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Abstract: We illustrate how a variety of logical methods and techniques provide useful, though currently
underappreciated, tools in the foundations and applications of reasoning under uncertainty. The field is vast
spanning logic, artificial intelligence, statistics, and decision theory. Rather than (hopelessly) attempting a
comprehensive survey, we focus on a handful of telling examples. While most of our attention will be devoted
to frameworks in which uncertainty is quantified probabilistically, we will also touch upon generalisations of
probability measures of uncertainty, which have attracted a significant interest in the past few decades.
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1 Introduction

The key problem in uncertain reasoning we consider in this article is as follows:
KEY PROBLEM
Given A set of events { }= γ γΓ , …,

k1
of interest.

Want The quantification of the agent’s uncertainty on ⊇Δ Γ subject to the following constraints:
(1) All the available information is represented adequately.
(2) All the remaining uncertainty is quantified adequately.

It is commonly held in science that probability theory, and its statistical and computational applications
provide the mathematical toolkit of choice to tackle the wide range of specific instantiations of the KEY PROBLEM.
Such a common view can be seen as the fulfilment of early visions put forward by Laplace and Maxwell,
among others. Paraphrasing slightly, the former claimed that probability amounts to commonsense reduced
calculus, whereas the latter noted that probability is the only logic scientists really need.

Likening probability to “the logic of science,” as the subtitle of [1] puts it, is indeed a commonplace.
However, in many context of scientific and practical interest, there is much to be gained by taking logic
literally, rather than metaphorically. Hence, in this note, we set ourselves the goal of suggesting that logical
methods can provide very useful tools, albeit currently underappreciated, for addressing the aforementioned
KEY PROBLEM. As it will be apparent, logic plays a fundamental role in addressing the two constraints.

First, we emphasise the role of logic as a tool of choice for knowledge representation, which arises as a
consequence of the semantics governing the formal notion of event. Taking a logical (rather than the usual set-
theoretic) perspective on events makes the representation of imperfect knowledge mathematically natural and
conceptually robust. This leads to the pivotal role of logic to capture the second constraint of the KEY PROBLEM.
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Themany logical semantics available provide a set of uncertainty resolution methods, each focussing on a specific
aspect of the representation of the subtle relation between information and uncertainty. The construction of a
coherent space of logical possibilities is arguably a necessary condition for successful applications of uncertain
reasoning in practical problems. Indeed, as we will argue in the last part of this note, logic with its native focus on
inference and computation can shed very important light on the pressing problem of endowing artificial intelli-
gence (AI) systems with transparent knowledge representation and reasoning (KRR) abilities. As a telling
example, we will see how in practice, probabilistic (conditional) independencies are often present in problem
specifications. Bayesian networks have become a popular tool in AI exploiting them for inferential and computa-
tional gains.

Our review is free of formality and clearly partial, in the sense that it reflects our competence and
interests. In writing it we have aimed at providing readers with a flavour of those key roles that logic can
play in the wider field of uncertain reasoning. We have made our selection of cited literature wide so as to
provide a mix of conceptual, mathematical, and practical relevance. This hopefully provides a sufficiently
varied list of key pointers to relevant literature.

1.1 Motivating the logical perspective

It is remarkably difficult to explain to what logic is for, as van Benthem put it in [2],

The unity of logic, like that of other creative disciplines, resides in the mentality of its practitioners and their modus operandi.

And of course, mentality varies a lot, in time, and within each of the many academic silos. To illustrate, consider
the logical landscape of the late 1920s, i.e. when Bruno de Finetti begun focussing on the coherentist foundation
of probability recalled below in Section 1.3. For him, logic was the Boolean algebra of sets, which he interpreted
as the logic of certainty. No alternative was available to him. He later became aware of the introduction of many-
valued logics by the Polish school, but he assessed it as an alternative to probability, not to Boolean logic [3]. Fifty
years on, the emergence of expert systems in AI pressed logicians to take seriously the idea that reasoning may
not necessarily be grounded in Boolean logic. From fuzzy logics to dynamic epistemic logics, non-monotonic
logics, and paraconsistent logics, a galaxy of extensions of classical logic have been thoroughly investigated
towards the end of the past century [4]. Against this background, one in which many logics are worth taking as
the starting point of an agent’s knowledge representation, logicians could ask whether de Finetti’s coherence-
based justification for measuring uncertainty with probability necessitated logic to be classical. In a landmark
contribution, Paris [5] showed that this was indeed not the case: many logics can yield distinct instantiations
of coherence, as we detail in Section 2. Accordingly, the logical perspective we put forward in this note is not tied
to a specific logical system, but aims at illustrating, by way of example, what the modus operandi of logicians is,
and how it could be beneficial to the wider field of uncertain reasoning.

Logic and probability concur to achieving the goal of representing both an agent’s knowledge and their
uncertainty in events of interest, thereby providing a guideline for how to act rationally under the specific
circumstances. This was anticipated by Leibniz in his Nouveaux essais where he writes:

I maintain that the study of the degrees of probability would be very valuable and is still lacking, and that is a serious
shortcoming in our treatises on logic. For when one cannot absolutely settle a question one could still establish the degree
of likelihood on the evidence, and so one can judge rationally which side is the most plausible.1

The decision-theoretic foundation of probability goes back at least to Huygens’s analysis of expectation, see, e.g.
[6], and has been put forward explicitly by the so-called Bayesian school [7–11]. They did so by relying essentially
on the logical notion of coherence, which, however, has been investigated with logical tools only fairly recently
and still appears to be underappreciated. Indeed, logic and probability constitute mostly independent elements



1 Translation by P. Remnant e J. Bennet (1981) p. 372. See [12] for more background.
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of today’s mathematical and scientific education. This is at odds with the fact that they had a joint start as
mathematical theories of reasoning in the mid-1800s – see [13,14] for a thorough historical reconstruction.

De Morgan, who coined the term mathematical logic, titled his volume Formal Logic: Or the calculus of
inference, necessary and probable [15]. His friend and collaborator, George Boole, gave his Laws of Thought a
telling subtitle: On which are founded the mathematical theories of logic and probability. And indeed the KEY

PROBLEM originates in Boole’s seminal volume, where it is claimed to be solvable by a “general method”:

the final expression will contain terms with arbitrary constant coefficients [so] by giving to their constants their limiting
values 0 and 1 determine the limits within which the probability sought must lie independently of all experience.” [16] p. 17.

Focussing on such a general method was a breakthrough in both logic and probability. Before him, indeed,
logic was mostly concerned with the analysis of individual patterns of reasoning – syllogisms. After him,
logicians set sail to algorithmic reasoning. As to probabilities, however, Boole noted that whenever the
information we have is “insufficient to render determinant the value sought,” the “general method” yields
(probability) intervals, rather than values, which have been tightly pinned down by Maurice Fréchet in 1935 as
follows. If θ ϕ, are events (see below for notation and terminology) with probabilities ( ) =P θ x and ( ) =P ϕ y,
then the probability of the disjunction and the probability of the conjunction of θ and ϕ are bound by

{ } ( ) { }≤ ∨ ≤ +x y P θ ϕ x ymax , min 1, ; (1)

{ } ( ) { }+ − ≤ ∧ ≤x y P θ ϕ x ymax 0, 1 min , , (2)

see [17] for an early detailed analysis.
The aforementioned inequalities provide a useful starting point in our attempt to present a vast body of

ideas in a unified matter: pinning down the “logic of science” by combining logic with probability raises, from
the outset, a number of questions which result in a large space of formal possibilities. Logical methods in our
view provide fundamental tools to navigate this space. Firstly, the aforementioned bounds show that, in
general, the quantification of an agent’s uncertainty may not be uniquely determined by the available infor-
mation. This ties in with the key questions tackled in (pure) inductive logic, the topic of Section 3. Second, and
somewhat alternatively, whenever uncertainty is not uniquely quantified by the available information, it may
be methodologically more appropriate to consider the set of probability distributions compatible with it,
as a justified measure of uncertainty. And, very interestingly, sets, rather than single probability functions,
have been shown to emerge naturally by grounding the formalism on extensions of Boolean logics, as pointed
out in Section 2.

Before going into details, readers with no logical background may benefit from a short guided tour of logic
in the theory of uncertain reasoning, to which the remainder of this section is devoted. In it, we also lay down
a bare minimum of terminology and notation.

1.2 Basic notions and terminology

1.2.1 Events

Analysing events is a key contribution of logic to the theory of probability. That such an analysis could be done
independently of any underlying probabilistic experiment, forecast or decision, was one of Boole’s visionary
intuitions. Far from being perfect, his work [16] was nonetheless a convincing defence that propositional or
Boolean logic, as we now know it, serves as a common basis for both logic and probability. Among those who
were not particularly impressed, it is ironic that we can list E. Jaynes who, as we noted earlier, terms
probability as “the logic of science”:

[Boole’s] work on probability theory contains ludicrous errors, far worse than any committed by Laplace […]. While Laplace
considered real problems and got scientifically useful answers, Boole invented artificial school-room type problems, and often
gave absurd answers. [18], p. 242.
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It should be noted that most of such “absurdities” are to be found in connection to conditional probability,
which is indeed very hard to cast logically, see [19,20] for recent promising results in the field.

In spite of the lack of rigour, and indeed the many mistakes to be found in Boole’s seminal book, it turned
out that Boolean algebras are the particular formulation of the logic which serves the purpose particularly
well, see, e.g. the comprehensive review [21]. In elementary cases, two Boolean algebras are at work: A form-
alising events and 2 formalising their indicator functions. Homomorphisms from A to 2, corresponding to the
logical notion of “valuation” (see below), then represent the uncertainty-resolving information available to the
agent, so that the probability unit mass can be distributed accordingly. In short, Boolean semantics provides
the tools to represent the distinction between what is known and what is not known to an agent about a
specific event of interest.

We thus identify events, the bearers of probability, with the elements θ ϕ, , etc. of the set of sentences ��
generated recursively from a (finite) propositional language � { }= p p, …,

n1
, by means of the connectives

{ }¬ ∧ ∨, , . As a bit of useful terminology, if ��( )= ∧ ∈ψ θ ϕ , then both θ and ϕ belong to �� and are called
the immediate subsentences of ψ – similarly for negation and disjunction.

A Boolean (also known as propositional also known as classical) valuation is a function v from �� to
{ }0, 1 , the set of truth values. Valuations are the key component of logical semantics. The characteristic
property of Boolean semantics is known as compositionality, a property of valuations to the effect that the
truth value of a sentence in �� is a function of the truth value of its immediate sub-sentences, as fixed by the
following conditions:

( ) ( )

( ) { ( ) ( )}

( ) { ( ) ( )}

¬ = −
∧ =
∨ =

v ϕ v ϕ

v θ ϕ v θ v ϕ

v θ ϕ v θ v ϕ

1 ,

min , ,

max , .

(3)

We say that ϕ is a (Boolean) logical consequence of θ, written, ⊧θ ϕ if for all valuations v such that ( ) =v θ 1,
we have ( ) =v ϕ 1. In particular, we say that ϕ is a tautology if ⊧ ϕ, i.e. if ( ) =v ϕ 1, for all valuations v. The fact
that tautologies are true no matter what, makes them a strong candidate for the logical formalisation of the
certainly true event. Compositionality immediately holds that the certainly false event is the negation of
a tautology.

Note that as a consequence of compositionality, for any ��∈ϕ , we have ( ) { }∈v ϕ 0, 1 . This corresponds
to the (modelling) assumption to the effect that every event is either true or false in the model. However, an
agent may or may not know, at a particular time, which truth value is actually taken by ϕ. This temporary
ignorance, for which no Boolean formalisation is available, is crucial in understanding the relation between
the uncertainty resolution represented by (Boolean) logical semantics, and probability. For two cases are of
interest:
(1) ϕ is true and the agent knows it. Then the agent will be certain that ϕ is true. Similarly, if ϕ is false and

the agent knows it, then it will be certain that ϕ is false.
(2) The agent does not know whether ϕ is true or false. Then the agent is uncertain about it.

As a consequence, it is practically convenient and conceptually helpful to call “uncertainty” the state of mind of
an agent who is “ignorant” about an event’s actual truth value. In this spirit, we say that an agent who is
uncertain about an eventϕ quantifies their uncertainty about it by making a forecast. Hence, a forecast can be
thought of as a map Φ from �� to [ ]0, 1 , where ( ) = ∕ϕΦ 1 0 is interpreted as the forecast that ϕ will/will not
happen.

We are of course interested in rational forecasts, i.e. forecasts which can guide us successfully in decision
making and truth tracking. A variety of results have been put forward to the effect that a forecast meets the
demands of rationality if it is compatible with the Kolmogorov axioms for probability. We will go back to this
shortly. For the time being, note that forecasts need not be necessarily future oriented. Borel [22] illustrated
this by pointing out that it makes perfect sense to be uncertain about the outcome of a coin tossing after the
coin has actually been tossed, but before the relevant observation.
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1.2.2 Boolean probability functions

Against this background, an � -probability function P can be defined as a map P from �� to the real unit
interval such that
– P is normalised on contradictions and tautologies, i.e.

( ) ( )⊧ = ⊧ ¬ =ϕ P ϕ ϕ P ϕif , then 1; if , then 0, (4)

– P is monotone with respect to Boolean consequence, i.e.

( ) ( )⊧ ≤θ ϕ P θ P ϕif then , (5)

– P is finitely additive, i.e.

( ) ( ) ( ) ( )⊧ ¬ ∧ ∨ = +θ ϕ P θ ϕ P θ P ϕif then . (6)

The aforementioned requirements, which are standard in the field, see e.g. [23], provide the simplest,
albeit slightly redundant, logical formulation of the Kolmogorov axiomatisation. Logical valuations which
satisfy (3) clearly satisfy (4), (5), and (6), as noted by Kolmogorov himself [24, p. 2]. Note that the converse holds
as well when probability values are restricted to the binary set.

The fact that Boolean logic and probability functions can be rooted in a common syntax, in addition to the
just noted fact that extreme probability values are Boolean truth values, opens up a rich formal and conceptual
interplay between the theories of probability and logic, which is our present focus.

1.2.3 Degrees of probability vs degrees of truth

� -probability functions lack, in general, the property of compositionality which Boolean logic enjoys through (3),
and which can be generalised well beyond the Boolean case. In contrast to this, it is apparent from equations (2)
that the value of ( )∧P θ ϕ fails to be uniquely determined by those of ( )P θ and ( )P ϕ (and similarly for disjunc-
tions). This key difference between truth functions and probability functions marks a point of departure between
the semantics of logic and probability. This is not undesirable. To see it, suppose probability functions were
indeed compositional, in the sense of there being a function [ ] [ ] [ ]× →∧F : 0, 1 0, 1 0, 1 such that for all events θ

and ϕ, ( ) ( ( ) ( ))∧ = ∧P θ ϕ F P θ P ϕ, . Now take ( ) ( )= ¬ = ∕P θ P θ 1 2. Then by substitution of equal values, we would
obtain

( ) ( ( ) ( )) ( ( ) ( )) ( )∧ = = ¬ = ∧ ¬∧ ∧P θ θ F P θ P θ F P θ P θ P θ θ, , . (7)

By normalisation, we have that ( )∧¬ =P θ θ 0 a value which (7) would then force on ( )∧P θ θ which logic
forces here to equal 1/2.

The elementary logical setting of� -probability function here serves the important methodological role of
distinguishing two dimensions of uncertainty which can be taken to be largely independent. The former has to
do with so-called degrees of truth, as they are captured by a number of many-valued logics, to be recalled
below. The latter is to do with degrees of belief, as they are quantified by probability functions and their non-
additive extensions. This distinction, being the logical prerequisite for the coherent combination of the relative
formalisms, is particularly important in the field of uncertainty in AI where multiple sources of uncertainty
must be processed by the same system, see [4,25]. We will come back to it in Section 2.

1.3 Coherence

Armed with� -probability functions, we can ask a set of increasingly more practical questions, all contributing
to our opening KEY PROBLEM:
(1) What does it mean to make a rational forecast?
(2) Is the answer to the previous question unique?
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(3) How can uncertainty representation methods incorporate a variety of kinds of information?
(4) How does uncertain reasoning relate to decision-making?

