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ABSTRACT Information loss is generally related to power consumption. Therefore, reducing information
loss is an interesting challenge in designing digital systems. Quaternary reversible circuits have received
significant attention due to their low-power design applications and attractive advantages over binary
reversible logic. Multiplexer and demultiplexer circuits are crucial parts of computing circuits in ALU,
and their efficient design can significantly affect the processors’ performance. A new scalable realization
of quaternary reversible 4 × 1 multiplexer and 1 × 4 demultiplexer, based on quaternary 1-qudit Shift,
3-qudit Controlled Feynman, and 2-qudit Muthukrishnan-Stroud gates, is presented in this paper. Moreover,
the corresponding generalized quaternary reversible n×1 multiplexer and 1×n demultiplexer circuits are
proposed. The comparison, with respect to the current literature, shows that the proposed circuits are more
efficient in terms of quantum cost, the number of garbage outputs, and the number of constant inputs.

INDEX TERMS Circuit optimization, demultiplexer, multiplexer, quantum computing, quaternary,
reversible logic, scalable realization.

I. INTRODUCTION
A significant barrier to future circuit design is its high energy
consumption. In 1961, Landauer proved that traditional irre-
versible gate leads to energy dissipation in circuit design [1].
Zhirnov et al. demonstrated that it would be impossible to
remove heat from CMOS because of power dissipation [2].
According to Bennett’s research, power dissipation can be
prevented in circuit design by using reversible gates [3].
Recovering the input vectors from the output vectors in
reversible gates is possible because the number of inputs
equals the number of outputs.

Moreover, the output vectors are recoverable from the input
vectors [4], [5], [6]. These circuits are also not permitted
to have feedback or fan-out [6]. The inherent reversibility
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makes quantum technology a promising technology for future
computer systems [7], [8].

Quantum computing could reduce the computational com-
plexity of many problems and be much more efficient than
classical computing. For instance, exploiting quantum algo-
rithms, only

√
(N) steps are required instead of the Nsteps

needed in classical algorithms to search an unstructured
database [9], [10], [11]. Multiple-valued logic has received
considerable attention as future challenges for binary logic
are expected to be massive due to severe thermal and relia-
bility problems [12]. With respect to reversible binary logic,
reversible multiple-valued logic is more secure in quantum
cryptography [13], [14], [15] and more potent in quantum
information processing [16]. Moreover, it exhibits a lower
interconnection complexity [17] and a lower power consump-
tion, and it is more error tolerant for quantum computa-
tions [18], [19]. Even though ternary logic is one of the most
successful types of multiple-valued logic andmany important
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works in this field [19], [20], [21], [22], [23], [24], [25], [26],
[27], [28], [29], [30], a limitation is that conventional binary
logic functions cannot be easily represented in ternary logic.
In quaternary logic, two bits can be grouped into quaternary
values to express binary logic functions [31]. The memory
unit is a qudit in quantum quaternary logic, and the possible
states for a qudit are |0⟩, |1⟩, |2⟩, and |3⟩. Each of these states
is represented by a 4 × 1 vector in (1):

|0⟩ =


1
0
0
0

 |1⟩ =


0
1
0
0

 |2⟩ =


0
0
1
0

 |3⟩ =


0
0
0
1

 (1)

Recently, many essential circuits have been presented based
on quaternary reversible logic, such as comparators, par-
allel adders, full adders, half adders, subtractors, and
decoders [32], [33], [34], [35], [36], [37], [38], [39], [40].

