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Abstract

Weaddress the out-of-equilibrium thermodynamics of an isolated quantum system consisting of a

cavity optomechanical device. We explore the dynamical response of the systemwhen driven out of

equilibriumby a sudden quench of the coupling parameter and compute analytically the full

distribution of thework generated by the process.We consider linear and quadratic optomechanical

coupling, where the cavity field is parametrically coupled to either the position or the square of the

position of amechanical oscillator, respectively. In the former casewefind that the average work

generated by the quench is zero, whilst the latter leads to a non-zero average value. Through

fluctuations theoremswe access themost relevant thermodynamical figures ofmerit, such as the free

energy difference and the amount of irreversible work generated.We thus provide a full

characterization of the out-of-equilibrium thermodynamics in the quantum regime for nonlinearly

coupled bosonicmodes. Our study is thefirst due step towards the construction and full quantum

analysis of an optomechanicalmachineworking fully out of equilibrium.

1. introduction

As a result of several decades of efforts stemming fromdifferent communities, the classical scientific body of

thermodynamics has been experiencing a true renaissance. The reasons of this revival canmainly be traced back

to the release of two constraints: on the one hand the departure from the thermodynamic limit,motivated by

investigation of increasingly smaller systems, enabled fluctuations to be incorporated; on the other hand the

tight requirement of quasistatic processes has been relaxed, in favor of genericfinite-time transformations

connecting non-equilibrium states. The overall picture is an exact, non-perturbative extension of

thermodynamics tomesoscopic systems lying arbitrarily far from equilibrium; stochastic thermodynamics [1] is

now amaturefieldwhich addresses thermodynamical quantities such aswork, free energy and entropy at the

level of single trajectories and fluctuation theorems relate the value that these quantities assume at equilibrium to

out-of-equilibrium finite-time dynamics [2, 3].

Furthermore, given the ever-increasing control achievable overmicroscopic systems and the technological

quest for devicesminiaturization, onewould eventually reach a point where quantumfluctuations, besides

thermal ones, start playing a non-negligible role [4, 5]. The former scenariomust then be amendedwith a full

quantum treatment. Performances of thermalmachines working in the quantum regime have recently been

investigated in a plethora of different physical systems [6], and the statistics of relevant figures ofmerit such as

work and entropy generated during time-dependent protocols inquired for differentmodels [7].

Anothermotivation to achieve a better understanding of thermodynamics in the quantum regime,

somehow complementary with respect to the perspective of scaling thermalmachines down to the nanoscale,

comes from the exploration ofmacroscopic quantum systems. The extension of quantum-limited control over

objects in themesoscopic—and possiblymacroscopic—domain, is of primary interest both for fundamental
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problems, e.g. the comprehension of themechanismof decoherence, and for quantum technology. In

particular, optomechanical systems provide an ideal platformwhere to investigatemacroscopic quantum

phenomena:mechanical oscillatorsmade of 1015 particles are now approaching the quantum regime, offering

unprecedented levels of tunability and control [8]. For that reason they are among themost promising

candidates to shed light on the interplay between quantum theory and thermodynamics.

In this workwe try tomerge these scenarios: we explore and characterize the thermodynamical behavior of

an optomechanical systemdriven out of equilibriumby a time-dependent transformation.We address an

isolated quantum system, consisting of an opticalmode confined in a cavity and parametrically coupled to a

mechanical oscillator, evolving according to a time-dependentHamiltonian and undergoing a two-step

measurement protocol. Specifically, wewill be concernedwith a sudden quench of the interaction, realized by

suddenly switching on the coupling between the two—initially uncoupled—modes.We derive analytic

expressions for the characteristic function of thework distribution and analyze the full statistics of thework

generated. Two different interactionHamiltonians, both of relevance for present quantum technology, will be

considered.We shallfirst discuss themore common casewhere radiation–pressure interaction couples the

cavity field to the position of the oscillator, followed by the case of a quadratic optomechanical interaction,

where the optical field couples to the square of the position of themechanical resonator. The starting point for

most analyses of optomechanical devices is a linearization of the interaction, where theHamiltonian is cast into a

quadratic form that ismore amenable to analysis. Here, we eschew this simplification, which is formally valid

when the cavity field is strongly driven [9], and address the full nonlinear optomechanical Hamiltonian.Wenote

at this point that the thermodynamical properties of the equivalent linearizedmodel were recently explored by

some of us in [10]. By retaining the full optomechanical coupling, ourwork therefore aims to address the out-of-

equilibrium thermodynamical behavior of nonlinearly coupled bosonicmodes in the quantum regime, and thus

go beyond the results reported in literature so far.

The remainder of this work is organized as follows: in section 2we introduce the two-measurement protocol

necessary to extract thework distribution, and review the quantum fluctuation relations. Section 3 contains a

detailed analysis of the dynamical features of an optomechanical system subject to a sudden quench of the

coupling parameter and assesses its thermodynamical behavior,first in the case of linear optomechanical

coupling and then in the quadratically-coupled case. Finally, in section 4we summarize our findings and discuss

newperspectives opened up by this work.

2.Work distribution and quantumfluctuation theorems

Let us consider a systemdescribed by a time-dependentHamiltonian H Gˆ ( )t , whose dependence on time is

realized via the externally tunable parameterGt, whichwe refer to as the driving parameter.Moreover, let us

assume that at t=0 the system is in thermal equilibriumwith a bath at inverse temperature β , and is hence

described by theGibbs state


ϱ =β

β−

( )
( )

( )
G

G
ˆ

e
, (1)

H G

0

ˆ

0

0

where  G( )0 = β−{ }Tr e H Gˆ ( )0 is the canonical partition function of the system. This system is brought out of

equilibriumby applying a chosen transformation thatmodifiesGt in time.Here we are concernedwith the

statistics of thework done on or by the systemwhen applying such a protocol.We thus proceed as follows (cf
figure 1 for a graphical depiction of the the process): at time = +t 0 the system is detached from the reservoir and

a projective energymeasurement is performed on the system in the energy eigenbasis of H Gˆ ( )0 , yielding an

eigenstate whichwe label ∣ 〉En
0 . The driving parameter is changed according to the aforementioned

transformation until afinal time τ. During this period, the state of the system evolves as dictated by the action of
the unitary evolution operator τÛ ,0 on the post-measurement state. Finally, a second projective energy

measurement ismade on the system, this time in the eigenbasis of τH Gˆ ( ) and yielding eigenstate ∣ 〉τEm . Given the

spectral decompositions of the initial and finalHamiltonians, = ∑ ∣ 〉〈 ∣H G E E Eˆ ( ) n n n n0
0 0 0 and

= ∑ ∣ 〉〈 ∣τ
τ τ τH G E E Eˆ ( ) m m m m , respectively, the energy difference between the two outcomes −τE Em n

0 may be
interpreted as thework performed by the external driving in a single realization of the protocol. This particular

value of thework occurs with probability τp p
n m n
0 , where = β−p Ge ( )

n
E0

0
n
0

keeps track of the initial thermal

statistics, while = ∣〈 ∣ ∣ 〉∣τ τ
τp E U Eˆ

m n m n,0
0 2 embodies the transition probability arising from the change of basis. The

work performed due to the protocol described above can be characterized by a stochastic variableW following

the probability distribution
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∑∑τ δ= − −τ τ( )P W p p W E E( , ) . (2)
n m

n m n m n
0 0⎡

⎣
⎤
⎦

Instead of dealing directly with equation (2), it is often useful toworkwith its Fourier transform

∫χ τ τ= =u W P W( , ) d e ( , )uWi

, which is referred to as the characteristic function of thework distribution and

can be cast in the form

χ τ ϱ= τ τ β
−τ= ={ }( )( ) ( )u U U G( , ) Tr ˆ e ˆ e ˆ . (3)uH G uH G

,0
† ˆ

,0
ˆ

0
i i

0

The utility of the characteristic function becomes apparent when calculating themoments of thework

probability distribution explicitly. Indeed, the kth moment ofP(W) can be obtained from the characteristic

function as

χ= − ∂
=

=W u( i ) ( ) . (4)k k
u
k

u 0

For the special cases of k=1, 2 it can be shown that this relation acquires the simple form

ϱ= −τ β( ) ( ) ( )W H G H G GTr ˆ ˆ ˆ . (5)k
k

0 0

⎧
⎨
⎩

⎡
⎣

⎤
⎦

⎫
⎬
⎭

Inwhat followswewill be concernedwith a specific driving protocol, known as sudden quench, whereGt is
abruptly changed from its initial value to thefinal one. In this case, =τ �Û ,0 and any dependence on τ disappears.
Wewill thus refer to thework distribution and the characteristic function simply asP(W) and χ u( ),

respectively.

Work fluctuation theorems relate the probability distribution of a given process (cf equation (2)) with its

time-reversed counterpart, and account for the emergence of irreversibility in isolated systems. In the time-

reversed (or backward) process the system is initially in aGibbs state of the finalHamiltonian τH Gˆ ( ), and the

transformation acting on the driving parameter is reversed in time as → τ−G Gt t . Expressed in terms of the

characteristic functions for the forward [ χ u( )] and backward [ χ u˜ ( )] processes, the Tasaki–Crooksfluctuation

relation [11] reads

Δ
β

χ

χ β
= −

−=
F

u

u

1
ln

( )

˜ (i )
, (6)

⎡

⎣
⎢

⎤

⎦
⎥

where  Δ β= − τ
−F G Glog [ ( ) ( )]1

0 is the free energy difference between the initial states for the forward and

backward processes. Themain implication of this relation is that the probability to extract an amount of workW

from the systemduring the backward process is exponentially suppressedwith respect to the probability that the

same amount of work is done on the systemduring the forward process.

Figure 1.Graphical depiction of the two-step protocol for thework distribution. At <t 0 a system is in contact with a bath until
thermal equilibrium is reached (panel (a)). At = +t 0 , system and bath are detached, while the energy of the system ismeasured. Let

the outcome of suchmeasurement be E0n, which projects the state of the systemonto the energy eigenstates ∣ 〉En
0 (panel (b)). The

system’sHamiltonian is then changed following to a given protocol and the system evolves according to the unitary evolution
operator τU ( , 0) for a time τ (panel (c)), at which time it ismeasured (over the eigenbasis of the newHamiltonian). Outcome τEm is

achieved, which gives the new state ∣ 〉τEm (panel (d)). By repeating this protocolmany times a distribution of values −τE Em n
0 is

achieved, which embodies the probability distribution of thework done by/on the system as a result of the protocol that has been
implemented.
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Linked to such relation is the celebrated Jarzynski equality [12]

χ β = =β βΔ− −
=(i ) e e , (7)W F

which links the average of a quantity arbitrarily far from equilibriumwith the state function ΔF . From

equation (7) Δ ⩽ 〈 〉F W follows immediately, which embodies a statement of the second principle of

thermodynamics. The difference between the two quantities, whichwe denote by Δ≡ 〈 〉 −W W Firr , is referred

to as the irreversible work generated during the transformation.

3.Work distribution of quenched optomechanical systems

Let us consider the optomechanical interaction between afieldmodewithin a single-mode electromagnetic

cavity of resonance frequency ωc and amechanical resonator characterized by itsmassM and oscillation
frequency ωm. These two subsystemswill be associated to bosonic annihilation operators, denoted by â

= �a a([ ˆ, ˆ ] )† and b̂ = �b b([ ˆ, ˆ ] )
†

, respectively. The cavity frequency ismodulated by, and couples

parametrically to, themechanical displacement x, so that it can be expanded as

ω ω ω ω= + ∂ + ∂ +
= =

( )x x x x x x( ) (0) ( )
1

2
( ) . (8)c c x c

x
x c

x0

2 2

0

3

If the leading term in the expansion is the linear one, the two oscillators interact via radiation–pressure and

themuch-studied linear optomechanical regime is recovered. On the contrary, if this term vanishes only the

position-squared term contributes so that the so-called quadratic optomechanical regime is accessed; examples

of physical systemswhere the latter coupling is achievable are ‘membrane-in-the-middle’ setup [13], levitating

nano-beads [14, 15], trapped ions or atoms [16]. Note that the adjectives ‘linear’ and ‘quadratic’ here refer to the

power of themechanical displacement coupled to the field; we stress, however, that the interaction is inherently

nonlinear in the fieldmodes, involving three- or four-wavemixing processes. In order to proceed, we assume to
be able to control the optomechanical coupling strength, and suddenly turn it on at = +t 0 . As a function of the

mechanical position andmomentum variables = +x x b bˆ ( ˆ ˆ )zpf
†
and = −=p x b bˆ i( 2 )( ˆ ˆ,)zpf

†
, with

ω= =x M2 mzpf the extent of oscillator ground state, the time-dependentHamiltonian =H H Gˆ ˆ ( )t t reads

>t( 0)

ω ω= + + += =H a a
p

M
M x G a axˆ ˆ ˆ

ˆ

2

1

2
ˆ ˆ ˆ ˆ , (9)t c m t

k k†
2

2 2 ( ) †

where k=1 leads to the linear regime and k= 2 to the quadratic one, Θ ω= ∂ ∣−
=G t k x( ) ( )t

k
x
k

c x
( ) 1

0 is the coupling

parameter, and Θ t( ) is theHeaviside step function. Sincewe set =G 00 , both systems are initially uncorrelated

and prepared in a global thermal state at inverse temperature β, i.e., ϱ ϱ ϱ= ⨂β β β
Gˆ ( ) ˆ ˆc m

0
( ) ( ) , where

ϱ = ∑ ∣ 〉 〈 ∣
β
α α

ααp n nˆ n n
( ) ( ) , with = +α

α α
+p N N(1 )

n
n n( ) 1, and = −α

β ω −α=N (e 1) 1being the average number of

thermal excitations inmode α = c m, . Ourmain goal is to evaluate the characteristic function of thework

distribution equation (3), which encompasses all the thermodynamically relevant information. Using the above

notation, we have

χ ϱ ϱ= ⨂
β β

−>= ={ }u( ) Tr e e ˆ ˆ . (10)H u H u c mˆ ˆ ( ) ( )t
i

0
i

0

Beforemoving to the calculation of χ u( ),P(W), and ΔF for both linear and quadratic coupling cases, let us

make a remark about the implementation of the quench. The somehow contrasting requirements of having an

initial equilibrium state of the cavity–mirror system and turning on the optomechanical interaction at a desired

time can be reconciled in the followingway (here illustrated for the linear coupling case). Let us consider a

perfectly reflectingmirror coupled on each side to the fieldmode â j of cavity c j, j=1, 2, with equal strength, so

that = − =G G Gc c1 2
and the interactionHamiltonianwill be given by = −=H G a a a a xˆ ( ˆ ˆ ˆ ˆ ) ˆint 1

†
1 2

†
2 . If we assume

the tripartite system to equilibrate and consider the reduced state of one cavitymode and themirror we have

ϱ̂ c m( )1 =     ∑ β ω μ− =p p ec c m c c m n m n
c

m
c1

,
( ) ( ) m n m

1 2 1 2

1 2 ,
2

μ ϱ
β

D̂ ( ) ˆn m
m†

,
( ) μ ⨂ ∣ 〉〈 ∣D n nˆ ( )n m c, 1

, where

μ ω= −−G x n m( ) ( )n m m, zpf
1 .We can see that, unless the thermal states of the two cavities are perfectly

correlated (in a classical way), this state does not reduce to ϱ ϱ⨂
β β

ˆ ˆc m( ) ( )1 , namely the initial state required by the

protocol. However, we computed theKullback–Leibler divergence of the diagonal part ϱ̂ c m( )1 (the only entering

the protocol) with respect to thermal statistics p p
n

c
k

m( ) ( )1 , andwe found that in the range of parameters explored

in this work it never exceeds values of the order of 10−4. Therefore, this configurationmay provide a viable

method for approximating the initial state of the protocol. The quenchwould then consist in the sudden shut-off

4

New J. Phys. 17 (2015) 035016 MBrunelli et al



of the auxiliarymode â2. A detailed feasibility analysis of thewhole protocol is however beyond the scope of this

work and it is left for future investigations.

3.1.Quenched linear optomechanical interaction

For the case of a Fabry–Pérot cavity of length L and oscillatingmirror ofmassM the coupling can be shown to be

equal to ω= ≡>G L g xt c0
(1)

zpf , where g is referred as the single-photon coupling strength and quantifies the shift

in the equilibriumposition of themechanical resonator induced by a single photon. In order to keep the

notation as simple as possible, wewill explicitly denote by ĤI the (initial) uncoupledHamiltonian

ω ω= + + ≡= = = ( )H a a b b Hˆ ˆ ˆ ˆ ˆ ˆ , (11)t c m I0
† † 1

2

and by ĤF the (final) interacting one

= + + ≡> = ( )H H g a a b b Hˆ ˆ ˆ ˆ ˆ ˆ ˆ . (12)t I F0
† †

It is straightforward to prove that

= ω ω ω η η ω− − + − − − −
ω ω=

( )( )e e e e , (13)*H u u a a u u a a a a b b u b bˆ i ˆ ˆ i sin ˆ ˆ ˆ ˆ( ˆ ˆ) i ˆ ˆ
F c

g

m
m m

g
m m

i †
2

2
†

2
† † †

where η = − ω−(1 e )ui m [17]. Expression (13) provides uswith physical insight into the dynamical evolution

induced by radiation–pressure interaction: apart from two free-rotating terms (the first and last in the above

product), the propagator reduces to a displacement of themechanicalmode conditioned on the number of

cavity photons, followed by an evolution generated by aKerr-like term.

The characteristic function in equation (10) can then be explicitly worked out. The formof the interaction

suggests taking the trace over the number states ∣ 〉n{ }c formode â and over the coherent states α∣ 〉{ }m for b̂ (we

reserve Latin letters for Fock-state labels andGreek letters for coherent-state labels throughout), i.e.,

∫∑χ α α α α=
=

∞
−

= =

&
u p n n( ) d ( ) , e e , , (14)

n
n

c m H u H u

0

2 ( ) ( ) ˆ ˆ
F I

i i

where  α α π= −∣ ∣ N N( ) exp ( ) ( )m
m m

( ) 2 is theGlauber–SudarshanP-representation of an equilibrium
thermal state in the coherent- state basis and the compound kets are defined as α α∣ 〉 ≡ ∣ 〉 ⨂ ∣ 〉n n, c m. It is

possible to gather the following analytical expression for the characteristic function

∑χ =
+

ω ω ω

=

∞ − − + + −

+

ω

( )

( ) ( )( )
u

N

N
( )

e

1
, (15)

n

c
n u u N u

c
n

0

i sin 1 2 1 cos

1

g n

m
m m m m

2 2

2
⎡
⎣

⎤
⎦

which cannot be summed analytically.We can however appreciate a few significant features of such expression:

first, we recognize the thermal statistics of the cavity fieldmodulated by an exponential whose argument keeps

track of the average number of phononsNm. Second, the characteristic function is periodic in u.

To proceed further, since the Fourier transformof equation (15) cannot be explicitly worked out, we

evaluate the probability distribution of thework by calculating equation (2) directly. To do this, energy

eigenvalues and eigenstates of ĤI and ĤF are required. As ĤI is the freeHamiltonian of the uncoupled system, it

satisfies the eigenvalue equation ∣ 〉 = ∣ 〉H n k E n kˆ , ,I n k, , where ∣ 〉 = ∣ 〉 ⨂ ∣ 〉n k n k, c m, and

ω ω= + += =E n k( )n k c m,
1

2
. Owing to the fact that =a a H[ ˆ ˆ, ˆ ] 0F

† , the post-quenchHamiltonian can bewritten

as = ⊕ =
∞H Hˆ ˆ

F n F n0 , , where ω ω= ∣ 〉〈 ∣ + + + += = =H n n n b b g n b bˆ ( ˆ ˆ ) ( ˆ ˆ )F n c c m,
† 1

2

†⎡
⎣⎢

⎤
⎦⎥ refers to the

Hamiltonian of the n-photonmanifold. Each ĤF n, can then be diagonalized using a displacement operator

= −D z zb z bˆ ( ) exp ( ˆ * ˆ)
†

on themechanicalmode, whose amplitude we take conditioned to the photon number

n [18]. Denoting the quantities referring to ĤF n, with a primewe find the energy eigenstates, written in the

energy eigenbasis of the initialHamiltonian ĤI , ∣ ′〉 ⨂ ∣ ′〉
ω

′
n D kˆ ( )c

g n
m

†

m
, with eigenvalues

ω ω= ′ + ′ + − ′
ω′ ′ = = =E n k n( )n k c m
g

,
1

2
2

m

2

. A pictorial view of pre- and post-quench eigenstates in the subspace

atfixed number n of photons is sketched infigure 2. As stated by equation (2), the transitions from a set of

eigenstates to another are responsible—at themicroscopic level—for thework performed on or by the system.

The probability distribution of thework is thus given by
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∑

∑

ω δ δ

ω ω δ ω ω

= ′ ′ − −

=
′
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′ ′ ′

′

−
−

′−
=

( ) ( )

( ) ( ) ( )( )

P W p p k D g n k W E E

p p
k

k
g n g n W k k g n

( ) ˆ

!

!
e , (16)

n n k k
n

c
k

m
m m m n k n k n n

n k k
n

c
k

m g n
m

k k

k
k k

m m m

, , ,

( ) ( ) 2
, , ,

, ,

( ) ( )
2( )

( ) 2
2

2
2

2m
2 2

⎡
⎣

⎤
⎦

⎡
⎣

⎤
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⎤
⎦

⎧
⎨
⎩

⎡

⎣⎢
⎤

⎦⎥
⎫
⎬
⎭

⎧
⎨
⎩

⎡

⎣⎢
⎤

⎦⎥
⎫
⎬
⎭

where ℒ x( )a
b are the generalized Laguerre polynomials coming from the evaluation of the overlap between pre-

and post-quenchmechanical oscillator eigenstates [19]. A comparisonwith equation (2) enables to

unambiguously discriminate the contribution of the first projectivemeasurement (which consist of a sampling

from the joint thermal distribution of the cavity and themirror) from the quantum transition probability, and

explicitly provides an analytical expression for the latter.

The probability distribution of thework, togetherwith real and imaginary parts of the characteristic

function, is shown infigure 3, for different values ofNc,Nm, and coupling strength. By differentiating the

expression of characteristic function equation (15) and evaluating it in the origin, according to the prescription

in equation (4), one can see that each termof the series identically vanishes, so that the averagework generated

by quenching the optomechanical coupling is in fact zero. This is in agreementwith the behavior of the

imaginary part of χ u( ), shown in the inset offigure 3, which approaches u=0with zero derivative. Having

access to the characteristic function also gives us information about the statisticalmoments ofP(W); for

instance, the variance of the distribution is given by

− = + += ( )( )W W g N N N1 2 1 2 . (17)c c m
2 2 2 2

As expected, this quantity increases bothwith respect to the intensity of the quench, as quantified by ωg m, and

the average number of thermal excitations. This feature is apparent by comparing the topmost distribution,

relative to =N 0.001c , =N 1m and ω =g 0.2m , to the other two, both obtained for =N 0.1c and =N 1m —

thus varying the ratio ω ωc m—but corresponding to ω =g 0.1m and ω =g 0.8m respectively, i.e., increasing

both the temperature and the coupling strength.

Let usfirst analyze P(W) as illustrated for a few representative cases infigure 3, wherewe consider small

values of ω ≲g 1m . In such conditions and for relatively small values forNc, the probability distribution appears

to be dominated by peaks occurring close tomultiple values of ω= m. These peaks originate fromdifferent

initially-populated Fock states of themechanical subsystem. Indeed, the number of peakswith appreciable

amplitude increases strongly withNm. Infigure 3(b)we notice that the sparse peak-distribution associatedwith

very low values of Nc changes into a ‘clustered’ one, where groups of peaks develop close tomultiples of ω= m and

are biased towards less positive values ofW. This is directly caused by theKerr-like term in ĤF , whose

contribution to the overall energy is always negative. A natural question to ask at this point is why the average

work done is zerowhen each of thesefine structures is biased in the same direction. The answer to this lies in the

positive skewness of the distribution, which is given by

Figure 2. Schematic diagram (not to scale) of the energy-level structure of the pre-quench, ĤI n, , and post-quench, ĤF n, ,

Hamiltonians for the n-photonmanifold. Quenching the linear optomechanical interaction results both in an energy shift and a
displacement of themechanical oscillator. Twopossible transitions induced by the quench—having different values of Δ = ′ −k k k
—are shown as an example.
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γ
ω

=
−

−
=

+ +( ) ( )
W W

W W

g

N N N

( )

( ) 1 2 1 2
, (18)

m

m c c

3

2 3 2

and ismore apparent in the low-temperature regime; indeed, by simply looking at the distribution shown in

figure 3(b), it is possible to appreciate the positive skewness of the distribution.

Shifting our attention fromfigures 3 to 4, we can appreciate the effects of increasing the temperature

significantly. The two effects we discussed above, namely the increasing number of peaks upon increasingNm

and thefine structure that appearsmore andmore prominently when increasingNc, work together to turn P(W)

from a distribution consisting of well-separated peaks to a dense forest of points. It is readily apparent from the

latterfigure that the tails of the distribution decay exponentially with increasing ∣ ∣W . In order to investigate this

effectmore thoroughly, we show infigure 4(a) coarse-graining of the probability distributions. This coarse-

grainingwas performed by convolving P(W) with aGaussian of appropriate width ( ω=0.5 m in this case). The

resulting distributions, drawn as solid curves in thisfigure, display clearly a tripartite structure. First, around

Figure 3. Logarithmic plot of the probability distribution of the stochastic work variable,W (in units of ω= m) for different values of the
average number of cavity photonsNc, average number ofmechanical phononsNm and coupling g. Panel (a) is for

ω=N N g( , , ) (0.001, 0.1, 0.2 )c m m , (b) is for ω=N N g( , , ) (0.1, 1, 0.1 )c m m while (c) for ω=N N g( , , ) (0.1, 1, 0.8 )c m m . In the inset is
shown the behavior against the time-like variable u (multiplied by ωm) of the real, χRe ( ) (solid blue, left), and imaginary, χIm ( )
(dashed red, right) parts of the characteristic function.
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W=0, a prominent peak is apparent whosewidth in thisfigure is entirely due to the convolvedGaussian.

Second, a quadratic decay is appreciated for slightly larger values ofW. The probability distribution in this region

is thusGaussian in nature. Third, the tails of the distribution have amanifestly exponential character: the coarse-

grained curve displays a prominent kinkwhere the exponential tailmeets theGaussian part of the distribution.

It is worth discussing the validity of our coarse-graining approach.We have verified that the discussion

above is notmodified significantly when the function used to coarse-grain is changed from aGaussian or a

Lorentzian, or when thewidth of this function is changedwithin reason. Afinal checkwe performedwas to

construct the cumulative distribution function ∫
−∞

w P wd ( )
W

. This functionwas interpolated and smoothed,

and then differentiated to give a continuous version ofP(W). Once again, the conclusions we drew abovewere

left unmodified. It is possible to attach a physicalmeaning to the coarse-graining ofP(W) as follows. Should the

probability distribution bemeasured using any realistic apparatus, themeasurement results will not be infinitely

sharp, andwill be distributed according to some distribution, usually assumed to beGaussian. Such an

experiment would directly yield the coarse-grained distributionwe calculate and display infigure 4. Another

way of getting a smooth, continuous distributionwould be to take the classical limit for the dynamics of both the

optical andmechanical system,whichwould then result in a stochastically frequency-shifted harmonic

oscillator [20].While this approachwould not entail the enforcement of any smoothing procedure, its study

would deserve a full-fledged analysis that goes beyond the scopes of this work.

We have shown, both analytically and numerically, that despite turning on a nonlinear interaction between

the twomodes, on average there is no net production of work. This feature contrasts bothwith the case of a

quench in the frequency of the harmonic potential of a single oscillator [21], and of the linear interaction

between two bosonicmodes [10], where net work is produced on average.We shall return to this point in the

next subsection, wherewe discuss the physical origin of this fact and demonstrate amethod for producing non-

zero averagework.

Figure 4. Logarithmic plot of the probability distribution of thework (in units of ω= m) corresponding to the parameters
ω=N N g( , , ) (0.19, 9, 0.7 )c m m [ ω=N N g( , , ) (0.9, 19, 0.7 )c m m ] for the upper panel (for the lower panel). The solidmagenta line

shows the coarse-grained version of the distribution, obtained by substituting the peakswith independently normalizedGaussian
functions. The resulting distribution appears shiftedwith respect to the actual one both because of the normalization of eachGaussian
function, and because points corresponding to different transitions contribute to the same value ofW.
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Using equation (13)we can easily compute the evolution of the initial Gibbs state, as defined by

ϱ ϱ ϱ= ⨂
β β

−
= =tˆ ( ) e ˆ ˆ etH c m tHˆ ( ) ( ) ˆ

F F
i i

. In our case, it is easily seen that this always leads to a separable state, where any

correlations between the optical andmechanicalmodes are fully classical. The dynamics is periodic in time: at

π ω=t r2 m ( ∈ =r ), the system goes back to the initially factorized state, while for π ω= +t r(2 1) m ( ∈ =r ),

one gets themaximally (classically) correlated state.

Equation (13) also allows us to compute the partition function of the system, via a suitableWick rotation of

the argument, i.e., β→ − =u i , which effectively identifies the imaginary time as an inverse temperature. For the

initial state of the system the partition function factorizes in two canonical contributions

  = ≡ − −β β
βω βω− − −= =[(1 e )(1 e )]I

c m( ) ( ) 1c m , while for the coupled systemwe obtain

 ∑= − βω βω β ω− −

=

∞
−= = =( ) ( )1 e e e . (19)F

n

n g n
1

0

m c m
2 2

The free energy difference is correspondingly given by
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which, as can be verified, agrees with the Jarzynski equality Δ χ β= −
β

F ln (i )
1

. Upon close inspection, it is

readily apparent that the series involved in the latter expression is actually divergent. Indeed, for every finite
value of β, ωg m, and ω ωc m, there exists =n n g r¯ ¯ ( , ) such that ∀ >n n̄, we have that >g n r2 . This causes the

sum to diverge exponentially, such that ΔF is formally undefined. This divergent term can be traced back to the

part of ĤF that reads ω ω−a a g a aˆ ˆ ( ˆ ˆ)c m
† 2 † 2. As is apparent, the spectrumof thisHamiltonian is not bounded

frombelow.Occupation of levels with ⩾n n̄, which occurs naturally for any non-zeroβ, can thus bemapped

into a negative temperaturewith respect to ĤF . To resolve this issue, we impose a cutoff on the number of terms

in the series; when ωg m approaches or even exceeds unity, with the system entering the interesting strong-

coupling regime of optomechanics, wemust truncate the series to correspondingly small photon numbers in

order to prevent dynamical instability, and the ensuing divergence of ΔF , upon quenching the system.

Alternatively, one can also devise ad hocmechanisms to stabilize the divergent character of free energy

difference. For example, onemay add to theHamiltonian ĤI a quadratic term in the photon number operator

ϵ= a a( ˆ ˆ)† 2; this can be done by adding aKerr-likemedium into the cavity, along the lines of [22].When

ϵ ω⩾ g m
2 this contributionwill compensate the divergent one, ensuring the converge of ΔF . Another

possibility is quenching both the linear and the quadratic therms in themechanical displacement i.e., retaining

both the contributions k= 1, 2 in equation (9); for themechanical oscillator this would imply—beside a

displacement and an energy shift both dependent on n—also a renormalization of the frequency (dependent on

the photon number as well, see section 3.3)which eventually allow for the convergence of series for suitable

values of the parameters involved.However itmust be stressed that in both cases the regularization comes at the

expense ofmodifying the probability distribution of thework and henceforth, for the rest of this work, wewill

therefore restrict ourselves to the physical domain inwhich the series does converge, leaving a quantitative study

of themodification entailed by the additionsmentioned above to further studies.

An explicit calculation of ΔF , as illustrated infigure 5, shows that the free energy difference is negative, in

agreementwith the statement of the second law Δ ⩽ 〈 〉 ≡F W 0.Moreover, the irreversible work reduces to

Δ= −W Firr . Uponmoving towards lower temperatures, both the evolved state and the reference thermal state

tend to collapse onto the ground state, leading to vanishing values of the irreversible work, as is apparent from

the figure.On the other hand, upon increasing the coupling ωg m, the free energy difference grows inmodulus.

Finally we point out that, in the spirit of [23], the divergence of the free energy difference is related, via the

Jarzynski equality equation (7), to the divergence of exponentiated averagework ∫ β−
5

W P Wd ( )e W , which in

turn imposes some constraint on the behavior of the tails of thework probability distribution. In our case a

divergent ΔF would imply a sub-exponential decay of the tails of the distribution.

3.2. Initial displacement of themechanical oscillator

In the previous subsectionwe observed how 〈 〉 =W 0 for an initial thermal state of theHamiltonianHI,

independently of the strength of the quench. The fact can be seen as a direct consequence of the symmetry of the

interactionwhich, being proportional to x̂, is an odd function in themechanical field operators, such that

ϱ= − + =
β{ }( )W g N b bTr ˆ ˆ ˆ 0. (20)c

m† ( )

In otherwords, the averagework generated by this kind of quenchwill be zero. In order to remedy this, we now

add an initial displacement of amplitude  ω ∈ 5m to themechanicalmode b̂ of theHamiltonian (9) so that the

9

New J. Phys. 17 (2015) 035016 MBrunelli et al



initial and finalHamiltonianswill now read  ω= + +=H H b bˆ ˆ ( ˆ ˆ )I F I F m, , ,
†
. It can be shown that

  =H D H Dˆ ˆ ( ) ˆ ˆ ( )I I,
†

and    = + =H D H g a a Dˆ ˆ ( )( ˆ 2 ˆ ˆ) ˆ ( )F F,
† †

with D̂ ( ) a local displacement of

amplitude  . Proceeding as before, the characteristic function of thework distribution can be computed as

∑χ =
+

ω ω ω ω ω

=

∞

+
− − − + −

( )
( ) ( ) ( ) ( )( )u

N

N
( )

1
e e e , (21)

n

c
n

c
n

g n u u g n N u gn u

0
1

i sin 1 2 1 cos 2im m m m m m
2 2 2 2

which differs from equation (15) by a phase factor. This extra factor is actually responsible for positive derivative

of the imaginary part χ uIm [ ( , )]at the origin and hence to a non-zero value of the average work. Indeed,

applying equation (4), onefinds that the averagework done by quenching the optomechanical interaction is

given by

= =W g N2 , (22)c

which depends linearly on the displacement  , on the number of thermal photons populating the cavity, and on

the quenching parameter.

Finally, the free energy difference for thismodel is given by

∑Δ
β

= −
+

β β

=

∞

+
−ω= =

( )
F

N

N

1
ln

1
e . (23)
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⎤

⎦

⎥
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The behavior of the irreversible workWirr is reported infigure 6, with respect to the inverse temperature and the

magnitude of the displacement.

3.3.Quenched quadratic optomechanical interaction

Wewill consider now the case where the photon number operator of the cavity field is coupled to the square of

the position operator of themirror. As before, wewill concentrate on the single-photon regimewhere the

interaction of a single photonwith themechanicalmode is enough to appreciably change its frequency and also

squeeze its state. In this instance, we can introduce the single-photon coupling strength κ through the relation

κ=G x(2)
zpf
2 , in analogywith the linear case. The initialHamiltonianHI is unmodified and still given by

equation (11), whereas the the post-quenchHamiltonian now reads

κ= + += ( )H H a a b bˆ ˆ ˆ ˆ ˆ ˆ . (24)F I
† † 2

Wechoose toworkwith a non-negative κ, since κ < 0 can introduce post-quench instabilities similar to the one

noted for the linear case. The κ > 0 case exhibits no such instabilities. Yet again, we see that this interaction

preserves the photon number a aˆ ˆ† , so that it proves convenient towrite = ⊕ =
∞H Hˆ ˆ

F n F n0 , where each ĤF n, can be
cast in the form

ω Ω Σ= + + + += = =( ) ( )H n b b b b n nˆ ˆ ˆ ˆ ˆ , (25)F n c n n c,
† 1

2

† 2 2⎡

⎣⎢
⎤

⎦⎥

where Ω ω κ≡ + n2n m and Σ κ≡ n2n .Within each suchfixed photon-numbermanifold, we notice the

appearance of amodifiedmechanical frequency, togetherwith a squeezing operator for themechanicalmode

whose argument is conditioned on the photon number. The evolution operator relative to the post-quench

Hamiltonian can subsequently be expressed as

Figure 5. Left: log-linear plot of the free energy difference ΔF (in units of ω= m) as a function of the dimensionless temperature β ω= m

for ω ω= 500c m, and ω=g 0.5 m. Right: log-linear plot of ΔF as a function of the scaled coupling ωg m for ω ω= 500c m, and

β ω= −
=10 m

3 .
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Our next task is to disentangle each exponential operator in the sum. By using the commutation relations

between the operators involved in equation (26), which provide a two-excitation realization of the su(1, 1)

algebra [24], we find

= ξ ξ η ω− − − + −
= n ne e e e , (27)

*H u b b b b u n
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ˆ ˆ ˆ i ˆ ˆ
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with κ κ ω≡˜ m being a dimensionless quench parameter.We further have the complex quantity ξ ξ≡ ∣ ∣ ϕen n
i n

whose phase is ϕ η≡ + π

n n 2
andmodulus
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Armedwith this tool we can thus compute the characteristic function of thework distribution, which reads

∑χ

χ

=
+ ∑=

∞

+

=( )
u

N

N N
( )

1

1
, (30)

n

c
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c
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2
,

and comes in the formof a thermal averagewith respect to the cavity distribution—as in equation (15)—of

algebraic functions. Each of the latter is the reciprocal of the square-root of a second degree polynomial in the

mean number of phononsNm, whose coefficients are concisely related to each other. Indeed, we can split χn,0

into its real and imaginary parts, which read

χ ω ω κ
κ

κ
ω ω κ= + +

+

+
+( ) ( )u u n

n

n
u u nRe ( ) cos ( ) cos 1 4˜

1 2˜

1 4˜
sin ( ) sin 1 4˜ , (31)n m m m m,0

and

χ ω ω κ
κ

κ
ω ω κ= + −

+

+
+( ) ( )u u n

n

n
u u nIm ( ) sin ( ) cos 1 4˜

1 2˜

1 4˜
cos ( ) sin 1 4˜ . (32)n m m m m,0

We thus have χ χ χ χ= − = −2( 1) and 2 Re ( ) 1n n n n,1 ,0 ,2 ,0
⎡
⎣

⎤
⎦. As before, since the Fourier transformof

equation (30) cannot be directly evaluated, in order to compute the probability distribution of thework

equation (2)we proceed by diagonalizing the post-quenchHamiltonian ĤF . First, we keep inmind that ĤI is the

same as before. However, within anyfixed photon numbermanifold, ĤF n, be diagonalized via a squeezing

operation = −S z z b z bˆ ( ) exp ( * ˆ 2 ˆ 2)
2 † 2

on themechanicalmode conditioned on the photon number n

[25, 26]. Once again denoting the post-quench quantities with a prime, and expressing the states in the

eigenbasis of ĤI , wefind eigenstates ζ ζ∣ ′〉 ⨂ ∣ ′〉 = ∣ ′〉 ⨂ ∣ ′〉′ ′ ′ ′H n S k E n S kˆ ˆ ( ) ˆ ( )F n c n m n k c n m, , , where the

squeezing parameter is given by ζ κ ω≡ + ′′ nlog 1 4( )n m
1

4
⎡
⎣

⎤
⎦, and the eigenvalue

ω ω κ ω= ′ + + ′ ′ +′ ′ = = ( )( )E n n k1 4 . (33)n k c m m,
1

2

Figure 6. Left: log-linear plot of the irreversible workWirr (in units of ω= m) as a function of the dimensionless temperature β ω= m for
ω ω= 500c m, and ω=g 0.5 m. Right: log-linear plot ofWirr as a function of themechanical displacement  for ω ω= 500c m, and

β ω= −
=10 m
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As sketched infigure 7, for themanifold corresponding to ′n photons, the quench results in amodification of the

oscillation frequency which, ismultiplied by a factor κ ω+ ′n1 4( )m , a relative shift of themechanical levels

by ω κ ω+ ′ −= n1 4( ) 1m m
⎡
⎣

⎤
⎦, and a squeezing of the state by a factor ζ ′n . Putting everything together, the

probability distribution of thework is thus given by
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where  ζ′k k( , , )n is given by

 ∑∑ζ
ζ

ζ δ′ =
−

−
= =

+

+

+

′− −

′

( )
( )

( )k k
m l k l

, ,
( 1)

2 ! !

tanh

( 2 )!
cosh , (35)n

m l

m l

m l

n
m l

n
l

k m k l

0 0

3 2
2

2 , 2

k k
2 2

⎢⎣ ⎥⎦ ⎢⎣ ⎥⎦

being⌊ ⌋x thefloor function of argument x, which yields the largest integer not greater than x.

The probability distribution for thework done on the oscillator in the case of a quadratic interaction, as

derived in this section, is illustrated for some representative cases infigures 8 and 9. In order to characterize

quantitatively the key features of the distribution of work, herewemention that the averagework generated by a

quench of the quadratic optomechanicalHamiltonian is different from zero and is then given by

κ= += ( )W N N1 2 , (36)c m

hence increasing with respect the occupation numbers of both the cavity and themechanicalmode, asmade

apparent by inspecting the different panels infigure 8. The variance of the distribution reads

κ− = + += ( )( )W W N N N3 5 1 2 . (37)c c m
2 2 2 2 2

Finally, themost striking feature of the probability distribution in the case of a quadratic quench is that it is very

asymmetrical, fact witnessed by its skewness

γ
ω

ω

=
+ + + + +

+ +

( )( )( )

( ) ( ) ( )

N g N N N

g N N N

4 8 15 81 74 1 2

3 5 1 2
. (38)

c m c c m

m c c m

2 2

3 2 2

Wenote that, for ≫N 1m , it acquires the values N5 3 c for ≪N 1c and 74 5 5 for ≫N 1c ; both these values
are independent of the strength of the quench. As for the linear case the dynamics brings the initial bipartite state

of cavity andmechanicalmode into a separable sate, given by ϱ ϱ ϱ= ⨂ =
β β

−
= =tˆ ( ) e ˆ ˆ etH c m tHˆ ( ) ( ) ˆ

F F
i i

Figure 7. Schematic diagram (not to scale) of the energy-level structure of the pre-quench, ĤI n, , and post-quench, ĤF n, ,
Hamiltonians for the n-photonmanifold. Quenching the quadratic optomechanical interaction results both in an energy shift and a
squeezing of the frequency of themachanical oscillator. Two possible transitions induced by the quench—having different values of
Δ = ′ −k k k—are shown as an example.
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∫ α α α ξ α ξ∑ ∣ 〉〈 ∣ ⨂ ∣ 〉〈 ∣η ηp n n d ( ) e , e ,n n
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c
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n n m
( ) 2 ( ) i in n , where α ξ ξ α∣ 〉 = ∣ 〉η ηS De , ˆ ( ) ˆ (e ) 0n m n m

i in n is a squeezed

coherent state of themechanicalmode, and hence no entanglement is generated between the twomodes.

Proceeding in the samemanner as before, we can show that the free energy can be cast in the form
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In this case, too, a suitableWick-like rotation to imaginary u can be performed to obtain ΔF from χ u( ). In
practice, however, this calculation is frought with technical difficulties and it is far easier to compute ΔF from an

explicit diagonalization of theHamiltonian, as was done above. The behavior of the irreversible work for this

Figure 8. Logarithmic plot of the probability distribution of the stochastic work variable,W (in units of ω= m) for different values of the
average number of cavity photonsNc, average number ofmechanical phononsNm and coupling κ. Panel (a) is for

κ ω=N N( , , ) (0.001, 0.1, 0.2 )c m m , (b) is for κ ω=N N( , , ) (0.1, 1, 0.1 )c m m while (c) for κ ω=N N( , , ) (0.1, 1, 0.8 )c m m . In the inset
is shown the behavior against the time-like variable u (multiplied by ωm) of the real, χRe ( ) (solid blue, left), and imaginary, χIm ( )
(dashed red, right), parts of the characteristic function.
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case has been shown infigure 10, and once againwe can see how it drops lowering the temperature and increases

by increasing the coupling strength.

As in the linear case, is easier to extract a physicalmeaning behind the various features of these plots by

inspecting the respective coarse-grained distributions. First, we see that the positive-W tail still exhibits an

approximately exponential decay. It is also apparent that the distribution is, in this case, significantlymore

skewed towards the right than in the linear case, which can be understood simply through the fact that the post-

quenchmechanical oscillator frequency is always larger even for the case when ′ =k k , therefore, which at least

for small κ ωm has a large probability of occurring, thework done is positive.

4. Conclusions and outlook

The exploration of out-of-equilibrium features of small systemsworking in the quantum regime is attracting

ever-increasing attention.Optomechanical systems,more so than other systems, offer the tantalizing

perspective of naturally bridging the study of quantum thermodynamics with themacroscopic domain.We

actually believe that this class of systems offers the possibility of a captivating analogy:movablemirrors and

cavity fields closely resemble pistons andworkingmedia in a piston–chamber engine; in turn, this embodies the

archetypal example of a thermalmachine. In this sense, such systemsmay serve as the paradigm for

understanding a new class ofmachines, operating both in the quantum regime and far from equilibrium.

However, an adequate description of optomechanical systems involves a fully quantum treatment, and a detailed

analysis of the thermodynamical properties of them, carried out at a fundamental level and retaining the full

nonlinearity of the interaction, has not been conducted thus far. In this workwe discussed the generation of

work induced by a non-equilibrium transformation in an isolated optomechanical system, quantitatively

assessing how an instantaneous quench of the light–matter coupling affects the thermodynamical response of

the system.Our studywas grounded through several analytic results, presenting expressions for both the

characteristic function of thework distribution and the full statistics of thework generated for two different

situations ofmuch relevance for current and future optomechanical experiments. For a quench of linear

coupling between light and the position of an oscillator, we found that nowork is generated on average, whilst

quenching a quadratically-coupled optomechanical interaction requires work to be performed on the system.

Besides being interesting in itself, and allowing for a full analytical treatment, the scenario we addressed

comprises the fundamental ingredients necessary in order to gain knowledge about themicroscopic origin of the

work generated by quenching an optomechanical interaction, from a fully quantumperspective. An in-depth

understanding of the thermodynamical response of such an isolated quantum system represents the cornerstone

for future investigations. For instance, the implementation of protocols for extractingwork out of such systems

will require benchmarks based on the analysis that we have performed here, whichwill in turn be necessary to

help uncover fundamental advantages or limitations for possible future thermalmachinesworking in the

quantum regime and that exploit the optomechanical interaction.

Figure 9. Logarithmic plot of the probability distribution ofwork (in units of ω= m) corresponding to the parameters
( κ ω=N N, , ) (0.19, 9, 0.7c m m).We also show the coarse grained version of the work distribution (solidmagenta line). The coarse
graining is realized by convolving the discrete distributionwith aGaussian function of standard deviation ω=0.9 m.
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