As it will be apparent, both logical methods and techniques provide sharp analytic tools, and in some cases,
the very language in which the questions can be asked in a purposeful way.

So, what, if anything, guarantees that � -probability functions provide an adequate representation of an
agent’s uncertainty on a specific set of events of interest? More concisely and somewhat more generally: What
makes a forecast Φ (ir)rational? This interrogates us about the meaning of probability and the extent to which
this is captured or even reflected by its axiomatisation. Whilst the question of adequacy cannot be fully
addressed independently of the context in which the uncertainty quantification is being carried out, it turns
out that the logical notion of coherence is a good candidate to serve as foundation; as we now discuss.

In Chapter V of [26], a long thread of work is summed up in the observation that for probability to be
useful in physics, it must bear a physical meaning. Truesdell finds it in asymptotic phenomena, i.e. those
produced by a system which is composed of a very large number of elements (or a very long time series).
Asymptoticity allows one to ground accurate predictions about the system solely on the system’s average
behaviour. Pólya [27] puts forward a similar line of thought where probability is restricted to random mass
phenomena. Owing to the influence of Kinchin, this physical understanding of probability occupies centre
stage in the above-recalled Kolmogorov axiomatisation, which responds in part to Hilbert’s Sixth Problem.
In it, probability is clearly intended as a branch of physics:

6. Mathematical Treatment of the Axioms of Physics. The investigations on the foundations of geometry suggest the problem:
To treat in the same manner, by means of axioms, those physical sciences in which already today mathematics plays
an important part; in the first rank are the theory of probabilities and mechanics.

See [28] for a historical appraisal.
If events – the bearers of probability – describe properties of interest of asymptotic systems, then a variety

of results, which originate in Bernoulli’s Law of Large Numbers justify the mathematics of probability as a
device to predict, under specific circumstances, the future behaviour of such systems. This underpins the kind
of reasoning which is invoked in inferential statistics, when data are taken to be a random sample from
a hypothetical infinite population. Through this idea, asymptotic events, as we call them, together with the
meaning they imbue to probabilistic statements, permeate all of experimental science.

However, it has long been noted that many events of interest in uncertain reasoning and forecasting fall
short of asymptoticity. Either because the system has relatively few components or because it gives rise to
events which are essentially unique in the sense that repetitions of the same experiment are not guaranteed to
be independent. Recall that as a consequence of stochastic independence, it makes no (probabilistic) difference
whether one tosses a large number N of coins simultaneously or a single coin N times. But as soon as one
moves away from clear-cut cases where no reasonable physical interaction can be expected, arguing in favour
of the independence of the components of a stochastic system can be very tricky [29].

Kolmogorov is very clear about this:

Historically, the independence of experiments […] represents the very mathematical concept that has given the theory of
probability its peculiar stamp. We thus see, in the concept of independence, at least the germ of the peculiar type of problem in
probability theory. In this book […] we are interested mainly in the logical foundation for the specialised investigations of the
theory of probability. In consequence, one of the most important problems in the philosophy of the natural sciences is – in
addition to the well-known one regarding the essence of the concept of probability itself – to make precise the premisses
which would make it possible to regard any given real events as independent. This question, however is beyond the scope of
this book. ([24], p. 8–9.)

We note in passing that what Kolmogorov means by “logical foundation” is limited to exploring the mathe-
matical consequences of his axiomatisation.

Defending assumptions of independence is typically far from obvious in a wide class of forecasting
problems spanning the social sciences (e.g. in forecasting macroeconomic variables), the life sciences (e.g.
forecasting the individual patient’s chance of developing a particular disease), and everyday reasoning (e.g.
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forecasting the outcome of one’s own wedding). This is why the aforementioned are examples of events which
are only ever going to happen once. So, in contrast to asymptotic events, we shall call them singular events.

Forecasting singular events is central to science, technology, institutional, and personal decision-making,
because even in those cases in which an experiment can be “replicated” in principle, in practice, it may be
hard to be confident that they will be “close enough” repetitions of the same experiment. So it has long been
felt that a central problem in the theory of probability was to provide a principled way to dispense with the
mathematical comfort provided by asymptoticity.

de Finetti [30] sought to reconcile the central importance of singular events with the powerful mathe-
matics which originates with asymptotic events. This is where the logical notion of coherence enters perhaps
unexpectedly, but rather spectacularly, the stage. For as a preliminary step to achieve his grand goal, de Finetti
put forward in [8] the following justification for the probabilistic quantification of uncertainty, which has
become known as the Dutch Book Argument, see [31] for an accessible and recent overview. The central
assumption in de Finetti’s argument is that in a suitably defined betting problem, no rational person would
willingly put themselves in a position to gamble for a sure loss. Doing so, de Finetti points out, would amount to
obvious incoherence. Then he sets up a framework in which he shows that a necessary and sufficient condition
to avoid this kind of incoherence is to forecast according to the prescriptions of (4) and (6). Note that (5) is
easily derivable from them in standard probability logic, to which we come back later.

1.3.1 A logical formulation of coherence

Whilst de Finetti dubs coherence a logical constraint on forecasting, and indeed, the only one to qualify as
such, he joins the legion of those who limit themselves to naive set theory to account for the “logic of events,”
and moves on to his main concern: establishing the adequacy of normalisation and finite-additivity in defining
coherent forecasts. Following earlier intuitions by É Borel, he takes the probability of an event ϕ as the price

[ ]∈p 0, 1 that an individual is willing to pay in exchange for the quantity X which returns 1 if ϕ occurs, and
nothing otherwise. In this way, the identification of an individual’s (rational) forecasts can be analysed within
the traditional framework of fair betting, which goes back at least to Leibniz [32], see, e.g. [33] for a historical
appraisal.

In the past few decades, research in probability logic showed that logical formulations of de Finetti’s
notion of coherence is not only methodologically sound [34] but also mathematically insightful [35,36]. One
obvious aspect which emerges from putting coherence on a logical footing is the direct role of logical semantics
in the resolution of uncertainty. This, as we will point out in Section 2.2, guarantees that his Dutch Book method
can be extended far beyond the logic of Boolean events assumed by de Finetti, with important consequences
on the pressing problems of KKR in AI, as we will point out.

So let ϕ ϕ,…,
n1
be elements of �� and suppose a bookmaker (B) publishes a forecast, or as it sometimes

called in this context, book ↦ ↦ϕ a ϕ aΦ : ,…,
n n1 1 , where a a,…, n1 are reals in [ ]0, 1 . Then a gambler (G)

chooses real-valued stakes ρ ρ,…,
n1
and for =i n1,…, , pays ρ α

i i to B. When a (Boolean) valuation v resolves
all uncertainty about ϕ

i
, B gains ρ

i
, if ( ) =v ϕ 1

i
and 0 otherwise. In this very special case, no one can do any

better than forecasting according to Boolean logic. If some uncertainty remains unresolved, then the problem
is for B to choose the αi knowing that ρ

i
may be negative. In this latter case, G will be paying ρ α

i i, i.e. B will be
receiving−ρ α

i i (similarly, receiving ρ ϕ
i i

means paying−ρ α
i i). The resulting (abstract) gambling setting, which is

indeed more articulated than it is necessary to recall here – see [23,36,37] for full details –, is aimed at
providing an operational definition of what it means for bookmaker B to put forward a clearly irrational
forecast, that is one leading B to a sure loss. de Finetti suggests calling Φ coherent if there is no choice of stakes
ρ ρ,…,

n1
such that for every valuation v,

( ( ))∑ − <
=

ρ a v ϕ 0,

i

n

i i i

1

(8)

i.e. if no sure loss can arise from it.

Logic and probability  7



The left-hand side of (8) captures the bookmaker’s payoff relative to Φ, which of course depends on how
the uncertainty about the events in the book are resolved by the valuation v.

de Finetti’s Dutch Book theorem for � -probability functions then reads as follows, see [23].

Theorem 1. Let ��∈ϕ ϕ,…,
n1

and let ↦ϕ aΦ :
i i, =i n1,…, be a book. The followings are equivalent:

(1) Φ is a coherent forecast.
(2) There is an � -probability function, which agrees with Φ.

Coherence on singular events embodies probability with an apparently very different meaning, compared
to asymptotic events, which as recalled earlier leads to probability being a property of a given physical system.
It is, therefore, conceptually and mathematically very remarkable then that de Finetti was able, with his
celebrated Representation theorem, to recover physical probability from coherence plus the weakening of
independence known as exchangeability. This latter is introduced in [30] as a mild condition of symmetry
which a set of observations enjoys if one admits that the order with they come by is irrelevant. It can be easily
seen to be weaker than independence, which clearly admits no “learning” from the subsequent instances
observed. Thus, events which a probability function regards as exchangeable provide viable grounds for
inferring properties of the as-yet unseen instances of the hypothetical population which is producing the
observations. A special case of the representation result pins down the conditions under which a probability
function arising from an (infinite) exchangeable set of events is uniquely recovered as a mixture of indepen-
dent and identically distributed Bernoulli random variables. We shall come back to the logical formulation of
this result in Section 3, where it is seen to underpin one of the most exciting current developments in the field
of pure inductive logic.

2 Putting logic upfront

Contemporary presentations take probability theory to be firmly rooted in measure theory. For example,
David Williams puts it as follows:

You cannot avoid measure theory: an event in probability is a measurable set, a random variable is a measurable function on
the sample space, the expectation of a random variable is its integral with respect to the probability measure; and so on. [38]
(original emphases).

This perspective is mainstream in contemporary mathematics, and certainly its fecundity lends very strong
arguments to it. However, one contention of this note is that there is much to be gained from complementing it
with a logical perspective on probability, and more generally on the foundations and applications of fore-
casting.

At least since the seminal work by Gaifman [39], who elaborates on a conjecture of Horn and Tarski [40],
logicians have been interested in relating measurable sets with Boolean algebras. The problem originates with
von Neumann’s early work on σ -algebras dating back to the late 1930s, see [41] for a recent reconstruction of
this research thread. Since Boolean algebra is (classical) logic by another name, the question arises as to which
contribution does a logical foundation to probability may provide. The point is made as follows in [42]:

Since events are always described in some language they can be identified with the sentences that describe them and
the probability function can be regarded as an assignment of values to sentences. The extensive accumulated knowledge
concerning formal languages makes such a project feasible.

The remainder of this note is devoted to illustrating that such a project is not only feasible, but today appears
all the more promising.
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2.1 The set of elementary events

Suppose you recently become friends with an athlete and want to form your belief that she wins her next
match. Without any understanding of the sport you partition, the event space intoW L, and in the absence of
all knowledge you assign a win the same probability as a loss. However, you might have also partitioned the
event space into W L D, , also allowing for the possibilities of draws and in the absence of all knowledge you
assign all three outcomes the same probability, cf. [43]. Clearly, these two probability assignments are incon-
sistent. Some have argued that these inconsistencies spell doom to the project of applying logic to uncertain
inference (references omitted to protect the guilty).

It seems more useful to us to acknowledge that some dependence of probabilities on the choice of the
partition/domain is unavoidable [44]. The choice of the partition is not arbitrary but instead reflects the way
you perceive the problem, i.e. what are the elementary events? Now, that providing different answers to this
question leads to different probabilities should not come as a surprise to anyone. Instead, it drives home the
point that how we see the world (how we formalise the problem at hand), at least partly, determines our
probabilities, cf. [45].

While some dependence on the underlying domain is unavoidable, some dependencies are worse than
others. Intuitively, automorphisms of the underlying fixed set of elementary events map elementary events to
their doppelgangers. In the absence of all other knowledge, we have no logical reason to discriminate between
an elementary event and its doppelganger. Hence, both ought to be assigned the same probability. Note that
this argument crucially hinges on: (i) a fixed choice of an underlying domain reflecting the way you perceive
the world and (ii) that there is no other knowledge. If just one of these preconditions is not met, then the
argument becomes open to counter-examples. As Paris put it (Maxent is discussed in Section 3.3):

Most of us would surely prefer modes of reasoning which we could follow blindly without being required to make much effort,
ideally no effort at all. Unfortunately, Maxent is not such a paradigm; it requires us to understand the assumptions on which
it is predicated and be constantly mindful of abusing them. [46, p. 6193]

Strictly speaking, it is always next to impossible to determine an exhaustive set of elementary events; e.g. the
next game might be cancelled due to bad weather or a collapse of the league, annulled due to a bribed referee
or the athlete might die prior to the game. To cover all these cases, a catch-all hypothesis can be added to the
set of elementary events formalised as the complementary event of the union of all other elementary events,
cf. [47].

2.2 Beyond Boolean uncertainty resolution

Since Shannon’s foundation of information theory [48,49], it is a commonplace that information resolves
uncertainty. Yet in practice it may not be clear how this happens, and which principles uncertainty resolution
should follow. In informal scientific reasoning, it is often taken for granted that obtaining information means
crossing out those possibilities which are inconsistent with the information obtained and represented as, say,
sentences of the classical propositional calculus.

Building on this, de Finetti’s analysis of coherence helped pinning down the importance of uncertainty
resolution in the theory of probability, for any forecast needs to be evaluated against the realised values, as
made explicit by (8). In it, de Finetti (tacitly!) assumes that the uncertainty resolution mechanism is provided
by (the algebraic equivalent of) classical logic. This is convenient from the point of view of the calculus, but
there are many cases in which this is not necessarily an adequate modelling choice. In those contexts, which
are prominent in economics and AI, Shannon’s commonplace has no straightforward, or unique application.
For the way in which agents receive information is far from being unique. Good news is just waiting for us
round the corner, for distinct logical semantics can lead to distinct uncertainty resolution methods.
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2.2.1 Graded uncertainty resolution

Theorem 1 which, as anticipated, de Finetti had no inclination to cast logically, turns out to be remarkably
robust to the variation of the underlying logical semantics, and hence to the associated uncertainty resolution
method. A telling illustration of this point was put forward by Paris, who coined the expression Dutch Book
method in [5] to emphasise the intrinsic generality of de Finetti’s coherence-based argument. Paris pins the
following “parametric” result:

Theorem 2. A forecast Φ is coherent if and only if Φ is a (finite) convex combination of truth values [5].

That of Boolean semantics (3) is then just a special case in which a logical semantics is shown to yield,
via convexity, rational forecasting. Paris illustrates that by instantiating distinct notions of truth values, i.e.
distinct formalisations of uncertainty resolution, a number of variations on de Finetti’s notion of coherence
follow from Theorem 2. Among them is the partial uncertainty resolution which underpins Dempster-Shafer
belief functions, to which we will come back in Section 4.2.

Theorem 2 motivated further explorations of logic-based probability. Of particular note are those which
took place in the field of many-valued logics, especially fuelled by Mundici’s contributions [50,51]. From the
point of view of our KEY PROBLEM, casting the logical foundations of coherent forecasting on many-valued logics
allows us to bring to bear on uncertain reasoning a vast body of results and techniques from the theory MV-
algebras. Those are to Łukasiewicz real-valued logic what Boolean algebras are to classical propositional logic,
see [52,53] for classic presentations and [54] for more recent developments.

In addition to satisfying (3), Łukasiewicz real-valued logic admits further conjunction- and disjunction-like
connectives, * and ⊕, respectively, whose truth functions are defined as follows:

( ) { }∗ = + −mv θ ϕ x ymax 0, 1 , (9)

( ) { }⊕ = +mv θ ϕ x ymin 1, , (10)

where [ ]∈x y, 0, 1 and + and − are the ordinary operations on [ ]0, 1 . Going back to the Fréchet bounds (2) for
the probabilities of conjunctions and disjunctions, it is apparent that they arise from the combination of the
corresponding Boolean and Łukasiewicz truth functions. This suggests that an interesting question in applied
logic is to pin down the properties of those probability functions which are indeed compositional, see [55] for
recent work on this.

Using the (algebraic equivalent) of the uncertainty resolution granted by the semantics of Łukasiewicz
logic leads to the following rendering of de Finetti’s argument. Let as usual ��∈ϕ

i
be events of interests, for

which a bookmaker B writes a forecast [ ]↦ ∈ϕ aΦ : 0, 1
i i . Gambler G chooses stakes and pays bookmaker B,

for each ϕ
i
, ⋅σ ai , while G receives from B, ( )⋅σ mv ϕi i

, that is an amount proportional to the degree of truth
of ϕ

i
. A forecast ↦ϕ aΦ :

i i is MV-coherent if it is not the case that for every Łukasiewicz [ ]0, 1 -truth valu-
ation mv,

( ( ))∑ − <
=

σ α mv ϕ 0.

i

n

i i i

1

(11)

It is shown by [51] that a forecast on an MV-algebra M ↦ϕ aΦ :
j j is MV-coherent if and only if β extends to

a state, i.e. a finitely additive and normalised measure on M, see [54] for details on the theory of states.
In addition to advancing the logico-algebraic foundations of probability, which includes work on the

notion of strict coherence [37,56], the many-valued extension of the Dutch Book Method plays an important
role in bringing graded methods and techniques from mathematical fuzzy logic [57] to uncertainty in AI [4].

Related to fuzzy logic, but independent of coherence, is the “two-layered” approach which takes prob-
ability as a gradedmodal logic. The key idea put forward in [58,59], is to use Łukasiewicz real-valued semantics
to define ( )P ϕ as the degree to which the modal sentence “probablyϕ” is true. This approach has recently been
shown in [60] to be essentially equivalent to the probabilistic logic put forward in [61], and to which we will
come back in Section 4.
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2.2.2 Partial uncertainty resolution

A second noteworthy variation on the theme of Boolean uncertainty resolution adds interesting features to the
logical approach to our KEY PROBLEM, namely, relaxing the hypothesis to the effect that all uncertainty is fully
resolvable in de Finetti’s setup. Early contributions to this problem can be found in microeconomics, and in
particular in the work of Jaffray [62]. In logical terms, the idea here is that uncertainty is resolved through the
(classical) logical closure of the information possessed by an agent, rather than through a (Boolean) valuation
which decides all events of interest at once. Hence, if a given event ��∈ϕ is known to have occurred, the
only uncertainty that can be (logically resolved) pertains every (satisfiable) ��∈θ such that ⊧ϕ θ. Conver-
sely, there may be events of interest for which no uncertainty can be resolved at all.

This leads to the following generalisation of de Finetti’s method. Bookmaker B publishes ↦ϕ aΦ :
i i and

then G places stakes σ σ,…, k1 on ϕ ϕ,…,
k1
, i.e. at the prices written in Φ. Finally, G pays, for each ϕ

i
the amount

⋅σ αi i to B. Hence, B will gain the amount ( )⋅σ C ϕi ϕ i
, where ( ) =C ϕ 1ϕ i

if ⊧ϕ ϕ
i
, and ( ) =C ϕ 0ϕ i

otherwise. The
following variation on de Finetti’s definition of coherence, as captured by (8), then arises. Say that a forecast Φ

is coherent under partly resolved uncertainty if it is not the case that, for a given satisfiable ϕ,

( ( ))∑ − <
=

σ a C ϕ 0.

i

n

i i ϕ i

1

(12)

The early result obtained by Jaffray, and encompassed by Theorem 2, is to the effect that a book Φ under partly
resolving uncertainty is coherent if and only if it can be extended to a Dempster-Shafer belief function [63] on
the Boolean algebra generated by Φ. As we briefly recall in the next subsection, belief functions constitute
a prominent non-additive approach to the quantification of uncertainty in statistics and AI.

The graded and partly resolving uncertainty resolution generalisations of de Finetti’s method have been
shown to be compatible by [64], where Paris’s generalisation of Jaffrays’ framework is formalised in logico-
algebraic terms and is shown to yield a Dutch Book argument for coherent forecasts under both graded and
partly resolvable uncertainty. This pins down Dempster-Shafer belief functions on many-valued events, i.e.
events formalised in some many-valued logic, typically the Łukasiewicz real-valued one.

2.2.3 Connections with non-additive measures of uncertainty

As illustrated earlier in connection to the Fréchet inequalitites (2), probability intervals arise naturally if
we follow Boole in seeking for a general method to assign probabilities to arbitrary events based on known
probabilities. However, if forecasting is aimed at decision-making, the lack of a unique number summarising
all the relevant uncertainty can raise notable difficulties. Keynes, an expert on Boole’s Laws of Thought,
suggested that we should bite the bullet:

The sense in which I am using the term [“uncertain” knowledge] is that in which the prospect of a European war is uncertain
[…] About these matters there is no scientific basis on which to form any calculable probability whatever. We simply do not
know. Nevertheless, the necessity for action and for decision compels us as practical men to do our best to overlook this
awkward fact and to behave exactly as we should if we had behind us a good Benthamite calculation of a series of prospective
advantages and disadvantages, each multiplied by its appropriate probability, waiting to be summed [65].

Much recent work at the intersection of decision-theory, statistics and AI have been moving along the quest for
more principled solutions, as illustrated by the Jaffray framework. The common trait of this approach is to
relax the additivity of the uncertainty measure. How this arises is easily seen by recalling a simple problem
which has been made popular by Ellsberg [66]. Consider an urn with red, blue, and green balls. Suppose ψ

1

stands for “the ball is red.” Suppose further that the agent knows that the proportion of the red balls in the urn
is 1/3. This leads to the straightforward quantification of the agent’s uncertainty, ( ) = ∕P ψ 1 3. Note however that
the information available does not resolve enough uncertainty to allow the agent to come up with equally
straightforward quantifications for either blue (ψ

2
) or green (ψ

3
) balls – any value in [ ]∕0, 2 3 will be consistent

with the information available. In the absence of any further information, the probabilistic setting would lead
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to setting both ( )P ψ
2

and ( )P ψ
3

to 1/3. The problem with that, has been argued, is that 1/3 fails to represent
the information to the effect that the available information does not support 1/3 any more than the very many
choices in [ ]∕0, 2 3 . Dispensing with additivity, Shafer [63] belief functions have been argued to provide a sat-
isfaction quantification of uncertainty in cases of this sort, see [67] for a comprehensive overview. Belief
functions occupy a central place in the multifarious theories of imprecise probabilities [68]. Recent work
attempting at a logical analysis of non-additive measures of uncertainty include [69–72].

3 Inductive logic

This section is devoted to logical approaches for pinning down a unique probability of singular events in case
the available information does not uniquely determine a probability. Having discussed the foundations in
the previous two sections, we now focus on key notions and technical results.

3.1 Carnap

Rudolf Carnap is widely considered to be the founder of inductive logic. He distinguishes two concepts of
probability [73] and [74, Chapter 2] (see also [75])

Probability1 is a logical concept, a certain logical relation between two sentences (or, alternatively, between two propositions);
it is the same as the concept of degree of confirmation. […] On the other hand, probability2 is an empirical concept; it is
the relative frequency in the long run of one property with respect to another. [76, p. 72]

He mostly studied the former concept of probability, which is interpreted as a degree of confirmation, c. The
degree to which the evidence e confirms a hypothesis e is then ( )c h e, . In our notation, ( )c h e, is written as ( ∣ )P θ ϕ .
The ultimate goal of his approach is to find a probability function capturing the logical degree of confirmation.

To this end, Carnap considered a fixed first-order predicate language L containing finitely many unary
relation symbols (predicates), R R,…, q1 , and countably many constants, a a, ,…1 2 , as names for all possible
elements of an underlying domain with a countable (possibly finite) size. The language does not contain
relation symbols of higher arity, nor a symbol for equality and no function symbols. The goal is thus to
find a probability function capturing the degree of confirmation a sentence ϕ (the evidence) bestows on
another sentence θ (the hypothesis). This, again, can be seen to be a special case of our initial KEY PROBLEM.

In it, probabilities are constrained by a number of axioms such as:

Constant exchangeability (Ex)
The probability of a sentence does not change, if we replace the distinct constants appearing in it by any other set of distinct
constants of the language.
Johnson’s sufficientness postulate (JSP)
The probability of an unseen instance having certain properties given a sample of observations only depends on the size of
the sample and the number of instances in this sample having exactly these properties.

Ex means that the way we name elements does not matter, and it is clearly a logical way of casting de Finetti’s
notion of exchangeability recalled above. JSP says that ( )∣ ( )( )⋀+ =P α a α an i

n
h i1 1 i

only depends on n (the sample
size) and the number of hi such that =α αhi

, where all α are atoms of the language: conjunctions of the form
( ) = ± ∧ ± ∧ ±α a R a R a R a…k k k q k1 2 determining all properties of a constant ak .

From these two and further axioms, Carnap showed that for all languages L containing at least two unary
relation symbols ( ≥q 2) all probability functions defined over L satisfying this set of axioms are characterised
by a one-parameter family of probability functions, Pλ

L, with ≤ ≤ ∞λ0

( )∣ ( )
∣{ }∣⋀⎜ ⎟

⎛
⎝

⎞
⎠
=

= + ⋅
++

=

−
P α a α a

i h j λ

n λ

: 2
.λ

L
j n

i

n

h i

i
q

1

1
i

(13)
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The parameter λ can be interpreted as a measure of how quickly evidence causes probabilities to move away

from the uniform probability function. If = ∞λ , then ( ( )∣ ( ))
∣ { } ∣⋀ = =∞ + =

= +∞ ⋅
+ ∞

−
−

P α a α a 2
L

j n i
n

h i

i h j

n

q
1 1

: 2

i

i
q

for all

atoms αj: ∞P
L is the uniform distribution over L. That is, for all evidence sentences, one obtains the uniform

distribution. =λ 0 means that all constants look the same with probability one: ( )∣ ( )( ) =+P α a α a 1
L

j n h0 1 11
, if and

only if =j h1. That is, after observing some contingent fact about a constant a, ( )ϕ a , P
L

0 assigns probability one

that the same fact holds for all other constants, ( ( )∣ ( ))∀ =P xϕ x ϕ a 1
L

0 .
As we have seen in Section 2.1, dependence of probabilities on the underlying domain can cause serious

issues. Consider a sentence ϕ of the language L. Note that ϕ is also a sentence of all other languages ′L that
contain the relation symbols R R R, ,…, q1 2 and further unary relation symbols. Fortunately, Carnap’s Pλ

L do not
depend on the underlying unary language L: for all fixed λ, all languages L, all sentences ϕ of L and all such
languages ′L it holds that ( ) ( )= ′

P ϕ P ϕλ
L

λ

L [77, Corollary 16.2].
Carnap and others tried to determine a unique value of λ that would govern all scientific inference. No

such value was found. Today, we might interpret λ as an evidential entrenchment (or stubbornness) para-
meter, which represents the weight of evidence required to shift away from the prior probability distribution.
The particular value of λ or its range would then be determined by a particular application and could thus
vary from case to case. Not being able to determine a unique value for λ is from a modern perspective
an advantage rather than a fatal flaw. Historians and philosophers are still grappling with Carnap’s legacy
[45,78–82], see also the extensive [83].

3.2 Pure inductive logic

Pure inductive logic is the study of rational probability from a mathematical perspective continuing Carnap’s
work. The underlying first order predicate language is now allowed to contain relation symbols of arbitrary
arity [77]. Pure here refers to the convention that there is no interpretation of the non-logical symbols of the
underlying language. That is, probabilities are assigned in the absence of all knowledge. The aim “is to
investigate this process of assigning logical, as opposed to statistical, probabilities” [77, p. 4]. Extensions of
Pure Inductive Logic to include a symbol for equality [84] or function symbols [85] are still in their infancy.

The main methodology is to postulates axioms, which putatively capture (aspects of) rationality, and then
investigate the logical relationships between different sets of axioms. These axioms are normally motivated by
intuitions we have about symmetry, irrelevance, relevance, and independence.

If the language contains at least one relation symbol that is not unary, R say, then there are infinitely many
literals required to pin down all properties of a constant a: for a binary R, one would need to write⋀ ±=

∞
Raai i1 .

This expression however is not a sentence of a first-order language, which only allows for sentences of finite
length. Instead, one considers state descriptions α on n, which determine all properties of the first n constants:

( ) ( )
= ⋀ ⋀ ∧ ∧ ⋀ ±∈ = =

α Ra a… …R L i
n

i
n

i i1 R R1 arity 1 1 arity
. Gaifman’s seminal theorem shows that a probability function on

such a language is uniquely defined by the probabilities it assigns to the state descriptions [86]. In other words,
specifying probabilities for all state descriptions defines a unique probability function on the entire language.

Two constants a b, are said to be equivalent over a state description α, if and only if the sentence ∧ ≡α a b

is consistent (note that ∧ ≡α a b is not a sentence of the language). This induces an equivalence relation ( )S α

over the first n constants. The spectrum of α is then defined as the multiset of sizes of the equivalence relation
( )S α . In other words, constants a and b are equivalent, if and only if replacing all occurrences of a by b in α

yields a consistent sentence and replacing all occurrences of b by a in α yields a consistent sentence. We can
now order the equivalence classes by size, starting with the largest class first. The spectrum of α is then defined
as the vector of these sizes.

This notion of a spectrum is a key in important axioms of pure inductive logic:

Spectrum exchangeability (Sx)
If two state descriptions on n have the same spectrum, then they have the same probability.
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Language invariance with P (Li with P)
A probability function on language L satisfies (Li with P), if there is a family of probability functions �P , one for each language
� , such that =P PL and whenever L is a sublanguage of ′L , then PL and ′

P
L agree on all the sentences of all L.

Principle of induction (PI)
Let two state descriptions β γ, on +n 1 both entail a state description α on n. ( ∣ ) ( ∣ )≥P β α P γ α , if there are at least as many
constants equivalent to +an 1 over β as there are over γ.

We normally consider a special case of (Li with P); we are mainly interested in probability functions satisfying
(Sx). Thus, (Li with P) becomes (Li with Sx).

It is often hard to show directly that such (sets of) axioms have (un-)desirable consequences. A convenient
tool are representation theorems in the tradition of de Finetti [87] of the form: All probability functions P

satisfying a set of axioms have the following form
�

( )∫= →
→∈

→
P P μ pd

p

p , where the →
Pp are probability functions

generated via sampling coloured balls from an urn, and the integral is over Borel subsets of the space of
possible urns. Technically, one can often show that all →

Pp have some property and that taking convex mixtures
preserves this property.

For example, a probability functions satisfying (Sx) is t-heterogeneous, if and only if ( )∑ =→∞ ∈ P αlim 1n α SDn

t ,

where SDn
t is the set of state descriptions on n such that ( )S α has exactly t classes. A probability function

satisfying (Sx) is said to be homogeneous, if and only if ( )∑ =→∞ ∈ P αlim 0n α SDn

t for all �∈t .
de Finetti representation theorems have been provided for t-heterogeneous probability functions [77,

Theorem 31.11], homogeneous probability functions [77, Theorem 31.10], probability functions satisfying (Sx)
[77, Theorem 31.12], (Li with Sx) [77, Theorem 32.1], as well as probability functions on languages containing
only unary relation symbols satisfying (Ex) [77, Theorem 9.1]. Employing these results, it was proved that
(1) All homogeneous probability functions satisfy (Li with Sx) [77, Proposition 30.1].
(2) (Li with Sx) entails (PI) [77, Theorem 36.1].
(3) Hence, all homogeneous probability functions satisfy (PI).

It is not known whether all heterogeneous probability functions satisfy (PI), this conjecture is still open [77,
p. 269]. If this conjecture is true, then (Sx) entails (PI).

The status of Carnap’s continuum is not so clear for languages containing relation symbols of greater arity. If
L contains at least one non-unary relation symbol, then there are only two probability functions consistent with
straight-forward generalisation of (JSP) and (Ex): the uniform probability function and the natural analogue of c0

on such languages [88] and [89, Theorem 20]. A slightly different generalisation of (JSP) is the binary sufficient-
ness postulate (BSP). (BSP), (Ex), and the requirement to assign strictly positive probability to all quantifier-free
sentences jointly produce an analogue to Carnap’s continuum, which is parameterised by two(!) parameters [90].

After adding a symbol for equality to the underlying language, one can canonically generalise JSP and
obtain (JSP=). A probability function on such a language satisfies (JSP=) and (Ex), if and only if it is part of a one-
parameter family characterised by ≤ ≤ ∞λ0 . These probability functions are obtained from Carnap’s Pλ

L by,
in some sense, sending the number of relation symbols in L to infinity [77, Corollary 38.4]. Since these new
functions satisfy spectrum exchangeability on the predicate language enriched with a symbol for equality [77,
Lemma 38.2], they define a family of probability functions on the languages without equality that satisfy (Li
with Sx) [77, Theorem 37.1]. Unfortunately, our understanding of how these probability functions behave on
predicate languages with non-unary relation symbols is still a mystery [77, p. 289]. A more general class of
probability functions containing these probability functions has been studied in [91,92]; connections to Ewens
sampling are traced in [93].

Important open problems in pure inductive logic were recently surveyed in [94].

3.3 Inference processes

Consider an agent having acquired some information and subsequently rejected some probability functions as
incompatible with the available information. For example, the agent knows the current temperature is ∘20 C
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and hence does not want to assign a probability greater than 1% to the event that it will be snowing tomorrow.
Which remaining probability function(s) should the agent use for rational uncertain inference? This way of
formulating our KEY PROBLEM permits us to study inductive logic by investigating the choice of a probability
function from a set of exogenously given probability functions.

Formally, denote this set of remaining probability functions by � . Given � and no other information,
which probability function should an agent adopt? The key idea is to implement this choice via a function f .
This function f assigns every given set of probability functions a single probability function. It is natural to
require that the function f picks out a probability function in � , � �( ) ∈f .

The, maybe, most basic inference process on a finite set of elementary events { }= ω ωΩ , …, n1 is given
by the function f which maps � to its centre of mass (CM). This choice is, in some sense, an average choice.
While this choice seems reasonable at first glance, the probabilities picked out by f

CM
depend on the under-

lying domain in an unfortunate sense. Adding a further variable Z , one obtains an enlarged domain
{ }≔ ∧ ∧ ¬ ∧ ∧ ¬+ ω z ω z ω z ω zΩ , , …, ,n n1 1 . Supposing we have no information about Z denote by �1 the

set of probability functions on +Ω consistent with � . The highly desirable axiom of Language invariance
(LI) now demands that � �( ) ( )⇂ =f f

CM

1
Ω CM

. CM does not satisfy LI [95, p. 73]. For example, the CM probabilities
for rain tomorrow may change, if a variable for the bread prices in Venice in the year 3456 is included in
the underlying domain and we are, obviously, ignorant about these prices.

The obvious way to enforce language invariance in the spirit of CM is to add more andmore such variables
Z Z, ,…1 2 and define � �( ) ( )≔ ⇂∞

→∞f flimn
n n

CM CM Ω, where �( )f
n n

CM
is the centre of mass of �n. This construction

gives rise to the inference process ∞CM , which satisfies language invariance by construction [96, Theorem 5]:

�
�

�

( ) ( ( ))

( )

∑=∞

∈ ∈
∃ ∈ >

f P ωarg sup log .

P ω

Q Q ω

CM
Ω

: 0

Assuming that � is convex, �( )∞
f

CM
is the point in � that is, in some sense, closest to the uniform probability

function, =P . In case �∉=P , �( )∞
f

CM
is in the boundary of � . ∞CM is thus as far away from the original

motivation of CM to pick a probability that are as average or typical as possible [95, pp. 73–76].
The most studied inference process is MaxEnt arising from maximising Shannon entropy of a probability

function [48], ( )H P , on convex sets � :

�
� �

( ) ( ) ( ) ( ( ))∑= = − ⋅
∈ ∈ ∈

f H P P ω P ωarg sup arg sup log ,
ME

P P ω Ω

with the usual convention that ( )⋅ ≔0 log 0 0.
Vencovská and Paris provided axiomatic characterisations of ME inference in terms of the so-called

common sense principles of reasoning [95,97–101]. For example, probabilities of interest ought not to depend
on irrelevant information, should be invariant under renaming and should not change unless evidence to the
contrary is received. Importantly, ME is language invariant [95, Section 6]. See [102] for more discussion on CM
and MaxEnt. Furthermore, ME is invariant under automorphisms [46] in a broader sense than discussed in
Section 2.1.

Another type of axiomatisation harkens back to Boltzmann. In 1871, he showed that the micro-states of gas
molecules are most likely very close to a maximum entropy state. It is demonstrated in [103], that on very large
domains almost all probability functions consistent with certain types of constraints are very close to the
maximum entropy probability function.

The explication of the notion of information by Shannon entropy has given rise to a great number of
axiomatisations. A very good, although by now dated, overview is [104] delineating different types of axio-
matisations. Further classical key contributions were made in [105–108]. It is shown in [109] that the sort of
principles which characterise maximum entropy reasoning guarantee a very high degree of conformity in
the choices made by distinct agents facing essentially the same choice problem.

Further strands of research (i) characterise the maximum entropy function as a unique solution to mini-
max optimisation problems. These problems are motivated by decision theoretical or information theoretical
considerations [110–112]; (ii) study generalised notions of maximised entropy [110,113–116]; (iii) consider multi-
agent settings [117] and investigate probabilities of conditionals [118–120].
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3.4 Inference processes on infinite domains

Inference processes on infinite domains are rarely studied in generality [44]. Almost all these works focus on
a maximisation of Shannon Entropy, one exception is [121]. There are, however, three obstacles for defining
entropy maximisation on an infinite domain Ω by simply letting

( ) ( ) ( ( ))∫≔ − ⋅
∈

H P P ω P ω ωlog d .

ω Ω

(1) It is not clear which measure ωd to adopt. (2) There will be many cases with infinitely many probability
functions with infinite entropy and hence no maximal entropy function. (3) On countable domains Ω, there
exists no uniform probability function and hence no intuitive probability function to adopt in the absence of
evidence.

Two explications of the maximum entropy principle have been put forward, if the domain is given by an
underlying first-order language as it is in pure inductive logic. The first explication employs limits of max-
imum entropy functions on finite sublanguages [122,123]. Calculating these limits is an obvious way to con-
struct the probabilities for inference. There are unfortunately cases in which these limits are ill-defined [124],
and in other cases, the constructed probabilities do not satisfy the given premisses [125]. The second approach
employs a pre-order on the set of probability functions consistent with the evidence. This pre-order explicates
a greater-entropy-than relation. The probabilities for inference are provided by the maximal elements of the
pre-order. This second approach is less constructive but more widely applicable [126–130]. It has been con-
jectured that these two approaches agree where the former explication is well-defined; the conjecture has so-
far been verified only in a number of cases [131].

4 Applications to AI

Researchers in AI have long understood that they require tools other than classical logic to represent and
reason with information [132]. Approaches and applications for uncertain inference abound. A relatively dated
but still very useful introductory review to the use of probability logic in AI is available in [133]. Darwiche [134]
pins down the three roles which logic is expected to have in the coming of age of the new AI. The aforemen-
tioned handbook [4] provides a very useful overview of the current use of logic in the subfield of AI which goes
under the heading of KRR.

The growth of AI and AI applications has been spectacular over the last few decades. The field of AI, if one
may still speak of AI as a single field, has become so large, that we cannot event attempt to give an overview of
logic for uncertainty in AI. In the following, we focus on a few select areas, which have close connections to
the topics discussed earlier.

4.1 Bayesian networks

Bayesian networks are a graphical tool to represent (conditional) independences of probability functions. The
possibility to calculate some conditional probabilities by considering only (small) parts of the network and to
organise information graphically have contributed to their proliferation [135,136]. The possibility to effectively
compute probabilities make Bayesian networks well-suited for producing probabilities for forecasting.

Formally, Bayesian networks consist of a directed acyclic graph defined on a finite set of variables
{ }=V X X, …, n1 . A variable Y is a parent of a variable X , if and only if a directed edge points from Y to X .

The second part of the Bayesian network is the specification of (conditional) probabilities for all variables
∈X V relative to the set of the parents of X , { }= X XPar , …,X g1

X
and all the possible values the parent variables

can take:
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( ∣ )= = =P X x X x X x, …, .g g1 1
X X

To ensure that a probability function is defined it needs to hold that for all ∈X V and all possible values of
the parent variables X that ∣( )= ∑ = = =∈ P X x X x X x1 , …,x X g g1 1

X X
. The absence of directed edges in a Bayesian

network entails probabilistic independences of variables. This property facilitates the communication of
modelling assumptions, information stored in data and/or knowledge bases between authors, readers, (soft-
ware) engineers, and referees.

While worst-case complexity of inference in Bayesian networks is #P-complete [137] (“the answer to a #P-
complete problem is the number of solutions to some NP-complete problem” [136, p. 170]), there has been much
work on approximating the correct results and finding tractable sub-classes. Returning to themes of Section 3,
Bayesian networks have also found applications for MaxEnt reasoning [138–140]. More generally, learning
graphical models representing knowledge or databases has been of considerable interest [141].

Bayesian networks are also widely successful in modelling causal reasoning. Let us consider this example:
The road, R, could either be wet because of last night’s weather,W , or because a sprinkler was on last night, S .
So, =R wet , if and only if =W rain or =S on . The DAG structure of the Bayesian network is shown in Figure
1. Initially, last night’s weather and the sprinkler are independent. They become dependent once it is observed
that the road is wet: Knowing that it did not rain last night entails that the sprinkler was on. However,
intervening on the condition of the road by sending out a cleaning and drying machine, renders the road
variable R independent of the other two variables. In Pearl’s do calculus, intervention on variables (here R),
means that all edges in the DAG pointing to this variables are deleted [142]. Hence, W and S are independent
given ( )=Rdo dry . Summarising,W and S are initially independent, dependent (correlated) after observing R

but independent after intervening on R.
Finally, not only might the relationships between variables be non-deterministic one may also be uncer-

tain about the underlying causal structure. The underlying structure may be partially learnt from experts
[143], data [144,145], which has certain theoretical limits [146], or be expressed as Bayesian probabilities
attaching to causal Bayesian networks [147]. In the latter case, evidence concerning the causal structure is
incorporated via Bayesian/Jeffrey updating, for more references on Jeffrey updating see [148].

Albeit less popular, further graphical models for uncertain reasoning have found applications. Credal nets
also employ directed acyclic graphs but, unlike Bayesian networks, the conditional independences apply to
a set of probability functions [149,150]. Markov nets instead employ undirected graphs and a single probab-
ility function. See [151] for an overview of further graphical models and an overview of applications.

4.2 Logics for reasoning about probabilities

As we laid out earlier, probability functions assigning sentences of a logical language some probability in the
unit interval [ ]0, 1 are natural extensions classical valuations, which assign sentences values in a set of size two
{ }false, true or equivalently in the set { }0, 1 . Such an approach does not permit the comparison or a Boolean
combination of probability statements to be formalised within the logical language. Statements of the form

( ) ( )<P ϕ P θ and ( ) ( )+ =P ϕ P θ 0.3 have to be evaluated at a meta-level or be encoded by using sets of
probabilities, see Section 2.2. Another approach to formalise the remaining uncertainty is to include probabil-
istic operators in the language.

Figure 1: Directed acyclic graph of the Bayesian network for the sprinkler example.
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There is no unique canonical approach that incorporates such statements as part of the logic, because
there are number of choices to be made, which do not have an obviously correct option. One may chose
(1) a logical language (propositional, first-order logic, second-order logic, fragments thereof, etc.),
(2) a logic (classical, modal [152,153], many-valued, temporal, etc.),
(3) a representation of uncertainty (probabilistic, imprecise probabilities, ranking functions, partially ordered,

containing infinitesimals, etc.),
(4) a set of operators for combining uncertainties (comparisons of uncertainties, uncertainties equalling some

external value(s), combination of uncertainties (e.g. linear combinations ( ) ( )+ ⋅ =P ϕ P θ2 0.3)),
(5) whether knowledge and uncertainty’s fundamental representation is conditional ([35,119,120,154]).

As mentioned earlier, now classical works in this area include [61,155], see also [156] for a comprehensive
overview of this approach. These works study classical properties of such logics such as decidability, computa-
tional complexities, soundness, and completeness. A group in Belgrade has been active in this area, e.g. [19,157].

4.3 The future of logic and probability for AI

Every formal model of learning, including machine learning techniques and neural network models, must
make some assumptions concerning underlying regularities of the domain of interest. For, if the world is
without regularities, then all previous observations have no bearing on (predictions of) the future. The
necessity of bias supplied by humans for successful prediction is accepted in modern-day AI and was antici-
pated in the philosophy of science by decades:

In constructing an induction machine we, the architects of the machine, must decide a priori what constitutes its “world”;
what things are to be taken as similar or equal; and what kind of “laws” we wish the machine to be able to “discover” in its
“world.” In other words we must build into the machine a framework determining what is relevant or interesting in its world:
the machine will have its “inborn” selection principles. The problems of similarity will have been solved for it by its makers
who thus have interpreted the “world” for the machine. [158, p. 48]

Logics, such as inductive logics, can help by (i) providing biases for learning, (ii) providing means for analysing
biases in successful learning systems, and (iii) elucidate black box prediction systems (such as deep neural
networks) by making predictions more transparent and explainable. Graphical tools, such as Bayesian net-
works, can also help expert users (e.g. professionals) explain decisions and decision procedures of AI systems
to lay people [159].

Our ability to create, store and manipulate ever larger data sets has led some to believe that Big Data can
be the solution to many of our inference problems by letting the data speak for themselves. The success of data-
driven methods has indeed been spectacular. If this hypothesis were widely true, then there would be no more
need for (logically) approaches to uncertainty; data crunching would suffice.

However, data alone is never enough – not even for asymptotic events:

The data cannot [emphasis original] speak for themselves; and they never have, in any real problem of inference.
For example, Fisher advocated the method of maximum likelihood for estimating a parameter; in a sense, this is the value that
is indicated most strongly by the data alone. But that takes note of only one of the factors that probability theory (and common
sense) requires. For, if we do not supplement the maximum likelihood method with some prior information about which
hypotheses we shall consider reasonable, then it will always lead us inexorably to favor the “sure thing” hypothesis HS ,
according to which every tiny detail of the data was inevitable; nothing else could possibly have happened. For the data
always have a much higher probability (namely ( ∣ ) =P D H 1S ), on HS than on any other hypothesis; HS is always the maximum
likelihood solution over the class of all hypotheses. Only our extremely low prior probability for HS can justify our rejecting it.
[1, p. 195]

For more recent arguments about the untenability of purely data-driven forecasting, see [160,161].
Despite initial appearances to the contrary, logical approaches to uncertain reasoning far from being out-

of-date are rather gaining new actuality in the face of fast developing machine learning and AI, more widely as
a foundational approach underpinning and support cutting-edge research.
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5 Conclusion

In this note, we highlighted connections between logic and probability as underpinnings for reasoning under
uncertainty. Two main strands of active and fruitful research have been illustrated: pure research and
advances in practical applications. It seems appropriate to conclude with a forecast on how they will develop
in the medium term.

On the pure side, we can only expect probability theory to advance the current borders of mathematical
logic. One further area which has been investigated with some success in this spirit is to do with the existence
of 0-1-laws in several logics. Informally, a logic has a 0-1-law if for each sentence θ of the logic, the asymptotic
probability of θ is either 0 or one. 0-1-laws have now been established for a number of logics [127,162–164].

The rapid pace with which AI in general and machine learning have been advancing in the past decade
shows no signs of slowing down. But we can now take for granted that big data will not be the silver bullet
giving us the solution to all our inference problems – we still require explanations for opaque black box
predictions, which can be supplied by combining logic and probability [159,165]. We also need to provide
an inductive bias to make learning possible (Section 4.3).

We think that much has been gained from intertwining logic and probability, and forecast that this will
remain true in the future.
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