Demultiplexer and multiplexer circuits are essential com-
ponents of computers, arithmetic logic units, communica-
tion systems, memory systems, and converters [40]. This
work proposes a new realization of quaternary reversible
multiplexer and demultiplexer circuits. This paper aims to
synthesize quantum quaternary circuits that are more efficient
than the existing designs in the literature [40], [41], [42].
Moreover, we present the characteristics of the proposed
circuits in terms of quantum cost, number of garbage out-
puts, and number of constant inputs, which are described as
follows:
Quantum cost is the number of quaternary reversible

1-qudit Shift gates and 2-qudit Muthukrishnan-Stroud gates
exploited for implementing the circuit. Circuit designers try
to decrease the quantum cost as much as possible [40], [45].
The number of garbage outputs refers to the unutilized

outputs added to the circuit to make it reversible. Increasing
the number of these outputs enhances the information loss in
reversible circuits [40], [44].
The number of constant inputs refers to inputs that must

be held constant at a value of either 0, 1, 2, or 3 to synthesize
the specified logic function. Increasing the number of these
inputs enhances the lines in reversible circuits [40], [43].

In quantum quaternary logic, circuits are synthesized
by minimizing these important parameters for better
efficiency. The proposed quaternary circuits have better
quantum cost, number of garbage outputs, and number of
constant inputs compared with the existing designs in the
literature [40], [41], [42].

This paper is structured as follows. The basic concepts of
quaternary Galois field and quaternary reversible gates are
explained in Section II. Our proposed scalable realization
of the quaternary reversible multiplexer and demultiplexer
is presented in Section III. In Section IV, the evaluation of
the proposed circuits and comparison results are discussed.
Finally, the conclusion of this work is provided in Section V.

TABLE 1. The truth table of GF 4 addition operation.

TABLE 2. The truth table of GF 4 multiplication operation.

FIGURE 1. Quaternary 1-qudit unitary transforms.

FIGURE 2. The graphical representation of quaternary 1-qudit Shift gates.

II. BASIC CONCEPTS
This section shows the background on quaternary Galois
Field and quaternary reversible gates, exploited in the sub-
sequent sections.

A. QUATERNARY GALOIS FIELD LOGIC
The algebraic structure of the Galois Field (GF4) in quater-
nary logic consists of the set of values Q = 0, 1, 2, 3}, the
addition (⊕), and multiplication (⊙) operations, which are
displayed in Table 1 and Table 2. These are associative and
commutative operations.Moreover, multiplication is distribu-
tive over addition [46].
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TABLE 3. The truth table of quaternary 1-QUDIT shift gates.

FIGURE 3. Symbolic representation of quaternary 2-qudit
Muthukrishnan-Stroud gate.

B. QUATERNARY 1-QUDIT SHIFT GATES
Any transformation of the qudit, in quaternary reversible
logic, is represented by a 4 × 4 unitary matrix, as shown
in Figure 1. Each unitary matrix in can be realized as a 1-
qudit Shift gate [40], [47]. They are 1-input 1-output gates
having the mapping (A) to (P= Z transform of A), where the
input is A, and the output is P. Figure 2 shows the graphical
representation of quaternary 1-qudit Shift gates.

The relationship between the input and output of these
1-qudit Shift gates is illustrated in Table 3. These are elemen-
tary quaternary reversible gates that can be realized utilizing
liquid ion trap quantum technology. Therefore, these gates
have a quantum cost of 1 [49].

C. QUATERNARY 2-QUDIT MUTHUKRISHNAN-STROUD
GATES
Muthukrishnan and Stroud [47] proposed a family of 2-qudit
multiple-valued gates, which are realizable in liquid ion-trap
quantum technology. The quaternary Muthukrishnan-Stroud
(M-S) gate is basically a controlled 2-qudit gate with two
inputs and two outputs that can be defined as:

IV = (A, B)
OV = (P=A, Q=Z transform (1-qudit transform) of the

controlled input B if the controlling input A is equal to 3;
otherwise, the output Q is equal to the controlled input B),
where IV is the input vector, and OV is the output vector.
Hence the inputs are A and B, and the outputs are P and
Q [47].

Figure 3 illustrates the symbolic representation of the
quaternary 2-qudit Muthukrishnan-Stroud gate. The quantum
cost of this gate is equal to 1.

FIGURE 4. Quaternary 3-qudit Controlled Feynman gate. a) Symbol. b)
The first realization using M-S gates. c) The second realization using M-S
gates.
TABLE 4. The truth table of quaternary 4 × 1 multiplexer.

D. QUATERNARY 3-QUDIT CONTROLLED FEYNMAN GATE
The quaternary Controlled Feynman gate is a 3-input 3-output
gate having the mapping (A, B, C) to (P=A, Q=B, R= B⊕C
if the input A is equal to 3; otherwise, the output R is equal to
the input C), where the inputs are A, B, and C and, the outputs
are P, Q, and R [48].

Figure 4a displays the graphical representation of the qua-
ternary Controlled Feynman gate. Figures 4b and 4c demon-
strate different realizations of this gate using M-S gates.
This gate has a quantum cost of 6. According to the second
realization in Figure 4c, it is possible to remove the 2-qutrit
M-S gate in the red box if the input B is not needed at the
output Q. Thus, the quantum cost can be reduced to 5, and
the output Q is equal to B+2 if the input A=3.

III. PROPOSED QUATERNARY REVERSIBLE CIRCUITS
In this section, we propose a scalable quaternary reversible
4 × 1 multiplexer, and we use it to design the quaternary
reversible 16× 1 and n×1 multiplexers. Moreover, we intro-
duce the new scalable quaternary reversible 1 × 4 to design
1 × 16 and 1×n demultiplexers. We use quaternary 1-qudit
Shift and 3-qudit Controlled Feynman gates. The aim is to
reduce the overall quantum cost, the number of constant
inputs, and the number of garbage outputs.

A. PROPOSED QUATERNARY REVERSIBLE MULTIPLEXER
CIRCUIT
Before discussing our proposed quaternary reversible multi-
plexer circuit, we provide the basic definitions and properties
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FIGURE 5. The proposed quaternary reversible 4 × 1 multiplexer circuit.
a) Symbol. b) The realization using M-S and Shift gates.

of the quaternary multiplexer. A quaternary multiplexer with
4m inputs, has mselect lines to select which input should be
sent to the output. Let A be a selector equal to 0, 1, 2, or 3.
In a 4 × 1 multiplexer, when A is equal to 0, 1, 2, or 3, the
output equals I0, I1, I2, or I3, respectively. Table 4 shows the
truth table of the quaternary 4 × 1 multiplexer.
The realization of our proposed quaternary reversible 4 ×

1 multiplexer circuit is illustrated in Figure 5a. As shown in
the figure, we used four quaternary 1-qudit Shift gates and
four quaternary 3-qudit Controlled Feynman gates. In this
realization, the main inputs are I0 to I3, and one 0 constant
input is required. The selector is A, and the main output is O.
The circuit produces five garbage outputs that are Q0 to Q3
and P. The output P is equal to the selector A, and the outputs
Q0 to Q3 are equal to the inputs I0 to I3, respectively. In this
circuit, when the selector A is equal to 0, the controlling value
of the first Controlled Feynman gate is 3, and the output O is
equal to I0. If A is equal to 1, the second Controlled Feynman
gate is 3, and the output O is I1.

Moreover, when the selector is equal to 2 and 3, the output
O is equal to I2 and I3, respectively. The realization of this
circuit using quaternary Shift and M–S gates is shown in
Figure 5b. In this figure, red boxes depict quaternary Con-
trolled Feynman gates. Generally, four quaternary Shift gates
and twenty-four quaternary Muthukrishnan–Stroud gates
were used. Therefore, the quantum cost of the proposed
quaternary reversible 4×1multiplexer circuit is 28. It is worth
mentioning that, in a multiplexer circuit, it is not necessary to
restore the input I at the output Q. So, we can remove the
red Muthukrishnan and Stroud gates in this realization. The
quantum cost can be decreased by 24. In both suggestedways,
the number of constant inputs is 1, and the number of garbage
outputs is 5.

Our proposed quaternary reversible 4 × 1 multiplexer can
be used to construct a 16 × 1 multiplexer. For designing
this multiplexer, 16 inputs, two selectors, and one output are
necessary. The truth table of this circuit is shown in Table 5.
Only the selected input is gated to the output O for a given
selector combination of A and B.

TABLE 5. The truth table of quaternary 16 × 1 multiplexer.

Figure 6a shows the logical architecture of the proposed
quaternary 16 × 1 multiplexer using 4 × 1 multiplexer.
As shown, five 4 × 1 quaternary multiplexers are required.
In this design, the first inputs of the first-row multiplexers are
activated when input B is equal to 0. Activation of the second
inputs of multiplexers occurs when input B is equal to 1. If B
is equal to 2 and 3, the third and fourth inputs of multiplexers
are activated, respectively.

Moreover, the output of the first multiplexer is gated on
the main output O when the selector A is equal to 0. If A
is equal to 1, the main input is sent to the main output by
the second multiplexer. When A is equal to 2 and 3, the
output of the third and the fourth multiplexers are gated on the
output O, respectively. Figure 6b illustrates the realization of
the proposed quaternary reversible 16 × 1 multiplexer using
a 4 × 1 multiplexer. The red boxes indicate our proposed
quaternary reversible 4 × 1 multiplexer. In this circuit, there
are five constant inputs, which are 0, and sixteen main inputs,
which are shown by I0 to I15. The selectors are A and B. The
main output is O, and the garbage outputs are P1, P2, O0 to
O3, and Q0 to Q15. The outputs P1 and P2 are equal to A and
B, respectively. Generally, the first realization of quaternary
3-qudit Controlled Feynman gates is used when inputs need
to be restored. In this case, 20 quaternary Shift gates and
120 quaternary Muthukrishnan–Stroud gates are inserted in
the circuit. Therefore, the quantum cost is 140. However,
in multiplexer circuits, the inputs I0 to I15 are unnecessary
as outputs, so it is possible to use the second realization of
quaternary-controlled Feynman gates. Therefore, the second
realization of quaternary-controlled Feynman gates can be
used, and the quantum cost is 120.

We could also combine some gates in designing a qua-
ternary reversible 16 × 1 multiplexer and present a circuit
with a lower quantum cost. As shown in Figure 6c, an opti-
mized multiplexer circuit can be realized. Eight quaternary
Shift gates are used along with twenty quaternary Controlled
Feynman gates. Due to the use of the second realization of
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FIGURE 6. The proposed quaternary reversible 16 × 1 multiplexer circuit. a) The logical architecture b) The primary realization.
c) The optimized realization.

Feynman gates, eight quaternary Shift gates and 100 quater-
nary Muthukrishnan–Stroud gates were used in total. This
results in a quantum cost of 108. This innovative combination
provides improvement over the first realization regarding the
quantum cost. Moreover, in both realizations, the number of
constant inputs is five, and the number of garbage outputs
is 22.

Based on our proposed quaternary reversible 4 × 1 multi-
plexer, we proposed a generalized quaternary reversible n×1

multiplexer circuit, shown in Figure 7. Hence, our design is
scalable. A quaternary n×1 multiplexer circuit consists of
n = 4m inputs, m selectors, and only one output. In this
circuit, m rows of 4 × 1 multiplexers are needed. The first
row requires 4m−1 multiplexers, the second row requires
4m−2 multiplexers, and the m row requires one multiplexer.
Therefore, we can determine the number of 4×1multiplexers
needed to design our proposed n×1 multiplexer using geo-
metric series formulas. The number of multiplexers is shown
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FIGURE 6. (Continued.) The proposed quaternary reversible 16 × 1 multiplexer circuit. a) The logical architecture b) The primary
realization. c) The optimized realization.

FIGURE 7. The logical architecture of the proposed quaternary reversible n×1 multiplexer circuit.

by P in (2):

P =

m−1∑
i=0

4i =
4m − 1

3
=
n− 1
3

(2)

The quantum cost of a quaternary reversible n×1 mul-
tiplexer is 24((n−1)/3), and it requires (n−1)/3 constant
inputs and produces (3m+4n−4)/3 garbage outputs. We can
combine the quaternary 1-qudit Shift gates in each row

according to the mentioned optimization approach in the last
part. In this way, we have four 1-qudit Shift gates in each
row. We also have 4m−1 and 4m−2 Controlled Feynman gates
in the first and the second row, respectively. Moreover, in the
last row, four Controlled Feynman gates are needed. There-
fore, it can be concluded that in the proposed quaternary
reversible n×1 multiplexer, 4((n − 1)/3) Controlled Feyn-
man gates and 4m 1-qudit Shift gates are required, where n is
the number of inputs and m is the number of selectors. Since
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TABLE 6. The truth table of quaternary 1 × 4 demultiplexer.

FIGURE 8. The proposed quaternary reversible 1 × 4 demultiplexer circuit.
a) Symbol. b) The realization using M-S and Shift gates.

we used the second realization of the Controlled Feynman
gate, the total quantum cost of this optimized circuit is
20((n−1)/3) + 4m.

B. PROPOSED QUATERNARY REVERSIBLE
DEMULTIPLEXER CIRCUIT
A demultiplexer performs the opposite function of a multi-
plexer. A quaternary demultiplexer of 4m outputs has mselect
lines to send the input to the output. In a 1× 4 demultiplexer,
when the selector A is equal to 0, 1, 2, or 3, the output O0,
O1, O2, or O3 is equal to I, respectively. Table 6 shows the
truth table of the 1 × 4 quaternary demultiplexer.

In Figure 8a, we show the realization of our quater-
nary reversible demultiplexer circuit. Four quaternary 1-qudit
Shift gates and four quaternary 3-qudit Controlled Feynman
gates are exploited in this design. The main input is I, which
requires four constant inputs, all of which are 0. The selector
is A. O0 to O3 are the main outputs, and P and Q are the
garbage outputs are equal to A and I, respectively. The first
Controlled Feynman gate with a controlling value of 1 is
applied when the selector is equal to 0, and the input I is sent
to O0. This circuit applies the controlling value of the second
Controlled Feynman gate when the selector A is equal to 1,
and the input I is sent to O1. If the selector is equal to 2 or 3,
the outputs O2 and O3 are equal to the input I, respectively.
Figure 8b shows how the proposed circuit is realized using
quaternary Shift and M–S gates. In this design, quaternary
Controlled Feynman gates have shown by red boxes.

Four quaternary 1-qudit Shift gates and twenty-four quater-
nary 2-qudit Muthukrishnan–Stroud gates are generally used.

As a result, the quantum cost of the proposed quaternary
reversible 1× 4 demultiplexer circuit is 28. Considering that,
in the multiplexer circuit, the input I does not need to be
restored at the output Q, the red box can be removed, and the
quantum cost is decreased by 24. In both cases, the number
of constant inputs is four, and the number of garbage outputs
is two.

We can also use our proposed quaternary 1 × 4 demul-
tiplexer to construct 1 × 16 demultiplexer. In this kind of
demultiplexer, one input, two selectors, and 16 outputs are
needed. The truth table of this circuit is shown in Table 7.
The input is gated to the selected output based on a given
combination of selectors of A and B.

The logical architecture of the proposed quaternary
reversible 1 × 16 demultiplexer, using 1 × 4 demultiplexer,
is shown in Figure 9a. As can be seen, it requires five
quaternary 1 × 4 demultiplexers. In this design, when the
selector A is equal to 0, the main input is gated on one of the
outputs in the first demultiplexer. One output of the second
multiplexer is gated when selector A is equal to 1. In the
third and fourth multiplexers, one output is gated if selector
A is equal to 2 and 3, respectively. When the input B is
equal to 0, the first input of the second row demultiplexers
is activated. If the input B is equal to 1, then the second input
of demultiplexers is activated. Moreover, when B is equal to
2 and 3, demultiplexers’ third and fourth inputs are activated,
respectively.

The realization of the proposed quaternary reversible 1 ×

16 demultiplexer using 1 × 4 demultiplexer is shown in
Figure 9b. In the figure, red boxes show our proposed qua-
ternary reversible 1 × 4 demultiplexer. The main input is
I, and it requires twenty constant inputs, which are 0. The
selectors are A and B. The main outputs are O0 to O15, and
it produces seven garbage outputs that are P1, P2, I, and from
R0 to R3. The outputs P1 and P2 are equal to the selectors
A and B, respectively. Generally, since input restoration is
not necessary, the second realization of quaternary Controlled
Feynman gates can be exploited. In this way, the proposed
circuit includes 20 quaternary Shift gates and 100 quaternary
Muthukrishnan–Stroud gates, and the quantum cost is 120.

We also could use a lower number of gates for designing
the quaternary reversible 1 × 16 demultiplexer and present a
lower quantum cost demultiplexer circuit. The realization of
the proposed optimized circuit is shown in Figure 9c. As can
be seen, twenty quaternary Controlled Feynman gates and
eight 1-qudit Shift gates are used. Since inputs restoration is
not necessary, the second realization of quaternary Controlled
Feynman gates is used, and there are eight quaternary Shift
gates and 100 quaternary Muthukrishnan–Stroud gates in the
proposed design, so the quantum cost is 108. Compared to our
first proposed quaternary 1× 16 demultiplexer, we improved
the quantum cost using this innovative combination. The
numbers of constant inputs and garbage outputs for both
realizations are 20 and 7, respectively.

In addition, our proposed quaternary demultiplexer is scal-
able. A generalized quaternary reversible 1×ndemultiplexer
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TABLE 7. The truth table of quaternary 1 × 16 demultiplexer.

circuit, based on quaternary reversible 1 × 4 demultiplexer,
is suggested. In a quaternary 1×n demultiplexer circuit, there
are one input, m selectors, and n = 4moutputs. Generally,
m rows of 1 × 4 demultiplexers are needed. It is necessary
to use one demultiplexer in the first row, four demultiplexers
in the second row, and 4m−1 demultiplexers in the last row.
Figure 10 shows the logical structure of the proposed 1×n
demultiplexer. We also can use the geometric series formula
to determine the number of 1 × 4 demultiplexers that are
needed to design our proposed 1×n demultiplexer. Using (3),
we can determine the number of demultiplexers, represented
by Q.

Q =

m−1∑
i=0

4i =
4m − 1

3
=
n− 1
3

(3)

The proposed quaternary reversible 1×n demultiplexer
circuit requires 4((n−1)/3) constant inputs and produces
(n + 3m−1)/3garbage outputs, with a quantum cost of
24((n−1)/3). Based on the optimization approach discussed
in the previous section, the quaternary 1-qudit Shift gates in
each row can be combined. As a result, each row contains
four 1-qudit Shift gates. There are four and sixteen Controlled
Feynman gates in the first and the second row, respectively,
and 4m−1 Controlled Feynman gates in the last row. There-
fore, it can be concluded that there are 4((n−1)/3)Controlled
Feynman gates and 4m 1-qudit Shift gates in the proposed
quaternary reversible 1×n demultiplexer, with n outputs and
m selectors. Since we use the second realization of the Con-
trolled Feynman gate, this optimized circuit has a total quan-
tum cost of 20((n−1)/3) + 4m.

IV. RESULTS AND EVALUATIONS
In this section, we analyze our proposed realizations of qua-
ternary reversible multiplexer and demultiplexer circuits and
calculate the improvement rate with respect to the best results
in the literature. We also compare the proposed circuits with
the existing designs in [40], [41], and [42] in terms of quan-
tum cost, number of garbage outputs, and number of constant
inputs, which are the most critical parameters in reversible
circuit design and are used to evaluate reversible circuits.
Lower values of these parameters lead to a more efficient
circuit design.

In the following parts, the first comparison is for our
proposed quaternary reversible demultiplexer, and the sec-
ond comparison is for our proposed quaternary reversible
demultiplexer. According to Table 8, whereas both designs of
quaternary reversible 4×1 multiplexer circuits have the same
number of garbage output and constant input, the proposed
circuit outperforms the existing design presented in [41] in
terms of quantum cost because of its lower values for this
parameter. Table 8 also illustrates that our proposed quater-
nary reversible 16 × 1 multiplexer circuit has great improve-
ment in terms of quantum cost, the number of garbage outputs
and the number of constant inputs compared with its counter-
parts in [40], [41], and [42]. Therefore, it can be concluded
that our proposed design of the 16 × 1 multiplexer in this
paper is also much more efficient than the previous designs
in [40], [41], and [42].

Table 9 shows the comparison between our proposed qua-
ternary reversible 1 × 4 demultiplexer and its counterpart
in [41]. As can be seen, although both 1 × 4 demultiplexer
circuits require four constant inputs and produce two garbage
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FIGURE 9. The proposed quaternary reversible 1 × 16 demultiplexer circuit. a) The logical representation. b) The
primary realization. c) The optimized realization.

outputs, our proposed design has a quantum cost of 24, and
the demultiplexer realization in [41] has a quantum cost of 58.

Owing to using lower values of quantum cost, our proposed
quaternary reversible 1 × 4 demultiplexer is more efficient
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FIGURE 10. The logical architecture of the proposed quaternary reversible 1×n demultiplexer circuit.

TABLE 8. Evaluation of quaternary reversible multiplexer circuits.

TABLE 9. Evaluation of quaternary reversible demultiplexer circuits.

than the existing design in [41]. The results given in Table 9
show that our proposed quaternary reversible 1 × 16 demul-
tiplexer has 20 constant inputs, even garbage outputs, and
a quantum cost of 108. It is obvious, by Table 9, that our
proposed design has a less quantum cost, garbage output,
and constant input than the previous designs in [40], [41],
and [42]. Since reversible circuits are more efficient when
these parameters are minimized, the quaternary reversible
1 × 16 demultiplexer in this study is more efficient than its
counterparts in [40], [41], and [42].

It is to be noted that there is no overhead in the proposed
designs. One of the advantages of the proposed designs is that
they have no overhead. In addition, the proposed approaches
have applications in designing arithmetic circuits (e.g., ALU).

V. CONCLUSION
A new quaternary reversible 4 × 1 multiplexer circuit, based
on quaternary 1-qudit Shift gates, 2-qudit Muthukrishnan–
Stroud, and 3-qudit Controlled Feynman gates, has been
presented in this paper. The proposed 4 × 1 multiplexer has
been exploited to design a quaternary reversible 16 × 1 mul-
tiplexer circuit. The proposed design is scalable for n×1
multiplexer. Moreover, we have introduced a new scalable
realization of 1 × 4 demultiplexer to design our proposed
quaternary reversible 1 × 16 and 1×n demultiplexers. The
proposed quaternary reversible circuits in the present study
significantly decrease quantum cost, the number of constant
inputs, and the number of garbage outputs. Since designing a
reversible circuit with lower values of these parameters leads
to increased efficiency, it can be concluded that our proposed
multiplexer and demultiplexer circuits are more efficient with
respect to their existing counterparts. Our designs have no
overhead compared to the existing designs to be reported.
An interesting future work is the study of possible applica-
tions of our proposed circuits in designing complex systems.
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