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ABSTRACT

Let L be a line contained in a Grassmannian variety G. A d-rope C ⊂ G sup-
ported on L is a locally Cohen-Macaulay curve of degree d with Cred = L and
(IL,G)2 ⊂ IC,G. We characterize the d-ropes C supported on L and embedded in
G. In some cases we describe also the vector bundles on such a rope C. Finally,
we describe the parameter spaces for ropes embedded in G.
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1. Introduction

Given a smooth curve L, a multiple structure C supported on L is a curve with
Cred = L, where a curve is a locally Cohen-Macaulay scheme of pure dimension 1.
Particular multiple structures are the so-called d-ropes, where a d-rope is a degree
d ·deg L curve whose ideal sheaf satisfies (IL)2 ⊂ IC ⊂ IL, i.e. its relative ideal sheaf
I = IL,C satisfies I2 = 0.
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2004, 17; Núm. 1, 181–193

181
ISSN: 1139-1138

http://dx.doi.org/10.5209/rev_REMA.2004.v17.n1.16799



E. Ballico/R. Notari/M. L. Spreafico Ropes on a line embedded in a Grassmannian variety

Geometrically the curve C is contained between L and its first infinitesimal neigh-
borhood. It is easy to see that a d-rope C of degree d·deg L corresponds to a rank d−1
subbundle E of the normal bundle NL of L via the exact sequence

0 → E∗ = IL,C −→ OC −→ OL → 0. (1)

We say that C is a rope if it is a d-rope for some d.
The definition of rope was given in [5], while 2-ropes (called ribbons) and d-ropes

embedded in the projective space were studied in [1] and [9], respectively.
If the support L is a line and the rope C is embedded in P

n, the Hilbert function,
the homogeneous ideal, the Hartshorne-Rao module, their biliaison classes and their
Hilbert schemes were studied in [10] and [11]. Moreover, curves C contained between
two infinitesimal neighborhoods of a line L, embedded in P

n, were studied in [2].
In this work we want to study ropes C supported on a line L, both embedded in

a Grassmannian variety G. This fact seems quite natural because the Grassmannian
varieties are a generalization of the projective spaces P

n.
The plan of the paper is the following.
In Section 2 we give a characterization of the bundles

E∗ = IL,C = ⊕d−1
i=1 OL(αi − 1)

(see the previous exact sequence (1)) which define d-rope C embedded in the Grass-
mannian variety G. Furthermore, we deduce some numerical invariants of such em-
bedded ropes (for example we easily prove that gC = −∑d−1

i=1 αi, where gC is the
arithmetic genus of C).

In Section 3 we describe the vector bundles A on a d-rope C embedded in G,
supported on a line L, which satisfy the condition A|L is rigid.

Recalling that every Grassmannian variety G = Gr,n can be embedded via Plücker
morphism in the projective space P

N with N =
(
n
r

)
− 1, in Section 4 we show that

for almost every d-rope C embedded in G ⊂ P
N , there exists a d′-rope C ′ ⊂ P

N such
that C is the scheme-theoretical intersection of C ′ with G.

Finally, in the last section we study the parameter space for the d-ropes embedded
in G. Whenever we choose two suitable parameter spaces we describe a flat family of
d-ropes embedded in the same Grassmannian variety G such that the general element
belongs to one of the two parameter spaces and the special one belongs to the other
one.

2. Characterizations of ropes supported on a line, embedded in
the Grassmannian variety

In this section, we consider a line L contained in a Grassmannian variety G and we
give a characterization of a d-rope C supported on a line L both embedded in G.

Throughout this paper we work over an algebraically closed field K of any charac-
teristic and we’ll use the following notation. Let G := Gr,n be the set of r-dimensional
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linear subspaces of the vector space Kn. Of course each r-dimensional linear subspace
of Kn can be view as a (r − 1)-plane in the corresponding projective space P

n−1.
We have that dimGr,n = r(n − r) and it is well known that Gr,n can be embed-
ded via Plücker morphism in the projective space P

N = Proj (K[x0, . . . , xN ]) with
N =

(
n
r

)
− 1.

We refer to [6] for generalities about the Grassmannian variety.
We recall also this well known result that we use in the following. We give a proof

for the convenience of the reader.

Lemma 2.1. Let L be a line contained in G. Then the normal sheaf of L restricted
to G is

NL|G ∼= On−2
L (1) ⊕O(r−1)(n−r−1)

L .

Proof. Let Q (S, respectively) be the tautological quotient bundle of rank r ( tauto-
logical quotient subbundle of rank n − r, respect.) of the Grassmannian G = Gr,n.
We have that the tangent bundles of the Grassmannian variety G and of the line L
are T G ∼= Q ⊗ S∗ (see [6], p. 201) and T L ∼= OL(2). Moreover, Q|L ∼= OL(1) ⊕Or−1

L

and S∗
|L ∼= OL(1) ⊕ On−r−1

L because Q and S∗ are spanned, det(Q) ∼= OG(1), and

det(S∗) ∼= OG(1). Then, we get T G|L ∼= OL(2)⊕OL(1)n−2⊕O(r−1)(n−r−1)
L and from

the exact sequence:
0 → T L → T G|L → NL|G → 0 (2)

we can compute NL|G.

Remark 2.2. The isomorphism NL|G ∼= On−2
L (1) ⊕ O(r−1)(n−r−1)

L is the key point of
our construction and for this reason the construction holds also for every rational
smooth variety U containing L such that NL|U = Os

L(1)⊕Ot
L, with s ≥ 1 and t ≥ 0.

Now, we recall the definition of a d-rope following [5]. This definition applies
for a rope C not necessarily embedded in a projective space (and supported on an
irreducible smooth curve).

Definition 2.3. A d-rope C is a projective scheme such that:

(i) L = Cred is an irreducible smooth curve;

(ii) the ideal sheaf I = IL,C has I2 = 0 and hence is an OL-module;

(iii) I is locally free of rank d − 1 over L.

In the following the scheme L will be a line.
As recalled in Section 1, it is easy to see that a d-rope supported on a line L

corresponds to a rank d− 1 subbundle E of the normal bundle NL of L via the exact
sequence (1)

0 → E∗ = IL,C −→ OC −→ OL → 0.

The subbundle E∗ is the conormal bundle of L in C.
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Theorem 2.4. A d-rope C supported on a line L ⊂ Gr,n defined by

E∗ = ⊕d−1
i=1 OL(αi − 1)

can be embedded into Gr,n if, and only if, either

(i) d < dim Gr,n;

(ii) αi ≥ 0 ∀i;

(iii) n ≥ 2 + |{i | αi = 0}|;
or

(i) d = dimGr,n;

(ii) αi = 0, 1 ∀i;

(iii) |{i | αi = 0}| = (r − 1)(n − r − 1), and |{i | αi = 1}| = n − 2.

Proof. According to Definition 2.3 and recalling that Gr,n is smooth in a neighborhood
of L, the rope C can be embedded into Gr,n by OC(1) if, and only if, we can give an
injective map

E = ⊕d−1
i=1 OL(1 − αi) → NL|G = On−2

L (1) ⊕O(r−1)(n−r−1)
L (3)

which does not drop rank in codimension 1, that is to say, it provides an embedding
of vector bundles.

This is possible if, and only if, (1−αi) ≤ 1, ∀i = 1, . . . , d− 1, and either rk(E) <
rk(NL|G) i. e. dim G > d, and at most n − 2 integers αi − 1 are equal to −1, or
rk(E) = rk(NL|G), i. e. dimG = d, and E ∼= NL|G.

From the embedding of vector bundles (3), the exact sequence (2), and the fact
that E is a free OL-module, we get that there exists a surjective morphism T G|L → E

whose kernel is T ÊC, and so the claim follows.

Remark 2.5. For every x ∈ L = Cred, T Cx has dimension dimG − d + 1.

Corollary 2.6. If C is a d-rope embedded into a Grassmannian variety G and sup-
ported on a line L ⊂ G then OC is an OL-module and the sequence (1) splits as
sequence of OL-modules.

Proof. If we apply Hom(OL,−) to the sequence (1), we get

· · · → Hom(OL,OC) → Hom(OL,OL) → Ext1(OL, E∗) → · · · .

By [7], Ch. III, Proposition 6.3(c), Ext1(OL, E∗) ∼= H1(L,E∗) = 0 because of
previous Theorem 2.4, and so we have the surjectivity of the map Hom(OL,OC) →
Hom(OL,OL). Hence, there exists a map ψ : OL → OC which lifts the identity
idL : OL → OL, that is to say, OC is an OL-module and the sequence (1) splits as
sequence of OL-modules.
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Remark 2.7. (i) Previous Corollary 2.6 proves that the split ropes supported on a
line, which are the simplest possible abstract ropes, are the only one that can
be embedded in a Grassmannian variety.

(ii) The existence of a retraction of the map OC → OL of the sequence (1) can be
proved directly using a projection argument, as in [3], Lemma 2.6

Remark 2.8. If the conditions of Theorem 2.4 hold, then the map

E → NL|G

induces a surjective map:
N ∗

L|G → E∗

and so we can deduce the exact sequence:

0 → K → N ∗
L|G → E∗ → 0

which can be also written as

0 → ⊕dim G−d
j=1 OL(−βj − 1)

ϕB−→
ϕB−→ On−2

L (−1) ⊕O(r−1)(n−r−1)
L

ϕA−→ ⊕d−1
i=1 OL(αi − 1) → 0 (4)

Now, we can deduce some numerical invariants for the rope C embedded in Gr,n.

Proposition 2.9. Let C be a d-rope supported on a line and embedded in the Grass-
mannian variety G = Gr,n. We have:

(i)
∑dim G−d

j=1 βj =
∑d−1

i=1 αi + n − 1 − dim G;

(ii) gC = −∑d−1
i=1 αi.

Proof. (i) Computing the Hilbert polynomials from (4), we get:

dim G−d∑
j=1

(
z − βj

1

)
− (n − 2)

(
z

1

)
− (r − 1)(n − r − 1)

(
z + 1

1

)
+

d−1∑
i=1

(
z + αi

1

)
= 0.

Now, an easy computation gives the first claim.
(ii) We have that χ(OL(z)) = z + 1 and χ(E∗(z)) =

∑d−1
i=1 (z + αi) = (d − 1)z +∑d−1

i=1 αi. Then, we obtain χ(OC(z)) = dz + 1 +
∑d−1

i=1 αi which gives the genus.

Remark 2.10. In [10] the authors studied d-ropes supported on a line, embedded in
P

n. In particular they consider the exact sequence

0 → ⊕n−d
j=1 OP1(−βj − 1)

ϕB−→ On−1
P1 (−1)

ϕA−→ ⊕d−1
i=1 OP1(αi − 1) → 0
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similar to the sequence (4), which defines a d-rope C in P
n. Using this sequence,

they deduce that
∑n−d

j=1 βj =
∑d−1

i=1 αi and gC = −∑d−1
i=1 αi (see Lemma 2.8 and

Proposition 2.9 in [10]).
We observe that both for ropes in P

n and for ropes in Gr,n the genus depends on
the twist of the sheaf E. Moreover, the relations between the shifts αi and βj are
different and depend on the Grassmannian variety where the rope is embedded.

3. Vector bundles on ropes on the Grassmannian variety

In this section we want to describe the vector bundles A on a d-rope C supported on
a line L, both embedded in Gr,n, under some constrains on C.

In the previous section we characterized a d-rope C, supported on L and embedded
in G, using the sheaf E∗ = ⊕d−1

i=1 OL(αi − 1).
We need the following definitions

Definition 3.1. We say that C is semipositive if αi ≥ 1, ∀i = 1, . . . , d − 1.

Definition 3.2. We say that a sheaf ⊕m
i=1OL(ai), with a1 ≥ a2 ≥ · · · ≥ am, is rigid

if am ≥ a1 − 1.

For the semipositive ropes on G we have:

Proposition 3.3. Let A be a vector bundle on a semipositive d-rope C supported on
a line L embedded in a Grassmannian variety G. If A|L ∼= ⊕i∈IOL(ai) is rigid then
A ∼= ⊕i∈IOC(ai).

Proof. We set B = ⊕i∈IOC(ai). We have that B|L ∼= A|L or, more precisely, there is
an isomorphism:

ψ : A|L → B|L.

We have that Hom(A,B)|L ∼= Hom(⊕i∈IOL(ai),⊕j∈IOL(aj)) ∼= ⊕i,j∈IOL(aj − ai)
and for the rigidity, we have that −1 ≤ aj − ai ≤ 1.

If we tensorize the exact sequence (1)

0 → E∗ → OC → OL → 0

by Hom(A,B) and if we write the associated cohomology sequence, we obtain:

0 → H0(E∗ ⊗OL
Hom(A,B)) → H0(OC ⊗OL

Hom(A,B)) →
→ H0(OL ⊗OL

Hom(A,B)) → H1(E∗ ⊗OL
Hom(A,B)) → · · · .

In fact E∗ ⊗OL
Hom(A,B) ∼= ⊕m

i=1OL(αi − 1) ⊗OL
Hom(A,B) and this is a sum of

line bundles twisted by ωi ≥ −1.
Then, the isomorphism ψ ∈ H0(OL ⊗OL

Hom(A,B)) can be lifted to a mor-
phism ψ′ ∈ H0(OC ⊗OL

Hom(A,B)). By Nakayama’s Lemma the morphism ψ′ is an
isomorphism, too.
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Remark 3.4. Let C be a semipositive d-rope supported on a line L both embedded
in a smooth rational variety U (see also Remark 2.2) with OU (1)| L = OL(1). If A is
a vector bundle on C such that A|L ∼= OL(a)m, then A ∼= OC(a)m. In fact, the same
proof as in Proposition 3.3 works in this case too, pointing out that Hom(A,B) ∼= Or2

L .

4. A lifting problem

In this section we want to show that a d-rope C supported on a line L, both embedded
in the Grassmannian G = Gr,n ⊆ P

N , with N =
(
n
r

)
− 1, can be lifted to a d′-rope C ′

of P
N such that C is the scheme-theoretical intersection of C ′ and G.

Lemma 4.1. Let NG,PN be the normal sheaf of the Grassmannian G embedded via
Plücher morphism in P

N . Then

(NG,PN )|L ∼= Om1
L (1) ⊕Om2

L (2)

where m1 = N − 2 dim G + n − 1 and m2 = dimG − n + 1.

Proof. The Grassmannian variety G is scheme-theoretically cut out by quadrics in
P

N . Then IG,PN (2) is spanned and so
[(IG,PN

I2
G,PN

)
(2)

]
|L

∼=
(
N ∗

G,PN (2)
)
|L

∼= ⊕OL(ai)

with ai ≥ 0, ∀ i, i. e. (NG,PN )|L ∼= ⊕OL(bi), with bi ≤ 2. Let us consider the exact
sequence:

0 → NL,G → NL,PN → (NG,PN )|L → 0

where NL,G
∼= Op

L⊕Oq
L(1) with p = (r−1)(n−r−1), q = n−2 and NL,PN

∼= ON−1
L (1).

We deduce that (NG,PN )|L is ample and then bi ≥ 1 and (NG,PN )|L ∼= Om1
L (1) ⊕

Om2
L (2) with m1 + m2 = N − dim G, by rank argument. Moreover, comparing the

first Chern classes, we get m1 + 2m2 = N − n + 1. A simply calculation gives the
claim.

Remark 4.2. We can prove the same result if we consider a scheme U ⊂ P
N with

L ⊂ U such that NL,U
∼= Oα

L ⊕Oβ
L(1). In this case we have that (NU,PN )|L ∼= OL(ci).

For example we can take any homogeneous smooth variety as U .
Now, we consider L ⊂ G ⊂ P

N . In Section 2 we showed that we can construct a
rope supported on L contained in G, using the exact sequence (4):

0 → ⊕dim G−d
j=1 OL(−βj − 1)

ϕB−→ On−2
L (−1) ⊕O(r−1)(n−r−1)

L

ϕA−→ ⊕d−1
i=1 OL(αi − 1) → 0

We can also consider the dualized exact sequence of normal sheaves written in the
proof of Lemma 4.1:

0 → (N ∗
G,PN )|L → N ∗

L,PN → N ∗
L,G → 0 (5)
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Pointing out that N ∗
L,G

∼= On−2
L (−1) ⊕ O(r−1)(n−r−1)

L , we construct the following
diagram:

0
↓

(N ∗
G,PN )|L
↓

N ∗
L,PN

ϕ′
B

↗ ↓ ρ

0 → ⊕dim G−d
j=1 OL(−βj − 1)

ϕB−→ N ∗
L,G

ϕA−→ ⊕d−1
i=1 OL(αi − 1) → 0

↓
0

Theorem 4.3. With the notation as above, suppose that βj ≥ 0 for all j. We can lift
the morphism ϕB to a morphism ϕ′

B : ⊕dim G−d
j=1 OL(−βj − 1) → N ∗

L,PN (not uniquely)
which gives a d′-rope C ′ ⊂ P

N , supported on L, with d′ = N − dim G + d.
We have that C is the scheme-theoretical intersection of C ′ with G.

Proof. Applying Hom(⊕jOL(−βj − 1),−) to the sequence (5) we get:

0 → Hom(⊕jOL(−βj − 1), (N ∗
G,PN )|L) →

→ Hom(⊕jOL(−βj − 1), (N ∗
L,PN )|L) → Hom(⊕jOL(−βj − 1),N ∗

L,G) → 0.

If we write the associated cohomology sequence we have that

H1(Hom(⊕jOL(−βj − 1),N ∗
G,PN |L)) = 0

because βj ≥ 0 and then the morphism ϕB ∈ Hom(⊕jOL(−βj−1),N ∗
L,G) can be lifted

(not uniquely) to a morphism ϕ′
B ∈ Hom(⊕jOL(−βj − 1),N ∗

L,PN ) which gives the d′-
rope C ′. The commutativity of the diagram (ρϕ′

B = ϕB) assures that C = C ′ ∩ G,
while d′ can be computed as N−rk(ϕ′

B) = N−dim G+d (cf. [10], Remark 2.5 (i)).

Remarks 4.4. (i) (Geometrical meaning) In some sense, given a rope C on G we
can fat the directions transverse to G obtaining a rope in P

N .

(ii) We can prove the proposition replacing G with a scheme U satisfying the condi-
tions introduced in Remark 4.2 and with the extra assumption βj ≥ c−1 where
c = maxj{cj}.

(iii) The lifted ropes C ′ are completely studied in [10].
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5. Families of ropes on the Grassmannian variety

Whenever we want to construct a rope C on G we start with a sheaf

E∗ = ⊕d−1
i=1 OL(αi − 1)

with αi ≥ 0 and we fix a surjective morphism

ϕA : On−2
L (−1) ⊕O(r−1)(n−r−1)

L → ⊕d−1
i=1 OL(αi − 1).

As shown in Section 2 we naturally get the sequence (4):

0 → ⊕dim G−d
j=1 OL(−βj − 1)

ϕB−→ On−2
L (−1) ⊕O(r−1)(n−r−1)

L

ϕA−→ ⊕d−1
i=1 OL(αi − 1) → 0

To fix notation, suppose that in (4) α1 ≥ α2 ≥ · · · ≥ αd−1 and βdim G−d ≥ · · · ≥
β2 ≥ β1 > 0.

The decreasing sequence of integers α = (α1, . . . , αd−1) is the splitting type of
E∗(1) and analogously, the decreasing sequence of integers β = (−β1, . . . ,−βdim G−d)
is the splitting type of kerϕA(1).

Definition 5.1. We say that the sequence of integers α = (α1, . . . , αd−1) is admissible
if E∗ = ⊕d−1

i=1 OL(αi − 1) satisfies the hypotheses of Theorem 2.4.
The sequence of integers β = (−β1, . . . ,−βdim G−d) is admissible if there exists an

admissible sequence α such that in the exact sequence (4) kerϕA has splitting type β.
The pair (α, β) is admissible if α is admissible and kerϕA has splitting type β.

If the rope C on G is associated to the sequence (4) we say that C has α-type α
and β-type β.

We define the degree of α (β respect.) as deg α =
∑

i αi (deg β = −∑
i βi,

respect.). Now, we define the following partial order between splitting types of the
same degree.

Definition 5.2. Let α1 = (α1,1, . . . , α1,d−1) and α2 = (α2,1, . . . , α2,d−1) be two α-
types of the same degree. We put: α1 ≥ α2 if α1,1 + · · ·+ α1,j ≤ α2,1 + · · ·+ α2,j for
1 ≤ j ≤ d − 1.

The analogous definition holds for the β-types.

We can also define a partial order between the admissible pairs.

Definition 5.3. Let (α1, β1
) and (α2, β2

) be two admissible pairs. We say that
(α1, β1

) ≥ (α2, β2
) if α1 ≥ α2 and β

1
≥ β

2
according with Definition 5.2.

Now, let Γα be the set of all ropes C with admissible α-type α, Δβ the set of all
ropes C with admissible β-type β and let Ω(α,β) be the non-empty set of all ropes C

with α-type α and β-type β, with (α, β) admissible pair.
For ropes C in Gr,n we can state a result analogous to Theorem 1 in [2] and we

can prove it with similar arguments.
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Theorem 5.4. Let (α1, β1
) and (α2, β2

), be two admissible pairs with deg α1 =
deg α2, deg β

1
= deg β

2
, (α1, β1

) ≥ (α2, β2
) and with the extra assumption α1,d−1 ≥ 1

and α2,d−1 ≥ 1. Let C ∈ Ω(α2,β
2
). Then there exists a flat family of ropes in G pa-

rameterized by a non empty open subset of an affine line whose special member is C
and whose general member is an element of Ω(α1,β

1
).

We need some preliminary results.

Lemma 5.5. Let α1 and α2 be two admissible α-types with deg α1 = deg α2 and
α1 ≥ α2. Let C ∈ Γα2

. Then there exists a flat family of ropes in G, (parameterized
by a non-empty open subset of an affine line) whose special member is C and whose
general member is an element of Γα1

.

Proof. We set α1 = (α1,1, . . . , α1,d−1) and α2 = (α2,1, . . . , α2,d−1). We observe that
α1,i ≥ 0, α2,i ≥ 0 for all i = 1, . . . , d − 1 for the admissibility of the α-types.

Because of the inequality α1 ≥ α2 it is well known that there exists a flat family
of rank d − 1 vector bundles on L (the support of the rope C) parameterized by an
open subset T of an affine line A

1 whose special member is A2
∼= ⊕d−1

i=1 OL(α2,i − 1)
and whose general member is isomorphic to A1

∼= ⊕d−1
i=1 OL(α1,i − 1).

A surjective morphism f ∈ H0(L,Hom(On−2
L (−1) ⊕ O(r−1)(n−r−1)

L , A2)) induces
a rope C in G given by the sequence:

0 → ⊕dim G−d
j=1 OL(−βj − 1)

ϕB−→ On−2
L (−1) ⊕O(r−1)(n−r−1)

L

f−→ A2 → 0.

Since deg α1 = deg α2, we have that

h0(L,Hom(On−2
L (−1) ⊕O(r−1)(n−r−1)

L , A2)) =

h0(L,Hom(On−2
L (−1) ⊕O(r−1)(n−r−1)

L , A1)).

Applying [8], it is easy to check the existence of a vector bundle E on T with rk(E) =
h0(L,Hom(On−2

L (−1)⊕O(r−1)(n−r−1)
L , A1)) which is a universal parameter space for

the family of the homomorphisms parameterized by T , that is to say, ∀ P ∈ T the
fibre EP

∼= H0(L,Hom(On−2
L (−1) ⊕O(r−1)(n−r−1)

L , A1)).
Hence, we can find a rational path in the total space E joining the element rep-

resenting f to a surjection g : On−2
L (−1) ⊕ O(r−1)(n−r−1)

L → A1, and so the claim
holds.

We can state the same result for the β-types.

Lemma 5.6. Let β
1

and β
2

be two admissible β-types for with deg β
1

= deg β
2

and
β

1
≥ β

2
. Let us take a rope C ∈ Δβ

2
. Then there exists a flat family of ropes in G,

(parameterized by a non-empty open subset of an affine line) whose special member
is C and whose general member is an element of Δβ

1
.
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Proof of Theorem 5.4. Set

A1 = ⊕d−1
i=1 OL(α1,i − 1), A2 = ⊕d−1

i=1 OL(α2,i − 1)

and
B1 = ⊕d−1

i=1 OL(−β1,i − 1), B2 = ⊕d−1
i=1 OL(−β2,i − 1).

Let C be a rope corresponding to a surjective morphism f ∈ H0(Hom(On−2
L (−1)⊕

O(r−1)(n−r−1)
L , A2)). The rope C is defined by an extension of A2 by B2 with middle

term isomorphic to On−2
L (−1) ⊕O(r−1)(n−r−1)

L (which is a rigid bundle). Since there
exists such an extension, by semicontinuity the general extension of A2 and B2 has
middle term isomorphic to On−2

L (−1) ⊕O(r−1)(n−r−1)
L .

As in the proof of Lemma 5.5, we have that there exists a flat family of pairs
of vector bundles on L, parameterized by an open subset T of the affine line with
(A2, B2) as special fiber and (A1, B1) as general fibre.

Since the pairs (αi, βi
) are admissible, for i = 1, 2, and αi,d−1 ≥ 1, for i = 1, 2

then h0(L,Hom(A1, B1)) = h0(L,Hom(A2, B2)) = 0 and so, using Riemann-Roch
Theorem we get h1(L,Hom(A1, B1)) = h1(L,Hom(A2, B2)).

This implies that there exists a vector bundle E on T with

rk(E) = h1(L,Hom(A1, B1)) = h1(L,Hom(A2, B2))

such that ∀P ∈ T the fibre EP = ((A1)P , (B1)P ) is isomorphic to H1(L,Hom((A1)P ,
(B1)P )).

By semicontinuity, for every P ∈ T the general extension of (A1)P by (B1)P

has middle term isomorphic to On−2
L (−1) ⊕ O(r−1)(n−r−1)

L and so it defines a rope
embedded in the Grassmannian Gr,n for every P . In fact, we have a line L ⊂ Gr,n and
an exact sequence as (4), which defines the scheme structure of the rope embedded
in Gr,n. The family of such extensions is algebraic and projective. Furthermore, the
degree and genus of the ropes we obtain are fixed because deg(C) = rankK(A1)P +1 =
rankK(A2)P + 1, and g(C) = −deg(α1) = −deg(α2). The Hilbert polynomial of the
ropes is then independent of P and so the family is flat by [7], Ch. III, Theorem 9.9.

As last result, we describe a parameter space for the set Γα. Of course, a similar
statement holds for Δβ .

Proposition 5.7. The scheme structures of ropes in Γα are parameterized by a non-
empty, irreducible, rational variety U of dimension

dimU = deg α(dimG − 1) + (n − 2)(d − 1) −
d−1∑
i,j=1

(
αi − αj + 1

1

)
.

Γα is parameterized by F1(G) × U , where F1(G) is the Fano variety of the lines
in G.

191 Revista Matemática Complutense
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Proof. Let α = (α1, . . . , αd−1) and let A = ⊕d−1
i=1 OP1(αi − 1).

Every rope in Γα is uniquely determined by a pair (L, E) where L is a line in G
and E = Im(ϕ∗

A) ⊂ NL|G, with ϕA ∈ Hom(NL|G,A). Then, the parameter space for
the scheme structures of ropes in Γα supported on a fixed line is the quotient of the
open subset U of Hom(NL|G,A), corresponding to surjective maps which do not drop
rank in codimension 1, by the action of the automorphisms of A.

Hence, U is irreducible, rational of dimension

dimU =h0(Hom(NL|G,A)) − dim AutA =

= deg(α)(dimG − 1) + (d − 1)(n − 2) −
d−1∑
i,j=1

(
αj − αi + 1

1

)
.

The last part of the statement is straightforward.

Remark 5.8. We want to compute the dimension of F1(G). Each line L in G is
determined by a surjective morphism On

P1 → Or−1
P1 ⊕ OP1(1) = V because of the

universal property of the Grassmannian G, up to the automorphisms of V and the
ones of P

1. Hence, the dimension of F1(G) is

dim F1(G) = h0(On(r−1)
P1 ⊕On

P1(1)) − dim AutV − 3 = dimG + n − 3.

Of course, the parameter space for Γα reflects the properties of F1(G).
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