
The Journal of Systems & Software 202 (2023) 111704

U

(
p
2
s
c
a
c
a
T
d

✩

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

On the granularity of linguistic reuse✩,✩✩

Francesco Bertolotti, Walter Cazzola ∗, Luca Favalli
niversità degli Studi di Milano, Computer Science Department, Milan, Italy

a r t i c l e i n f o

Article history:
Received 6 October 2022
Received in revised form 19 February 2023
Accepted 9 April 2023
Available online 25 April 2023

Keywords:
Reuse and evolution
Language evolution
Domain specific languages
Feature modularity
Language product lines
Language composition

a b s t r a c t

Programming languages are complex software systems integrated across an ecosystem of different
applications such as language compilers or interpreters but also an integrated development environ-
ment comprehensive of syntax highlighting, code completion, error recovery, and a debugger. The
complexity of language ecosystems can be faced using language workbenches—i.e., tools that tackle
the development of programming languages, domain specific languages and their ecosystems in a
modular way.

As with any other software system, one of the priorities that developers struggle to achieve when
developing programming languages is reusability. After all, the capacity to easily reuse and adapt
existing components to new scenarios can dramatically improve development times. Therefore, as
programming languages offer features to reuse existing code, language workbenches should offer tools
to reuse existing language assets. However, reusability can be achieved in many different ways.

In this work, we identify six forms of linguistic reusability, ordered by level of granularity: (i) sub-
languages composition, (ii) language features composition, (iii) syntax and semantics assets composition,
(iv) semantic assets composition, (v) actions composition, and. (vi) action extension. We use these
mechanisms to extend the taxonomy of language composition proposed by Erdweg et al. To show a
concrete application of this taxonomy, we evaluate the capabilities provided by the Neverlang language
workbench with regards to our taxonomy and extend it by adding explicit support for any granularity
level that was originally not supported. This is done by instantiating two levels of reusability as
actual operators—desugaring, and delegation. We evaluate these operators against the clone-and-own
approach, which was the only form of reuse at that level of granularity prior to the introduction of
explicit operators. We show that with the clone-and-own approach the design quality of the source
code is negatively affected. We conclude that language workbenches can benefit from the introduction
of mechanisms to explicitly support reuse at all granularity levels.

© 2023 Elsevier Inc. All rights reserved.
1. Introduction

As any other software product, domain-specific languages
DSLs) (Kosar et al., 2016; Mernik et al., 2005) and general pur-
ose languages (GPLs) are products in constant evolution (Karaila,
009; Chowdhary, 2013). New syntactic constructs and their
emantics are continuously integrated. This constant evolution
an easily become unmanageable (Mens et al., 2005; Serebrenik
nd Mens, 2015). Moreover, it can affect a wide range of appli-
ations that orbit around the language. As a consequence, each
pplication needs to be updated accordingly and consistently.
his process is extremely mechanical, can slow the language
evelopment and can cause the introduction of bugs.

✩ This work was partly supported by the Italian Ministry of University and
Research (MUR), Italy on the funded project ‘‘T-LADIES’’ (PRIN 2020TL3X8X).

✩ Editor: Lingxiao Jiang.
∗ Corresponding author.

E-mail address: cazzola@di.unimi.it (W. Cazzola).
ttps://doi.org/10.1016/j.jss.2023.111704
164-1212/© 2023 Elsevier Inc. All rights reserved.
While there is a wide literature to support the evolution of
common software products (Chapin et al., 2001; Lehman et al.,
2002; Hinterreiter et al., 2018), the evolution of programming
language ecosystems is often overlooked (Thanhofer-Pilisch et al.,
2017). Despite being software products, GPLs and DSLs can ben-
efit from additional care—e.g., automatic integrated development
environment (IDE) generation (Kühn et al., 2019; Henriques et al.,
2005). Moreover, these language products can deeply impact the
creation of new source code. Given the critical role of these
products, adding an explicit support to reuse of linguistic assets
for evolution purposes can positively impact the development of
a language.

A common approach to the creation of language ecosystems
is to leverage language workbenches as a modeling framework.
Following software product line (SPL) engineering, language work-
benches can describe languages in terms of their features. A
language feature encapsulates a language construct or a language
concept (Kühn et al., 2015) that can be separately compiled and
distributed. Language features consist of a syntactic part and a

https://doi.org/10.1016/j.jss.2023.111704
https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2023.111704&domain=pdf
mailto:cazzola@di.unimi.it
https://doi.org/10.1016/j.jss.2023.111704

F. Bertolotti, W. Cazzola and L. Favalli The Journal of Systems & Software 202 (2023) 111704

e
w
c
n
c

R

R

a

s
M

Table 1
Changes required by the introduction of language extensions according to Google’s open source JavaScript enginer (V83) project history.
Feature Hash Files Insertions Deletions

NullishOperator (??) 3ec1036526227af480f8516c99758ba5b4ee8749 14 227 15
AndAssignment (&&=), OrAssignment (||=) and NullishAssignement(??=) b151d8db22be308738192497a68c2c7c0d8d4070 8 39 16
NumericSeparator (100_000_000 or 0.000_001) 517df5248847fa773159b465ebe713dc05c03fa5 8 226 52
ArrowFunction (=>) 7367720daa7d57ed3b9d92944bdddec61e5ab88a 9 678 174
OptionalCatchBinding (try{..} catch {..}) d0651bd108e0ee70ae822eda9bad7049cb2f3df4 8 78 52
Const 3b1aabc960ea7a1107c8b6ebb8f2b4ce48e9b610 3 24 16
semantic part. With this in mind, reuse1 among language features
can be at several levels of granularity, both within language
features and between language features through semantics and
syntax reuse (Combemale et al., 2018). Moreover, reuse can be
performed through extension mechanisms that modify existing
assets into new ones, or through composition mechanisms that
combine different assets into new ones (ISO/IEC/IEEE Interna-
tional Standard, 2017). In both cases, old assets are reused to
obtain newer assets.

Hinterreiter et al. (2018) already put reuse of SPLs among
the main challenges of software evolution. Following the same
sentiment, we believe reuse among linguistic assets should be
encouraged through specific constructs and leveraged to support
the evolution of programming languages.

In this work, we introduce six different levels of granular-
ity in linguistic reuse. These levels of granularity complement
a previous work from Erdweg et al. on language composition,
that classifies the composition of complete languages with other
languages or with language extensions. This work builds on this
classification by addressing the composition of linguistic compo-
nents at fine levels of granularity—i.e. those in which the result
of the composition is smaller than a language extension. Then,
we exemplify, compare and evaluate two explicit mechanisms for
opportunistic reuse2 that can be used to support the maintenance
and evolution of language semantics by measuring how they
perform against the clone-and-own (Dubinsky et al., 2017; Rubin
et al., 2013; Antkiewicz et al., 2014) solution. For each approach,
we highlight strengths and weakness and evaluate the quality
of the resulting code by measuring several metrics. We show
that, when linguistic reuse is not explicitly supported at all levels
of granularity, the code suffers from increased duplication and
coupling. The evaluation is based on the extension of a Neverlang
implementation of ECMAScript 3 with some language features
introduced in newer versions of the ECMAScript standard.

The contribution of this work is twofold and includes (i) an
xtension to the taxonomy on language composition by Erd-
eg et al. (2012) and (ii) a framework for the evaluation of
omposition mechanisms to support reuse of linguistic compo-
ents in language workbenches. We express and validate these
ontributions by answering the following research questions.

Q1. What are the levels of granularity needed to support
reuse of linguistic assets in the implementation of pro-
gramming languages?

Q2. How can a composition operator that performs linguistic
reuse in Neverlang be evaluated with respect to its reuse
capabilities?

The rest of the paper is organized as follows. Section 2 dis-
cusses a running example highlighting the problem we are going

1 Reuse is the degree to which an asset can be used to build other systems
nd/or assets (ISO/IEC/IEEE International Standard, 2017).
2 Opportunistic reuse is defined as the activity of reusing and combining

oftware assets that were not originally designed to be used together (Sen, 1997;
äkitalo et al., 2020).
2

to tackle. Here, we also provide an overview of the current
state-of-the-art with regards to the considered problem. Sec-
tion 3 introduces the needed terminology and sets a common
background the paper is built on. Sections 4 and 5 present the
proposed approaches and the evaluation framework respectively.
Finally, Sections 6 and 7 present some related work and our
conclusions, respectively.

2. Problem statement

Overview. In Section 2.1, we will discuss the main motivations
behind this work. We will then compare them with the current
state-of-the-art in terms of language workbenches in Section 3.2.

2.1. Motivation

Programming languages evolve overtime. For example, Ta-
ble 1 shows several extensions that were introduced in the V8
JavaScript engine over the years. The introduction of such ex-
tensions may be costly in terms of line of code insertions and
deletions to existing implementations. One example of such an
implementation is shown in Fig. 1 (central panel): the ||= op-
erator that was added to ECMAScript in 2021—here reported as
it would be implemented in the Neverlang language workbench.
Notice that in this case the extension was implemented by ap-
plying clone-and-own reuse, since Neverlang does not provide
mechanisms to perform reuse for linguistic components at this
level of granularity. There is significant overlap between the
implementation of the OrAssignment extension and the exist-
ing JSOrExpression and JSAssignExpression—all the lines of
code from both JSOrExpression (left panel) and JSAssignEx-
pression are present in the new OrAssignment (right panel).
The main problem with the clone-and-own approach is that it
creates several variants of the same linguistic component that can
quickly become expensive to maintain due to code duplication
and change propagation for updates (Rubin et al., 2013).

To summarize, in our view a language workbench should solve
all of the above problems by striving towards three different
goals: (i) enabling reuse of linguistic assets without changing
them, (ii) favoring opportunistic reuse of existing assets through
explicit constructs and (iii) preventing the need for code dupli-
cation. To achieve these goals, a language workbench must pro-
vide abstractions enabling reuse at every level of granularity—i.e.,
the amount of computation performed by reusable components.
Large grained components yield larger win in productivity (Tracz,
1990; Hemer and Lindsay, 2001; Long, 2001) but may implement
a functionality too specific to be reused. Conversely, fine grained
components are more likely to be reusable but provide smaller
benefits (Xu et al., 2011; Maga et al., 2011).

3. Background

Overview. In this section, we will review some fundamental con-
cepts useful for future sections. We will start by discussing the

3 https://github.com/v8/v8

https://github.com/v8/v8

F. Bertolotti, W. Cazzola and L. Favalli The Journal of Systems & Software 202 (2023) 111704

N
J
i
c

E
f
l
o

3

g

3

M
C
i
t
X
b
t
d
t
t
t
l
t
c
e
e
t
a
r

Fig. 1. The central panel shows the Neverlang implementation of the JavaScript ||= language feature (named OrAssignment). The left panel shows the
everlang implementation of the || operator (named JSOrExpression). The right panel shows the Neverlang implementation of the assignment = (named
SAssignExpression). On top, highlighted in red, the respective syntaxes. Several code overlaps are shown. Yellow stresses the overlappings between ||
mplementation and ||= implementation. Green stresses the overlappings between || implementation and = implementation. Finally, blue stresses the overlappings
ommon to all (||, ||= and =) operators.
rdweg taxonomy on language composition. Next, we will review
ew language workbenches. We will discuss language product
ines, and the Neverlang ecosystem. Finally, we will define some
f the terminology used later on.

.1. Erdweg language composition taxonomy

According to Erdweg et al. (2012) the mechanisms for lan-
uage composition can be divided into four different classes:

– Language extension: a base language is composed with a
language fragment to add new capabilities. By itself the
language fragment cannot be used meaningfully as it de-
pends on the base language. For example, the statement
||= represents a language extension of ECMAScript 2020.

– Language unification: two existing languages are composed
together. For example JavaScript and HTML are often used
in combination to achieve more dynamic behaviors.

– Self-extension: a base language provides a program that en-
capsulates a different language. For example, the Java lan-
guage is self-extended with the regex DSL using embedded
strings and API calls.

– Extension composition: a base language uses two language
extensions jointly.

.2. State-of-the-art

elange. Melange (Degueule et al., 2015; Degueule, 2016;
ombemale, 2015) is a language workbench that integrates var-
ous tools from the Eclipse Modeling Framework (EMF) ecosys-
em (Steinberg et al., 2008). The abstract syntaxes are defined in
text and the corresponding semantics are specified with Xtend-
ased Kermeta 3 aspects. To build a language with Melange,
he developer must first design an Ecore model containing a
eclarative specification of a set of classes for the abstract syn-
ax, and then Kermeta semantic aspects. The latter are linked
o Ecore-generated classes by specific annotations. According
o the taxonomy by Erdweg et al. (2012), Melange supports
anguage extension, language unification, self-extension and ex-
ension composition (Méndez-Acuña et al., 2016). Melange offers
omplex composition mechanisms such as the extension of an
xisting language or merging of multiple languages (Degueule
t al., 2015). Melange ties the semantics to specific abstract data
ype (ADT) which may limit opportunistic reuse opportunities,
lthough this issue could be tampered thanks to the support of

enaming of Ecore elements (packages, classes, etc.).

3

MontiCore. MontiCore (Grönninger et al., 2008; Krahn et al.,
2010; Rumpe et al., 2021) is a language workbench that adopts
a unique DSL for the definition of both abstract and concrete
syntax. Class models are automatically generated and their se-
mantics are implemented in Java through abstract syntax tree
(AST) visitors. Each visitor can access inherited and synthesized
grammar attributes through a getter/setter API which is injected
into the target ADTs. According to the taxonomy by Erdweg
et al. (2012), MontiCore supports language extension, language
unification, self-extension and extension composition (Méndez-
Acuña et al., 2016). ADTs associated to AST nodes can be extended
to reuse existing semantics and multiple grammar inheritance is
supported, but it is not possible to add new grammar attributes
to existing symbols. For similar reasons, separate compilation of
artifacts is not supported which may limit the extensibility when
the sources for the original base language are no longer available.

Meta programming system (MPS). MPS (Völter and Pech, 2012;
Pech et al., 2013) is a development environment for non-textual
DSLs. MPS avoids the need for any kind of parser by supporting
the projectional (Völter et al., 2014) approach: the abstract syntax
is defined in meta-models and stored in XML files which are not
meant to be human-editable. Instead, programs are modeled by
composing basic building blocks called concepts, each defining a
type of AST node. Various kinds of components (mainly behaviors
and editors) can be attached to each concept to implement a
view for the AST and its semantics through a subset of Java
called BaseLanguage. According to the taxonomy by Erdweg
et al. (2012), MPS supports language extension, language unifi-
cation, self-extension and extension composition (Méndez-Acuña
et al., 2016). However, reuse opportunities are limited due to
behaviors being tied to a specific concept. Some reuse can be
achieved by concept extension/specialization and overriding, but
the lack of multiple inheritance prevents the extension composi-
tion capability without a proper refactoring using the composite
pattern.

Neverlang. Neverlang (Cazzola, 2012; Cazzola and Vacchi, 2013;
Vacchi and Cazzola, 2015; Cazzola and Shaqiri, 2017) is a lan-
guage workbench for the development of programming lan-
guages compilers, interpreters and their ecosystem in a modular
way. The Neverlang development cycle is based on the language
feature concept. Language features are implemented in compi-
lation units called slices. Slices implement language features by
performing composition between several units called modules.
The composition mechanism is syntax-driven: the language gram-
mar is used for selecting insertion points where semantic actions

F. Bertolotti, W. Cazzola and L. Favalli The Journal of Systems & Software 202 (2023) 111704

a
c
A
e
e
c
b
d
b
s
p
D
v

S
e
f
F
s
t
o
f
(
t
e
a
t

R
2
l
a
i

s

C
w
n
C
c
l
T
s
l
l
n
H
o

T ,
2
m
s
a
2
p
T
t
a

A
w
o
s

i
i
c
s
a
a
s
m
c
o

l
f

re plugged in. Modules can also piggyback meta-data for the
onstruction of the language ecosystem—such as an IDE. The
utomatic Integrated Development Environment (AiDE) for Nev-
rlang adds support for language product line development (Kühn
t al., 2015; Kühn and Cazzola, 2016; Favalli et al., 2020). It
opes with all aspects of the development of a language family
y supporting three roles: the language developer, the language
eployer and the language user. According to the taxonomy
y Erdweg et al. (2012), Neverlang supports language exten-
ion, language unification, self-extension and extension com-
osition (Méndez-Acuña et al., 2016). However, The Neverlang
SL composition mechanisms are too coarse—variability between
ariants of a language family is at language feature granularity.

poofax. Spoofax (Wachsmuth et al., 2014; Voelter, 2013; Kats
t al., 2010) is a language workbench that provides several DSLs
or language development. Most importantly, Syntax Definition
ormalism (SDF3) is used for (possibly ambiguous) grammar
pecification and Stratego for the semantics as a sequence of AST
ransformations called rules and strategies. The abstract syntax
f a program is represented in a data structure and stored in a
ormat called ATerm. According to the taxonomy by Erdweg et al.
2012), Spoofax supports language extension, language unifica-
ion, self-extension and extension composition (Méndez-Acuña
t al., 2016). Performing semantic reuse in Spoofax may require
dditional glue code for the explicit transformation of types—both
hose involved in the pattern matching and the return types.

ascal. Rascal (Klint et al., 2009b; Basten et al., 2015; Klint et al.,
019) is a meta-programming language for the development of
anguage processing tools. The abstract syntax is defined using
lgebraic data types. Rascal library supports the parsing of textual
nput and its implosion to perform tree transformations. ASTs
can be evaluated based on user-defined functions and pattern
matching of the algebraic data types on function arguments (a
technique called pattern-based dispatch Basten et al., 2015). Rascal
workflow and capabilities are very similar to Spoofax with the
ame benefits and limitations.

BS. CBS (Churchill et al., 2015; Mosses, 2019b,a) is a language
orkbench partially developed in using Rascal for the compo-
ent based development of programming languages and DSLs.
BS is based on the concept of funcons. Funcons are modular
omponents that can be reused in the specification of several
anguages (Churchill et al., 2014; van Binsbergen et al., 2019).
he PlanCompS (van Binsbergen et al., 2016) aims to collect a
ubstantial library of funcons as a basis for the development
anguages in CBS. To the best of our knowledge CBS does not offer
anguage construct to explicitly encapsulates developed compo-
ents (apart from funcons). Therefore reuse may be difficult.
owever, it should be noted that CBS is still in the early stages
f development.

ruffle. Truffle (Wimmer andWürthinger, 2012; Würthinger et al.
012; Latifi et al., 2021) is an library to build language imple-
entations and interpreters. Truffle applies rewriting to abstract
yntax tree nodes to perform optimizations and semantic oper-
tions. Truffle combined with the GraalVM (Würthinger et al.,
013; Würthinger, 2014) has been used successfully in variety of
rojects (Niephaus et al., 2019; Kloibhofer et al., 2020). However,
ruffle does not provide the tooling necessary to parse or define
he language syntax which are delegate to external tools. This
pproach limits the reusability of syntactic components.

ll things considered. To the best of our knowledge, language
orkbenches should strive to provide abstractions that enable
pportunistic reuse at all levels of granularity. In our view, reuse
hould not be limited by the definition of visitors for specific
4

ADTs. Language components should be reusable in any scenario
unless stated otherwise since the developer cannot foresee all
the future use cases that may arise—any limitation should be
declared explicitly through preconditions and/or post-conditions.
Therefore, language workbenches may benefit from providing
constructs to adapt existing semantics to new scenarios without
requiring changes or re-compilation of existing source code.

3.3. Language product lines

Software product lines. Product lines are a staple in industrial pro-
duction. Following the same ideas, SPL engineering introduces the
concepts of software variants and software families. A software
family is a collection of related but different software variants
that differ by the set of features they provide.

Feature model. SPLs are usually modeled in terms of their fea-
tures following formalisms such as the feature model (FM), a
concept firstly introduced as part of the FODA method (Kang
et al., 1990). For this reason the development of SPLs is often
referred to as feature-oriented programming. With the support
of dedicated tools and environments (ter Beek et al., 2019) such
as FeatureIDE (Thüm et al., 2014), software engineers can cope
with all the aspects of the development of a software family:
domain analysis, domain implementation, requirements analysis,
and product derivation.

Language product lines. The idea of applying SPL concepts to
the creation of language families has gained popularity among
researchers and practitioners (Ghosh, 2011; Kühn et al., 2014;
Cazzola and Poletti, 2010), thus introducing language product lines
(LPLs) (Vacchi et al., 2013; Kühn et al., 2015). This approach
may prove useful to the creation of both variants of the same
DSL (Crane and Dingel, 2005; Tratt, 2008; Vacchi et al., 2014) and
dialects of a GPL (Cazzola and Olivares, 2016).

3.4. The Neverlang ecosystem

Overview. In this section we will introduce the Neverlang ecosys-
tem to discuss how it can be used to develop programming
languages (Section 3.4) and their evolution (Section 4.1). As a
running example, we will use LogLang. LogLang (Cazzola and
Poletti, 2010) is a simple DSL that describes tasks for a log rotating
tool similar to the Unix logrotate utility with a modular Neverlang
mplementation. Listing 1 shows part of this implementation,
ncluding the syntax and semantics of the backup utility and any
ode necessary to compose this utility into a complete language
pecification. The Neverlang language workbench can be viewed
s a collection of constructs that are used to develop different
spects of language compilers and their ecosystems. Listing 1
hows several of the Neverlang constructs grouped by color. Each
arker between ❶ and ❾ represents a different construct. Each
olor represents a different concern with regards to the modeling
f programming languages and their ecosystems:

1. green (frame ❷)—modeling syntax concern;
2. purple (frames ❹, ❻, ❾)—modeling semantics concern;
3. black (frames ❺, ❼, ❽)—modeling composition concern;
4. red (frame ❸)—modeling IDE concern;
5. blue (frame ❶)—modeling feature variability concern.

In this example we show only a portion of a language implemen-
tation. This section serves as an introduction to the Neverlang
anguage workbench. Please refer to Vacchi and Cazzola (2015)
or a full overview.

F. Bertolotti, W. Cazzola and L. Favalli The Journal of Systems & Software 202 (2023) 111704
Listing 1: Language modeling concerns of the LogLang imple-
mentation in Neverlang.

Modeling syntax. The reference syntax section (Listing 1-frame
❷) is used to model the syntax of programming language features.
Neverlang is based on attribute grammars and the reference
syntax provides a hook to which semantic actions are bound.
The productions defined in a reference syntax usually become
part of the grammar of the final language and the semantic
actions in the same module are used only when the specific nodes
generated as a result of those productions are encountered in the
AST. Nonterminals are numbered from left to right, from top to
bottom starting from 0 and can be referenced with the $ operator.
Therefore Listing 1 shows two productions and 5 nonterminals:
$0 refers to the Backup nonterminal, $1 and $2 are the two
String nonterminals, $3 refers to Cmd and $4 refers to the second
Backup nonterminal.

Modeling semantics. The role construct (Listing 1-frame ❹) can
bind semantic actions (lines 21–25) to nonterminals in the pro-
ductions, referenced with the $ notation. The semantic action
for the current compilation phase is performed when the cor-
responding production from the reference syntax is recognized
in the AST. Semantic actions are implemented in Java by de-
fault, but Scala, Kotlin and Ruby are also supported. Semantic
5

action execution is optional and can be prevented through ar-
bitrary guards, following the restraint semantic dispatch (RSD)
model (Cazzola and Shaqiri, 2016). Semantic actions can access
or provide attributes to the grammar using the syntax directed
translation technique (Aho et al., 2006). The order in which the
roles – and thus the semantic actions – are executed is declared
by the roles clause of a language unit (Listing 1-frame ❾). A
role included in a slice can be adapted to a syntax different to the
originally intended one by appending a mapping (Listing 1-frame
❻) directing to the role inclusion.

Modeling composition. In SPL engineering a software product is
the result of three steps: (i) requirements analysis, (ii) features
selection, and (iii) product derivation. The result of step (ii) is
usually called configuration whereas step (iii) takes a configu-
ration and feeds it to a program called composer to generate a
product. Neverlang is no different: each product is the result of
the execution of the AiDE (Vacchi et al., 2013, 2014; Cazzola and
Favalli, 2022) composer on a valid configuration. Slices combine
syntactic and semantic aspects of modules from the FM into a
concrete language feature (Listing 1-frame ❺). Bundles collect
several slices (Listing 1-frame ❼). Finally, languages are the re-
sult of the composition of several slices and/or bundles into a
complete and executable language specification (Listing 1-frame
❽).

Modeling development environments. The IDE modeling capabili-
ties of Neverlangwere first introduced in Kühn et al. (2019). Mod-
ules piggyback IDE service specifications through the categories,
in-buckets and out-buckets constructs (Listing 1-frame ❸).
Categories are based on the reference syntax and model the
syntax highlighter for a language. Similarly, buckets model the
auto-completion aspect of an editor by feeding and retrieving
tokens from a named pool. Semantic services are instead inte-
grated with the semantic actions block that can be used to model
the execution steps of a debugger. Both syntactic and semantic
services are fully LPL-driven: given the modular nature of Nev-
erlang, the actual implementation of an IDE arises when models
are composed into a language specification. In this context, for
each language variant of the LPL, a different IDE variant can be
generated.

3.5. Terminology

Production. Following the definition of Aho et al. (2006), a pro-
duction is a pair (H, B) where H is a nonterminal and B is a
sequence of terminals and/or nonterminals. Productions are usu-
ally expressed as elements of an BNF grammar. For example:

Addition ^ Term "+" Term;

Action. An action is a function f : A × C → C where A is the
set of all possible ASTs and C is the set of evaluation contexts.
The evaluation context refers to the program state in which the
action is executed. It includes the type and value of local and
global variables, as well as the scope and any return values. For
example, the following, is an action in Neverlang that performs
the sum between two terms.
$0.value = $1.value + $2.value;

The parameters and return values are made implicit. Language
workbenches implement actions in several different ways such
as Neverlang’s semantic actions, Spoofax strategies and MPS
behaviors.

F. Bertolotti, W. Cazzola and L. Favalli The Journal of Systems & Software 202 (2023) 111704

S
U
a
f

(
a
a

a
a
f
b
e

i
i
E

n
g

d
w

t

l
t
t
s

n
a
t

yntactic asset. A syntactic asset is a collection of productions.
sually a syntactic asset is a subset of the BNF grammar for
language representing a language construct. For example, the

ollowing is a syntactic asset representing a non-empty list.

List ^ "[" Seq "]";

Seq ^ Seq "," Elem;

Seq ^ Elem;

Semantic asset. A semantic asset is a collection of actions. Usually,
a semantic asset can be implemented as a visitor4 Gamma et al.
1995) for an AST and represents the semantics for a syntactic
sset. For example, the following is a semantic asset implemented
s a Scala visitor that populates a non-empty list.

0 <scala> .{ $0.list = $1. list }.

2 <scala> .{ $2.list = $3.list :+ $4.elem }.

5 <scala> .{ $5.list = List($6.elem) }.

Language feature. A language feature (Vacchi and Cazzola, 2015;
Cazzola et al., 2018) is a pair (φ,ψ) where φ is a syntactic
sset and ψ is a semantic asset. A language feature represents
language construct together with its behavior. For example, the
ollowing is a language feature for non-empty lists implemented
y composing the syntactic and semantic assets from the previous
xamples.

slice List {

concrete syntax from ListSyntax

module ListEval with role evaluation

}

Sub-language. A sub-language (Cazzola et al., 2018) is a collection
of language features. The notion of sub-languages usually refers
to a specific concern of a host language such as numerical expres-
sions or variable definition. A sub-language relies on the presence
of other sub-languages to be usable. For example, the following
is a sub-language dealing with the concern of variable definition
and their assignment.

bundle VariablesConcern {

slices

Identifiers

VariableStatement

AssignmentOperators

AssignmentExpression

}

Language. A language is a collection of sub-languages. A language
s represented in terms of its syntax (the entire grammar) and
ts semantics. For example, the following is a snippet of the
CMAScript language definition.

language EcmaScript {

slices

bundle (CoreConcern)

bundle (BasicMathConcern)

bundle (VariablesConcern)

/*...*/

roles syntax <+ debug <+ evaluation

}

In this example, the VariablesConcern sub-language, defi-
ed earlier, is completed by composing it with other sub-langua-
es. In this case composing CoreConcern, BasicMathConcern,

4 Visitors define the semantics to be performed on the elements of an AST
ata structure. Visitors visit each node and execute all the associated actions
ithout changing the implementation of the nodes themselves.
6

and etc. results in ECMAScript. However, different compositions
result in different languages (look at Cazzola and Olivares (2016)
for details).

4. Modeling reuse

While the taxonomy proposed by Erdweg et al. mainly focuses
on the composition between entire languages or between a lan-
guage and a language extension, both yielding a new language,
smaller linguistic components can also be composed to allow
for additional reuse opportunities. In fact, language workbenches
can support composition mechanisms in which neither of the
composed elements nor the final result are a complete language
or even a language extension. For example, the action performing
the addition could be composed with the action performing the
type checking, yielding an action that performs both. Erdweg
et al. addressed the problem of growing a language modularly
via the extension unification mechanism (Erdweg et al., 2012) in
which two independent extensions can be composed and used
together by using some glue code. However, modular growth of
programming languages may benefit from reusing linguistic com-
ponents beyond language extensions, in favor of a more granular
composition mechanism.

Consider the previously discussed linguistic components: ac-
tions, syntactic assets, semantic assets, language features, sub-
languages, and languages. Each of these components represents
a viable level of reusability, even though the result of the com-
position cannot be considered a language extension since it is
not complex enough to be directly used in a complete language.
Recall the above example: the composition of two actions reuses
small components to yield a new action that is not a complete
language extension, since it lacks any syntax. Conversely, reuse
is limited to potentially very large components when it can be
performed on languages and language extensions only: in this
case, fine-grained reuse must resort to clone-and-own.

To fill this gap, in this section we discuss some examples of
composition mechanisms that operate at each level of granularity.
Then, we will showcase how the Neverlang language workbench
can benefit from introducing initially unsupported composition
mechanisms and answer RQ1 based on this discussion.

4.1. Workbench agnostic linguistic reuse

Sub-languages composition. Given {Ł1, . . . , Łn} a set of sub-
languages taken from a set of base languages, a language work-
bench supports sub-languages composition if we can create a
language L by joining any subset of {Ł1, . . . , Łn} without changes
o any Łi.

Neverlang supports sub-languages composition through the
anguage compilation unit (Listing 1-frame ❽). For example,
he following shows an extended version of ECMAScript with
he NumSeparators sub-language which implements numeric
eparators.5

language EcmaScriptExtended {

slices

bundle (EcmaScriptCore)

bundle (NumSeparators) //From another language

roles syntax <+ debug <+ evaluation

}

5 Numeric separators are a language feature that improves the readability of
umbers with many digits. For example, 10000 can be written in ECMAScript
s 10_000 where the _ separators can be placed only to group the digits per
housand.

F. Bertolotti, W. Cazzola and L. Favalli The Journal of Systems & Software 202 (2023) 111704

L
{

c
s

b
f
t
I

φ

a
b

t
f

s
t
a
s
m
u
r

S
ψ

w
a

s
F
p
D
S
b
a

A
l
a
o

a
c

d
d
a
d
u
I
d

t
r
p
e
$
t

anguage feature composition. given a set of language features
l1, . . . , ln}, a language workbench supports language feature
omposition if we can create a sub-language Ł by joining any
ubset of {l1, . . . , ln} without changes to any li.

Neverlang supports language feature composition through the
undle compilation unit (Listing 1-frame ❼). For example, the
ollowing shows the NumSeparators sub-language created by
he composition of the language features FloatSeparators and
ntegerSeparators.

bundle NumSeparators {

slices

FloatSeparators

IntegerSeparators

rename {

Double _ NumericLiteral;

Integer _ NumericLiteral;

}

}

The rename compilation unit is used to solve any syntactic
incompatibility issues among the composed language features by
redefining any nonterminals in the sub-languages grammar.

Syntactic and semantic assets composition. Given a syntactic asset
and a semantic asset ψ , a language workbench supports syntax
nd semantics composition if we can create a language feature l
y composing φ and ψ .
Neverlang supports syntax and semantics composition through

he slice compilation unit (Listing 1-frame ❺). For example, the
ollowing composes the DoubleSyntax syntactic asset with the
evaluation semantic asset from the DoubleEvaluation module.

slice FloatSeparators {

concrete syntax from DoubleSyntax

module DoubleEvaluation with role evaluation

module Separators with role desugar

}

Neverlang requires syntax and semantics assets to refer the
ame number of productions, each with the same number of non-
erminals. The main limitation of this approach is that semantic
ssets can be difficult to reuse outside of their original intended
yntax. However, the composition can be accommodated using
appings: the mapping compilation unit (Listing 1-❻) can be
sed to reorder the nonterminals for a specific semantic asset if
equired to match the given syntactic asset.

emantic assets composition. Given two semantic assets ψ1 and
2 a language workbench supports semantic asset composition if
e can create a visitor ψ3 by chaining the semantics of both ψ1
nd ψ2.
Neverlang supports semantic asset composition through the

lice compilation unit (Listing 1-frame ❺). For example, the
loatSeparators slice – from the previous example – com-
oses the evaluation semantic asset from the module
oubleEvaluation with the desugar semantic asset from the
eparators module. Notice that the slice compilation unit can
e used to perform both Semantic asset composition and Syntax
sset composition.

ction composition. Given a set of actions F = {f1, . . . , fn}, a
anguage workbench supports action composition if we can create
semantic asset by chaining any number of actions from F , in any
rder and with any number of repetitions.
An example of action composition mechanism is desugaring:

ny AST sub-tree can be converted to a different sub-tree to
ompose existing semantic actions. Neverlang does not support
7

esugaring nor any other form of action composition, although
esugaring is supported by other language workbenches such
s Rascal. However, Neverlang could be extended to support
esugaring as follows: the desugar role of the Separators mod-
le performs a tree rewriting that swaps the $0 node of the
ntegerSyntax module with a node created by taking the pro-
uction in position 0 of the Literal reference syntax.

module Separators {

reference syntax from DoubleSyntax

role(desugar) {

0 <desugar> .{

Literal[0]($0.value)

}.

}

}

This way, all the actions defined for the Literal syntax can
be reused.

Action extension. Given an action f, a language workbench sup-
ports action extension if we can create an action f ′ by extending
the semantics of f and without changes to f itself.

An example of action extension is overriding: the semantics
of an existing implementation are composed with new semantics
from a subclass. For instance, MPS behaviors can override other
existing behaviors. Neverlang does not support action extension
through overriding nor any other construct. However, we can
extend Neverlang with a semantic delegation operator (▶). In
he following example, the semantic action in position $0 of
ole evaluation from module Separators is implemented by
erforming the semantic action in position $0 of role terminal-
valuation from module DoubleEvaluation, then translating the
0.value grammar attribute into a representation accepted by
he ECMAScript interpreter (line 6).

module Separators {

reference syntax from DoubleSyntax

role(evaluation) {

0 @{

DoubleEvaluation▶terminal-evaluation[0];

$0.value = new JSNumber((Double)$0.value);

}.

}

}

The discussed composition mechanisms extends the Erdweg
taxonomy by introducing dedicated types of compositions for
different components of languages.

4.2. Linguistic reuse in Neverlang

In the previous section we discussed the composition mech-
anisms provided by Neverlang. These mechanisms were part of
previous works (Vacchi and Cazzola, 2015), thus we will not
discuss them in detail. However, Neverlang lacks constructs to
support action composition and action extension. In this work, we
complemented the Neverlang reuse capabilities by adding explicit
constructs to support action composition and action extension,
so that Neverlang can perform reuse at all levels of granularity.
In this section, we discuss how these constructs fit the classes of
our taxonomy.

Desugaring. Desugaring is an instance of action composition. It
can be seen as a tree rewriting technique and is well-known in
the literature (Krishnamurthi, 2015; Lorenzen and Erdweg, 2016;
Erdweg et al., 2011). Intuitively, desugaring is a technique to
strip any syntactic sugar from a language to ease the compilation

F. Bertolotti, W. Cazzola and L. Favalli The Journal of Systems & Software 202 (2023) 111704

i
m
i

t
s

Fig. 2. The central panel shows the AST relative to the JavaScript expression x ||= (true && false). The ASTs yield the same final evaluation context when
executed in the same initial evaluation context. Replacing either one with the others in a program will not affect the results. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
-

and simplify the compiler back-end. This is done by replacing an
AST node with a sub-tree equivalent made of simpler language
features. Desugaring is a novel introduction in Neverlang and
has the advantage – compared to other language workbenches
– of not being tied to any ADTs. This means that: (i) mapping
a semantic action to a new type of node does not require any
glue code and (ii) any child of an AST node can be swapped with
any other sub-tree with no restrictions. These advantages should
provide more flexibility with regards to opportunistic reuse when
extending programming languages with new constructs.

Let us now take up the example introduced in Section 2
(Fig. 1). To leverage any reuse opportunity toward the develop-
ment of the new language feature, we must first notice that any
expression using the ||= operator can be rewritten by desug-
aring into a combination of two pre-existing features from the
JavaScript LPL. For instance, take the following expression into
account:

x ||= (true && false)

In all the following examples we will assume that x is assigned
to true in the initial evaluation context. There are a few pos-
sible AST transformations that yield the same final evaluation
context—i.e., both the expression and the x variable evaluate to
true:

1. using the JSTernaryExpression and the JSAssignExpres
sion language features6

x = x ? x : true && false

2. using the JSOrExpression and JSAssignExpression lan-
guage features

x = x || (true && false)

Fig. 2 shows the original expression (central panel) and both
transformations (left and right panel) as well as their respective
ASTs. Henceforth, we will stick to the second option even if the
two transformations are semantically equivalent.7

In Neverlang version 2.1.2 – the version prior to the one
presented in this work – none of the constructs reported in
Section 3.4 could solve the code duplication nor the evolution
problems introduced in Section 2 thus Neverlang 2.1.2 does

6 Notice that the left-hand side of the ||= assignment allows only for
dentifiers. Therefore, rewriting the AST so that the left-hand side is evaluated
ore than once cannot cause side effects. This is generally not true for languages

n which the left-hand side of an assignment can cause side effects.
7 Here, equivalence means that the evaluation of both ASTs (or their respec-

ive source code) yields the same final evaluation context when executed in the
ame initial evaluation context.
8

1 module OrAssignment {

2 reference syntax {

3 AssignExpr ^ LeftExpr "||=" AssignExpr;

4 }

5 role(tree-rewrite) {

6 0 <desugar> .{

7 JSAssignExpression[1] (

8 $1,

9 JSOrExpression[1] ($1, $2)

10)

11 }.

12 }

13 }

Listing 2: ||= operator semantics implemented via desugaring.

not support action composition. The ability to optimize ASTs
by rewriting for better performance is well-known (Würthinger
et al., 2012). Initially, Cazzola and Shaqiri (2016) presented a
dynamic tree rewriting-based technique to optimize the Never-
lang RSD mechanism for multiple semantic actions. The proposed
API included primitives to swap AST nodes, prune sub-trees and
define new semantic actions. However the applicability of the
same technique to perform reuse of linguistic components was
not explored, nor was there a Neverlang construct that natively
supported desugaring. Thus, we introduced action composition
capabilities in Neverlang 2.2.0 through a dedicated desugar DSL.
Listing 2 shows how it can be used to describe the ||= operator
in terms of the = and || operators by rewriting the AST in
a new tree-rewrite role. Once the AST is rewritten, the change
will be permanent and the composed actions will be used on
the modified AST fragment. Clone-and-own solutions should no
more be needed: any changes made to the JSAssignExpression
and/or JSOrExpression features and their actions will propagate
to the OrAssignment feature. Moreover the desugaring affects
any subsequent tree traversal, thus the action composition is
propagated to all roles defined on the JSOrExpression and
JSAssignExpression features. This includes roles that may be
implemented in the future. For example one might want to log all
Boolean expressions to spot places in which the execution path
diverges. Adding a logging role to the JSOrExpression feature
will cause the logging to be performed on the ||= operator too.
It should be noted that chances of performing static analysis
are also severely limited, both on the validity of the translation
and on the soundness of the attribute grammar: the substitute
AST is stored in the Neverlang run-time whereas any link to
the original AST is compromised, which may be problematic for
IDE features such as debugging and refactoring. For example,
desugaring may compromise information about breakpoints as

F. Bertolotti, W. Cazzola and L. Favalli The Journal of Systems & Software 202 (2023) 111704

a

t

d
a
t
H

Fig. 3. ➀ and ➁ show two possible evaluation contexts (EC) for ECMAScript 6. ➂ shows the AST of an assignment. ➃ shows the behavior of the E6Assignement
ction. E6Assignement controls that the assigned variable is non-constant and performs the assignment. E6Assignement delegates parts of its behavior to a previous

version of ECMAScript—E5Assignement (➈). ➄ shows the final EC given the initial EC shown in ➀: An exception is raised since x was declared constant. ➅ shows
he final EC given the initial EC shown in ➁: the value 7 is correctly assigned to the variable x. ➆ shows an initial EC for ECMAScript 5. ➇ shows the AST of an
assignment. ➈ shows the behavior of the action E5Assignement. Finally, ➉ shows the final EC given the initial EC shows in ➆.
1 module ConstAssign {

2 reference syntax {

3 AssignExpr ^ LeftExpr "=" AssignExpr;

4 }

5 role (evaluation) {

6 0 .{

7 eval $1

8 JSReference lref = $1.value;

9 if(isConstant(lref.getName()))

10 throw new ConstantException();

11 else

12 assign▶evaluation[2];

13 }.

14 }

15 }

Listing 3: Implementation of constant-aware assignment in
Neverlang. If the considered reference is not a constant, the
evaluation is delegated to the standard assignment.

the AST sub-tree is swapped with another unless specific pre-
cautions are taken (Lindeman et al., 2011). In exchange, each
time desugaring is performed, we can assume the (bidirectional)
semantic equivalence between two ASTs: any source code using
the old features can be automatically migrated to the new syntax
and back without changing the semantics. This can be useful
in the scope of language evolution because it helps with the
migration of old pieces of software to new language versions.

Delegation. In our taxonomy, the finest level of granularity of
linguistic reuse is action extension, because any action can also be
viewed as an extension of the empty action. From this perspec-
tive, action extension is more versatile then overriding because
the latter is limited to extension of actions of a specific type.
One possible way to implement action extension is by taking
an existing action and extending it with new functionalities. In
this work, we extended Neverlang to achieve this result through
elegation. In practice, one can extend and/or combine multiple
ctions into a new one by delegating the evaluation to said ac-
ions. Neverlang delegation fits the definition of action extension.
owever, due to the finer granularity, the win in productivity
9

is more limited than other composition mechanisms (Xu et al.,
2011; Maga et al., 2011). Consider that in Neverlang, delegation
can be thought as an instance of action composition as well: it
can be used to combine multiple actions into one. For example, in
Fig. 3, one could have delegated exception throwing to an existing
action. However, as we will see, each of the two mechanisms
(desugaring and delegation) has advantages over the other.

Let us consider a simple example one may encounter in lan-
guage development—illustrated in Fig. 3 and implemented in
Listing 3: the introduction of constants in ECMAScript 6 in 2015.
The assignment operator for ECMAScript 6 must take into ac-
count the existence of constants to prevent any constant to be
re-assigned. However we want to avoid code duplication since
variable assignment already exists in the language. To leverage
this reuse opportunity, this new feature can be implemented
with a simple check on the execution environment (Fig. 3-➃ and
line 9 of Listing 3), then delegate to the pre-existing assignment
semantics if the reference is not a constant (line 12). Otherwise,
an exception must be thrown (line 10). Yet, it is impossible to
implement this feature using desugaring—because accessing the
execution environment is impossible in ECMAScript 6. Therefore,
we need a different mechanism to address this extension without
neglecting the opportunity for reuse.

With delegation, we can execute an existing action that was
defined elsewhere, on the current node and evaluation context.
Following the example in Fig. 3, we can create a new action that
(i) checks the execution environment; and (ii) reuses the existing
variable declaration action. The new feature is extended naturally
from the existing one. As the features evolve, the changes are
naturally propagated throughout the whole language.

Clone-and-own. To leverage opportunistic reuse, one can con-
sider a third strategy: clone-and-own. Clone-and-own consists
of copying and pasting snippets of code to reuse their content.
It is a simple and efficient technique. It can perform both ac-
tion composition and action extension. Moreover, it requires no
modification to the Neverlang workbench to be performed. Yet,
it has several disadvantages with regards to code maintainability
and readability (Rubin et al., 2013). Fig. 1 shows an example
of clone-and-own other features. To implement the new lan-
guage feature OrAssignment, snippets from JSOrExpression
and JSAssignExpression are copied, introducing several in-
stances of code duplication. We can consider the clone-and-

own approach as a simple baseline against which desugaring

F. Bertolotti, W. Cazzola and L. Favalli The Journal of Systems & Software 202 (2023) 111704

l
s
p
n
w
c
t

i
b
c
r
T
a

o
l

o
a
l
(
o
t

T
e

Table 2
Comparison between extension strategies: clone-and-own (C&O), desugaring
(DS) and delegation (DG).

Reuse property C&O DS DG

Action extension ✓ ✗ ✓

Action composition ✓ ✓ ✓

Removes code duplication ✗ ✓ ✓

Changes are automatically propagated ✗ ✓ ✓

Automatic code migration ✗ ✓ ✗

Tool-assisted code migration ✗ ✓ ✓

Attribute grammar can be checked statically ✓ ✗ ✓

Affects subsequent compilation phases ✗ ✓ ✗

Preserves link between AST and source code ✓ ✗ ✓

Can perform AST optimizations ✗ ✓ ✗

Explicit semantic feature dependency ✗ ✗ ✓

Fine grained semantic variability ✓ ✗ ✓

Natively supported in Neverlang ✓ ✓ ✗

Language implementation independent ✗ ✗ ✓

Reference syntax independent ✗ ✓ ✗

Always applicable ✗ ✗ ✗

No additional manipulation required ✗ ✗ ✗

and delegation can be compared to determine if explicit reuse
mechanisms bring any improvements.

Comparison. Let us discuss the differences among desugaring,
delegation, and clone-and-own, whose strengths and weaknesses
are summarized in Table 2. Clone-and-own can always perform
both action extension and action composition—given the original
source code is available. Delegation can also perform both action
extension and composition. Meanwhile, Desugaring cannot be
used to perform action extension. Consider the example shown
in Fig. 3, checking whether x is a variable or a constant requires
direct access to the symbol table, a feature which is usually
not natively supported in programming languages. Despite this
disadvantage desugaring is the most natural way to define new
language features. Being based on the semantic equivalence be-
tween ASTs, desugaring enables the automatic translation from
one AST to another and vice versa. However, it should be noted
that performing desugaring at run-time breaks the link between
the original AST and the substitute one, which may be problem-
atic for IDE services such as refactoring and debugging. Instead,
delegation and clone-and-own can introduce arbitrary changes to
the semantic actions, therefore semantic equivalence cannot be
guaranteed: code migration can only be tool-assisted, for instance
in a dedicated source editor. Desugaring is dynamic and requires
an additional preprocessing tree traversal to substitute the AST.
Desugaring can be used to perform optimizations on the AST and
has the advantage of automatic propagation to all subsequent
roles. Delegation and clone-and-own must be implemented on a
per-semantic action basis. The trade-off is the reduced capability
to perform static analysis. This includes the soundness of the
attribute grammar and feature dependencies. Moreover, Never-
ang relies on a cache to optimize the access to AST sub-trees in
emantic actions, but this cache is invalidated by the delegation
rocess. In exchange, we obtain a language-independent mecha-
ism that enables fine-grained variability in LPLs. Given two LPLs
ith the same number of features, the number of valid language
onfigurations should be increased in the LPL that applies this
echnique.

On a surface level, there is no clear winner between desugar-
ng and delegation: both approaches solve the problems caused
y clone-and-own but – as we will show in Section 5 – neither
an be applied to all use cases. Moreover, both approaches may
equire additional manipulation of the AST to be effectively used.
herefore, the usage of either techniques should be considered on

case-by-case basis.

10
4.3. Language composition taxonomy

We can now answer RQ1.
What are the levels of granularity needed to support reuse

f software artifacts in the implementation of programming
anguages?

We identified six levels of granularity in the implementation
f programming languages, then we defined composition mech-
nisms for each language component. Together with the four
anguage composition mechanisms presented in Erdweg et al.
2012), developers can adopt a wide range of mechanism to foster
pportunistic reuse at all levels of granularity. Sorted from coarse
o fine grained, those composition mechanisms are:

1. language unification
2. language extension;
3. self-extension;
4. extension composition;
5. sub-language composition;
6. language feature composition;
7. syntax and semantics composition;
8. semantic asset composition;
9. action composition;

10. action extension.

he linguistic reuse capabilities of language workbenches can be
valuated against this framework. For instance, Neverlang was

found to provide constructs to perform linguistic reuse only for
points 1 to 8 prior to this research, whereas point 9 and 10
were introduced as a part of this work. Similarly, other language
workbenches could be evaluated against the same framework to
estimate their ability to support reuse of linguistic components.
For a language workbench to support linguistic reuse at all levels
of granularity, it means for it to provide explicit constructs for all
ten points.

5. Evaluation

Overview. In the previous section, we focused on reuse mecha-
nisms that can be used to achieve action composition and action
extension: desugaring, delegation, and clone-and-own. Here, we
evaluate these mechanisms with real-world use cases. We com-
pare the quality of the produced source code with regards to
several metrics. The goal of this evaluation is to answer RQ2,
which involves both qualitative and quantitative aspects. From
a qualitative standpoint, we want to investigate which kind of
features can be implemented with reuse as a unique concern.
From a quantitative standpoint, we want to measure the effort of
applying reuse strategies when modeling the evolution of LPLs.

We collected several features introduced in ECMAScript 3
or later. We implemented (whenever possible) each feature us-
ing clone-and-own, delegation, and desugaring approaches. The
clone-and-own represents an implementation made from scratch
which does not reuse any other language features neither se-
mantic nor syntactic. To keep the implementations consistent
and to avoid bias, clone-and-own implementations are generated.
The generation process takes the delegation (or the desugar-
ing) implementation and substitutes the reference to the reused
semantics with referenced source code.

We only evaluate desugaring and delegation with regards
to clone-and-own baseline as they are a novel introduction in
Neverlang.

Data setup. Starting from a base ECMAScript 3 implementation
written in Neverlang (Cazzola and Olivares, 2016), we manually
examined the changelogs of ECMAScript since 2015. From the
changelogs, we extracted a set of 10 language features to be used
as a demonstration case study. Each considered feature (Table 3)

should have the following characteristics:

F. Bertolotti, W. Cazzola and L. Favalli The Journal of Systems & Software 202 (2023) 111704

d
(
m
t
c
t

n
t
e
t
w
t

M
h
m
t
a

d
A
v
i
d

a
#
i
m
a
I
c
C
a
i
l
o
t
w
0
d
m
a

Table 3
ECMAScript features selected for the evaluation. On the last column, the existing
language features that were reused to implement the new ones.

Feature Year Uses
JSFunctionExpression

ArrowFunction 2015
JSReturnStatement

Const 2015 JSVariableStatement

CheckAssignExpression 2015 JSAssignExpression

OptionalCatchBinding 2019 JSTryCatch

JSOrExpression
OrAssignment 2021

JSAssignExpression

JSAndExpression
AndAssignment 2021

JSAssignExpression

NullishCoalescing
NullishCoalescingAssignment 2021

JSAssignExpression

IntegerSyntax
IntegerSeparators 2021

DoubleEvaluation

DoubleSyntax
NumericSeparators 2021

DoubleEvaluation

NullishCoalescing 2021 JSOrExpression

– it must have been introduced in 2015 or later;
– it must not be an extension to the API;
– it must not require changes to the original implementation

of ECMAScript 3 (from Cazzola and Olivares, 2016);
– it must be overlapping with existing features;
– it must be a composition of the existing features of EC-

MAScript 3 or with other considered features.

Original implementation cannot be changed to adhere to the
efinition of language development system in Erdweg et al.
2012), Leduc et al. (2020). Changing the original implementation
ight enable additional opportunities for reuse, but we measure

he benefits of introducing reused strategies to a project which
omponents are not designed to be reused. Of course, designing
he entire project around reuse can bring further benefits.

With the last two points we would like to stress that we are
ot measuring the design overhead of detecting reuse oppor-
unities in the development of programming languages nor the
ffort of refactoring a project to improve reusability. We focus on
he implementation aspects of semantic reuse in a situation in
hich the opportunity for reuse was already highlighted during
he design phase instead.

etrics. Over the years, the software engineering community
as proposed several source code metrics with the purpose of
easuring several aspects of the source code qualities. To inves-

igate the considered approaches – clone-and-own, desugaring,
nd delegation – we adopt the following metrics:

– Lines of Code (LoC): LoC measures the size of modules by
counting the number of lines in the source code. LoC gives
a quick estimate of the module complexity. The lower the
better. Ideal value: 1.

– The number of roles (#Roles): #Roles measures the number
of roles implemented in a module. It is the number of
separate AST traversal required. The lower the better. Ideal
value: 1.

– The number of semantic actions (#SA): #SA measures the
number of semantic actions required to implement a fea-
ture. It measures the complexity of a feature. The lower the
better. Ideal value: 1.

– Lack of cohesion in actions (LCOA): LCOA is the number of
pairs of actions in the module that do not reference any

attributes in common on the same nonterminal symbols. C

11
LCOA measures how many actions implemented in the
same module actually belong to the same module. The
lower the better. Ideal value: 0.

– Coupling between modules (CBM): A module is coupled
with another if actions in either module refer to attributes
which are also referred by the other module. CBM mea-
sures how many changes to a module affect the other
modules. The lower the better. Ideal value 0.

– Cyclomatic Complexity (CC): the number of execution
paths. CC measures the complexity of a code snippet. The
lower the better. Ideal value 1.

– Maintainability Index (MI): MI measures how easy is to
support new changes and it is measured as in Cazzola and
Favalli (2022). The higher the better. MI<65 is considered
difficult to maintain. 65≤MI≤85 is considered moder-
ately difficult to maintain. MI>85 is considered highly
maintainable.

– Cognitive Complexity (CoCo): CoCo is a measure of un-
derstandability of the code. It is high when the branching
factor of a program is high (the lower the better).

For a full overview of these metrics, please refer to Cazzola and
Favalli (2022) and Campbell (2018), Lavazza et al. (2023) for the
cognitive complexity.

5.1. Results

In Table 4, we show our measurements on all subject language
features. When applicable, we show the total and the average ag-
gregated results for each measurement. Clone-and-own features
are implemented in 46.56LoC on average (419LoC total) against
the 23.11LoC on average (208LoC total) of delegation features and
24.63 LoC on average (197 LoC total) of desugaring. The average
reuse percentage is 43.37%for delegation features and 39.51% for
desugaring features. The reuse percentage goes up to 74.46% for
delegation and to 47.58% for desugaring if only semantic actions
are considered. There are only two exceptions to this trend:
IntegerSeparators and NumericSeparators for the desug-
aring in which reuse of semantic actions was -20.00% in both
cases. This is caused by the fact that both IntegerSeparators
and NumericSeparators have small semantic actions and the
esugaring approach has a fixed cost (in terms of LoC) due to
PI calls. The same fixed cost is highlighted by the fact that the
ariance per semantic action is smaller (0.21LoC2) but the average
s higher (6.75LoC) for the desugaring approach compared to the
elegation strategy.
Both delegation and desugaring strategies are fairly maintain-

ble and achieve or get close to achieve the ideal value in #Roles,
SA, LCOA, CC, and CoCo. With respect to MI, in Table 4 features
n red are poorly maintainable, features in yellow are moderately
aintainable and features in green are highly maintainable. The
verage MI is 90.20 for delegation and 88.33 for desugaring.
nstead, the choice of the reuse strategy has limited effect on
oupling: all three strategies achieve similar results regarding the
BM (8.67 for delegation, 9.63 for desugaring and 10.67 for clone-
nd-own on average). In particular, the CBM for Assign features
s particularly high since they were created by composing at
east two other features; moreover all Assign features operate
n the same grammar fragment (that of expressions) and on
he same attribute (value). As a result, all of them are coupled
ith one another, for a total of 16 coupled modules. CoCo is
for all semantic actions implemented using a desugaring or a
elegation technique, since each of these actions can be imple-
ented by performing a call to the Neverlang API and adding
few statements. The only exception is the implementation of

heckAssignExpression based on delegation, whose semantic

F. Bertolotti, W. Cazzola and L. Favalli The Journal of Systems & Software 202 (2023) 111704

a
C
C
u
I
J
s

t
c

t
t

Table 4
Measurement results on the language features from Table 3.

Feature Reuse Strategy LoC (Neverlang) LoC (Java) Roles Actions LCOA CBM CC MI CoCo

Total %Reuse Total %Reuse

AndAssignment

Delegation 26 46.94% 3 88.46% 1 1 0 16 1 87.70 0
Desugaring 27 44.90% 5 80.77% 1 1 0 16 2 86.90 0
Clone-and-own 49 0.00% 26 0.00% 1 1 0 16 5 72.52 3

Delegation 26 45.83% 3 88.00% 1 1 0 16 1 87.70 0
Desugaring 27 43.75% 5 80.00% 1 1 0 16 2 86.90 0OrAssignment

Clone-and-own 48 0.00% 25 0.00% 1 1 0 16 5 71.76 3

Const

Delegation 16 15.79% 2 60.00% 1 1 0 1 1 95.87 0
Desugaring - - - - - - - - - - 0
Clone-and-own 19 0.00% 5 0.00% 1 1 0 1 1 88.46 0

Delegation 45 39.19% 12 70.00% 1 2 1 16 5 74.57 4
Desugaring - - - - - - - - - - –CheckAssignExpression

Clone-and-own 74 0.00% 40 0.00% 1 2 0 16 11 61.07 6

OptionalCatchBinding

Delegation 16 27.27% 2 77.78% 1 1 0 2 1 98.10 0
Desugaring 20 9.09% 5 44.44% 1 1 0 1 2 92.94 0
Clone-and-own 22 0.00% 9 0.00% 1 1 0 3 1 88.66 0

Delegation 24 25.00% 3 75.00% 1 3 3 2 3 88.54 0
Desugaring 24 25.00% 5 58.33% 1 1 0 3 1 89.16 0ArrowFunction

Clone-and-own 32 0.00% 12 0.00% 1 3 3 4 3 80.40 0

NullishCoalescing
Delegation - - - - - - - - - - 0
Desugaring 29 30.95% 5 72.22% 1 1 0 16 3 84.57 0
Clone-and-own 42 0.00% 18 0.00% 1 1 0 16 2 74.74 2

Delegation 23 57.41% 3 90.91% 1 1 0 16 1 90.02 0
Desugaring 24 55.56% 5 84.85% 1 1 0 16 2 88.88 0NullishCoalescingAssignment

Clone-and-own 54 0.00% 33 0.00% 1 1 0 16 5 67.76 3

IntegerSeparators

Delegation 12 63.64% 2 60.00% 1 1 0 5 1 101.50 0
Desugaring 15 54.55% 6 -20.00% 1 1 0 5 1 97.28 0
Clone-and-own 33 0.00% 5 0.00% 1 1 0 5 1 80.88 0

Delegation 20 69.23% 6 60.00% 1 3 0 4 3 87.79 0
Desugaring 31 52.31% 18 -20.00% 1 3 0 4 3 80.02 0NumericSeparators

Clone-and-own 65 0.00% 15 0.00% 1 3 0 4 3 64.33 0

Average
Delegation 23.11 43.37% 4.00 74.46% 1.00 1.56 0.44 8.67 1.89 90.20 0.40
Desugaring 24.63 39.51% 6.75 47.58% 1.00 1.25 0.00 9.63 2.00 88.33 0.00
Clone-and-own 46.56 0.00% 20.33 0.00% 1.00 1.56 0.33 10.67 4.00 73.57 1.70

Variance per semantic action
Delegation 58.87 0.04 0.50 0.08 0.10 0.00 0.13 54.25 0.00 904.58 1.60
Desugaring 42.30 0.03 0.21 0.17 0.06 0.00 0.00 52.87 0.50 509.52 0.00
Clone-and-own 217.69 0.00 115.11 0.00 0.09 0.00 0.10 47.39 4.29 671.26 4.23

Total
Delegation 208 – 36 – 9 14 – – – – –
Desugaring 197 – 54 – 8 10 – – – – –
Clone-and-own 419 – 183 – 9 14 – – – – –
2
a
M
t
w
c
s

actions need the usage of an additional try-catch blocks, bringing
the CoCo value to 4.

For most of the considered features, it was possible to apply
ll of the reuse strategies. The only exceptions are the Const,
heckAssignExpression and NullishCoalescing features.
onst and CheckAssignExpression cannot be modeled
sing desugaring since syntactic modifications do no suffice.
nstead, they extend the original JSVariableStatement and
SAssignExpression with a new endemic slice in which con-
tants are stored. The NullishCoalescing feature cannot be
modeled using delegation due to incompatibility of its reference
syntax with the reused assets. In fact, the ?? operator cannot be
mapped to any other feature and is instead rewritten as

a ?? b → (a == undefined || a == null) ? b : a

5.2. Composition mechanisms evaluation framework

We can now answer RQ2.
How can a composition operator that performs linguis-

ic reuse in Neverlang be evaluated with respect to its reuse
apabilities?
To be considered viable with respect to its reuse capabilities,

he composition operator should bring an improvement over
he clone-and-own approach, which we consider as a baseline,
12
since it is applicable without any explicit language construct.
We can measure the improvement in terms of software metrics
measuring the development effort and the design quality of the
final product. For example, a good composition construct should
reduce the LoC and increase the MI on average. Please note that
this evaluation is limited to Neverlang and may not be applicable
to other language workbenches. For instance, linguistic compo-
nents developed by means of different language workbenches
may need to be evaluated against different quality metrics.

5.3. Threats to validity

Internal validity. There might be computational bias with regards
to our measurements: we developed both delegation features and
desugaring features. To mitigate this issue, we explicitly used the
original implementation of ECMAScript 3 (Cazzola and Olivares,
016) that was developed by a different group.8 This choice
voids an artificial increase in the number of reuse opportunities.
oreover, all clone-and-own features are generated. We substi-

ute the call to the semantic action of the delegation feature
ith its source code. This choice keeps both implementations
onsistent with each other. Real-world implementations of the
ame features from scratch might provide better optimizations.

8 Only one of the authors is co-author of both.

F. Bertolotti, W. Cazzola and L. Favalli The Journal of Systems & Software 202 (2023) 111704

H
o
c

n
o
s

owever, it should be considered that doing so would negate any
pportunity of reuse during the language evolution, because even
lone-and-own is excluded.
The language features selection process was not automated

or complete. There may be other ECMAScript features that met
ur eligibility requirements. To mitigate this issue, we selected
everal ECMAScript features from the changelog of the language
specification since 2015. As a consequence, we can be fairly
certain that our conclusions are valid.

External validity. Our research might not be generalizable to
other language evolution scenarios and other language work-
benches. To mitigate this aspect we implemented evolution
through mechanisms that should be shared among most language
workbenches: desugaring is a known technique in the literature
and delegation can be similarly achieved with additional glue
code in any language workbench that supports attribute gram-
mars. Desugaring, in particular, is supported out-of-the-box by
most language workbenches—despite with varying degrees of
flexibility. Our evaluation uses metrics that are specific to Nev-
erlang, such as #Roles and #SA. This was mitigated by measuring
metrics from the literature, such as CC and MI and evaluating
their ideal values based on empirical research made by third
parties.

6. Related work

Most of our work is framed and focuses on the Neverlang
language workbench. At the same time, several other language
workbenches could benefit from exposing the reuse mechanism
of all levels of granularity—discussed in Section 4. Notice that,
to the best of our knowledge, popular language workbenches do
expose reuse mechanisms, but rarely do so at all levels of gran-
ularity. For instance, MPS (Völter and Pech, 2012) lacks multiple
inheritances between concepts. This prevents reuse at the action
composition level of granularity. Contrary to MPS, CBS (Mosses,
2019b) has fine-grained reuse mechanisms but lacks coarse ones.
JastAdd (Ekman and Hedin, 2007) allows to define syntactic and
semantic assets separately; these elements are then composed
using an aspect-oriented approach, but since aspects must di-
rectly refer to the syntax they apply to, it may be difficult to reuse
them in a different scenario. LISA (Mernik et al., 2002; Henriques
et al., 2005) can realize all types of language composition defined
by Erdweg, but to the best of our knowledge the finest sup-
ported granularity is that of language feature. In Silver (Van Wyk
et al., 2010) concrete syntax of each production must be re-
peated in each attached semantic aspect. This choice creates a
dependency between syntax and semantics, hindering reusability.
Truffle (Wimmer and Würthinger, 2012) does allow semantic
reuse. However, the lack of capabilities for modeling syntax pre-
vents reuse in the syntax domain. We found Rascal (Klint et al.,
2009a) and Spoofax (Kats et al., 2010) to be the most advanced
language workbenches in terms of reuse mechanisms. However,
both bind AST nodes to static ADTs. While this is an advantage
in terms of static analysis, it hinders the opportunities for reuse.
MontiCore (Krahn et al., 2010) supports language extension but
the semantics are directly hooked to the grammar thus limiting
the opportunities for reuse when the evolution requires changes
to the syntax.

Some other techniques for language definition exploit pre-
viously developed techniques in the domain of software engi-
neering. Several techniques leverage LPLs (Krahn et al., 2010).
Both Degueule et al. (2015) and Cazzola and Vacchi (2016) in-
troduced other forms of language feature compositions. Several
other works (Freeman and Pryce, 2006; van Amstel et al., 2010;
13
van Deursen and Klint, 1998) discuss experiences on DSL develop-
ment. Both Object Algebras (Oliveira and Cook, 2012) and Revisi-
tor (Leduc et al., 2017) are language implementation patterns that
focus on language extensibility. Both patterns are implemented
by using mainstream object-oriented languages. While this choice
broadens the applicability of Object Algebras and Revisitor, they
cannot benefit from the ecosystem offered by language work-
benches—which includes a compiler, interpreter, debugger, and
even an IDE. Mernik (2013) show how inheritance can be ex-
ploited to implement language extension, language unification,
and self-extension. MontiCore uses strongly-kind typed symbol
table to ensure consistency during DSML composition (Butting
et al., 2022).

Feature models represent an important formalism to express
highly variable software systems. Among tools for the definition
of feature models, FDL (van Deursen and Klint, 2002) is a DSL
to represents feature diagrams. SXML (Mendonca et al., 2009)
uses XML to represent feature models. Classen et al. (2011) in-
troduced TVL, which extends the feature model with attributes.
µTVL (Clarke et al., 2010) is a subset of TVL that can express
feature models with multiple roots to introduce orthogonal ex-
pressivity. Similarly, Velvet (Rosenmüller et al., 2011), is a DSL
for multi-dimensional variability modeling and the definition of
feature interfaces.

However, to the best of our knowledge, there is no contribu-
tion to the study of techniques to foster opportunistic reuse to
the evolution of programming languages and their ecosystem.

7. Conclusion

Language workbenches deal with all aspects of language de-
velopment, from the syntax definition to the specification of a
development environment. Among the most important aspects of
language workbenches, their reuse capabilities are too often over-
looked or lack the proper focus. We argue that this is due to the
lack of a taxonomy dedicated to different reuse granularities. In
this work, we extended the taxonomy by Erdweg et al. (2012) and
introduced several mechanisms to perform composition between
language components—each mechanism is specific to a granu-
larity level. We argue that language workbenches should render
these reuse mechanisms available at all levels through dedi-
cated language constructs to foster opportunistic reuse. We took
Neverlang as a proof of concept case study. Neverlang already
implemented constructs for coarse-grained reuse, but lacked fine-
grained ones. We extended Neverlang with two new language
constructs: desugaring as an instance of action composition and
delegation as an instance of action extension. The alternative to
these mechanisms is the clone-and-own approach which litera-
ture proved to be undesirable because it leads to increased code
duplication and decreased maintainability (Rubin et al., 2013).
Moreover, clone-and-own is never applicable when the original
source code is no longer available. We show that both reuse
mechanisms can be used interchangeably to avoid code duplica-
tion in many instances based on real-world examples and that
they ultimately result in better code. However, one reuse mech-
anism may be preferable over the other because performing
reuse at a different level of granularity. Note that in this work
we only evaluated instances of action composition and action
extension due to them being a novel introduction in Never-
lang; different implementations may lead to better designed code
and/or larger wins in productivity. However, we conclude that
both mechanisms are necessary or at least desirable to foster
different opportunistic reuse scenarios in evolving programming
languages.

F. Bertolotti, W. Cazzola and L. Favalli The Journal of Systems & Software 202 (2023) 111704

C

w
e

c
o

D

c
t

D

R

A

v

A

B

t

v

v

B

C

C

C

C

C

C

C

RediT authorship contribution statement

Francesco Bertolotti: Conceptualization, Methodology, Soft-
are, Investigation, Writing – original draft, Writing – review &
diting. Walter Cazzola: Conceptualization, Methodology, Writ-

ing – original draft, Writing – review & editing, Supervision,
Project administration, Funding acquisition. Luca Favalli: Con-
eptualization, Methodology, Software, Investigation, Writing –
riginal draft, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

Data will be made available on request.

eferences

ho, A.V., Lam, M.S., Sethi, R., Ullman, J.D., 2006. Compilers: Principles,
Techniques, and Tools, second ed. Addison-Wesley, Boston, MA, USA.

an Amstel, M., van den Brand, M., Engelen, L., 2010. An exercise in iterative
domain-specific language design. In: Capiluppi, A., Cleve, A., Moha, N. (Eds.),
Proceedings of the Workshop on Software Evolution. IWPSE-EVOL’10, ACM,
Antwerp, Belgium, pp. 48–57.

ntkiewicz, M., Ji, W., Berger, T., Czarnecki, K., Schmorleiz, T., Lämmel, R., Stănci-
ulescu, S., Wąsowski, A., Schaefer, I., 2014. Flexible product line engineering
with a virtual platform. In: Jalote, P., Briand, L., van der Hoek, A. (Eds.),
Companion Proceedings of the 36th International Conference on Software
Engineering. ICSE’14 Companio, ACM, Hyderabad, India, pp. 532–535.

asten, B., van den Bos, J., Hills, M., Klint, P., Lankamp, A., Lisser, B., van der
Ploeg, A., van der Storm, T., Vinju, J., 2015. Modular language implementation
in rascal—Experience report. Sci. Comput. Program. 114, 7–19.

er Beek, M.H., Schmid, K., Eichelberger, H., 2019. Textual variability modeling
languages: An overview and considerations. In: Thüm, T., Duchien, L. (Eds.),
Proceedings of the 23rd International Systems and Software Product Line
Conference. SPLC’19, ACM, Paris, France, pp. 151–157.

an Binsbergen, L.T., Mosses, P.D., Sculthorpe, N., 2019. Executable component-
based semantics. J. Log. Algebraic Methods Program. 103 (2), 184–212.

an Binsbergen, L.T., Sculthorpe, N., Mosses, P.D., 2016. Tool support for
component-based semantics. In: Companion Proceedings of the 15th Inter-
national Conference on Modularity. Companion Modularity’16, ACM, Málaga,
Spain, pp. 8–11.

utting, A., Michael, J., Rumpe, B., 2022. Language composition via kind-typed
symbol tables. J. Object Technol. 21 (4), 4:1–13.

ampbell, G.A., 2018. Cognitive complexity: An overview and evaluation. In:
Buschmann, F., Kruchten, P. (Eds.), Proceedings of the International Con-
ference on Technical Debt. TechDebt’18, ACM, Gothenburg, Sweden, pp.
57–58.

azzola, W., 2012. Domain-specific languages in few steps: The Neverlang
approach. In: Gschwind, T., De Paoli, F., Gruhn, V., Book, M. (Eds.), Proceed-
ings of the 11th International Conference on Software Composition. SC’12,
In: Lecture Notes in Computer Science, vol. 7306, Springer, Prague, Czech
Republic, pp. 162–177.

azzola, W., Chitchyan, R., Rashid, A., Shaqiri, A., 2018. µ-DSU: A micro-language
based approach to dynamic software updating. Comput. Lang. Syst. Struct.
51, 71–89. http://dx.doi.org/10.1016/j.cl.2017.07.003.

azzola, W., Favalli, L., 2022. Towards a recipe for language decomposition:
Quality assessment of language product lines. Empir. Softw. Eng. 27 (4),
http://dx.doi.org/10.1145/3514232.

azzola, W., Olivares, D.M., 2016. Gradually learning programming supported
by a growable programming language. IEEE Trans. Emerg. Top. Comput. 4
(3), 404–415. http://dx.doi.org/10.1109/TETC.2015.2446192, special Issue on
Emerging Trends in Education.

azzola, W., Poletti, D., 2010. DSL evolution through composition. In: Proceedings
of the 7th ECOOP Workshop on Reflection, AOP and Meta-Data for Software
Evolution. RAM-SE’10, ACM, Maribor, Slovenia.

azzola, W., Shaqiri, A., 2016. Modularity and optimization in synergy. In:
Batory, D. (Ed.), Proceedings of the 15th International Conference on
Modularity. Modularity’16, ACM, Málaga, Spain, pp. 70–81.
14
Cazzola, W., Shaqiri, A., 2017. Context-aware software variability through adapt-
able interpreters. IEEE Softw. 34 (6), 83–88. http://dx.doi.org/10.1109/MS.
2017.4121222, special Issue on Context Variability Modeling.

Cazzola, W., Vacchi, E., 2013. Neverlang 2: Componentised language development
for the JVM. In: Binder, W., Bodden, E., Löwe, W. (Eds.), Proceedings of the
12th International Conference on Software Composition. SC’13, Lecture Notes
in Computer Science, Springer, Budapest, Hungary, pp. 17–32.

Cazzola, W., Vacchi, E., 2016. Language components for modular DSLs using
traits. Comput. Lang. Syst. Struct. 45, 16–34. http://dx.doi.org/10.1016/j.cl.
2015.12.001.

Chapin, N., Hale, J.E., Khan, K.M., Ramil, J.F., Wui-Gee, T., 2001. Types of software
evolution and software maintenance. J. Softw. Maint. Evol.: Res. Pract. 13 (1),
3–30.

Chowdhary, K.R., 2013. On the evolution of programming languages. In: Pro-
ceedings of the UGC National Conference on New Advances in Programming
Languages and their Implementation. APL’13, Jodhpur, India, available as
arXiv:2007.02699.

Churchill, M., Mosses, P.D., Schulthorpe, N., Torrini, P., 2015. Reusable compo-
nents of semantic specifications. In: Transaction on Aspect-Oriented Software
Development. pp. 132–179.

Churchill, M., Mosses, P.D., Torrini, P., 2014. Reusable components of semantic
specifications. In: Ernst, E. (Ed.), Proceedings of the 13th International
Conference on Modularity. Modularity’14, ACM, Lugano, Switzerland, pp.
145–156.

Clarke, D., Muschevici, R., Proença, J., Schaefer, I., Schlatte, R., 2010. Variability
modelling in the ABS language. In: Aichernig, B.K., de Boer, F.S., Bon-
sangue, M.M. (Eds.), Proceedings of the 9th International Symposium on
Formal Methods for Components and Objects. FMCO’10, In: Lecture Notes
in Computer Science, vol. 6957, Springer, Graz, Austria, pp. 204–224.

Classen, A., Boucher, Q., Heymans, P., 2011. A text-based approach to feature
modelling: Syntax and semantics of TVL. Sci. Comput. Program. 76 (12),
1130–1143.

Combemale, B., 2015. Towards Language-Oriented Modeling (Habilitation À
Diriger Des Recherches). Université de Rennes 1, Rennes, France.

Combemale, B., Kienzle, J., Mussbacher, G., Barais, O., Bousse, E., Cazzola, W.,
Collet, P., Degueule, T., Heinrich, R., Jézéquel, J.-M., Leduc, M., Mayer-
hofer, T., Mosser, S., Schöttle, M., Strittmatter, M., Wortmann, A., 2018.
Concern-Oriented Language Development (COLD): Fostering reuse in lan-
guage engineering. Comput. Lang. Syst. Struct. 54, 139–155. http://dx.doi.
org/10.1016/j.cl.2018.05.004.

Crane, M.L., Dingel, J., 2005. UML vs. Classical vs. Rhapsody statecharts: Not all
models are created equal. In: Briand, L., Williams, C. (Eds.), Proceedings of
the 8th International Conference on Model Driven Engineering Languages
and Systems. MoDELS’05, In: Lecture Notes in Computer Science, vol. 3713,
Springer, Montego Bay, Jamaica, pp. 97–112.

Degueule, T., 2016. Interoperability and composition of DSLs with Melange. In:
ACM Student Research Competition Grand Finals.

Degueule, T., Combemale, B., Blouin, A., Barais, O., Jézéquel, J.-M., 2015. Melange:
a meta-language for modular and reusable development of DSLs. In: Di
Ruscio, D., Völter, M. (Eds.), Proceedings of the 8th International Conference
on Software Language Engineering. SLE’15, ACM, Pittsburgh, PA, USA, pp.
25–36.

van Deursen, A., Klint, P., 1998. Little languages: Little maintenance? J. Softw.
Maint.: Res. Pract. 10 (2), 75–92.

van Deursen, A., Klint, P., 2002. Domain-specific language design requires feature
descriptions. J. Comput. Inf. Technol. 10, 1–17.

Dubinsky, Y., Rubin, J., Berger, T., Duszynski, S., Becker, M., Czarnecki, K., 2017.
An exploratory study of cloning in industrial software product lines. In:
Cohen, M., Acher, M. (Eds.), Proceedings of the 21st International Systems
and Software Product Line Conference. SPLC’17, ACM, Sevilla, Spain, pp.
25–34.

Ekman, T., Hedin, G., 2007. The JastAdd extensible Java compiler. In: Proceedings
of the 22nd Annual Conference on Object-Oriented Programming Systems,
Languages, and Applications. OOPSLA’07, ACM, Montréal, Québec, Canada, pp.
1–18.

Erdweg, S., Giarrusso, P.G., Rendel, T., 2012. Language composition untangled.
In: Sloane, A.M., Andova, S. (Eds.), Proceedings of the 12th Workshop
on Language Description, