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Abstract: We consider the semilinear elliptic equations

{

−∆u+ V (x)u = (Iα ∗ |u|p) |u|p−2u+ λu for x ∈ RN ,

u(x) → 0 as |x| → ∞,

where Iα is a Riesz potential, p ∈ (N+α
N

, N+α
N−2

), N ≥ 3, and V is continuous periodic.
We assume that 0 lies in the spectral gap (a, b) of −∆+V . We prove the existence of
infinitely many geometrically distinct solutions in H1(RN ) for each λ ∈ (a, b), which
bifurcate from b if N+α

N
< p < 1 + 2+α

N
. Moreover, b is the unique gap-bifurcation

point (from zero) in [a, b]. When λ = a, we find infinitely many geometrically distinct
solutions in H2

loc(R
N ). Final remarks are given about the eventual occurrence of a

bifurcation from infinity in λ = a.

Keywords: Choquard equation; Schrödinger-Newton equation; Bifurcation into
spectral gaps.
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1 Introduction

The purpose of this paper is to study bifurcation into spectral gaps for a class of nonlinear
and nonlocal Schrödinger equations with periodic potential. More precisley, let us consider the
following equation

{

−∆u+ V (x)u = (Iα ∗ |u|p) |u|p−2u+ λu for x ∈ RN ,

u(x) → 0 as |x| → ∞,
(1.1)

where N ≥ 3, p ∈ [2, N+α
N−2 ), Iα (α ∈ (0, N)) is the Riesz potential defined for every x ∈ RN \ {0}

by

Iα(x) = Aα|x|α−N , where Aα =
Γ(N−α

2 )

2απ
N
2 Γ(α2 )

and Γ is the Gamma function

and V (x) is the external potential, assumed to be, in our case, continuous periodic. We recall
that the choice of the constant Aα ensures the semigroup property

Iα ∗ Iβ = Iα+β, ∀α, β > 0 such that α+ β < N. (1.2)

∗E-mail: luohuxiao@zjnu.edu.cn (H. Luo), bernhard.ruf@unimi.it (B. Ruf), cristina.tarsi@unimi.it (C.
Tarsi)
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In the relevant physical case N = 3, α = N − 2, p = 2 equation (1.1) takes its origin from the so
called Choquard-Pekar equation

−∆u+ u =
(

I2 ∗ |u|2
)

u for x ∈ R3

which appears in various contexts, modeling the quantum polaron at rest [15, 32] and then used
by Choquard in 1975, as pointed out by Lieb [23], to study steady states of the one-component
plasma approximation in the Hartree–Fock theory. The Choquard-Pekar equation is also known
as the Schrödinger-Newton equation in models coupling the Schrödinger equation of quantum
physics together with nonrelativistic Newtonian gravity. Lieb in [23] proved the existence and
uniqueness of positive solutions to the Choquard equation by using rearrangement techniques.
Multiplicity results were then obtained by Lions [24] by means of a variational approach. A
broad literature has been recently developed and we refer to [9, 10, 13, 44] for an up to date,
though non exhaustive bibliography. We also refer to [28] and references therein for an extensive
survey on the topic.

Whereas Choquard type problems have been widely investigated in the nonperiodic case, the
case of periodic (nonconstant) potentials V (x) is much less studied: in this case the compactness
issue is more difficult to handle due to the invariance of the equation under the action of the
noncompact group induced by translation in the coordinate directions. It is well known (see,
e.g., [34]) that the spectrum of the self-adjoint operator −∆+V in L2(RN ) is purely continuous
and may contain gaps, i.e. open intervals free of spectrum.

The corresponding local problem has been widely investigated, both for its physical appli-
cations and its mathematical interest. In the case λ = 0, the location of 0 in the spectrum of
−∆+ V determines the geometry of the associated energy functional. There are many results
available when inf σ(−∆+V ) > 0 (the positive definite case) or when 0 lies in a gap of the spec-
trum (the strongly indefinite case), see, for example, [11, 30, 3, 8, 42] or the monograph [5] and
references therein. An interesting situation occurs when 0 coincides with one of the borderline
points of the spectral gap. As we will see later, this case is much more difficult to be approached,
and several questions seem not yet solved. We refer to [6] and further generalizations proved in
[46, 43, 25, 36, 4], which are, to the best of our knowledge, the only papers dealing with this
case.
The parameter dependent situation λ 6= 0 can be discussed replacing the potential V (x) by
V (x) − λ. In this context, an interesting physical and mathematical issue is establishing the
existence of branches of solutions uλ converging towards the trivial solution as λ approaches
some point λ0 of the spectrum, a so called bifurcation point. An intriguing situation is the so
called gap-bifurcation, that is, bifurcation occurring at boundary points of the spectral gaps,
when V (x) is a periodic potential: the existence of nontrivial solutions reveals the presence of
bound states whose “energy” λ ∈ R lies in gaps of the spectrum of the Schrödinger operator
−∆ + V . These bound states are created by the nonlinear perturbation. A first systematic
approach was obtained in [20, 17], see also [38, 39] and references therein.
In particular, in [17], Heinz, Küpper and Stuart applied some of their previous abstract results
on bifurcation theory (see references in the paper) to study the following model problem

−∆u+ V (x)u = r(x)|u|σu+ λu, in RN ,

where r ∈ L∞(RN ) and nonnegative a.e. on RN , with periodic continuous (nonconstant) po-
tential V (x). They proved that, if 0 < σ < 4

N−2 (σ > 0 for N = 2) and [a, b] is a spectral
gap for the Schrödinger operator −∆+ V , then there is a nontrivial solution for any λ ∈ (a, b).
Furthermore, if r(x) is constant and 0 < σ < 4/N , they proved that b is a gap-bifurcation (from
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zero) point. In [21, 40] it is also shown that no bifurcation from 0 can occur in a, and that the
condition 0 < σ < 4/N is necessary for the displayed equation.

What is known in the nonlocal case, that is, for the Choquard equation (1.1)? The literature
is much less developed. As in the local framework, in the particular case λ = 0 the geometry of
the functional depends on the location of 0 in the spectrum of −∆+ V , and, consequently, the
suitable approach.
When V > 0 we are in the positive definite case, where the spectrum lies in (0,+∞): Acker-
mann [1] obtained a nontrivial solution via Mountain Pass Theorem as well as infinitely many
geometrically distinct solutions, in the case of odd nonlinearities.
When the potential V changes sign we are in the strongly indefinite case, and the spectrum con-
sists of a union of closed intervals. If λ = 0 is in a gap of the (essential) spectrum, the existence
of at least one nontrivial solution has been proved by Buffoni, Jeanjean and Stuart in [8], for
the physical case N = 3, α = N − 2, p = 2, and by Ackermann [1], always in dimension N = 3
but for a more general convolution kernel W (x) and nonlinearity f(u). The higher dimensional
case has been recently approached by Qin, Rădulescu and Tang [33], who showed the existence
of ground state solutions without assuming the Ambrosetti-Rabinowitz type condition for f(u).
The parameter dependent case and the related bifurcation analysis, instead, seem not to have
been considered in literature. The first goal of the present paper is to address this issue. More
precisely, if V is a potential satisfying the following conditions:

(V1) V ∈ C(RN) is 1−periodic in x1, ...xN ;

(V2) 0 lies in a gap of the spectrum of the Schrödinger operator −∆+ V , that is

sup[σ(−∆+ V ) ∩ (−∞, 0)] := a < 0 < b := inf[σ(−∆+ V ) ∩ (0,∞)],

we will prove

(1) the existence of infinitely many geometrically distinct solutions uλ ∈ H1(RN ) for any
λ ∈ (a, b);

(2) the convergence towards 0 of these solutions uλ, as λ → b−, for some values of p.

Before giving the precise statements, we need to introduce the following definition.

Definition 1.1. Suppose that u1, u2 solve (1.1); if O(u1) 6= O(u2), we say that u1, u2 are
geometrically distinct, where, O(u) denotes the orbit of u0 with respect to the action of ZN :

O(u0) := {τku0 : k ∈ ZN}, (τku)(x) := u(x+ k)

We are now able to introduce our first result.

Theorem 1.2. Let N ≥ 3, α ∈ (0, N), p ∈ (N+α
N , N+α

N−2 ) and (V1) − (V2) hold. Then, for each

λ ∈ (a, b), there exist infinitely many geometrically distinct solutions uλ ∈ H1(RN ) of (1.1).

The restrictions on the parameter p follow from the variational approach: it guarantees
differentiability properties of the energy functional. It is remarkable the appearance, in the class
of the Choquard type problems, of a lower nonlinear restriction.

The next result concerns the bifurcation from the right boundary point b of the spectral gap,
where we assume the following
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Definition 1.3. A point λ ∈ R is called a gap-bifurcation (from zero) point for (1.1) if there
exists a sequence {(λn, un)} of solutions of (1.1) such that λn ∈ ρ(−∆ + V ), λn → λ and
‖un‖H1(RN ) → 0 as n → ∞, where ρ(−∆+V ) = R\σ(−∆+V ) is the resolvent set for −∆+V .

Theorem 1.4. Let N ≥ 3, α ∈ (0, N), p ∈ (N+α
N , N+α

N−2 ) and (V1)−(V2) hold. For any λ ∈ (a, b),
let uλ be a solution of equation (1.1) obtained in Theorem 1.2, then

Φλ(uλ) = O((b− λ)
2p−Np+N+α

2p−2 ) → 0 as λ → b−

Moreover, if N+α
N < p < N+α+2

N , then

‖uλ‖H1 = O((b− λ)
2−Np+N+α

4p−4 ) → 0 as λ → b−.

Moreover, b is the only possible gap-bifurcation (from zero) point for (1.1) in [a, b].

The proofs are based on variational methods applied to the functional

Φλ(u) =
1

2
Qλ(u)−

1

2p
J(u), (1.3)

where

J(u) :=

∫

RN

(Iα ∗ |u|p) |u|pdx (1.4)

The standard assumptions α ∈ (0, N) and N+α
N < p < N+α

N−2 imply that Φλ : H1(RN ) → R

is of class C1 and that critical points of Φλ are weak solutions of (1.1). By assumption (V2),
we have H1 = E−

λ ⊕ E+
λ corresponding to the decomposition of the spectrum: we will apply a

generalized linking theorem due to Kryszewski-Szulkin, inspired by [6, 1]. We emphasize that
some of the results stated in the above theorems could also be obtained by applying abstract
results in bifurcation theory (for example, from the results stated in Section 5 of [39]). However,
verifying the validity of all the assumptions, in particular the so-called condition T (δ) is not
trivial, and it would require the proofs of some intermediate lemmas. Hence, we prefer to give
here a self-contained approach, referring to the cited papers for further generalizations.

We then address the interesting case λ = a, that is we study the Choquard-Schrödinger
equation in a right boundary point of the spectrum of the Schrödinger operator. As in the
local framework, this location of λ causes a loss of completeness in the decomposition of the
domain of the Schrödinger operator. Inspired by Bartsch and Ding [6], we find infinitely many
geometrically distinct solutions for (1.1) which lie in H2

loc(R
N ) but not necessarily in H1(RN )

(see Theorem 1.5): the presence of the nonlocal term adds an extra difficulty in the choice of a
suitable space framework and in the analysis of (PS) sequences. The results are stated in the
following

Theorem 1.5. Let N ≥ 3, α ∈ (0, N), p ∈ (N+α
N , N+α

N−2 ) and (V1) − (V2) hold. For λ = a,

(1.1) possess a nontrivial weak solution u ∈ H2
loc(R

N ). Moreover, there exist infinitely many
geometrically distinct solutions for (1.1) in H2

loc(R
N ).

The paper is organized as follows. In Section 2, we introduce the variational framework and
the main variational tools. In Section 3 we address the existence result when λ ∈ (a, b), proving
Theorem 1.2. In Section 4, we prove the bifurcation from zero at the right boundary point b,
Theorem 1.4. In Section 5 we consider the delicate case λ = a, proving Theorem 1.5.

As stated in Theorem 1.4, b is the only possible gap-bifurcation point for 0 in [a, b]: what
about the branches of solutions uλ, as λ → a+? This is an intriguing question, which seems still
open also in the local case. Some perspectives will be proposed in the final Section 6.

We make use of the following notation:
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• | · |p denotes the usual norm of the space Lp(RN ).

• C,Ci, i = 1, 2, · · ·, will be repeatedly used to denote various positive constants whose exact
values are irrelevant.

• BR(x0) denotes the ball {x ∈ RN : |x− x0| ≤ R}.

• o(1) denotes the infinitesimal as n → +∞.

• For the sake of simplicity, integrals over the whole RN will be often written
∫

.

• For the sake of simplicity, we often omit the constant Aα in Iα.

2 The functional framework

In this section we present the functional settings and regularity properties of the functionals
defined in (1.3), (1.4). We start recalling a classical inequality which turns out to be a main
tool in our arguments.

Proposition 2.1. [22] (Hardy–Littlewood–Sobolev inequality.) Let t, r > 1 and 0 < α < N with
1
t +

1
r = 1+ α

N , f ∈ Lt(RN ) and h ∈ Lr(RN ). There exists a constant C(N,α, t, r), independent
of f, h, such that

|Iα ∗ h|t′ ≤ C(N,α, t, r)|h|r (2.1)

and
∫

(Iα ∗ h) f dx ≤ C(N,α, t, r)|f |t|h|r, (2.2)

where | · |s denotes the Ls(RN )-norm for s ∈ [1,∞], and t′ denotes the conjugate exponent such
that 1

t′ +
1
t = 1.

Let us now prove some properties of the Riesz potential Iα.

Proposition 2.2. Let α ∈ (0, N) and f, g ∈ L
2N

N+α (RN ). Then

∫

(Iα ∗ f)gdx =

∫

(

Iα
2
∗ f
)(

Iα
2
∗ g
)

dx. (2.3)

Moreover,
∫

(Iα ∗ f)fdx =

∫

(

Iα
2
∗ f
)2

dx ≥ 0 (2.4)

and
∫

(Iα ∗ f)gdx ≤
[
∫

(Iα ∗ f)fdx
]

1

2
[
∫

(Iα ∗ g)gdx
]

1

2

. (2.5)

Proof. By the semigroup property of the Riesz potential, (1.2), we have

∫

(Iα ∗ f)gdx =

∫

(Iα
2
∗ Iα

2
∗ f)gdx =

∫ ∫ ∫

Iα
2
(y)Iα

2
(x− z − y)f(z)g(x)dxdydz.

Let z = x′ − y, since Iα
2
is even, we get

∫

(Iα ∗ f)gdx =

∫ ∫ ∫

Iα
2
(y)Iα

2
(x′ − x)f(x′ − y)g(x)dxdydx′ =

∫

(Iα
2
∗ f)(Iα

2
∗ g)dx.
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Thus (2.3) holds. (2.4) is obviously from (2.3).
Using (2.3) and the Hölder inequality, we obtain

∫

(Iα ∗ f)gdx =

∫

(

Iα
2
∗ f
)(

Iα
2
∗ g
)

dx

≤
[
∫

(

Iα
2
∗ f
)2

dx

]
1

2
[
∫

(

Iα
2
∗ g
)2

dx

]
1

2

=

[
∫

(Iα ∗ f)fdx
]

1

2
[
∫

(Iα ∗ g)gdx
]

1

2

.

This completes the proof. �

Using the semigoup property of the Riesz potential, the nonlocal term (1.4) in the energy
functional can be written also as

J(u) :=

∫

(Iα ∗ |u|p) |u|pdx =

∫

(

Iα
2
∗ |u|p

)2
dx.

Our aim is now to define a natural energy space associated with the energy functional Φλ.
As noted in the Introduction, the choice will depend on the location of λ with respect to the
spectrum of the Schrödinger operator. In what follows we state some properties of the nonlocal
term J(u), postponing to specific subsections the definitions and descriptions of the functional
frameworks. As part of the energy functional, the analysis of J(u) has been performed in several
papers approaching variationally Choquard type equations. We mainly refer to the survey [28],
and to [26].

It is easy to observe that J is well defined on H1(RN ), for any N+α
N ≤ p ≤ N+α

N−2 : combining
the Hardy–Littlewood–Sobolev inequality (2.2) and the Sobolev inequality yields

J(u) ≤ C|u|2p2Np
N+α

≤ C‖u‖2p
H1 . (2.6)

Furthermore, in [26] the authors noted that J(u) is naturally settled in the so called Coulomb
spaces Qα,p, defined as the vector spaces of measurable functions u : RN → R such that J(u) is
finite. They also proved that the quantity

‖u‖Qα,p :=

(
∫

RN

∣

∣

∣
Iα

2
∗ |u|p

∣

∣

∣

2
dx

)
1

2p

(2.7)

defines a norm, which will guarantees the convexity of the functional J . Hence, inequality

(2.6) corresponds to the embedding H1 ⊂ L
2Np
N+α ⊂ Qα,p. The paper [26] then introduces and

carefully studies the Couloumb-Sobolev spaces and regularity properties of J in this framework,
which differs from ours. Therefore, for the sake of completeness we state and prove some useful
properties of J in H1, even if some of them could be deduced by known results in literature.

Lemma 2.1. The functional J : H1(RN ) 7→ R satisfies the following properties:

(i) J is continuous and weakly sequentially lower semi-continuous.

(ii) For all u, v ∈ H1(RN ), there is C > 0 such that

〈J ′(u), v〉 ≤ J(u)
1− 1

2pJ(v)
1

2p ≤ C‖u‖2p−1
H1 ‖v‖H1 . (2.8)

Moreover, J ′ is weakly sequentially continuous.
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(iii) J is even and convex, and for all u,w ∈ H1(RN )

J(u+ w) ≥ 21−2pJ(u)− J(w).

Proof. (i) By (2.6), J is is well defined. Let un → u in H1(RN ), then by the Hardy–Littlewood–
Sobolev inequality and the elementary inequality

∣

∣|a|p − |b|p
∣

∣ ≤ |a− b|p,
|J(un)− J(u)| ≤ |un − u| 2Np

N+α
|un| 2Np

N+α
+ |un − u| 2Np

N+α
|u| 2Np

N+α
→ 0,

as n → ∞. Thus J is continuous.
Now let un ⇀ u in H1(RN ). We can assume (up to a subsequence) that un → u a.e. in RN .

By Fatou’s Lemma,

J(u) =

∫ ∫

lim
n→∞

|un(x)|p|un(y)|p
|x− y|N−α

dxdy ≤ lim inf
n→∞

J(un)

Thus J is weakly sequentially lower semi-continuous.
(ii) For any u, v ∈ H1(RN )

〈J ′(u), v〉 = 2p

∫

(Iα ∗ |u|p) |u|p−2uvdx

By (2.3), (2.4) and Hölder inequality we have

∣

∣

∣

∣

∫

(Iα ∗ |u|p)|u|p−2uvdx

∣

∣

∣

∣

≤
(
∫

(Iα ∗ |u|p)|u|pdx
)

1

2
(
∫

∣

∣

∣
Iα

2
∗ (|u|p−2uv)

∣

∣

∣

2
dx

)
1

2

≤
(
∫

(Iα ∗ |u|p)|u|pdx
)

1

2
(
∫

∣

∣

∣
Iα

2
∗ |u|p

∣

∣

∣

2− 2

p ·
∣

∣

∣
Iα

2
∗ |v|p

∣

∣

∣

2

p

)

1

2

≤
(
∫

(Iα ∗ |u|p)|u|pdx
)

1

2
[
∫

∣

∣

∣
Iα

2
∗ |u|p

∣

∣

∣

2
dx

]
1

2
− 1

2p
[
∫

∣

∣

∣
Iα

2
∗ |v|p

∣

∣

∣

2
dx

]
1

2p

=

(
∫

(Iα ∗ |u|p)|u|pdx
)

1

2
[
∫

(Iα ∗ |u|p)|u|pdx
]

1

2
− 1

2p
[
∫

(Iα ∗ |v|p)|v|pdx
]

1

2p

≤ [J(u)]
1− 1

2p [J(v)]
1

2p (2.9)

Hence, J ′ is well defined. Let us now prove that J ′ is weakly sequentially continuous. Let us
first show that if un ⇀ u in H1(RN ), then

∫

(Iα ∗ |un|p)|un|p−2unvdx−
∫

(Iα ∗ |un|p)|u|p−2uvdx → 0 as n → ∞ (2.10)

Indeed, since v ∈ L
2Np
N+α (RN ), for any ε > 0 there is R > 0 such that |v|

L
2Np
N+α (RN\BR)

≤ ε. Then,

by (2.5)

∣

∣

∣

∣

∫

(Iα ∗ |un|p)
(

|un|p−2un − |u|p−2u
)

vχRN\BR
dx

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

(Iα ∗ |un|p)|un|pdx
∣

∣

∣

∣

1/2

·

·
∣

∣

∣

∣

∫

(Iα ∗
(

|un|p−2un − |u|p−2u
)

vχRN\BR
)
(

|un|p−2un − |u|p−2u
)

vχRN\BR
dx

∣

∣

∣

∣

1/2

≤ C|un|1/22Np
N+α

·
∣

∣

∣

∣

∫

(Iα ∗
(

|un|p−2un − |u|p−2u
)

vχRN\BR
)
(

|un|p−2un − |u|p−2u
)

vχRN\BR
dx

∣

∣

∣

∣

1/2

(2.11)
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The estimate of the right hand side splits in two different cases - note that {un} is bounded in

L
2Np
N+α (RN ):

• If p ≥ 2, then we apply the following inequality, which holds for any a, b ∈ R:

∣

∣|a|p−2a− |b|p−2b
∣

∣ ≤ Cp(|a| + |b|)p−2|a− b|

which yields

∣

∣

∣

∣

∫

(Iα ∗
(

|un|p−2un − |u|p−2u
)

vχRN\BR
)
(

|un|p−2un − |u|p−2u
)

vχRN\BR
dx

∣

∣

∣

∣

1/2

≤ C
∣

∣

∣

(

|un|p−2un − |u|p−2u
)

vχRN\BR

∣

∣

∣

2N
N+α

≤ Cp

∣

∣

∣
(|un|+ |u|)p−2 |un − u||v|χRN\BR

∣

∣

∣

2N
N+α

≤ Cp |(|un|+ |u|)|p−2
2Np
N+α

|un − u| 2Np
N+α

|v|
L

2Np
N+α (RN\BR)

≤ Cε

• If 1 < p < 2, then we apply the following inequality, which holds for any a, b ∈ R:

∣

∣|a|p−2a− |b|p−2b
∣

∣ ≤ Cp|a− b|p−1

which yields

∣

∣

∣

∣

∫

(Iα ∗
(

|un|p−2un − |u|p−2u
)

vχRN\BR
)
(

|un|p−2un − |u|p−2u
)

vχRN\BR
dx

∣

∣

∣

∣

1/2

≤ C
∣

∣

∣

(

|un|p−2un − |u|p−2u
)

vχRN\BR

∣

∣

∣

2N
N+α

≤ Cp

∣

∣

∣
|un − u|p−1|v|χRN \BR

∣

∣

∣

2N
N+α

≤ Cp|un − u|p−1
2Np
N+α

|v|
L

2Np
N+α (RN\BR)

≤ Cε

In both cases, we obtain that for any fixed v and for any ε > 0 there is R such that the right
hand side of (2.11) is less then Cε. By the same argument, on the ball BR we have:

• if p ≥ 2

∣

∣

∣

∣

∫

(Iα ∗
(

|un|p−2un − |u|p−2u
)

vχBR
)
(

|un|p−2un − |u|p−2u
)

vχBR
dx

∣

∣

∣

∣

1/2

≤ Cp |(|un|+ |u|)|p−2
2Np
N+α

|un − u|
L

2Np
N+α (BR)

|v| 2Np
N+α

≤ Cε

if n ≥ nε, since un ⇀ u in H1 and p < N+α
N−2 ;

• if 1 < p < 2, again,

∣

∣

∣

∣

∫

(Iα ∗
(

|un|p−2un − |u|p−2u
)

vχBR
)
(

|un|p−2un − |u|p−2u
)

vχBR
dx

∣

∣

∣

∣

1/2

≤ Cp|un − u|p−1

L
2Np
N+α (BR)

|v| 2Np
N+α

≤ Cε

if n ≥ nε, since un ⇀ u in H1 and p < N+α
N−2 .
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Combining the above cases yields (2.10). Now, by (2.1) the Riesz potential Iα defines a linear

continuous map from L
2N

N+α (RN ) to L
2N

N−α (RN ). Thus (Iα ∗ |un|p) ⇀ (Iα ∗ |u|p) in L
2N

N−α (RN ),
so that

∫

(Iα ∗ |un|p)|u|p−2uvdx →
∫

(Iα ∗ |u|p)|u|p−2uvdx as n → ∞. (2.12)

since |u|p−2uv ∈ L
2N

N+α (RN ). Combining (2.10) and (2.12) implies that J ′ is weakly sequentially
continuous.

(iii) Obviously, J is even. Proposition 2.1 in [26] proves that ‖u‖Qα,p is a norm, so that it is a
convex functional. Since J(u) = ‖u‖2pQα,p , it is also convex. By convexity and the 2p-homogeneity
of J , we have

J(u+ v) ≤ 1

2
(J(2u) + J(2v)) ≤ 22p−1(J(u) + J(v))

�

We end stating a version of the nonlocal Brézis-Lieb property, see Lemma 2.4 in [27] or the
survey [28] and references therein.

Lemma 2.2. Let N ≥ 3, 0 < α < N and N+α
N < p < N+α

N−2 . Let {un} ⊂ L
2Np
N+α (RN ) and un ⇀ u

in L
2Np
N+α (RN ), then

∫

(Iα ∗ |un|p)|un|pdx−
∫

(Iα ∗ |un − u|p)|un − u|pdx →
∫

(Iα ∗ |u|p)|u|pdx

as n → ∞.

In the following subsections we will give the details of the functional framework, which
depends on the two different cases, λ in the spectral gap (a, b), or λ in the right borderline point
of the spectrum, that is λ = a.

2.1 The case λ ∈ (a, b)

Let (a, b) denote a spectral gap as defined in assumption (V 2). For any λ ∈ [a, b], let Sλ :=
−∆ + V − λ. Under condition (V1), the operator Sλ is self-adjoint in L2(RN ) with domain
D(Sλ) = H2(RN ), and the spectrum σ(Sλ) is purely absolutely continuous and bounded from
below. Let

(

Pλ,ν : L2(RN ) → L2(RN )
)

ν∈R denote the spectral family of Sλ. Setting L−
λ :=

Pλ,0L
2(RN ) and L+

λ := (Id − Pλ,0)L
2(RN ) we have the decomposition L2(RN ) = L−

λ ⊕ L+
λ ,

where L−
λ ⊂ H2(RN ) since the spectrum of Sλ is bounded from below.

Let Eλ be the completion of D(
√

|Sλ|) = H1(RN ) with respect to the norm

‖u‖Eλ
:=
∣

∣

∣

√

|Sλ|u
∣

∣

∣

2
=

(
∫ +∞

−∞
|ν|d(Pλ,νu, u)2

)

1

2

,

where |Sλ| is the absolute value of Sλ, such that

|Sλ|u =

{

Sλu if u ∈ D(Sλ) ∩ L+
λ ;

−Sλu if u ∈ D(Sλ) ∩ L−
λ .

Clearly Eλ is a Hilbert space with inner product

(u, v)Eλ
=
(
√

|Sλ|u,
√

|Sλ|v
)

2
.
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Eλ can be orthogonally decomposed as Eλ = E−
λ ⊕E+

λ , according to the decomposition of σ(Sλ).
We shall write u = u− + u+ with u± ∈ E±

λ for u ∈ Eλ, and

‖u+‖2Eλ
= (Sλu

+, u+)2 =

∫

|∇u+|2 + (V (x)− λ)|u+|2dx,

‖u−‖2Eλ
= −(Sλu

−, u−)2 = −
∫

|∇u−|2 + (V (x)− λ)|u−|2dx.

For brevity, we denote S0 = S, P0,ν = Pν , E0 = E. Note that, by assumptions (V1)− (V2),
E = H1(RN ) and ‖ · ‖E is equivalent to the usual norm of H1(RN ).

Let Qλ : Eλ → R be the quadratic form

Qλ(u) :=

∫

|∇u|2 + (V (x)− λ)u2dx.

Then
Qλ(u) = (Sλu, u)2 = ‖u+‖2Eλ

− ‖u−‖2Eλ
,

and Q0 is negative definite on E− and positive definite on E+ respectively, that is,

Q0(u
−) ≤ −α0‖u−‖2H1 , Q0(u

+) ≥ β0‖u+‖2H1

for all u− ∈ E− and u+ ∈ E+. Moreover,

Q0(u) = Q0(u
− + u+) = Q0(u

−) +Q0(u
+),

and the borderline points of the spectral gap (a, b) can be characterized as

a = sup
u−∈E−,|u−|2=1

Q0(u
−) < 0 < inf

u+∈E+,|u+|2=1
Q0(z) = b.

The same spectral splitting holds for any λ ∈ (a, b). This is made precise by the following
lemma.

Proposition 2.3. ([41, Lemma 2]) Let the spectral gap (a, b) be given as in assumption (V2).
Let λ ∈ (a, b). Then

Qλ(u
−) = −‖u−‖2Eλ

≤ −αλ‖u−‖2H1 , Qλ(u
+) = ‖u+‖2Eλ

≥ βλ‖u+‖2H1

for all u− ∈ E−
λ and u+ ∈ E+

λ , where

αλ :=







α0

(

1− λ

a

)

if λ ≤ 0,

α0 if λ > 0,

βλ :=







β0

(

1− λ

b

)

if λ > 0,

β0 if λ ≤ 0.

Consequently,

‖u‖2Eλ
= Qλ(u

+)−Qλ(u
−) ≥ 1

2
min{αλ, βλ}‖u‖2H1 .

As a consequence of Proposition 2.3, for any λ ∈ (a, b) it holds Eλ = E = H1(RN ).
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2.2 The case λ = a

The case λ = a requires a deeper analysis. In this situation 0 ∈ σ(Sa) is a right boundary point
of σ(Sa), where Sa = −∆ + V − a . Since the spectrum of Sa restricted to L+

a is contained in
[b− a,+∞), which is bounded away from 0, the norm ‖ · ‖Ea is equivalent to the H1−norm on
E+

a . However, 0 is contained in the spectrum of Sa restricted to L−
a , hence the norm ‖ · ‖Ea is

weaker than the H1-norm on E−
a . Moreover, H1(RN )∩L−

a = L−
a is not complete with respect to

‖·‖Ea : indeed, since 0 ∈ σ(Sa) is a continuous spectrum point, there is a sequence {un} ⊂ D(Sa)
such that |un|2 = 1 and Saun → 0, so that ‖un‖Ea → 0.

