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Abstract: Geological entropy is based on Shannon information entropy and measures order in the 

structure of a spatial random variable. Metrics have been defined to quantify geological entropy in 

multidimensional (2D and 3D) heterogeneous systems, for instance, porous and fractured geological 

media. This study introduces GEOENT, a toolbox that can efficiently be used to calculate geological 

entropy metrics for any kind of input-gridded field. Additionally, the definition of geological en-

tropy metrics is updated to consider anisotropy in the structure of the heterogeneous system. Direc-

tional entrograms provide more accurate descriptions of spatial order over different Cartesian di-

rections. This study presents the development of the geological entropy metrics, a description of the 

toolbox, and examples of its applications in different datasets, including 2D and 3D gridded fields, 

representing a variety of heterogeneous environments at different scales, from pore-scale microto-

mography (μCT) images to aquifer analogues. 

Keywords: heterogeneity; entropy; mathematical code; subsurface; spatial mapping;  
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1. Introduction 

Shannon information entropy [1] is a widely adopted concept to calculate the average 

level of uncertainty (or surprise) of a random variable. The concept has been used in vir-

tually all fields of research and types of application, including genome biology [2], lin-

guistics [3], finance [4], and cryptography [5]. Shannon information entropy can be used 

to obtain quantitative information regarding the complexity and chaos of disordered mul-

tidimensional systems [6–13]. 

Bianchi and Pedretti [14,15] developed the concept of ‘geological entropy’ to quantify 

the spatial order of geological environments. Functions (e.g., ‘entrograms’) and metrics 

(e.g., ‘entropic scale’) based on Shannon information entropy were derived to quantify the 

spatial order of multidimensional (2D and 3D) heterogeneous porous and fractured me-

dia [16–19]. Bianchi and Pedretti [14,15] showed that geological entropy metrics describ-

ing the spatial order of heterogeneous aquifers can explain certain characteristics of the 

behaviour of solutes migrating in these aquifers. In particular, solute transport is known 

to be very sensitive to the spatial organization of the hydraulic properties of the geological 

media, such as the presence of highly permeable coarse-grained in alluvial materials or 

fractures in fractured media [20–22]. Bianchi and Pedretti [14,15] demonstrated that the 

relative entropy and the entropic scale (all defined in detail in the following sections) are 

well correlated to metrics that reflect solute transport in heterogeneous aquifers, such as 

the BTC skewness. 

Despite these previous studies presenting the mathematical background of geologi-

cal entropy, at present, no codes, scripts, or toolboxes have been released to readily calcu-

late geological entropy metrics. Additionally, geological entropy metrics have thus far 

been considered only statistically isotropic structures, while random spatial fields can 
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present anisotropy when certain statistical properties such as the spatial disorder vary 

over spatial directions. In alluvial aquifers, for instance, anisotropy may result directly 

from depositional processes [23,24]. Therefore, directionality should always be considered 

in geological entropy analysis, and metrics such as ‘directional entrograms’ should be 

used to better describe the spatial order of a random field over different directions. 

In this study, we introduce GEOENT, a versatile and efficient MATLAB®-coded 

toolbox that can be used to compute geological entropy. GEOENT calculates directional 

entrograms and corresponding metrics for 2D or 3D gridded continuous or categorical 

datasets. In this manuscript, we present the development of the toolbox and its applica-

tions using different examples of datasets. We first revise the key aspects of the directional 

geological entropy algorithm. Then, we explain the toolbox structure, including the main 

script and the algorithm to compute the directional entrograms. We finally apply GE-

OENT to 2D and 3D gridded images representing different heterogeneous environments 

at different scales. 

2. Materials and Methods 

2.1. Mathematical Definition of Directional Entrograms 

For a categorical random variable, as in the case of the hydrofacies of an alluvial aq-

uifer, the Shannon information entropy (H) evaluates the marginal probabilities of occur-

rence of each category within subdomains of the entire field [14,15]. Higher H values in-

dicate higher disorder, meaning that all the categories have similar marginal probabilities 

within a subdomain, while lower H values indicate that there is a predominant category. 

The equations for the calculation of H are reported in Appendix A. 

In our first study in which the concept was introduced [14], H was computed over a 

small-scale, fixed-size, isotropic 2D or 3D block. The approach was subsequently extended 

[15], and H was computed over increasing spatial scales, starting from an initial isotropic 

block of random values and growing until reaching the desired size within the limit of the 

size of the entire dataset. This resulted in the definition of an entrogram, which graphically 

describes the change in � over growing scales, similarly to the variogram typically used 

in geostatistical analyses. 

The algorithm to compute directional entrograms is conceptually depicted in Figure 

1 for a 2D random system, although the approach is identical for a 3D system. A subdo-

main with dimension � =  �� �̂  +  �� �̂  +  �� �� is first defined, where �̂ , �,̂ �� are the unit vec-

tors �̂ = (1, 0, 0), � ̂(1 ,0, 0), �� (0, 0, 1), and ��, �� and �� are the scalar components of �, which 

also correspond to the ‘entrogram lag’. For a 2D system, ��=1. Starting from an initial ran-

dom position in the space, the first ‘local entropy’ (��) is computed as 

��(�, ��) = − � ��,�(�, ��)[ln ��,�(� , ��)]

��

���

 (1)

where �� is the number of categories for a discrete random variable or the total number of 

bins used to discretise the probability density function of a continuous variable, and ��,�(�) 

is the local proportion of or marginal probabilities of occurrence of the categories within 

the subdomain (e.g., in geology, the ‘volumetric fractions’ of the facies within the search-

ing box). In GEOENT, the shape of the searching box at the smallest scale is a cube (a 

square in 2D application) of size �� = �� = �� = 1 unit, where the unit is the grid size of the 

input dataset. The local entropy is normalised to obtain the relative entropy (��
� ), such that 

��
� (�, �) =

��(�, �)

��
 (2)

where �� defines the entropy calculated for the entire system. The process is repeated ���  

times (� = ,1 … , ���) each time for a different, randomly selected starting point, keeping 

the same subdomain size. An average relative entropy is then computed as 
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��(�) =
1

��
� ��

� (�, ��) 
��

�� ��
 (3)

 

Figure 1. Conceptual example of the algorithm used by GEOENT to compute the directional entro-

grams: (a) searching boxes are parallel to the horizontal axis (direction 1, � = 0º); (b) searching boxes 

are parallel to the vertical axis (direction 2, � = 90º); (c) normalised directional entrograms; (d) non-

normalised directional entrograms. 

The operation (Equations (1)–(3)) is repeated for larger subdomains and ��(�) �� plot-

ted against by increasing lags to form the entrogram curve. A subdomain can grow iden-

tically in each direction (�� = �� = ��) to obtain a regular searching box, resulting in ‘iso-

tropic’ entrograms and corresponding metrics (defined below) or being elongated in a 

specific direction to obtain an irregular searching box, resulting in one or more ‘aniso-

tropic’ or ‘directional’ entrograms. Regarding the term ‘bandwidth’, we define the size of 

the domain in each direction (‘dir’) and ‘NDIR’ as the number of directions evaluated via 

a GEOENT analysis. In the example shown in Figure 1, we considered two different main 

directions (NDIR = 2), according to which the searching box increases parallel to the hor-

izontal and vertical axes, respectively, of the analysed 2D dataset. In the plane, angle � 

defines the direction along which the bandwidth of the searching box is rotated around z 

(‘the strike’). For 3D systems, angle � defines the directions along which the bandwidth 
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of the searching box is rotated around y (‘the dip’). The angles and size that define the 

directional shape of the searching box are graphically shown in Figure 2. 

 

Figure 2. Angles and size (‘bandwidth’) that define the directional shape of the searching box used 

to compute local geological entropy. 

The normalization in Equation (2) is such that, for any direction, �� → 1. The more 

ordered a system is over larger spatial scales, the longer it takes for the entrograms to 

reach �� = 1. An entropic scale (��) can be calculated to quantify the spatial order of a 

random field [15]. This scale is defined as 

�� = � [1 − ��(�)]d�
�

�

 (4)

such that systems characterised by larger �� tend to present higher persistency of patterns 

of spatial association of certain categories and, therefore, spatial order in their spatial structure. 

The shape of the directional entrograms can be very different depending on the di-

rection along which the searching box is oriented. While ��� remains the same, the spatial 

order along specific directions can change depending on the statistical anisotropy of the 

random field of interest. The more ordered a variable is along a specific direction, the 

longer a directional entrogram will take to reach the asymptotic value. Thus, the entro-

gram scale must be computed for each direction. In the case of rectangular 2D or hexahe-

dral 3D domains, the searching box can grow more in one direction than in the others. 
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Therefore, it is useful to normalise �� by the size of the searching box in a specific direc-

tion. A normalised entropic scale, ���, is thus calculated such that 

��� =
��

max (��)
 (5)

where max (��) is the maximum bandwidth of the searching box along the ith direction. 

It is finally possible that the global entropy computed over the entire dataset, ��, may 

not reflect the fact that a statistically anisotropic system remains, on average, more or-

dered over a specific direction. In other words, the global entropy over a specific direction 

may be lower than the global entropy of the system, simply because the disorder is more 

likely to occur in other directions. Thus, we can compute a final metric, ��(dir �), which is 

the local entropy ��  calculated for each direction at large lags. The metric ��(dir �) corre-

sponds to the limit at which the entropy will tend if the system is analysed exclusively 

along a specific (i) direction. 

2.2. Implementation in GEOENT 

GEOENT is a MATLAB®-coded toolbox that calculates the directional entrograms 

and geological entropy metrics using the algorithm described in the previous section. GE-

OENT can be easily adapted to work in other MATLAB-like environments, such as GNU 

OCTAVE. GEOENT is available in a GitHub repository (https://github.com/hydrogeo-

lab/GEOENT; accessed on 12 January 2022), in which it is distributed under GNU Lesser 

General Public License v3.0. The repository contains several zipped files with the main 

scripts and routines, as well as multiple examples (including those described in this man-

uscript), to run GEOENT with different kinds of input datasets. 

The main files are ‘GEOENT.m’, the script with which the user sets up the dataset-

specific information and runs the calculation, and ‘Entrogram.m’, the main routine to 

compute the directional entrograms. The script ‘GEOENT.m’ (Figure 3) is structured in 

seven ‘blocks’, of which the first five (Block 1 to Block 5) contain user inputs for setting up 

the calculation, and the remaining two blocks contain instructions for calling the algo-

rithm (Block 6) and plotting the results (Block 7). 
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Figure 3. Snapshot of the main script of GEOENT, highlighting Blocks 1 to 5, in which the user 

introduces the input parameters to perform the calculation. 

In Block 1, the user defines the dataset size and resolution. This routine works with 

Cartesian grids, for which the user defines the grid dimensions in the X, Y, and Z direc-

tions (called, respectively, NJ, NI, and NK) and the grid or voxel size (dx, dy, and dz). 

Depending on the type of input dataset, the user may require additional scripts to import 

the dataset into the specific format required by GEOENT. Examples of such files can be 

located in the subfolders containing the provided testing analyses. In the standard version 

of GEOENT, the input dataset should be introduced using a GSLIB [25] formatting style 

(http://www.gslib.com/gslib_help/format.html; accessed on 12 May 2022), based on which 

a multidimensional dataset is converted into a one-dimensional vector. A GSLIB vector is 

formatted such that 

loc =  (i� − 1) ∗ NJ ∗ NI +  �i� − 1� ∗ NJ + i� (6)

where loc identifies the position of a node in the vector, and ix, iy, and iz are, respectively, 

the node coordinates in x,y, and z. For instance, a 10 × 5 × 2 dataset is converted into a 200-

node vector. 

In Block 2, the user defines the number of categories (NCat), into which the input 

dataset is discretised. The minimum number is Ncat = 2, which results in a binary distri-

bution. In Block 3, the first set of parameters controlling the searching algorithms for the 

entrogram calculations is specified. The user defines the number of times (NMC) that the 

searching box changes the location to compute the local entrograms. For NMC = 2 (the 

minimum number), the algorithm computes the local entropy based on the relative 
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entropy of two specific locations in which the searching box is centred. To obtain statically 

stable results, it is convenient to set up a larger number of repetitions. It is suggested that 

NCM ≥ 500, although the user can perform a sensitivity analysis around this number to 

obtain the best number as a trade-off between computational time and smoothness/stabil-

ity of the computed entrograms. 

In Block 4, the user indicates the directional bandwidths, which define the size of the 

searching box in the three Cartesian directions. To conduct anisotropic analysis, the user 

should input identical bandwidths for each direction. In Block 5, the user defines the num-

ber of directions (NDIR) and the angles of rotation—alpha and beta. The first rotation is 

about the vertical z axis (i.e., the strike), and the second is about the y axis (i.e., the dip). 

The calculation of the entrograms is performed in Block 6, where the script Entro-

gram.m is called. For each direction (nd = 1:NDIR), the number of processed lags appears 

in the MATLAB ‘Command Window’, informing the user about the speed of the calcula-

tion process. GEOENT calculates the global Shannon entropy of this dataset (��), the rel-

ative entropy (���), the entrogram for each direction, and the corresponding non-normal-

ised and normalised entropy scales (�� and ���). 

The resulting outputs are graphically processed using the commands defined in 

Block 7, and ASCII output files containing the entrograms in the different directions are 

created. Figures of the global-entropy-normalised and non-normalised entrograms are 

generated and saved as .fig files, which also contain the computed entrograms metrics. 

The user is given the option to save the results in a binary MATLAB .mat file and the 

figures in .png by uncommenting the related code lines. 

3. Application of GEOENT to Representative Datasets 

3.1. Illustrative Example 

An initial illustrative example of geological entropy analysis with GEOENT is shown 

in Figure 4. The dataset in this case is a 3D (300 × 300 × 300 voxels) sequential Gaussian 

simulation (SGS) continuous field generated using SGEMS [26]. The random spatial field 

was created using a spherical anisotropic variogram with a range of 300 voxels over Y, 30 

voxels over X, and 3 voxels over Z. The resulting dataset shows well-defined directional 

correlations of the simulated generic variable (Figure 4a). The correlation is longer over Y 

than that over X, which is, in turn, longer than that over Z. 
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Figure 4. (a) A 3D (300 × 300 × 300 voxels) anisotropic sequential Gaussian simulation generated 

using SGEMS; (b,c) entrograms with normalised and non-normalised directions, respectively, of the 

3D dataset, computed using GEOENT. The size of the searching box (defined by the ‘bandwidths’) 

is 300 × 1 × 1. For dir 1, � = 0º and � = 0º, such that the searching box is parallel to x. For dir 2, � =

90º and � = 0º, such that the searching box is parallel to y. For dir 3, � = 0º and � = 90º, such that 

the searching box is parallel to z. 
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To carry out the analyses, we set the following features: 

 In Block 1, NJ = 300; NI = 300; NK = 300; dx = 1; dy = 1; dz = 1 (corresponding to the 

specific directions of this dataset). Since the dataset was already saved as a GSLIB 

format, it was directly imported into MATLAB without format transformation; 

 In Block 2, Ncat = 5, such that the continuous variable distribution is binned into five 

categories; 

 In Block 3, NMC = 500, such that the number of repetitions to compute the ensemble 

averages of entrograms in each direction is 500; loglag = true, such that lags are com-

puted logarithmically; lagsteplogspace = 20, which is the number of steps of the log-

arithmically spaced lags; 

 In Block 4, bandwidth_X = 300, bandwidth_Y = 1, and bandwidth_Z = 1, such that the 

maximum size (number of voxels) of the searching box is 300 × 1x1 over X, Y, and Z 

when the strike and dip angles ‘alpha’ and ‘beta’ are � = 0º and � = 0º, respectively; 

 In Block 45, NUMDIR = 3, such that we compute three directional entrograms, each 

one defined by the directions specified by ‘alpha’ and ‘beta’ angles. We also set alpha 

= {0. 90. 0.} and beta = {0. 0. 90.}, such that the first entrogram is oriented over the x 

direction, the second entrogram is oriented over the y axis, and the third entrogram 

is oriented over the z direction. We finally set nHs_flag = 1, after which normalised 

entrograms were plotted. 

The three entrograms and corresponding metrics are plotted in Figure 4b. The top 

panel shows the normalised entrograms, i.e., the change in relative entropy �� with the 

lags, for each direction. The title shows the relative entropy of the first lag, ���, and the 

global entropy, ��. The legend of the top plot reports the entropic scale (here, the normal-

ised entropy scale, ���) for each direction. The bottom plot shows the non-normalised 

entrograms, i.e., the change in local entropy ��  with the lags for each direction. The legend 

of the bottom plot reports the global entropy for each i-th direction, ��(dir �). This value 

is computed by averaging H_L over the last three calculated lags, assuming that for a 

sufficiently wide lag range, ��(��� �) → �� (��� �). 

In the analysed 3D SGS dataset, we found a global entropy �� = 0.82, which can be 

considered a large number since the maximum global entropy (i.e., the maximum disor-

der) is �� = 1. This means the analysed 3D dataset is fairly disordered when considered 

as a whole. The relative entropy at lag 1 is ��� = 0.52. The relative information of the spa-

tial order provided by this value depends on the specific application for which geological 

entropy is used. For instance, for solute transport modelling, Bianchi and Pedretti [14] found 

that alluvial aquifers characterised by ��� = 0.5 have an intermediate potential of generating 

preferential flow and solute channelling, eventually leading to non-Fickian transport. 

The new functionality introduced by GEOENT is the evaluation of the anisotropic 

order of the system, which is estimated by the scaling of the directional entrograms. In this 

application, we found that ��� is larger for dir 2 (oriented along the y axis), with ���  = 0.34, 

than for dir 1 (oriented over the x axis), with ���  = 0.12, which, in turn, is larger than dir 

2 (oriented over the z axis), with ���  = 0.04. These values are consistent with the shape of 

the entrograms, which show a more rapid increase towards �� → 1 in the z direction than 

in the y direction, which is, in turn, more rapid than in the x direction. The different scaling of 

the entrograms and corresponding entropic scales agree with the anisotropic structure of the 

3D SGS, which was created using a directional variogram showing a larger correlation range 

in the y direction than in the x direction, which was, in turn, larger than in the z direction. 

A similar conclusion is drawn from the analysis of the global entropy, ��. In dir 1 

(oriented over y), with ��(dir 1) = 0.58, the system remains globally more ordered than 

over the other directions, which instead show values that tend towards the global entropy 

��. This means that, over x and z axes, the system is as chaotic and disordered as the entire 

system, when taken as a whole. By contrast, over the y axis, the system would require 

more space to show the same degree of disorder as the global system. 
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3.2. Two-Dimensional (2D) Training Images 

We now show how GEOENT is able to evaluate the spatial order in a series of two-

dimensional (2D) training images (TIs). Such images are commonly used in multipoint 

geostatistical analyses [27–29] to generate realistic features in various geological environ-

ments. The analysed dataset, shown in Figure 5, consists of six images of 300 × 300 pixels 

generated using the code TiGenerator [28], an SGEMS plugin that creates TIs with discre-

tised categories (called ‘geobodies’) that resemble geological features, such as alluvial 

depositional environments. In our analysis, we considered a single geobody embedded 

into the complementary background matrix, resulting in NCAT = 2. While the shape of 

the geobody is set to be ‘sinusoid’ in all generated Tis, and the relative proportion is the 

same (25:75), the geometry of the geobody is different in each TI, owing to the different 

properties adopted in TiGenerator, as defined in Table 1. The resulting directional entro-

grams and corresponding metrics are shown in Figures 6 and 7, respectively, for the nor-

malised and non-normalised entrograms. We computed three directions (NDIR=0), with 

� = 0º for dir 1 (parallel to the horizontal axis (x)), with � = 45º for dir 2, and with � =

90º for dir 3 (parallel to the vertical axis (y)). 

 

 
 

 

Figure 5. Training images generated using the code TiGenerator [28], with different spatial orders, 

orientations, and degrees of connectivity of the different (white) features embedded into a (black) 

matrix. The parameters used to create the subfigures (a-f) are indicated in Table 1. 
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Table 1. Parameters set in TiGenerator [28] to create the TIs used in the example. For constant prop-

erties, the table shows the ‘Mean’ parameter. For random properties with triangular distribution, 

the table shows the ‘Mean ({min;max})’ parameter. 

Image Length Width Orientation Amplitude Wavelength 

(a) 300 5 90 5 100 

(b) 300 20 90 5 100 

(c) 50 5 0 1 1 

(d) 50 5 135 1 1 

(e) 50 5 135 {90;180} 1 100 

(f) 5 5 90 {45;135} 1 1 

 

Figure 6. Normalised entrograms of the six analysed training images presented in Figure 5. 
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Figure 7. Non-normalised entrograms of the six analysed training images presented in Figure 5. 

For Figure 5a,b, the corresponding entrograms in Figures 6 and 7 show a larger order 

over the x axis, which agrees well with the visual shape of the geobodies, being longer 

and more connected over that direction than over the other. This is due to the selected 

orientation of the geobodies. Despite the same length of the geobodies, the entrograms 

indicate that the TI (a) is more disordered than TI (b). The normalised entrograms scales 

(���) in all directions are smaller in TI (a) than in TI (b), particularly for what concerns dir 

1. This is explained considering that, in TI (a), the narrow size of the geobodies determines 

a larger number of geobodies in the image to reach the desired proportion of facies. In TI 

(b), by contrast, the thicker shape of the geobodies hides their sinusoidal shape. As such, 

TI (b) results is a much more regular and stratified image, which is correctly reflected by 

different ��� values. The other geological entropy metric, ���, is also lower in TI (b) than 

in TI (a), agreeing with the previous conclusions by Bianchi and Pedretti [14], which found 

higher order of random spatial fields when ��� →  0. 

For Figure 5c,d, the corresponding entrograms in Figures 6 and 7 correctly reproduce 

the different orientations of the geobodies. In TI (c), the orientation is mainly vertical, and 

the entrograms correctly reproduce a higher order for dir 3, which is parallel to the y axis. 

In TI (d), the orientation is tilted by 45º, and the entrograms corresponding to dir 2 are 

now suggesting a longer spatial order over that direction. 
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For Figure 5e,f, the corresponding entrograms in Figures 6 and 7 correctly resulted 

in a higher general order in TI (e) than in TI (f). In (e), the entropic scales are around 2×-3× 

larger than in (f). Both (e) and (f) show a very isotropic order in all tested directions. 

3.3. Three-Dimensional (3D) X-ray Microtomography Images 

Another example of the application of GEOENT considers three-dimensional (3D) 

digitalized images obtained from X-ray microtomography (μCT) [30–36]. GEOENT was 

used to assess the spatial structure of four well-studied digitalised rock samples, two 

sandstones (Bentheimer and Doddington), and two carbonates (Estaillades and Ketton). 

These images have been particularly useful to develop/prove new theories of transport in 

heterogeneous media, such as the use of upscaling models to predict ‘anomalous’ (i.e., 

non-Fickian) transport emerging in heterogeneous systems as a consequence of the differ-

ent textural properties of these rocks [37–40]. 

The images were scanned at the Imperial College of London (available at 

https://www.imperial.ac.uk/earth-science/research/research-groups/pore-scale-model-

ling/micro-ct-images-and-networks/; accessed on 28 February 2022). Each image has a to-

tal of 10003 voxels, providing a useful testing scenario to evaluate the efficiency of GE-

OENT to process large-scale datasets. The images have voxel resolutions of 3.0035 μm for 

the Bentheimer sample, 2.6929 μm for the Doddington sample, 3.31136 μm for the Estail-

lades sample, and 3.00006 μm for the Ketton sample. The images were segmented to rep-

resent a binary distribution, where ‘0’ corresponds to the solid matrix, and ‘1’ to the void 

space. The chosen images (Figure 8) show different textural arrangements, resulting in 

different grain-size distributions and spatial organization of the pore space. The samples 

are described in detail in Andrew et al. [38]. 
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Figure 8. The four analysed digitalised rock samples downloaded from https://www.impe-

rial.ac.uk/earth-science/research/research-groups/pore-scale-modelling/micro-ct-images-and-net-

works/ (accessed on 27 July 2021). The images represent a 500 × 500 × 500 subset, processed using a 

threshold filter. Red colour represents the solid matrix. 

The entrograms calculated with GEOENT (Figure 9) indicate shorter entropic scales 

for the sandstones compared with the carbonates, and therefore, the sandstones have 

higher degrees of spatial disorder in the solid/void distribution. This agrees well with the 

more homogeneous pore- and grain-size distribution in the sandstones, as visually appre-

ciated from a close inspection of Figure 8. The global entropy �� is also larger in the sand-

stones than in the carbonates, indicating that globally, the carbonates show higher spatial 

order than the sandstones, which are instead more mixed and chaotic. The relative en-

tropy at the first lag (���) is lower in carbonates than in the sandstone. Recalling the 
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analysis by Bianchi and Pedretti [14]), this suggests that the nature of solute transport in 

carbonates s to be more non-Fickian than in sandstones, which is consistent with the gen-

eral understanding of transport in these types of rocks [20]. 

 

Figure 9. Entrograms and corresponding statistics calculated using GEOENT for each of the four 

analysed digitalised rock samples. (a-b) Normalized and not-normalized entrograms of the Ben-

theimer rock samples, respectively; (c-d) Normalized and not-normalized entrograms of the Dod-

dington rock samples, respectively; (e-f) Normalized and not-normalized entrograms of the Ketton 

rock samples, respectively; (g-h) Normalized and not-normalized entrograms of the Estaillades rock 

samples, respectively. 

Comparing Ketton and Estaillades entrograms, we found that both digitalised rock 

samples are characterised by a very similar global entropy (�� = 0.39 for Ketton and �� = 

0.38 for Estaillades). The relative entropy at the first lag is also similar but slightly lower 
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in Ketton (��� = 0.06) than in Estaillades (��� = 0.1). Both values are low, further confirm-

ing that, at the scale of the image resolution (3 μm), the probability that both rock samples 

generate preferential flow is high. Indeed, ��� < 0.1 was found to generate BTC skewness 

in the simulations by Bianchi and Pedretti [14] for different values of the variance of the 

log-transformed hydraulic conductivity of the flow field. However, the lower ��� in Ket-

ton than in Estaillades means that Ketton may have a slightly higher probability to gener-

ate non-Fickian transport than Estaillades. 

We also found that Ketton is more anisotropic than Estaillades. In Ketton, the spatial 

order is more persistent along the vertical direction (dir 3, ��� = 0.28) than in the plane 

(dir 1, ��� = 0.23; dir 2, ��� = 0.19). The anisotropic entrogram describing the spatial order 

of the Ketton sample is consistent with the analysis by Mosser et al. (2017), who reported 

the anisotropic behaviour of the covariance used to describe the spatial structure of the 

same sample. In Estaillades, the spatial order is instead more comparable among the dif-

ferent directions but always lower than dir 1 in Ketton. This is a further confirmation that 

Ketton could produce more non-Fickian transport than Estaillades. 

3.4. Three-Dimensional (3D) Aquifer Analogues 

The last example of the application of GEOENT focuses on the evaluation of 3D aq-

uifer analogues. These are detailed field descriptions of the heterogeneity of outcropping 

sedimentary deposits that can be used to study fluid flow in the subsurface [27,41,42] or 

the architectural geometries of petroleum reservoirs [43]. Such analogues are based on 

direct observations of the lithology and sedimentary structure and geophysical surveys. 

The specific datasets evaluated in this study reproduce two well-known aquifer analogues 

[41]: 

 The Herten aquifer, described as a highly heterogeneous fluvioglacial braided river 

sediment from the Pleistocene in the upper Rhine valley of southern Germany 

[27,42]; 

 The Descalvado aquifer, described as a moderately heterogeneous fluvial–aeolian de-

posit of the upper part of the Pirambóia Formation (Triassic) of south-eastern Brazil [44]. 

Bayer et al. [41] provided a comprehensive set of realizations based on multipoint 

geostatistics that stochastically reproduce the variation of categorised facies in each ana-

logue. Two of these realizations are presented in Figure 10. In (a), the Herten dataset is 

shown. The volume is composed of 320 × 200 × 140 unit-size voxels. From a visual assess-

ment, the Herten dataset shows a well-defined variation of the facies’ proportions over 

the vertical direction (z) and a stratified structure l. The Descalvado dataset, shown in (b), 

is composed of 280 × 140 × 70 unit-size voxels. From a visual assessment, the Descalvado 

aquifer analogue also shows a well-defined stratification, with a shorter correlation of the 

facies over the z direction than over the x and y directions. Visually, it is difficult to assess 

the presence of anisotropic structures in both samples. 
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Figure 10. (a) The Herten and (b) Descalvado aquifer analogues analysed in this study. 

The directional entrograms of both analogues are compared in Figure 11. At the top, 

the panels (a) and (b) show the normalised entrograms. We found that the spatial order is 

much more continuous along the horizontal planes than over the vertical direction, con-

sistent with the visual assessment of the analogue’s volumes shown in Figure 10. The nor-

malised entropic scale, ���, is shorter over z in both samples. The comparison between 

the two datasets revealed however that the spatial order is more persistent in the Descal-

vado analogue than in the Herten analogue. At Descalvado, the entrograms along x and 

y are flatter than in Herten, as quantified by the lower ��� in Descalvado (dir 1, ��� = 

0.68; dir 2, ��� = 0.67) than in Herten (dir 1, ��� = 0.53; dir 1, ��� = 0.49). The analysis 

revealed that, in the plane, Herten is also more anisotropic than Descalvado. This concep-

tually agrees with the genetic origin of Herten (fluvioglacial, braided river sediment), 

which tends to generate alluvial deposits preferentially oriented over one direction. The 

fluvial–aeolian nature of the Descalvado deposits is instead more prone to generating 

more isotropic deposits. 
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Figure 11. Entrograms and corresponding statistics calculated using GEOENT for each of the four 

analysed analogues. (a) Normalized entrograms for the Herten analogue; (b) normalized entro-

grams for the Descalvado analogue; (c) Not-normalized entrograms for the Herten analogue; (d) 

Not-normalized entrograms for the Descalvado analogue. 

The relative geological entropy at the first lag, ���, is lower in Descalvado than in 

Herten. At the bottom, the panels (c) and (d) show the non-normalized entrograms, which 

suggest that the global entropy �� is lower for the Descalvado analogue than for the 

Herten analogue. The directional global entropies in the plane (�� − dir 1; �� − dir 2) are 

also generally lower in Descalvado. 

To extrapolate these results in the context of predicting transport behaviour in the 

two aquifers, it is important to note that our focus here is only on the lithological compo-

sition and not on the distribution of hydraulic conductivity. In fact, Bianchi and Pedretti 

[14] showed that the tendency of a system to generate non-Fickian transport is linked to 

��� as well as the variance in the log-transformed hydraulic conductivity (��
�), which is 

much larger in Herten (��
�= 5.13) than in Descalvado (��

�=1.91) [45]. More proper and rig-

orous solute transport analyses will be presented in the future to evaluate each individual 

case study and draw more pertinent case-specific conclusions. 
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4. Conclusions 

The analysis of gridded datasets representing the spatial distribution of categorical 

or continuous variables is essential in a wide range of disciplines. In geological sciences, 

readily available software packages that can be applied to analyse the spatial variability 

of heterogeneous systems are usually based on variogram-based geostatistical approaches 

[25]. GEOENT differs from these by describing spatial variability with an information en-

tropy-based approach, which quantifies the degree of spatial association and order of the 

considered field. 

An important novelty of GEOENT is that it incorporates an updated algorithm for 

calculating the entrogram, which allows the detection of anisotropy in spatial structures 

and, therefore, allows one to evaluate the degrees of spatial order in different directions. 

Anisotropy is commonly observed in the spatial arrangement of heterogeneous categori-

cal and continuous data. Without such capability, some salient directional differences in 

the analysed datasets would not be appreciated, as we showed here using examples rang-

ing from relatively simple 2D binary images to complex reconstructions of lithological 

variability in sedimentary aquifers. The geological entropy metrics calculated with GE-

OENT have the potential to provide insight to explain complex physical processes occur-

ring in heterogeneous systems, such as fluid flow or solute transport [14,15] The develop-

ment of robust theories for different fields is the topic of ongoing and future research. 

Appendix A. Shannon Information Entropy 

The Shannon information entropy (�) [1] lies at the core of the geological entropy 

approach. This entropy quantifies the amount of information contained in a random 

source of information. Mathematically, � is defined analogously to the Boltzmann–Gibbs 

thermodynamic entropy. In statistical mechanics, entropy is interpreted as a measure of 

the disorder of a physical system. The frame of geological entropy � provides a measure 

of the disorder of a geological system. 

For an event � released by a generic source �, also known as self-information, the 

information (�) is calculated as 

�(�) = − ln �(�) (A1)

where �(�) is the probability of occurrence of that event. The logarithm stems from the 

need to compute the total entropy of an independent event, for which the probability is 

the product of the individual probabilities. The information entropy � is defined as the 

expected or mean data contained in a single message and are computed as 

�(�) = E(I(X) = �[− ln �(�)] (A2)

For a discrete random variable containing � events, � is calculated as the mean data 

of the individual event �� (� = 1, … , �), which is 

�(�) = − � �(��)

�

���

[− ln �(��)] (A3)
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