiting step of the PPP, we surmised that

suppression of its activity by IACS-010759 may reduce the overall

glucose flux through this pathway: indeed, metabolic flux analysis

with the isotopic tracer [1,2-13C]glucose revealed that, regardless of

OHT treatment, IACS-010759 suppressed production of the final

products on the oxidative PPP reactions—the phosphopentoses

ribulose-5-P, ribose-5-P, and xylulose-5-P (Ru/Ri/Xy-5P, Fig 3D).

Lactate is the end product of glycolysis; by using the [1,2-13C]glu-

cose tracer, lactate produced by glucose that passed directly through

glycolysis can be distinguished from that produced by glucose

processed through the PPP (Fig 3A): the former would be quantified

as lactate M2 isotopomer, and the latter as lactate M1. Given the

decreased PPP flux in IACS-010759-treated cells, we expected a

reduced production of lactate M1: while apparent in our data, this

effect remained below statistical significance (Appendix Fig S3E).

On the contrary, IACS-010759 treatment increased the relative abun-

dance of lactate M2, produced by direct passage through glycolysis:

this result is consistent with the increased basal glycolytic rate

observed in IACS-010759-treated cells (Appendix Fig S3A and B).

Regardless of MYC activation, rerouting glucose from the PPP to gly-

colysis would fulfill the need to maintain energetic homeostasis

upon suppression of OxPhos.

To confirm the importance of the oxidative PPP for the selective

killing of MYC-overexpressing cells by IACS-010759, we inhibited

G6pd and Pgd (Fig 3A) with dehydroepiandrosterone (DHEA) and 6-

aminonicotinamide (6AN), respectively (Kohler et al, 1970; Raineri

& Levy, 1970). Indeed, either of these compounds enhanced cell

death selectively in OHT/IACS-010759 double-treated FLMycER cells

(Fig 3E and F; see Appendix Fig S3F for statistical analysis). In con-

trast, inhibiting the first step of glucose metabolism with 2-

deoxyglucose (2DG; Wick et al, 1957) sensitized FLMycER cells to

IACS-010759 irrespective of OHT treatment (Fig 3G and Appendix

Fig S3F), most likely as a consequence of energy impairment due to

simultaneous inhibition of OxPhos and glycolysis (Vangapandu

et al, 2018). Moreover, similar results were obtained in high glucose

medium (Appendix Fig S3G), confirming that NADPH regeneration

through the PPP is responsible for glucose-mediated protection from

IACS-010759 cytotoxicity. Finally, either DHEA or 6AN potentiated

killing by IACS-010759 also in human MYC-rearranged lymphoma

cell lines (Appendix Fig S3H).

We then sought to confirm these results in a genetic model of

PPP impairment obtained by ablation of Pgd through CRISPR-Cas9

targeting. All of the Pgd KO FLMycER clones obtained were heterozy-

gous, with residual Pgd protein expression (Appendix Fig S3I), con-

sistent with the essential nature of this gene, as defined in the Broad

Institute Dependency Map (DepMap) portal (Ghandi et al, 2019).

This notwithstanding, these Pgd-targeted clones showed increased

sensitivity to IACS-010759 following OHT priming (Appendix

Fig S3J).

Altogether, the above data show that glucose protects MYC-

overexpressing cells from IACS-010759-induced killing by sustaining

NAPDH production through the oxidative phase of the PPP (Fig 3A),

ensuring the regeneration of GSH required to maintain redox

homeostasis.

Ascorbate potentiates the pro-oxidant and antitumoral effects of
IACS-010759

Given the protective role of antioxidant defenses, we hypothesized

that pro-oxidant agents might increase the cytotoxic action of IACS-

010759. Parenteral administration of a high dose of ascorbate (vita-

min C) has been shown to have pro-oxidant and anticancer activity

in preclinical models (Chen et al, 2005, 2007, 2008; Di Tano

et al, 2020). These results prompted several clinical trials using

high-dose ascorbate to treat advanced human cancer, in which

ascorbate showed no activity if given as monotherapy (Hoffer

et al, 2008; Stephenson et al, 2013), but had some efficacy when

combined with chemotherapy (Monti et al, 2012; Welsh et al, 2013).

Importantly, all of these studies concurred to show that ascorbate

had minimal toxicity. We thus tested ascorbate in combination with

� 2023 The Authors EMBO Molecular Medicine 15: e16910 | 2023 5 of 17
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IACS-010759 in both FLMycER and BaFMycER cells (the latter derived

from the Ba/F3 lymphoid cell line). As expected, OHT priming sen-

sitized both MycER cell lines to killing by IACS-010759 alone

(Donati et al, 2022); most remarkably, ascorbate potentiated this

effect without showing any cytotoxicity on its own (Fig 4A). In

FLMycER cells, in which a broader concentration range of ascorbate

was tested, the highest concentrations of this vitamin allowed killing

by IACS-010759 in the absence of OHT priming.

Measurements with the roGFP2-ORP1 biosensor showed that

ascorbate treatment rapidly induced high levels of H2O2 in both the

cytoplasm and mitochondria, with IACS-010759 co-treatment further

enhancing this effect in the cytoplasm (Appendix Fig S4B). Consis-

tent with H2O2 production, the Grx1-roGFP2 reporter revealed that

ascorbate caused a progressive and profound fall of glutathione

redox potential in IACS-010759-treated cells (Fig 4B, left), while

those treated with ascorbate alone (right) showed a moderate and

transient reduction (2 h), followed by full recovery (5 h). Compara-

ble results were obtained in the presence of OHT (Appendix

Fig S4D).

Of note here, and somewhat counterintuitive, ascorbate blunted

superoxide production in IACS-010759-treated cells (Appendix

Fig S4C), which seem at odds with its pro-oxidant effects. A possible

explanation for this result could be that superoxide is being scavenged

by the ascorbate radical (Nishikimi, 1975; Scarpa et al, 1983) at a rate

similar to that achieved with dihydroethidium (Zhao et al, 2003), the

fluorescent probe used for superoxide quantification.

Previous work linked the toxicity of ascorbate to ROS production

through a Fenton reaction with the cell’s labile iron pool (i.e.,

“free,” redox-active intracellular iron; Schoenfeld et al, 2017). Since

inhibition of mitochondrial complex I can increase the labile iron

pool (Mena et al, 2011), the observed potentiation of ascorbate-

induced H2O2 production and pro-oxidant activity by IACS-010759

could be linked to this effect. In line with this scenario, the levels of

two mRNAs known to be destabilized by free iron, Tfrc and Slc11a2

(Anderson et al, 2012), were reduced upon IACS-010759 treatment

(Appendix Fig S4D). Furthermore, a short pretreatment with the fer-

ric iron chelator deferoxamine (DFX) fully prevented cell death in

IACS-010759/ascorbate double-treated cells (Fig 4C). Note that

unlike DFX, excess glucose in the medium was unable to block the

cytotoxic action of the IACS-010759/ascorbate combination (Appen-

dix Fig S4E), most likely due to insufficient ability of the PPP to

compensate for the rapid GSH depletion seen in these experimental

conditions (Fig 4B and Appendix Fig S4C). Finally, given the impor-

tance of iron in the combinatorial effects of IACS-010759 and ascor-

bate, we investigated the involvement of ferroptosis, a form of

regulated cell death initiated in response to lipid peroxidation by

iron-generated ROS (Jiang et al, 2021). Indeed, ascorbate treatment

caused a marked increase in lipid peroxidation (Fig 4D); while

IACS-010759 had no effect alone, it showed a tendency (albeit

below statistical significance) to reinforce the effect of ascorbate.

Altogether, the above results suggest that ferroptosis contributes to

the potentiation of IACS-010759-induced cell death by ascorbate.

We then tested the combination of IACS-010759 and ascorbate

on DLBCL-derived cell lines expressing high levels of MYC. In line

with the data obtained in FLMycER cells, ascorbate also increased

IACS-010759 mediated killing in these cells, with the two drugs

displaying significant synergistic effects within defined concentra-

tion ranges (Fig 5A and B). The same was confirmed in MYC-

rearranged BL cells (Appendix Fig S5A). In summary, IACS-010759

and ascorbate synergized in vitro to kill MYC-overexpressing mature

B-cell neoplasms, regardless of their origin and molecular subtype

(Appendix Fig S5B and C).

To address whether this combinatorial activity could be exploited

in a preclinical setting, CD1 nude mice were transplanted subcuta-

neously with either Ramos or DoHH2 cells: After tumor engraft-

ment, the mice were treated with ascorbate and/or IACS-010759

over 2 weeks. Remarkably, the growth of either Ramos or DoHH2

xenografts was significantly delayed by the combination, but not by

each drug alone (Fig 6A and B). Similar effects were obtained with

two DHL-derived patient-derived xenografts (PDX; Townsend

et al, 2016), injected systemically in NSG mice, and monitored by

whole-body bioluminescence (Fig 6C and D). Note that one of the

PDX tumors, PDX-69487, showed a remarkable resistance to IACS-

010759 alone even if used at a higher dose; nonetheless, as with all

other xenografts, the combination did cause a significant reduction

in tumor growth relative to untreated controls. Altogether, these

results demonstrate a potentiation of the antitumoral activity of

IACS-010759 by ascorbate on Myc-overexpressing B-cell lymphoma,

identifying redox homeostasis as a valid therapeutic target to treat

this type of cancer.

Discussion

Current standard R-CHOP immunochemotherapy achieves cure in

50–60% of patients suffering from Diffuse large B-cell lymphoma

(DLBCL), the most common form of B-cell neoplasm. Refractory

DLBCL is often progressive and fatal, with limited efficacy of tested

rescue therapies (Crump et al, 2017). Indeed, substantial efforts are

being invested toward the definition of the specific molecular

◀ Figure 3. Pentose phosphate pathway protects MYC-overexpressing cells from IACS-010759-induced toxicity.

A Schematic representation of glucose metabolism, highlighting NADPH- and ATP-producing reactions.
B–G FLMycER cells were primed with 100 nM OHT and treated with 135 nM IACS-010759, as indicated. (B) NADPH/NADP redox state in FLMycER cells, assayed after 40 h

of IACS-010759 treatment. n = 3 biological replicates. **P ≤ 0.01; ****P ≤ 0.0001 (one-way ANOVA). (C) cytoplasmic glutathione redox potential, assessed after
44 h of IACS-010759 treatment in FLMycER cells expressing the Grx1-roGFP2 biosensor. Where indicated, 2.75 mM glucose was added to the medium and the mea-
surement repeated after 3 h. (D) Fractional abundance of the 13C-labeled glucose metabolites ribulose-5P, ribose-5P and xylulose-5P (Ru/Ri/Xy-5P), endpoints of the
PPP oxidative phase, after 24 h of IACS-010759 treatment. **P ≤ 0.01; ****P ≤ 0.0001 (two-way ANOVA). (E–G) Cell viability after 40 h of IACS-010759 treatment in
the presence of (E) 50 lM dehydroepiandrosterone (DHEA), (F) 10 lM 6-aminonicotinamide (6AN) or (G) 1 mM 2-deoxyglucose (2DG). See Appendix Fig S3F for
detailed statistical analysis.

Data information: In (D, E, G) n = 6; in (F) n = 9; all biological replicates; error bars: SD.
Source data are available online for this figure.
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features—such as oncogene translocations and mutational and tran-

scriptional profiles—that may allow to identify those patients that

will respond poorly to standard therapy and may instead benefit

from alternative regimens (Reddy et al, 2017; Chapuy et al, 2018;

Schmitz et al, 2018; Wright et al, 2020; Kotlov et al, 2021). Besides

the translocation and/or overexpression of specific oncogenes such

as MYC and BCL2, those features that are the most noteworthy here

are transcriptome-based classifiers, such as the so-called cell-of-

origin (COO; Alizadeh et al, 2000) and comprehensive consensus

clustering (CCC; Monti et al, 2005). The latter in particular includes

an “OxPhos” group, characterized by elevated expression of genes

associated with respiratory activity: further work confirmed that this

classification represents a bona fide metabolic signature, with

“OxPhos” DLBCL cell lines being vulnerable to inhibition of

mitochondrial fatty acid oxidation and glutathione synthesis (Caro

et al, 2012). We recently reported that OxPhos- and MYC-associated

gene signatures are highly correlated in DLBCL (Donati et al, 2022)

and that overexpressed MYC sensitizes cells to inhibition of OxPhos

activity, either indirectly with tigecycline (D’Andrea et al, 2016) or

directly with IACS-010759 (Donati et al, 2022).

In the present work, we clarify that the MYC-mediated sensitiza-

tion to IACS-010759 is brought about by a critical accumulation of

oxidative stress, rather than increased reliance on OxPhos for

energy metabolism. Ectopic MycER activation and IACS-010759

treatment in the B-lymphoid cell line FL5.12 drove the production of

at least two distinct reactive oxygen species, namely H2O2 and O2
��,

which together caused a disruption of redox homeostasis and partic-

ipated in activating the integrated stress response, which ultimately

◀ Figure 4. Ascorbate potentiates IACS-010759-induced cell death by increasing oxidative stress.

A Viability of FLMycER and BaFMycER cells primed or not with 100 nM OHT and treated with 135 nM IACS-010759 for 48 h and/or with ascorbate at the indicated concen-
tration for 6 h. n = 3 biological replicates; error bars: SD.

B 405/488 nm fluorescence ratio from the cytoplasmic Grx1-roGFP2 reporter in FLMycER cells treated with 400 lM ascorbate (Asc) for the indicated periods of time,
either with IACS-010759 (36 h, left) or without it (right). The same experiment with OHT-primed cells is shown in Appendix Fig S4D.

C Cell viability of FL5.12 cells at the end of treatment (48 h IACS-010759, 6 h Asc), in the presence or absence of 50 lM deferoxamine (DFX, added 1 h before Asc). n = 3
biological replicates; error bars: SD.

D Quantification of lipid peroxides in FL5.12 cells treated with 135 nM IACS-010759 for 24 h and/or 400 lM Asc for 3 h. **P ≤ 0.01; *P ≤ 0.05 (one-way ANOVA). Each
point in the graph is from an independent biological replicate and represents the average of thousands of events (single cells) in a distinct cell population, normalized
to the untreated condition. Single-cell measurement distributions from a representative experiment are provided in Appendix Fig S4F.

Source data are available online for this figure.
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B Drug interaction landscapes and synergy scores, calculated according to the ZIP model: a positive ZIP score (> 10) signifies a synergistic interaction. The landscape

identifies the doses at which the drugs either synergize (red) or antagonize each other (green)—the latter not observed here.

Source data are available online for this figure.
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instigates cell death under these conditions (Donati et al, 2022).

These effects were consistently suppressed and reinforced, respec-

tively, by the addition of compounds that up- and down-modulated

glutathione synthesis, pinpointing redox unbalance as the cause of

selective killing by IACS-010759.

The ability of cells to regenerate GSH from oxidized glutathione

(GSSG) is dependent upon the availability of NADPH, which in turn

is regenerated from NADP by utilizing different substrates: glucose

in particular is the main source of NADPH in cancer cells when

metabolized through the pentose phosphate pathway (PPP), under

the control of G6pd and Pgd (Fig 3A; Patra & Hay, 2014). Most rele-

vant here, the cytotoxic action of IACS-010759 in different cell types

was suppressed by excess glucose in the medium (Molina

et al, 2018; Naguib et al, 2018; Vangapandu et al, 2018; Donati

et al, 2022) and, as shown in our FLMycER cells, the sensitizing effect

of glucose deprivation was not necessarily linked to an impairment
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in energy homeostasis, pointing to additional protective effects of

this sugar (Donati et al, 2022).

The data reported here reveal that the protective effect of glucose

in MYC-overexpressing cells is mediated by its antioxidant action

through the PPP pathway. First, addition of glucose reversed the loss

of reduced glutathione elicited by MycER activation and IACS-010759

treatment in FLMycER cells. Second, IACS-010759-treated cells showed

a significant suppression of G6pd activity, as well as decreased pro-

duction of phosphopentoses, the final products of the PPP oxidative

phase (Ru/Ri/Xy-5P, Fig 3A). Third, pharmacological inhibition of

either G6pd or Pgd further enhanced the selective killing of MYC-

overexpressing cells by IACS-010759. This result is in line with the

previous finding that depletion of Pgd sensitized H1975 lung cancer

cells to IACS-010759 (Sun et al, 2019): in this regard, it is noteworthy

that H1975 cells bear an amplified MYC locus and significantly over-

express the protein (Tateishi et al, 2016; Beaulieu et al, 2019). Finally,

independently from OHT treatment, energy production in FLMycER

cells was mainly glycolytic (Appendix Fig S3B): thus, MYC-induced

sensitization to IACS-010759 did not depend upon OxPhos-driven

ATP production, as was instead the case for IACS-010759 mediated

killing of glycolysis-deficient cells (Molina et al, 2018). We conclude

that the combined effects of MYC and IACS-010759 render the cells

dependent upon glucose and the PPP pathway to prevent the accu-

mulation of lethal oxidative damage.

Altogether, the aforementioned findings are consistent with the

long-known pro-oxidant effects of MYC (Tanaka et al, 2002; Vafa

et al, 2002; Cottini et al, 2015) and reveal that these can sensitize

cells to complementary pro-oxidative cues—as achieved here by

OxPhos inhibition—leading to critical disruptions of redox balance.

This concept led us to test whether exacerbating the disruption of

redox homeostasis caused by IACS-010759 could reinforce its anti-

cancer activity against MYC-driven B-cell lymphomas. Indeed,

suppressing glutathione synthesis with BSO increased IACS-010759

activity on MYC-overexpressing B-cells and lymphoma cell lines.

We further developed this concept by combining IACS-010759 with

ascorbate, which has a pro-oxidant activity when injected at phar-

macological doses and has shown toxicity toward diverse tumor

cells (Gonzalez-Montero et al, 2022), including lymphoma (Chen

et al, 2005, 2008; Di Tano et al, 2020). Remarkably, IACS-010759

and ascorbate synergized in vitro to kill MYC-overexpressing B-

cells, owing most likely to the cooperative induction of oxidative

damage, including lipid peroxidation and ferroptosis. This combina-

tion also showed synergy in BL and DLBCL lymphoma cell lines of

multiple molecular subtypes, not restricted to the “OxPhos” cate-

gory (Appendix Fig S5B). Finally, IACS-010759 and ascorbate also

suppressed the growth of lymphoma xenografts in vivo.

Similar to what observed after ectopic MycER activation (Donati

et al, 2022; Appendix Fig S3A), mitogenic stimulation of B-cells

coordinately potentiates glycolysis and mitochondrial respiration

(e.g., Caro-Maldonado et al, 2014) as well as ROS production

(Wheeler & Defranco, 2012). Thus, we cannot a priori exclude that

a pro-oxidant therapeutic regimen such as IACS-010759 and ascor-

bate may be toxic for activated B-cells. However, we note that high-

dose ascorbate has already proven safe and tolerable in a clinical

setting, either alone or in association with platinum-based and other

ROS-producing chemotherapeutic agents (Bottger et al, 2021). More-

over, high-dose ascorbate reinforced anticancer immunotherapy in

multiple solid tumor models (Magri et al, 2020), implying that it

does not impair—or rather may favor—anticancer immunity: It will

be of high interest to address whether the same may be true in com-

bination with IACS-010759 or other mitochondrial inhibitors.

The combinatorial action of IACS-010759 and ascorbate unra-

veled here might prove to be relevant in diverse clinical settings.

First, high-dose ascorbate might increase the therapeutic window of

OxPhos inhibitors, allowing their administration at clinically safe

doses. This is a critical priority indeed, since a recent phase I trial

revealed mechanism-related toxicity of IACS-010759, limiting its

usage at effective antitumoral doses (Yap et al, 2023). Similar prob-

lems were encountered with the complex I inhibitors BAY-87-2243

and ASP4132 (Xu et al, 2020; Janku et al, 2021). Second, our find-

ings might provide a much-needed alternative treatment for some of

the most aggressive forms of DLBCL that are refractory to front-line

R-CHOP immunochemotherapy. MYC translocation and/or overex-

pression have been associated with reduced survival in these

patients, especially if associated with alterations of the BCL2 onco-

gene (Li et al, 2018; Rosenwald et al, 2019): our present results

point to MYC as a biomarker for a therapeutic approach based on

IACS-010759 and ascorbate.

Of note here, our previous studies highlighted therapeutic syner-

gies between either IACS-010759 (Donati et al, 2022) or tigecycline

(Rav�a et al, 2018) and the BCL2 inhibitor venetoclax against the

aggressive DHL subtype, defined by joint translocation of MYC and

BCL2. Having now shown that ascorbate reinforces the effect of

IACS-010759 on the same DHL lines, it can be hypothesized that a

triple-combination of IACS-010759, ascorbate, and venetoclax may

further improve the therapeutic window and treatment efficacy on

these highly aggressive lymphomas.

Besides DLBCL, other tumor types showed an association of

MYC and/or OxPhos gene signatures with increased resistance to

various therapies, including ibrutinib in mantle cell lymphoma,

neoadjuvant therapy in triple-negative breast cancer, and venetoclax

in acute myeloid leukemia (Lee et al, 2017; Sharon et al, 2019;

◀ Figure 6. Combinatorial action of IACS-010759 and ascorbate against Myc-overexpressing lymphoma xenografts.

The indicated lymphoma cell lines and PDX samples were xenografted in recipient animals and tumors allowed to develop to detectable sizes prior to randomization
and treatment with IACS-010759 (IACS) by oral gavage and/or ascorbate (Asc) by intraperitoneal injection, as indicated (see Materials and Methods). Daily doses and the
number of animals per group (n) are indicated in parenthesis.
A, B Tumor progression (mm3) in CD1 nude mice bearing subcutaneous Ramos (A) or DoHH2 tumors (B).
C, D Tumor progression in NSG mice injected with the luciferase-positive DHL-derived PDX lines DFBL-20954 (C) or DFBL-69487 (D), as determined by in vivo imaging

and quantification of bilateral femur radiance efficiency. Examples from the control and double-treated groups are shown at the bottom.

Data information: In each panel, the plot on the right shows the data for individual groups on the indicated day. Error bars: SD; n = animals per group. Right: one-way
between-group ANOVA. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001.
Source data are available online for this figure.
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Zhang et al, 2019). In all of these cases, the treatment-refractory

cancer cells were shown to be sensitive to pharmacological inhibi-

tion of OxPhos: our results suggest that additional combination with

a pro-oxidant drug like ascorbate may further improve the effective-

ness of this therapeutic strategy. Finally, a recent report linked acti-

vation of the MYC paralogue MYCN in neuroblastoma to

dependence on cysteine import and synthesis, needed to produce

glutathione and avoid ferroptotic cell death (Alborzinia et al, 2022).

Altogether, it is reasonable to expect that the combination of IACS-

010759 with ascorbate or other ferroptotic inducers might be effec-

tive against multiple classes of MYC-associated tumors.

Materials and Methods

Chemicals and biochemical assays

IACS-010759 (from the Institute for Applied Cancer Science at MD

Anderson; Molina et al, 2018) and 4-hydroxytamoxifen (Merck Life

Science, Darmstadt, Germany) were dissolved in DMSO and etha-

nol, respectively; sodium L-ascorbate, N-acetyl-L-cysteine (NAC), L-

buthionine sulfoximine, 6-aminonicotinamide, deferoxamine mesy-

late (Merck Life Science), dehydroepiandrosterone (Cayman Chemi-

cal Co., Ann Arbor, MI, USA), and tigecycline (Carbosynth,

Newbury, UK) were dissolved in water.

GSH/GSSG and NADPH/NADP were quantified with luminescence-

based assay kits (Promega, Madison, WI, USA) and the enzymatic

activities of G6pd and Pgd with colorimetric assay kits (BioVision/

Abcam, Waltham, MA, USA), according to manufacturer’s

specifications.

Cell lines

The human lymphoma cell lines were DoHH-2 (CVCL_1179), SU-

DHL-6 (CVCL_2206), Karpas 422 (CVCL_1325), HBL-1

(CVCL_4213), Ramos (CVCL_0597) and Raji (CVCL_0511), and the

murine B-lymphoid cell lines FL5.12 (CVCL_0262) and Ba/F3

(CVCL_0161) expressing MycERTM (FLMycER, BaFMycER; Donati

et al, 2022) were grown in regular RPMI medium (Euroclone, Pero,

Italy), which includes 2 mM glutamine and 11 mM glucose, supple-

mented with 10% fetal bovine serum (FBS) and, for FL5.12 and Ba/

F3 cells, 2 and 1 ng/ml murine interleukin 3 (PeproTech, Rocky

Hill, NJ, USA), respectively. Prior to experiments involving IACS-

010759, all cells were passaged in glucose-free RPMI-1640 medium

(Thermo Fisher Scientific, Waltham, MA, USA), which includes

2 mM glutamine, supplemented with 10% FBS and 2.75 mM glu-

cose. To induce MycER activity, 100 nM 4-hydroxytamoxifen (OHT;

Merck) was added to the medium 48 h before treatment with IACS-

010759 or other drugs, as indicated. All cells were incubated at 37°C

in a humidified air atmosphere supplemented with 5% CO2. SU-

DHL-6, Raji and Ramos cell lines were imported from the ATCC

repository (https://www.lgcstandards-atcc.org); Ba/F3, DoHH-2

and Karpas 422 cells were imported from the DSMZ repository

(https://www.dsmz.de); FL5.12 and HBL-1 cells were a gift from

Pier Giuseppe Pelicci and Enrico Derenzini, respectively. All lines

were stocked and made available by IEO’s core Tissue Culture facil-

ity, where they were also validated and tested for mycoplasma

infection.

Xenograft models and treatment

5 × 106 DoHH-2 or Ramos cells were xenografted subcutaneously in

sublethally irradiated (3 Gray), 8 weeks old, female CD1-nude nu/

nu mice (IMSR_ENV:HSD-069, Envigo Indianapolis, IN, USA) and

expanded by serial subcutaneous transplantation of tumor frag-

ments. Tumors were allowed to grow for about 10–14 days,

followed by assessment with a digital caliper to exclude outliers and

form experimental groups with comparable average and variance of

tumor size at the start of treatments (days 0). Tumor volumes were

then measured twice a week with a digital caliper and calculated as

1/2 length × width2 (mm3). The following treatment schemes were

used: daily oral gavage with IACS-010759 (1 or 2.5 mg/kg, as indi-

cated in the figures) for 5 days, followed by 2 days off and a repeat

of the same scheme, for a total of 12 days; intraperitoneal injection

of ascorbate twice a day (separated by 8 h) to reach a daily dose of

4 or 8 g/kg for 5 days, followed by 2 days off and a repeat of the

same scheme. IACS-010759 was suspended in 0.5% methylcellulose

(Merck Life Science), while ascorbate was dissolved in physiological

saline.

The DHL patient-derived xenografts (PDX) DFBL-20954-V3-

mCLP and DFBL-69487-V3-mCLP (Townsend et al, 2016) were

obtained from the Dana Farber Cancer Institute Center for Patient

Derived Models (CPDM). 1 × 106 cells were xenografted via tail

vein injection into 8-week-old male NSG mice (IMSR_JAX:005557,

Charles River, Calco, Italy). Tumor engraftment was confirmed

7 days after transplant by whole-body imaging on an IVIS Lumina

III platform following intraperitoneal injection of 150 mg/kg Xeno-

Light D-Luciferin (PerkinElmer, Waltham, MA, USA) and anesthesia

with isoflurane. The animals were subsequently randomly distrib-

uted in the different experimental groups to start the treatment pro-

tocol with IACS-010759 and/or ascorbate, as described previously.

The response to treatment was assessed by whole-body imaging at

Days 4, 11, and 14. The data were analyzed with the Living Image

Software, version 4.2 (Caliper Life Sciences, Hopkinton, MA, USA).

Radiant efficiency was quantified bilaterally on femurs based on the

epifluorescence signal as indicated in the user manual.

The size of experimental groups with animals carrying either cell

line- or PDX-derived tumors was chosen based on previous results

(Donati et al, 2022) in order to reveal biologically relevant effects

with sufficient statistical power.

Experiments involving animals were done in accordance with the

Italian Laws (D.lgs. 26/2014), which enforces Dir. 2010/63/EU

(Directive 2010/63/EU of the European Parliament and of the Coun-

cil of 22 September 2010 on the protection of animals used for scien-

tific purposes), and authorized by the Italian Health Ministry with

project nr. 173/2021-PR. Mice were housed in individually venti-

lated caging (IVC) systems (Sealsafe Plus, Tecniplast, Buguggiate,

Italy), on autoclaved sawdust bedding (Lignocel� 3/4; Rettenmaier

& Sohne, Ellwangen-Holzm€uhle, Germany), provided with auto-

claved diet (VRF1 (P), SDS, Witham, UK) and autoclaved water ad

libitum. Animals were handled and treated in laminar flow hoods

(CS5 Evo and BS48, Tecniplast, Buguggiate, Italy).

Time-lapse analysis of the Grx1-roGFP2 biosensor

Retroviral pLPCX vectors expressing the mitochondrial or cytoplas-

mic form of Grx1-roGFP2 (Gutscher et al, 2008) and roGFP2-ORP1
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(Gutscher et al, 2009) were obtained from Addgene (Addgene,

Watertwon, CA, USA) and used to transduce FL5.12MycER cells,

followed by a one-week selection with puromycin (AdipoGen AG,

Liestal, CH) 1.5 lg/ml. Cells expressing either form of Grx1-

roGFP2 were primed with OHT and treated with IACS-010759 for

approximately 36 h and then transferred to glass bottom petri

dishes (MatTek Corporation, Ashland, MA, USA) in the continuous

presence of the drugs, with the addition of 1 lg/ml PI to mark

dead cells. The cultures, kept at 37°C and 5% CO2, were imaged

with a Leica SP8 FSU confocal microscope (Leica Microsystems,

Wetzlar, Germany) through a 63×/1.4NA oil immersion objective

lens. The oxidized and reduced forms of the Grx1-roGFP2 biosen-

sor were excited by the 405 and 488 nm laser lines, respectively.

The emitted fluorescence for both forms was collected with an

opened pinhole (2.7 AU) in the 500–540 nm acquisition window

and sequentially acquired with the same HyD detector set in

counting mode with a pixel size of 180 nm. The PI molecule was

excited with the 561 nm laser line and the emitted signal collected

between 590 and 700 nm. Images were acquired every 5 min for

12 h.

The ratio between the emission intensities of oxidized and

reduced Grx1-roGFP2 was calculated thanks to a custom-made

ImageJ/Fiji macro. Briefly, after background subtraction, the

combination of the two signals was obtained and the resulting

image (combined image) was filtered with a Gaussian filter and

segmented with the Otsu algorithm. The resulting mask was

applied to the original images of oxidized and reduced Grx1-

roGFP2 to obtain the ratio image. To segment the single cells in

the images at fixed time-points, the combined image was seg-

mented using a more permissive algorithm (Li) and the resulting

binary image subjected to the “analyze particle” function of

ImageJ. The region-of-interest (ROI) values of single cells were

then used to calculate the oxidized/reduced Grx1-roGFP2 fluores-

cence ratio in every segmented cell. Single cells were manually

tracked to record the Grx1-roGFP2 ratio and PI signal intensity

over time.

Flow cytometry

Flow cytometry was conducted on a MACSQuant Analyzer (Miltenyi

Biotec, Bergisch Gladbach, Germany) and data analyzed with

FlowJo software (version 10.6.1; BD Biosciences, Franklin Lakes,

NK, USA). For cell viability counts, cells were resuspended in ice-

cold PBS in the presence of propidium iodide (PI) 1 lg/ml. Viability

was expressed as percentage of live (PI negative) cells on total cells

counted.

To quantify the fluorescence from Grx1-roGFP2 and roGFP2-

ORP1 biosensors, the oxidized and reduced forms were analyzed

with the V2 (405/585–40 nm) and B1 (488/525–50 nm) channels,

respectively. Immediately before counting, PI 1 lg/ml was added to

the medium to exclude dead cells.

Quantification of superoxide anion was performed by staining

live cells with 10 lM dihydroethidium (Thermo Fisher Scientific):

Following 30 min of incubation with the reagent, cells were washed

and resuspended in phosphate-buffered saline for flow cytometric

analysis. Immediately before counting, 40,6-diamidino-2-

phenylindole (DAPI; Merck Life Science) 0.1 lg/ml was added to

the medium to exclude dead cells.

Quantification of lipid peroxidation was performed by staining

cells with 10 lM BODIPY 581/591 C11 (Thermo Fisher Scientific):

Following 10 min of incubation, ascorbate was added where appro-

priate, and then, the cells were incubated for 3 h before being

washed and resuspended in phosphate-buffered saline for flow cyto-

metric analysis.

Immunoblot analysis and cell fractionation

Immunoblot analysis was performed as described previously

(Donati et al, 2022). For the analysis of subcellular fractions, the

same numbers of cells from each sample were lysed 50 on ice with

NP-40 fractionation buffer (10 mM Hepes pH 7.4 1, 250 mM

Sucrose, 25 mM KCl, 2 mM MgCl2, 1 mM EGTA, 0.1% NP-40,

1 mM PMSF). This total lysate was then centrifuged at 1,000 × g for

5 min, and the supernatant collected as cytoplasmic fraction. The

nuclear fraction was obtained by washing the pellet twice with frac-

tionation buffer without NP-40 and finally resuspending it in

Laemmli buffer. The following antibodies were used: mouse mono-

clonals against vinculin (hVIN-1, Merck Life Science; 1:20,000) and

CHOP (L63F7, Cell Signaling Technology, Danvers, MA, USA;

1:1,000); rabbit monoclonals against ATF4 (D4B8, Cell Signaling

Technology; 1:1,000), G6pd (D5D2, Cell Signaling Technology;

1:1,000), Pgd (EPR6565, Abcam, Cambridge, UK; 1:1,000), and MYC

(Y69, Abcam; 1:1,000).

Glycolytic proton efflux rate analysis

Proton efflux rate (PER) analysis was performed on a Seahorse

XFe96 Analyzer (Agilent Technologies, Santa Clara, CA, USA) using

Agilent Seahorse XF Glycolytic Rate Assay kit, following the manu-

facturer’s instructions. Before the assay, FLMycER cells were treated

with OHT and IACS-010759 for 72 and 24 h as indicated. The cells

were then counted and attached to 96-well Seahorse cell culture

microplates, precoated with CorningTM Cell-Tak (Life Sciences)

according to the manufacturer’s instructions, at a density of 80,000

cells per well, in XF RPMI Medium pH 7.4 with 1 mM HEPES

(Agilent Technologies) supplemented with 2.75 mM glucose, 1 mM

sodium pyruvate, and 2 mM L-glutamine. The plate was incubated

at 37°C for 1 h in a non-CO2 incubator. After ECAR baseline mea-

surements, 0.5 lM rotenone plus 0.5 lM antimycin A and 50 mM

2-deoxyglucose (2-DG) were added sequentially to each well. The

results were analyzed using the Seahorse Wave Desktop Software

Version 2.6 (Agilent Technologies) and normalized by cell number

using CyQUANT Cell Proliferation Assay (Thermo Fisher Scientific).

Data were exported into the XF Report Generator for calculation of

the parameters from the Glycolytic Rate Assay. Results are

mean � SD of minimum eight technical replicates and representa-

tive of two independent experiments.

Metabolic flux analysis

For metabolic flux analysis, cells were exposed for 4 h to 1.5 mM D-

[1,2-13C2]glucose in complete medium containing 1.5 mM glucose.

Cells were then harvested and washed twice in ice-cold PBS, and

the pellets were snap-frozen in liquid nitrogen. Pellets were then

resuspended in 250 ll methanol/acetonitrile 1:1 and spun at

20,000 g for 5 min at 4°C. Supernatant was then passed through a
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regenerated cellulose syringe filter, dried, and resuspended in 100 ll
of MeOH for subsequent analysis.

We used an ExionLCTM AC System (AB Sciex, Framingham, MA,

USA) coupled with an API-3500 triple quadrupole mass spectrome-

ter (AB Sciex). Quantification of different metabolites was

performed using a cyano-phase LUNA column (50 × 4.6 mm, 5 lm;

Phenomenex, Torrance, CA, USA) by a 5 min run in negative ion

mode. Mobile phases were (A) water and (B) 2 mM ammonium ace-

tate in MeOH; the gradient was isocratic 90% B with a flow rate of

500 ll/min. MultiQuantTM software (version 3.0.2, AB Sciex) was

used for data analysis and peak review of chromatograms. The iden-

tity of all metabolites was confirmed using pure standards.

CRISPR-Cas9 engineering of knockout cell lines

The Pgd gene knockout clones were obtained as previously

described for other genes (Donati et al, 2022). Briefly, two sites on

the gene were targeted: one close to, and the other ca. 100 bases

downstream of the start codon. The genomic sequences targeted by

the corresponding sgRNAs were the following: GCGAAGGACCGA

GCGCTCCG and GGAGACCCAGGCGACCACCG. Each sgRNA was

ligated into a PX458 plasmid (Addgene; plasmid # 48138, a gift from

Feng Zhang): 1 lg of plasmid was used to electroporate in 4 × 105

FL5.12 cells using the Neon Transfection System (Thermo Fisher

Scientific). After 2 days, GFP-positive cells were sorted on a FA

CSMelody (BD Biosciences) and single clones isolated by limiting

dilution followed by expansion in vitro.

Quantification and statistical analysis

Drug interaction landscapes and delta scores for synergy were based

on the ZIP model in SynergyFinder (Ianevski et al, 2017). Compari-

sons between treatments for in vitro cell culture and biochemical

experiments were carried out by one-way or two-way ANOVA.

Partitioning the interaction effects in two-way ANOVA allowed us to

test for particular differences among treatments. Between treatment

tests for in vivo tumor growth were performed by one-way ANOVA.

Comparisons between treatment tests for in vivo tumor growth were

performed by one-way ANOVA. Normal distribution and homogene-

ity of variances of data analyzed by ANOVA were confirmed by

Shapiro–Wilk W and Levene tests, respectively. When pairwise

comparisons of means were needed, post hoc tests were made

according to Tukey’s procedure. GraphPad PRISM 8 (RRID:

SCR_002798) or R (RRID:SCR_001905) software was used for all

analyses. The numbers of independent biological replicates are indi-

cated in the figures. No blinding was done.

RNA-seq analysis

The RNA-seq data and differentially expressed genes (DEGs) called

in FLMycER cells treated with OHT and/or IACS-010759 were

described in our previous work (Donati et al, 2022) and are accessi-

ble through NCBI’s Gene Expression Omnibus (GEO; RRID:

SCR_005012; GSE149073). Canonical pathway analysis to identify

the most significantly activated pathways upon MycER activation

with OHT (based on z-score) was performed with the Ingenuity

Pathway Analysis (IPA) software package (QIAGEN, Venlo, The

Netherlands; RRID: SCR_008653).

Data availability

This study includes no data deposited in external repositories.

Expanded View for this article is available online.
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The paper explained

Problem
The oncogenic transcription factor MYC is often deregulated in cancer
cells and is commonly associated with multidrug resistance and poor
prognosis. Nonetheless, deregulated MYC activity also provides cancer
cells with vulnerabilities that might be exploited for targeted pharma-
cological intervention. For example, high MYC expression is a negative
prognostic factor in B-cell lymphoma but also sensitizes tumor cells
to drugs that suppress mitochondrial respiratory activity, such as the
electron transport chain (ETC) complex I inhibitor IACS-010759. While
this selective pharmacogenetic interaction relies on the activation of
specific signaling pathways (in particular, the integrated stress
response and intrinsic apoptosis), the primary mechanisms through
which MYC activation and ETC inhibition cooperate in triggering
those processes remain unknown. Understanding those mechanisms
might open new therapeutic perspectives against clinically problem-
atic, multidrug-resistant malignancies, as exemplified here by high-
grade MYC-driven B-cell lymphomas.

Results
Our data show that concurrent production of reactive oxygen species
(ROS) upon MYC hyperactivation and IACS-010759 treatment causes a
lethal disruption of redox homeostasis. Most importantly, this phe-
nomenon can be modulated by environmental and/or pharmacologi-
cal cues. For example, high glucose concentrations boost NADPH
production through the pentose phosphate pathway (PPP), favoring
regeneration of reduced glutathione (GSH) and ROS scavenging, thus
protecting from IACS-010759-induced cell death. Reciprocally, com-
pounds that interfere with either GSH synthesis or regeneration
increase the cytotoxic effects of IACS-010759. A similar increase can
be obtained by combining IACS-010759 with high-dose ascorbate
(vitamin C), known to exert pro-oxidant effects. In a preclinical setting,
combining IACS-010759 and high-dose ascorbate provides synergistic
antitumoral activity against xenografts of aggressive, MYC-driven lym-
phomas, including Burkitt’s and MYC/BCL2 “double-hit lymphoma.”

Impact
Our results provide a therapeutic paradigm for MYC-overexpressing B-
cell lymphomas, exploiting their vulnerability to oxidative stress. Given
the synergistic action of IACS-010759 and high-dose ascorbate, we
surmise that this association may allow to achieve effective therapeu-
tic windows at lower doses of IACS-010759, potentially circumventing
its reported toxic effects. Most importantly, beyond IACS-010759, we
propose that other drugs interfering with mitochondrial activity—
such as the antibiotic tigecycline—may show similar synergy with
high-dose ascorbate, pointing to the repurposing of these compounds
for combinatorial treatment of high-grade B-cell lymphomas, and
potentially other forms of MYC-driven cancer.
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