Furthermore, when λ = a, J(u) is no more well-defined on Ea. To overcome these difficulties,
we are going to define a new space EHL such that there are continuous embeddings H1(RN ) ⊂
EHL ⊂ Ea. Let us recall the definition of the Coulomb norm (2.7)

‖u‖Qα,p :=

(
∫

(Iα ∗ |u|p) |u|p
)

1

2p

=

(
∫

(

Iα
2
∗ |u|p

)2
)

1

2p

‖ · ‖Qα,p is a norm on L−
a ⊂ H1(RN ). Further, for any u ∈ E−

a , we have

0 ≤ ‖u‖2Ea
= −

∫

(|∇u|2 + (V (x)− a)u2)dx

which implies
|∇u|2 ≤ C|u|2, ∀u ∈ E−

a .

Then, by Hardy-Littlewood-Sobolev inequality and Gagliardo-Nirenberg inequality, we have

‖u‖Qα,p ≤ C|u| 2Np
N+α

≤ C|∇u|
Np−N−α

2p

2 |u|
2p−Np+N+α

2p

2 ≤ C|u|2, ∀u ∈ E−
a .

Let us define
‖u‖EQ := ‖u‖Ea + ‖u‖Qα,p

where, for the sake of brevity, we omit the indexes a, α, p. Let E−
Q be the completion of L−

a with

respect to ‖ · ‖EQ and set EQ := E−
Q ⊕ E+

a Then EQ is the completion of H1(RN ) with respect
to ‖ · ‖EQ due to E+

a ∼ L+
a . Clearly (EQ, ‖ · ‖EQ) is a Banach space and J(u) is well-defined on

EQ.

Remark 2.3. Let us stress the main difference between the local setting proposed in [6] and
our choice. Mimicking [6], we could choose as new space E 2Np

N+α
, defined as the completion of

H1(RN ) with respect to the norm
‖ · ‖Ea + | · | 2Np

N+α

However, although the nonlinear term (Iα∗|u|p)|u|p is well-defined in E 2Np
N+α

by Hardy-Littlewood-

Sobolev inequality, we are not able to prove that the (PS) sequences {un} are bounded in E 2Np
N+α

.

The main reason is that
∫

(Iα ∗ | · |p)| · |p cannot control any Lebesgue norm | · |Lµ(RN ), and we
cannot count on ‖ · ‖Ea either, because the norm ‖ · ‖Ea is weaker than ‖ · ‖H1 in the singular
case. We overcome this difficulty taking into account the nonlocal nature of our problem in the
construction of the space EQ, which turns out to be embedded into H1

loc, as we will prove in
Lemma 2.6 below.

Let us prove some basic properties of the space EQ.
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Lemma 2.4. H1(RN ) ⊂ EQ ⊂ Ea and all norms ‖ · ‖Ea , ‖ · ‖H1 , ‖ · ‖EQ are equivalent on E+
a .

Proof. The embedding EQ ⊂ Ea is obvious. By Sobolev embedding and Hardy-Littlewood-
Sobolev inequality, for any u ∈ H1(RN ), we have

‖u‖H1 ≥ C|u| 2Np
N+α

≥ C‖u‖Qα,p ,

On the other hand, we have ‖u‖H1 ≥ C‖u‖Ea . Therefore ‖u‖H1 ≥ C‖u‖EQ . ThusH
1(RN ) ⊂ EQ.

For u ∈ E+
a , we know that ‖ · ‖H1 and ‖ · ‖Ea are equivalent. Thus

‖u‖H1 ≤ C‖u‖Ea ≤ C‖u‖EQ .

This completes the proof. �

We briefly recall that a norm ‖ · ‖X on a linear space is said uniformly convex if for any
ε > 0 there is a δε > 0 such that for any x, y ∈ X with ‖x‖X = ‖y‖X = 1 and ‖x − y‖X ≥ ε,
then ‖x+y

2 ‖X ≤ 1− δε. In [26], Proposition 2.8, the authors prove the following property:

Lemma 2.5. [Proposition 2.8 in [26]] Let α ∈ (0, N) and p > 1. Then ‖ · ‖Qα,p is a uniformly
convex norm.

Consequently, EQ is a reflexive Banach space.
As already said in the introduction, the location of λ on the right borderline point of the spectrum
prevents the embedding of E−

a in H1. Nevertheless, we can recover a partial regularity, stated
in the following Lemma.

Lemma 2.6. E−
Q embeds continuously into H1

loc(R
N ), and hence compactly into Lt

loc(R
N ) for

2 ≤ t < 2∗. Moreover, Sau ∈ L2 for u ∈ E−
Q, and E−

Q embeds continuously into H2
loc(R

N ).

Proof. Let us first prove the embedding of E−
Q in H1

loc(R
N ). Let u ∈ E−

Q. Since L−
a is dense in

E−
Q, we can choose a sequence {un}n∈N in L−

a with ‖un − u‖EQ → 0, as n → ∞.
For any fixed R ∈ R+ and for any x ∈ BR/2(0), we have BR(x) ⊃ BR/2(0) so that

‖u‖2pQα,p =

∫

|u(x)|p
∫ |u(y)|p

|x− y|N−α
dy ≥ 1

RN−α

∫

|u(x)|p
[

∫

BR(x)
|u(y)|pdy

]

dx

≥ 1

RN−α

∫

BR/2(0)
|u(x)|p

[

∫

BR(x)
|u(y)|pdy

]

dx

≥ 1

RN−α

∫

BR/2(0)
|u(x)|p

[

∫

BR/2(0)
|u(y)|pdy

]

dx =
1

RN−α

(

∫

BR/2(0)
|u(x)|pdx

)2

(2.13)

Therefore, u ∈ Lp
loc(R

N ).
Given a bounded domain Ω ⊂ RN , let us take a function η ∈ C∞

0 (RN ) with η ≡ 1 in Ω. Then
for any v ∈ L−

a ⊂ H2(RN ),

−∆(ηv)ηv = η2 · (−∆v) · v + v2 · (−∆η)η − 2∇(ηv) · v∇η + 2|∇η|2v2,
so that we get
∫

|∇(ηv)|2dx ≤ 〈Sav, η
2v〉 −

∫

(V (x)− a)η2v2dx+

∫

v2 · (−∆η)ηdx+

+
1

2

∫

|∇(ηv)|2dx+ 4

∫

|∇η|2v2dx ≤ C‖v‖2Ea
+ C|ηv|22 +

1

2

∫

|∇(ηv)|2dx (2.14)

so that:

12



• if p ≥ 2, combining (2.13) with (2.14) yields immediately

∫

|∇(ηv)|2dx ≤ C‖ηv‖2Ea
+ C|ηv|22 ≤ C‖ηv‖2Ea

+ C|ηv|2p ≤ C‖ηv‖2Ea
+ C‖ηv‖2Qα,p

where C depends on Ω.

• if p < 2 we combine the interpolation inequality with Young inequality and (2.13):

|ηv|22 ≤ C|ηv|2θ2∗ |ηv|2(1−θ)
p where θ =

N(2− p)

2N − p(N − 2)

≤ ε|∇(ηv)|22 + Cε|ηv|2p ≤ ε|∇(ηv)|22 + Cε‖ηv‖2Qα,p

Inserting this last inequality into (2.14) and choosing ε small enough we obtain, again,

∫

Ω
|∇(ηv)|2dx ≤ C‖ηv‖2Ea

+ C‖ηv‖2Qα,p

where C depends on Ω.

We have then proved that, for any v ∈ L−
a ⊂ H2(RN )

∫

Ω
|∇(ηv)|2dx ≤ C‖ηv‖2Ea

+ C‖ηv‖2Qα,p

where Ω is any bounded domain and η ∈ C∞
0 (RN ) with η ≡ 1 in Ω. Applying this inequality

to the above sequence {un} we obtain that {un} is a Cauchy sequence in H1(Ω), and hence
u ∈ H1

loc. Thus E
−
Q embeds continuously into H1

loc(R
N ).

Now we can follow the same lines of the proof of [6, Lemma 2.1] to show that Sau ∈ L2 and u ∈
H2

loc(R
N ). For the convenience of the reader, we give the details. Since inf σ(Sa) := −θ > −∞

we have

|Sa(un − um)|22 =
∫ 0

−θ
ν2d|Pa,ν(un − um)|22 ≤ −θ

∫ 0

−θ
νd|Pa,ν(un − um)|22

= θ
∣

∣

∣
|Sa|

1

2 (un − um)
∣

∣

∣

2

2
= θ‖un − um‖2Ea

.

Therefore {Saun} is a Cauchy sequence in L2 and it follows that Saun → Sau in L2.
For r > 0, ε > 0 and y ∈ RN , by Calderon-Zygmund inequality [16, Theorem 9.11] we have

‖un − um‖H2(Br(y)) ≤ C(r, ε)
(

|un − um|L2(Br+ε(y)) + |Sa(un − um)|L2(Br+ε(y))

)

.

This implies u ∈ H2
loc(R

N ). �

Remark 2.7. A space closely related to ours has been introduced by Ruiz in [35] in the more
relevant physical case N = 3, α = 2.
We observe that another possible choice for the functional setting in the case λ = a could be a
variant of the Coulomb-Sobolev spaces introduced in [26].
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3 Existence of solutions for λ ∈ (a, b).

The aim of this section is to prove Theorem 1.2. As discussed in the previous section, if
a < λ < b, then ‖ · ‖Eλ

is equivalent to ‖ · ‖H1 and Eλ = H1(RN ).
Due to the geometry of the functional Φλ, the main tool to find nontrivial critical points will be
the following generalized Linking Theorem [6, 12].
Theorem 3.1 (Generalized Linking Theorem [6, 12]). Let X be a real Hilbert space. Suppose
that Φ ∈ C1(X,R) satisfies the following conditions:

(i) There exists a bounded self-adjoint linear operator L : X 7→ X and a functional Ψ ∈
C1(X,R) which is bounded below, weakly sequentially lower semi-continuous with Ψ′ :
X 7→ X weakly sequentially continuous and such that

Φ(u) =
1

2
〈Lu, u〉 −Ψ(u).

(ii) There exist a closed separable L-invariant subspace Y of X and a positive constant α such
that

〈Lu, u〉 ≤ −α‖u‖2X for u ∈ Y and 〈Lu, u〉 ≥ α‖u‖2X for u ∈ Z := Y ⊥.

(iii) There are constants κ, ρ > 0 such that Φ(u) ≥ κ for u ∈ Z and ‖u‖X = ρ.

(iv) Let ζ ∈ Z \ {0}. Then there exists R > ρ (R depending on ζ) such that Φ(u) ≤ 0 for any
u ∈ ∂M , where

M := {u = u− + sζ : u− ∈ Y, s ≥ 0 and ‖u‖X ≤ R}.

Then there exists a Palais-Smale sequence {un} such that

Φ(un) → c ∈ [κ, supΦ(M)] and Φ′(un) → 0, as n → ∞.

Let us now verify the our functional Φλ verifies the linking structure of the above theorem,
assumptions (iii) and (iv).

Lemma 3.2. For any λ ∈ (a, b), there exist κ(λ), ρ > 0 such that for any u ∈ E+
λ ∩ ∂Bρ(0) it

results that inf
u∈E+

λ ,‖u‖Eλ
=ρ

Φλ(u) := κ(λ) > 0.

Proof. By Proposition 2.3, for any u ∈ E+
λ \{0} we have ‖u+‖2H1 ≤ 1

βλ
‖u+‖2Eλ

. Then, by Sobolev
embedding and Hardy-Littlewood-Sobolev inequality, we have

Φλ(u) ≥
1

2
‖u+‖2Eλ

− C(N,α, p)‖u+‖2p
H1 ≥ 1

2
‖u+‖2Eλ

− C(N,α, p)

βp
λ

‖u+‖2pEλ
.

Let ρ = 1
2

(

βp
λ

2C(N,α,p)

)
1

2p−2

; since p > 1, we have

κ(λ) := Φλ(u)|E+

λ ∩∂Bρ(0)
≥
(

1

8
− 1

22p+1

)(

βp
λ

2C(N,α, p)

)

1

p−1

> 0. (3.1)

�
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Lemma 3.3. Let Z0 be a finite dimensional subspace of E+
a . Then Φλ(u) → −∞ as ‖u‖Eλ

→ ∞
in E−

λ ⊕ Z0.

Proof. Following [1, Lemma 4.2], for β ∈ (0, 1), we set γ = sin(arctan β) ∈ (0, 1) and

K = {u ∈ Eλ : u+ ∈ Z0, ‖u+‖Eλ
≥ γ, ‖u‖Eλ

= 1}.

Then there is {un} ⊂ K with lim
n→∞

J(un) = inf J(K) =: δ ≥ 0. Since K is bounded we may

assume that un ⇀ u ∈ Eλ such that u+n → u+ in Z0. Clearly ‖u+‖Eλ
≥ γ and u 6= 0. Since J is

weakly sequentially lower semi-continuous in Eλ, we have δ ≥ J(u) > 0.
Let u ∈ E−

λ ⊕ Z0 satisfy ‖u‖Eλ
≥ 1. We have two cases.

• If ‖u+‖Eλ
/‖u−‖Eλ

≥ β we have

‖u+‖Eλ
/‖u‖Eλ

= sin arctan(‖u+‖Eλ
/‖u−‖Eλ

) ≥ γ

and therefore u/‖u‖Eλ
∈ K. By J(u) = J(u/‖u‖Eλ

)‖u‖2pEλ
and the definition of δ we obtain

J(u) ≥ δ‖u‖2pEλ
and

Φλ(u) ≤
1

2
‖u‖2Eλ

− δ

2p
‖u‖2pEλ

.

• If ‖u+‖Eλ
/‖u−‖Eλ

< β we have

Φλ(u) ≤
1

2
(‖u+‖2Eλ

− ‖u−‖2Eλ
) ≤ − 1− β2

2(1 + β2)
‖u‖2Eλ

. (3.2)

For ‖u‖Eλ
large we find in either case that (3.2) is satisfied, and the claim is proved since β2 < 1.

�

By Lemma 2.1 and by Lemma 3.3 Φλ satisfies all the conditions in Theorem 3.1, for any
λ ∈ (a, b). Thus, there exists a Palais-Smale sequence {un} at level cλ,

cλ ∈ [κ(λ), sup
u∈E−

λ ⊕R+ζ

Φλ], (3.3)

where κ(λ) > 0 is a constant that depends on λ. Moreover, by Proposition 2.3 and (3.1), we
have

κ(λ) ≥
(

1

8
− 1

22p+1

)(

βp
λ

2C(N,α, p)

)

1

p−1

→ 0, as λ → b−.

In the following lemma we verify the boundedness of any (PS) sequence.

Lemma 3.4. If {un} is a (PS)cλ−sequence for Φλ. Then ‖un‖Eλ
are bounded.

Proof. Let n large such that Φλ(un) ≤ cλ + 1 and ‖Φ′
λ(un)‖Eλ

≤ 1. Then

cλ + 1 +
1

2
‖un‖Eλ

≥ Φλ(un)−
1

2
〈Φ′

λ(un), un〉 =
(

1

2
− 1

2p

)

J(un). (3.4)

By (2.9) and (3.4), we have

‖u+n ‖2Eλ
= 〈Φ′

λ(un), u
+
n 〉+

∫

(Iα ∗ |un|p)|un|p−2unu
+
n dx

≤ 1 · ‖u+n ‖Eλ
+ J(un)

1− 1

2pJ(u+n )
1

2p ≤ ‖u+n ‖Eλ
+ C(λ)(1 + ‖un‖Eλ

)1−
1

2p ‖u+n ‖Eλ
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Thus

‖u+n ‖2Eλ
≤ C(λ)(1 + ‖un‖Eλ

)
2− 1

p ,

which together with
‖u−n ‖2Eλ

≤ −2Φλ(un) + ‖u+n ‖2Eλ

implies that

‖un‖2Eλ
= ‖u+n ‖2Eλ

+ ‖u−n ‖2Eλ
≤ C(λ)(1 + ‖un‖Eλ

)
2− 1

p .

Since 2− 1
p < 2, ‖un‖Eλ

is bounded. �

By the previous arguments we have obtained a (PS)cλ-sequence {un} which is bounded
in Eλ. Then by using Lions’ concentration compactness principle [45, Lemma 1.21] and the
invariance of Φλ under the action of ZN , we get a nontrivial weak solution for (1.1). Similar to
[1], by using Theorem 4.2 in [6], the existence of infinitely many geometrically distinct solutions
can be obtained in a similar way. Thus we have proved Theorem 1.2.

4 Bifurcation from zero when λ → b−.

In this section we prove Theorem 1.4, that is, the bifurcation phenomenon occurring on the
left borderline point of the spectrum, for some values of p, extending to the nonlocal case the
results present in [17, 41].
Since b ∈ σ(−∆+V ), we know that there exists a Bloch wave Ψ in H2

loc(R
N )∩C1(RN )∩L∞(RN )

that satisfies −∆Ψ + VΨ = bΨ (see [14]). Ψ is uniformly almost-periodic (UAP) in the sense
of Besicovitch [7]. The essential tool is a nonlocal version of the Riemann-Lebesgue lemma and
the estimate of the nonlocal part of the functional Φλ(Ψ(b−λ)−1/2):

∫ ∫ |Ψ(b−λ)−1/2(x)|p|Ψ(b−λ)−1/2(y)|p
|x− y|N−α

dxdy,

where the testing vectors Ψ(b−λ)−1/2 are constructed from the Bloch wave Ψ of the linear
Schrödinger operator.

To any uniformly almost-periodic (UAP) function f : RN → C is associated a mean-value,
M(f), which may be defined by

M(f) = lim
T→∞

1

TN

∫ T

0
· · ·
∫ T

0
f(x)dx1 · · · dxN .

We recall here the classical Riemann-Lebesgue lemma.
Proposition 4.1. ([17]) Let f : RN → C be a uniformly almost-periodic (UAP) function and
let g ∈ L1(RN ). Then

lim
T→∞

∫

f(Tx)g(x)dx = M(f)

∫

g(x)dx.

For R ∈ (0,+∞), let us set

ΨR(x) := R−N
2 η
( x

R

)

Ψ(x)

where η ∈ C∞
0 (RN ; [0, 1]) equals 1 on B(0, 1). Then, ΨR ∈ H2(RN ) ∩ C1(RN ).

It is easy to see from Proposition 4.1 that for all γ ∈ [1,+∞),

lim
R→∞

R
N
2
−N

γ |ΨR|γ = [M(Ψγ)]
1

γ |η|γ .
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The following proposition states a nonlocal version of the Riemann-Lebesgue lemma, which is
an easy consequence of the classical one.

Lemma 4.1. Let f : RN → C he a uniformly almost-periodic (UAP) function and let g ∈
L

2N
N+α (RN ). Then

lim
T→∞

∫ ∫

f(Tx)g(x)f(Ty)g(y)

|x− y|N−α
dxdy = [M(f)]2

∫ ∫

g(x)g(y)

|x− y|N−α
dxdy.

Proof. Since
∣

∣

∣

∣

∫ ∫

g(y)g(x)

|x− y|N−α
dxdy

∣

∣

∣

∣

≤
(
∫

|g| 2N
N+αdx

)
N+α
N

< ∞

and f(Tx)f(Ty) is a uniformly almost-periodic (UAP) function, then by Proposition 4.1, we
get the conclusion. �

Let us now apply the above lemma to estimate the functional J tested on the Bloch wave Ψ:

J(ΨR) =

∫ ∫ |ΨR(x)|p|ΨR(y)|p
|x− y|N−α

dxdy = R−Np

∫ ∫ |η
(

x
R

)

Ψ(x)|p|η
( y
R

)

Ψ(y)|p
|x− y|N−α

dxdy

= RN+α−Np

∫ ∫ |η (x)Ψ(Rx)|p|η (y)Ψ(Ry)|p
|x− y|N−α

dxdy,

then by Lemma 4.1, we get

lim
R→∞

RNp−N−αJ(ΨR) = [M(|Ψ|p)]2J(η). (4.1)

Now, for λ ∈ (a, b), let R(λ) := 1√
b−λ

. From [41], we know that

‖P0ΨR(λ)‖H1 = O(b− λ) as λ → b. (4.2)

By the Hardy–Littlewood–Sobolev inequality and Sobolev inequality, we have

J(P0ΨR(λ)) ≤ C|P0ΨR(λ)|2p2Np
N+α

≤ C‖P0ΨR(λ)‖2pH1 ,

which together with (4.2) implies that

J(P0ΨR(λ)) = O(|b− λ|2p) as λ → b. (4.3)

Let us define
ζλ := (Id− P0)ΨR(λ) ∈ E+

By Lemma 2.1-(iii), we have

J(ζλ) = J(ΨR(λ) − P0ΨR(λ)) ≥ 21−2pJ(ΨR(λ))− J(P0ΨR(λ))

Since p < N+α
N−2 , we also have 2p− Np−N−α

2 > 0; hence, combining the last inequality with (4.1)
and (4.3) yields

lim inf
λ→b

(b− λ)−
Np−N−α

2 J(ζλ) ≥ 21−2p[M(|Ψ|p)]2J(η) > 0 (4.4)

On the other hand, we have from [38, 41] that

Qλ(ζλ) = O(b− λ) as λ → b− (4.5)

We are now ready to prove the first part of Theorem 1.4, that is an estimate for the critical level
cλ found in (3.3), as λ → b−.
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Proposition 4.2. cλ = O((b− λ)
2p−Np+N+α

2p−2 ) → 0 as λ → b−.

Proof. By (3.3), we have

κ(λ) ≤ cλ ≤ sup
v∈E−

λ ,s≥0

Φλ(v + sζλ) = sup
v∈E−

λ ,s≥0

[

1

2
Qλ(v) +

1

2
s2Qλ(ζλ)−

1

2p
J(v + sζλ)

]

,

where Qλ(v) ≤ 0, and from Lemma 2.1-(iii)

J(v + sζλ) > s2p
(

21−2pJ(ζλ)− J (v/s)
)

.

Let us now prove that
J (v/s) ≤ Cα−p

λ |Qλ(ζλ)|p. (4.6)

Indeed, since
sup

v∈E−, s>0
Φλ(v + sζλ) ≥ cλ > 0,

we can restrict our attention to the couples (v, s) satisfying Φλ(v+ sζλ) ≥ 0 and s > 0 Then by
Proposition 2.3, we get

Φλ(v + sζλ) ≥ 0 ⇒ Qλ(v) + s2Qλ(ζλ) ≥ 0 ⇒ Qλ(ζλ) ≥ αλ ‖v/s‖2H1 .

On the other hand, by the Hardy–Littlewood–Sobolev inequality and the Sobolev inequality, we
have

J (v/s) ≤ C(N, p, α) |v/s|2p2Np
N+α

≤ C ‖v/s‖2p
H1

Combining the two above inequalities yields (4.6).
From (4.6), we deduce

Φλ(v + sζλ) ≤
1

2
s2Qλ(ζλ)−

1

2p
s2p
[

21−2pJ(ζλ)−Cα−p
λ |Qλ(ζλ)|p

]

Since
N + α

N
≤ p <

N + α

N − 2
⇒ 0 <

Np−N − α

2
< p,

then by (4.1), (4.4) and (4.5), for λ approaching b sufficiently (λ < b),

L(ζλ) :=
1

2p

[

21−2pJ(ζλ)−Cα−p
λ |Qλ(ζλ)|p

]

> 0,

and
L(ζλ) = O((b− λ)

Np−N−α
2 )

Therefore,

cλ ≤ sup
s>0

(

1

2
s2Qλ(ζλ)− s2pL(ζλ)

)

=(p− 1)(2p)
− 2p

2p−2Qλ(ζλ)
2p

2p−2L(ζλ)
− 2

2p−2

=O((b− λ)
2p−Np+N+α

2p−2 )

Since
N + α

N
< p <

N + α

N − 2
⇒ 2p−Np+N + α

2p − 2
> 0,

we have the final consequence
cλ → 0 as λ → b−.

�
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Let {un} be a Palais-Smale sequence at level cλ such that un ⇀ uλ in H1(RN ). The weak
limit uλ is a critical point of Φλ. By Lemma 2.2 (the Brézis-Lieb lemma of nonlocal type), we
have

cλ = Φλ(un)−
1

2
〈Φ′

λ(un), un〉+ o(1) =
p− 1

2p

∫

(Iα ∗ |un|p) |un|pdx+ o(1)

=
p− 1

2p

∫

(Iα ∗ |uλ|p) |uλ|pdx+
p− 1

2p

∫

(Iα ∗ |un − uλ|p) |un − uλ|pdx+ o(1)

≥ p− 1

2p

∫

(Iα ∗ |uλ|p) |uλ|pdx+ o(1)

= Φλ(uλ)−
1

2
〈Φ′

λ(uλ), uλ〉+ o(1) = Φλ(uλ) + o(1).

(4.7)

Combining this estimate with Proposition 4.2 we can prove the second part of Theorem 1.4.

Proposition 4.3. When λ → b−, ‖uλ‖H1 = O(
√

cλ/βλ), and in particular

‖uλ‖H1 = O((b− λ)
2−Np+N+α

4p−4 ) → 0,

if N+α
N ≤ p < 1 + 2+α

N .

Proof. Let us apply (4.7) to get a relationship between cλ and uλ:

cλ ≥ Φλ(uλ) = Φλ(uλ)−
1

2
〈Φ′

λ(uλ), uλ〉 =
p− 1

2p
J(uλ)

Decompose uλ as uλ = u−λ +u+λ with u−λ ∈ E−
λ , u

+
λ ∈ E+

λ . Proposition 2.3 and Φ′
λ(uλ) = 0 imply

that

βλ‖u+λ ‖2H1 + αλ‖u−λ ‖2H1 ≤ Qλ(u
+
λ )−Qλ(u

−
λ )

=
1

2
〈Q′

λ(uλ), u
+
λ − u−λ 〉 =

∫

(Iα ∗ |uλ|p)|uλ|p−2uλ(u
+
λ − u−λ )dx

= J(uλ)− 2

∫

(Iα ∗ |uλ|p)|uλ|p−2uλu
−
λ dx (4.8)

From (2.8) we have
∫

(Iα ∗ |uλ|p)|uλ|p−2uλu
−
λ dx ≤ C [J(uλ)]

1− 1

2p ‖u−λ ‖H1 ,

so that, by (4.8) and Young inequality, we get

βλ‖u+λ ‖2H1 +
αλ

2
‖u−λ ‖2H1 ≤ 2p

p− 1
cλ + Cc

2− 1

p

λ (4.9)

Now let λ → b−: then αλ = α0, βλ = β0

b (b− λ) and cλ → 0. By (4.9), we have

lim
λ→b−

(b− λ)‖uλ‖2H1

cλ
≤ C

Therefore, by Proposition 4.2, we obtain

‖uλ‖H1 = O(
√

cλ/βλ) = O((b− λ)
2−Np+N+α

4p−4 )

Moreover, if N+α
N ≤ p < 1 + 2+α

N , then 2−Np+N+α
4p−4 > 0 and lim

λ→b−
‖uλ‖H1 = 0. �
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Combining Proposition 4.2 and Proposition 4.3, we have proved the first and the second
part part of Theorem 1.4. Now, let us complete the proof, verifying that b is the only possible
gap-bifurcation point for (1.1) in [a, b].

Let uλ = u−λ + u+λ be a nontrivial weak solution of (1.1). Then by testing (1.1) with u+λ and
u−λ , we have

Qλ(u
+
λ ) =

∫

(Iα ∗ |uλ|p)|uλ|p−2uλu
+
λ and Qλ(u

−
λ ) =

∫

(Iα ∗ |uλ|p)|uλ|p−2uλu
−
λ

which implies directly

Qλ(u
+
λ )−Qλ(u

−
λ ) =

1

2p
〈J ′(uλ), u

+
λ − u−λ 〉 =

1

2p
〈J ′(uλ), 2u

+
λ − uλ〉

Since J : H1(RN ) 7→ R is even and convex, 〈J ′(uλ), 2u
+
λ − uλ〉 ≤ J(2u+λ ) − J(uλ). Then, by

Hardy–Littlewood–Sobolev inequality and Sobolev inequality, we get

Qλ(u
+
λ )−Qλ(u

−
λ ) ≤

1

2p
J(2u+λ )−

1

2p
J(uλ) ≤

22p

2p
J(u+λ ) ≤

22p

2p
‖u+λ ‖

2p
E

By Proposition 2.3, we have

βλ‖u+λ ‖2H1 + αλ‖u−λ ‖2H1 ≤ 22p

2p
‖u+λ ‖

2p
H1 =⇒ ‖u+λ ‖

2p−2
H1 ≥ 2pβλ

22p

Therefore, by the definition of βλ, b is the only possible gap-bifurcation point for (1.1) in [a, b].

5 The case λ = a: existence of H1
loc-solutions.

In this section we focus on the most delicate case, that is, when λ = a, the right borderline
point of the spectrum of our Schrödinger operator. We will prove Theorem 1.5.

In Section 2 we defined the space EQ and proved some of its properties. Although J is
well-defined on EQ, EQ is not a Hilbert space and, due to the location of λ, Φa does not present
a linking structure as required by the generalized Linking Theorem 3.1 (in particular, condition
(ii) is not verified). To overcome this problem, we use an approximation argument like [6]. For
each j ∈ N we set

E−
j := Pa,−1/jL

2(RN ) = Pa,−1/jL
−
a ⊂ L−

a ⊂ E−
a

and
Ej := E−

j ⊕ E+
a ⊂ Ea

Then the spectrum of Sa restricted to each Ej is bounded away from 0, and we have

‖ · ‖Ea ∼ ‖ · ‖H1 on Ej

Let
Qj := Pa,−1/j + (Id− Pa,0) : Ea 7→ Ej

denote the orthogonal projection. Then we have for any u ∈ H1(RN ):

Qju → u as j → ∞, with respect to ‖ · ‖Ea and | · |t, 2 ≤ t < 2∗
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For each j ∈ N, let Φj := Φa|Ej , Jj := J |Ej , where Ej = E−
j ⊕ E+

a , E
−
j = Pa,−1/jL

2(RN ).

Obviously, Φj, Jj ∈ C1(Ej ,R) and for u, v ∈ Ej ,

〈J ′
j(u), v〉 =

∫

(Iα ∗ |u|p)|u|p−2uvdx,

〈Φ′
j(u), v〉 = 〈Sau, v〉 −

∫

(Iα ∗ |u|p)|u|p−2uvdx

Definition 5.1. A sequence {un}n∈N is said to be a (̃PS)c-sequence for Φa with respect to
(Ejn , ‖ · ‖Ea), some c ∈ R, if
(i) un ∈ Ejn with jn → ∞ as n → ∞;
(ii) Φa(un) → c as n → ∞;
(iii) ‖Φ′

jn(un)‖Ea → 0 as n → ∞.

Let us first prove the boundedness of the (̃PS)c-sequences.

Lemma 5.2. If {un} is a (̃PS)c-sequence for Φa, then ‖un‖Ea and ‖un‖Qα,p are bounded or
equivalently, ‖un‖EQ is bounded.

Proof. Let n large such that Φa(un) ≤ c+ 1 and ‖Φ′
jn(un)‖Ea ≤ 1, then

c+ 1 +
1

2
‖un‖Ea ≥ Φa(un)−

1

2
〈Φ′

jn(un), un〉 =
(

1

2
− 1

2p

)

|un|2pHL (5.10)

Note that by (2.9), we have
∣

∣

∣

∣

∫

(Iα ∗ |un|p)|un|p−2unu
+
n dx

∣

∣

∣

∣

≤ ‖un‖2p−1
Qα,p ‖u+n ‖Qα,p (5.11)

Thus, by (5.10)-(5.11), we have

‖u+n ‖2Ea
=〈Φ′

jn(un), u
+
n 〉+

∫

(Iα ∗ |un|p)|un|p−2unu
+
n dx

≤1 · ‖u+n ‖Ea + ‖un‖2p−1
Qα,p ‖u+n ‖Qα,p

≤‖u+n ‖Ea + [C(1 + ‖un‖Ea)]
1− 1

2p ‖u+n ‖Qα,p

(5.12)

Since ‖u+n ‖Ea and ‖u+n ‖H1 are equivalent for u+n ∈ E+
a , we have

‖u+n ‖Qα,p ≤ C|u+n | 2Np
N+α

≤ C‖u+n ‖H1 ≤ C‖u+n ‖Ea

Then by (5.12), we have

‖u+n ‖2Ea
≤ ‖u+n ‖Ea + [C(1 + ‖un‖Ea)]

1− 1

2p ‖u+n ‖Ea =⇒ ‖u+n ‖2Ea
≤ [C(1 + ‖un‖Ea)]

2− 1

p ,

which together with
‖u−n ‖2Ea

≤ −2Φa(un) + ‖u+n ‖2Ea

implies that

‖un‖2Ea
= ‖u+n ‖2Ea

+ ‖u−n ‖2Ea
≤ C + [C(1 + ‖un‖Ea)]

2− 1

p

Since 2− 1
p < 2, ‖un‖Ea is bounded, hence, applying (5.10) once more we obtain that ‖un‖Qα,p

is bounded. �
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Let us note that Φj ∈ C1(Ej ,R) has the form Φj(u) =
1
2〈Sau, u〉Ea − J(u). From Lemma

2.1 and the fact that ‖ · ‖Ea and ‖ · ‖H1 are equivalent on Ej , we can deduce that J ∈ C1(Ej ,R)
is bounded below, weakly sequentially lower semicontinuous and ∇EaJ : Ej 7→ Ej is weakly
sequentially continuous. Obviously, the functional Φj satisfies the conditions (i)−(ii) in Theorem
3.1. Following the same lines as for the proofs of Lemma 3.2 and Lemma 3.3, we can verify that
the functional Φj satisfies the linking structure, that is, conditions (iii) − (iv) in Theorem 3.1
as stated in the following

Lemma 5.3. There exist κ, ρ > 0 such that for any u ∈ S+
ρ := E+

a ∩ ∂Bρ(0) it results that
inf Φj(S

+
ρ ) := κ > 0.

Lemma 5.4. Let Z0 be a finite dimensional subspace of E+
a . Then Φj(u) → −∞ as ‖u‖Ea → ∞

in E−
j ⊕ Z0.

For the sake of brevity, we omit the two proofs.
Setting X := Ej , Y := E−

j and Z := E+
a , by Lemma 5.3 and Lemma 5.4, Φj satisfies all the

assumptions of Theorem 3.1. Consequently, for any j there exists a sequence {vjm}m∈N in Ej

such that Φ′
j(v

j
m) → 0 and Φj(v

j
m) → cj ∈ [κ, supΦj(M)] as m → ∞, where κ > 0 is defined in

Lemma 5.3, and M is defined as

M := {u = u− + sζ : u− ∈ E−
j , s ≥ 0 and ‖u‖Ea ≤ R}

For m(j) large we therefore have

‖Φ′
j(v

j
m(j))‖Ea + |cj − Φj(v

j
m(j))| <

1

j
.

Since

sup
M

Φj(u) ≤
1

2
sup
M

[

‖u+‖2Ea
− ‖u−‖2Ea

]

≤ 1

2
sup
M

[

‖u‖2Ea

]

≤ 1

2
R2,

there is a subsequence cjn such that cjn → c ∈ [κ, 12R
2]. The sequence un := vjm(jn)

is then a

(̃PS)c-sequence as required. By Lemma 5.2, {un} is bounded in EQ. Since EQ is a reflexive
Banach space by Lemma 2.5, up to a subsequence we have un ⇀ u in EQ.

Let us now show that u 6= 0. We claim that for any r > 0 there exists a sequence {yn} in
RN and δ > 0 such that

lim inf
n→∞

∫

Br(yn)
u2ndx ≥ δ. (5.13)

Indeed, if not, then by Lions’ concentration compactness principle [45, Lemma 1.21],

un → 0 in Lq(RN ) ∀q ∈ (2, 2∗), as n → ∞.

Then, by Hardy-Littlewood-Sobolev inequality, we have

J(un) ≤ C|un|2p2Np
N+α

→ 0, as n → ∞. (5.14)

On the other hand, we have

0 < c = Φj(un)−
1

2
〈Φ′

j(un), un〉+ o(1) =

(

1

2
− 1

2p

)

J(un) + o(1),
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which contradicts (5.14). Thus, (5.13) holds. Now we choose kn ∈ ZN such that

|kn − yn| = min{|k − yn| : k ∈ ZN}

and set vn := un(·+ kn). Using (5.13) and the invariance of Ejn, E
± under the action of ZN we

see that vn ∈ Ejn and
∫

Br+
√
N/2(0)

v2ndx ≥ δ

2
. (5.15)

Moreover, ‖vn‖Ea = ‖un‖Ea and ‖vn‖Qα,p = ‖un‖Qα,p , hence ‖vn‖EQ is bounded. Lemma 2.5
yields the existence of a subsequence (which we continue to denote by {vn}) such that vn ⇀ u
weakly in EQ. Then by Lemma 2.6, vn → u strongly in L2

loc(R
N ). Clearly (5.15) implies u 6= 0.

Let v ∈ C∞
0 (RN ) be any test function. By Hardy-Littlewood-Sobolev inequality and Hölder

inequality, we see that
∫

(Iα ∗ |vn|p)|vn|p−2vn(Id−Qjn)vdx ≤|vpn| 2N
N+α

|vp−1
n (Id−Qjn)v| 2N

N+α

≤|vn|p2Np
N+α

|vn|p−1
2Np
N+α

|(Id−Qjn)v|
p
2Np
N+α

The right hand side converges to 0 as n → ∞. Now

〈Savn, v〉Ea = 〈Savn, Qjnv〉Ea

= 〈Φ′
a(vn), Qjnv〉+

∫

(Iα ∗ |vn|p)|vn|p−2vnvdx−
∫

(Iα ∗ |vn|p)|vn|p−2vn(Id−Qjn)vdx

and therefore, letting n → ∞, we have
∫

(∇u · ∇v + (V (x)− a)uv)dx = 〈Sau, v〉Ea =

∫

(Iα ∗ |u|p)|u|p−2uvdx

This shows that u is a weak solution for (1.1).
We end this section by proving the multiplicity result for (1.1): it will be a consequence of

Theorem 4.2 in [6], see also [1]. Let us first recall the definition of (PS)I -attractor:

Definition 5.5. Let Φ : X 7→ R, denote Φb
a = {u ∈ X : a ≤ Φ(u) ≤ b}. Given an interval

I ⊂ R, call a set A ⊂ X a (PS)I-attractor if for any (PS)c-sequence {un} with c ∈ I, and any
ε, δ > 0 one has un ∈ Uε(A ∩ Φc+δ

c−δ) provided n is large enough.

Theorem 5.6. ([6]). Let X be a reflexive Banach space with the direct sum decomposition
X = X− ⊕X+, u = u− + u+ for u ∈ X, and suppose that X− is separable. If Φ satisfies the
following hypotheses:

(Φ1) Φ ∈ C1(X,R) is even and Φ(0) = 0.

(Φ2) There exist κ, ρ > 0 such that Φ(z) ≥ κ for every z ∈ X+ with ‖z‖X = ρ.

(Φ3) There exists a strictly increasing sequence of finite-dimensional subspaces Zn ⊂ X+ such
that supΦ(Xn) < ∞ where Xn := X− ⊕ Zn, and an increasing sequence of real numbers
rn > 0 with Φ(Xn \Brn) < inf Φ(Bρ).

(Φ4) Φ(u) → −∞ as ‖u−‖X → ∞ and ‖u+‖X bounded.

(Φ5) Φ′ : X−
w ⊕ X+ → X∗

w is sequentially continuous, and Φ : X−
w ⊕ X+ → R is sequentially

upper semi-continuous, where X−
w denote the space X− with the weak topology.
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(Φ6) For any compact interval I ⊂ (0,∞) there exists a (PS)I−attractor A such that

inf{‖u+ − v+‖X : u, v ∈ A, u+ 6= v+} > 0.

Then there exists an unbounded sequence (cn) of positive critical values.

Write
K =: {u ∈ EQ : Φ′

a(u) = 0}
for the set of critical points. Let F consist of arbitrarily chosen representatives of the orbits in K
under the action of ZN . By the evenness of Φa we can also assume that F = −F . To prove that
there are infinitely many geometrically distinct solutions of (1.1), setting X := EQ, X− := E−

Q
and X+ := E+

Q, it suffices to prove that hypotheses (Φ1) − (Φ6) in Theorem 5.6 are satisfied

for Φa. (Φ1) is obvious. Since ‖ · ‖EQ is equal to ‖ · ‖H1 on E+
Q, then by similar arguments of

Lemma 5.3, (Φ2) holds. Since J is weakly sequentially lower semi-continuous in EQ, then by
similar arguments of Lemma 5.4, (Φ3) holds. Condition (Φ4) holds since J ≥ 0.

The embedding Ea
−
w ⊕ E+

a →֒ Eaw is sequentially continuous. Therefore, by Lemma 2.1,
J ′ is sequentially continuous on Ea

−
w ⊕ E+

a , and the same holds for Φ′
a. For the same reason

J is sequentially lower semi-continuous on Ea
−
w ⊕ E+. Moreover ‖ · ‖EQ is sequentially lower

semi-continuous on Ea
−
w . These facts together give (Φ5).

The rest is the proof of (Φ6).

Lemma 5.7. There is β > 0 such that for any u ∈ K \ {0} we have Φa(u) ≥ β.

Proof. Observe that for any u ∈ E−
a ,

Φa(u) = −1

2
‖u−‖2Ea

− 1

2p
‖u−‖2pQα,p ≤ 0,

but for u ∈ K \ {0},

Φa(u) = Φa(u)−
1

2
〈Φ′

a(u), u〉 =
(

1

2
− 1

2p

)

‖u‖2pQα,p > 0

Therefore,
(K \ {0}) ∩ E−

a = ∅
Now, let u ∈ K \ {0}. First we show that ‖u‖EQ is bounded away from 0. By Lemma 2.4,

we know that the norms ‖ · ‖EQ , ‖ · ‖Ea and ‖ · ‖EQ are equivalent on the space E+
a , therefore

we only need to prove ‖u‖Ea = ‖u+‖Ea ≥ C > 0. If ‖u+‖Ea ≤ 1, by 〈Φ′
a(u), u〉 = 0 and (2.8),

‖u‖2Ea
= 〈J ′(u), u〉 ≤ C‖u‖2p−1

Ea
‖u‖Ea ,

and therefore
‖u‖Ea ≤ C‖u‖2p−1

Ea

This shows that ‖u‖Ea ≥ C > 0 for some independent constant C.
We have

Φa(u) = Φa(u)−
1

2
〈Φ′

a(u), u〉 =
(

1

2
− 1

2p

)

J(u)

If J(u) ≥ 1 we have an independent positive lower bound for Φa(u). If J(u) ≤ 1, by (2.8) it
follows that

‖u‖2Ea
= 〈J ′(u), u〉 ≤ CJ(u)1−

1

2p ‖u‖Ea ,
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and thus
‖u‖Ea ≤ CJ(u)1−

1

2p .

Therefore
Φa(u) ≥ C > 0

for some independent C since ‖u‖Ea is bounded away from 0 on K \ {0} as shown above. �

Lemma 5.8. The (PS)c sequence {un} satisfying

Φa(un) → c, ‖Φ′
a(un)‖(EQ)∗ → 0, as n → ∞.

is bounded in EQ.

Proof. The proof is similar to Lemma 5.2, we omit it. �

In the following lemma β denotes the constant given by Lemma 5.8.

Lemma 5.9. For c ∈ R let {un} ⊂ EQ be a (PS)c−sequence for Φa. Then either c = 0 and
un → 0 or c ≥ β and there are k ∈ N, k ≤ [c/β], and for each 1 ≤ i ≤ k a sequence {ki,n}n ⊂ ZN

and a function vi ∈ EHL \ {0} such that, after extraction of a subsequence of {un},
∥

∥

∥

∥

∥

un −
k
∑

i=1

τki,nvi

∥

∥

∥

∥

∥

EQ

→ 0,

Φa

(

k
∑

i=1

τki,nvi

)

→
k
∑

i=1

Φa (vi) = c,

|ki,n − kj,n| → ∞ for i 6= j,

Φ′
a(vi) = 0 for all i.

Proof. The proof follows the same lines as for the proof of Lemma 4.5 in [1], so we omit it. �

Given any compact interval I ⊂ (0,∞) with d = max I we set k = [d/β] and

[F , k] =

{

j
∑

i=1

τmivi : 1 ≤ j ≤ k,mi ∈ ZN , vi ∈ F
}

By Lemma 5.9, [F , k] is a (PS)I−attractor.
Since the projections Pa,0, Id − Pa,0 commute with the action of ZN on EHL, it is easy to

get (Φ6), see [37, Prop. 2.57]. Therefore, by Theorem 5.6, we get infinitely many geometrically
distinct solutions. This concludes the proof of Theorem 1.5.
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6 Final remarks

In this section, we discuss the case λ → a+. What may happen if a is in the spectrum of
−∆+ V , or, equivalently, if 0 is in the spectrum of −∆+ V − a? It is commonly believed that
in this case well localized solutions of the corresponding local Schrödinger equation do not exist
(see [31], section 7). Indeed, if u solves the local equation

−∆u+ V (x)u = f(x, u) + a · u

then, by setting W (x) := −f(x, u)/u, u is also a solution of

−∆u+ (V (x) +W (x))u = a · u

If W (x) → 0 as |x| → ∞, we are in front of a periodic Schrödinger operator perturbed by a
decaying potential. If W (x) decays sufficiently fast, it defines a relatively compact perturbation
of the Schrödinger operator, so that the essential spectrum does not change (see [18], Theorem
5.35), and a turns out to be an eigenvalue lying in the essential spectrum. So, the problem of the
non existence of well localized solutions (at least H1) is strictly related to the non existence of
embedded eigenvalues for periodic Schrödinger operators perturbed by decaying potentials. This
problem seems far from being solved in its generality. Some interesting results have been proved
for the one-dimensional case (Hill’s equation). In this case, it is known that the endpoints
of the continuous spectrum for Hill’sequation can be characterized by special eigenvalues of
associated eigenvalue problems with periodic, respectively anti-periodic boundary conditions.
In particular it was shown that the branches of solutions (bifurcating both from zero of from
infinity) exist globally, and only over the gaps they consist of square-integrable solutions. Hence
they ”disappear” within the L2-setting when reaching the spectrum and reoccur when reaching
the gap again (see [19, 2, 20]).

The same question arises in the nonlocal case. Furthermore, what about the behaviour of
the branches of solutions uλ, as λ → a+? We can prove that if there exists no H1-solution for
(1.1) in the left borderline point of the spectrum, λ = a, then the branches of solutions bifurcate
from ∞ in a:
Proposition 6.1. Let N ≥ 3, α ∈ (0, N), p ∈ (N+α

N , N+α
N−2 ) and (V1)− (V2) hold. Let us assume

that problem
{

−∆u+ V (x)u = (Iα ∗ |u|p) |u|p−2u+ λu in RN ,

u ∈ H1
(

RN
) (6.1)

has for λ = a only the trivial solution. For any λ ∈ (a, b), let uλ be a solution obtained in
Theorem 1.2, then

‖uλ‖H1 → +∞ as λ → a+. (6.2)

Moreover, a is the only possible gap-bifurcation (from infinity) point for (1.1) in [a, b].

Proof. We prove (6.3) by contradiction. Suppose that

lim sup
λ→a+

‖uλ‖H1 < +∞.

Take a sequence {λn} ⊂ [a, b] such that lim
n→+∞

λn = a. Then {uλn} is bounded in H1(RN ) and

Φλn(uλn) = cλn , Φ′
λn
(uλn) = 0.
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Further, by (3.1) we know that for λn < 0

cλn ≥ κ(λn) ≥
(

1

8
− 1

22p+1

)

(

βp
λn

2C(N,α, p)

)
1

p−1

=

(

1

8
− 1

22p+1

)(

βp
0

2C(N,α, p)

)
1

p−1

> 0.

(6.3)
Take a subsequence of {uλn} so that uλn ⇀ u as n → +∞. Since Φ′

a is weakly sequentially
continuous, for any v ∈ H1(RN ) we have

〈Φ′
a(u), v〉 = 〈Φ′

a(uλn), v〉+ o(1) = 〈Φ′
λn
(uλn), v〉+ o(1).

Thus u is a weak solution of (6.1). We assert that u 6≡ 0. Indeed, if for any r > 0

lim
n→∞

sup
y∈RN

∫

Br(y)
u2λn

dx = 0, (6.4)

by Lions’ concentration compactness principle [45, Lemma 1.21],

uλn → 0 in Lq(RN ) ∀q ∈ (2, 2∗).

Then, by the Hardy-Littlewood-Sobolev inequality, we have

J(uλn) ≤ C|uλn |2p2Np
N+α

→ 0,

which combined with

cλn = Φλn(uλn)−
1

2
〈Φ′

λn
(uλn), uλn〉 =

(

1

2
− 1

2p

)

J(un)

implies cλn → 0. This contradicts with (6.3).
Therefore (6.4) does not hold, so that there is an r > 0 and a sequence {yn} such that

lim
n→∞

∫

Br(yn)
u2λn

dx = δ > 0

We can assume, without loss of generality, that for any n
∫

Br(yn)
u2λn

dx ≥ δ

2

Now we choose kn ∈ ZN such that |kn−yn| = min{|k−yn| : k ∈ ZN}: note that |kn−yn| ≤
√
N/2.

Set vn := τknuλn = uλn(·+ kn). Hence we have
∫

B
1+

√
N/2(0)

v2ndx ≥ δ

2
. (6.5)

Moreover, ‖vn‖H1 = ‖uλn‖H1 is also bounded in H1(RN ). Thus, up to a subsequence, vn ⇀ v
weakly inH1(RN ) and vn(x) → v(x) almost everywhere in RN . By Sobolev compact embedding,
vn → v strongly in L2

loc(R
N ), where v 6≡ 0 thanks to (6.5). By the invariance of Φa under the

action of ZN , we have
Φ′
a(v) = Φ′

a(u) = 0.

Thus we get a nontrivial weak solution v for (1.1), which contradicts our assumption.
Moreover, since lim

λ→d
‖uλ‖H1 < ∞ for any d ∈ (a, b) by Theorem 1.2, a is the only possible

gap-bifurcation (from infinity) point for (1.1) in [a, b]. This completes the proof. �
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Remark 6.1. It is easy to observe that, when V ≡ 0, problem (6.1) has for λ ≥ 0 only the
trivial solution. Indeed, if V ≡ 0 then σ(−∆ + V ) = [0,+∞). If u is a solution of (6.1), by
testing the equation against u, we obtain the identity

∫

|∇u|2dx− λ

∫

|u|2dx−
∫

(Iα ∗ |u|p)|u|pdx = 0. (6.6)

Moreover, we have the Pohožaev identity [29, Theorem 3]

N − 2

2

∫

|∇u|2dx− N

2
λ

∫

|u|2dx− N + α

2p

∫

(Iα ∗ |u|p)|u|pdx = 0. (6.7)

Combining (6.6) and (6.7), we have

(

N − 2

2
− N + α

2p

)
∫

|∇u|2dx = λ

(

N

2
− N + α

2p

)
∫

|u|2dx. (6.8)

Since N+α
N < p < N+α

N−2 ,

N − 2

2
− N + α

2p
< 0 and

N

2
− N + α

2p
> 0.

Then if λ ≥ 0 we have from (6.8) that u ≡ 0.
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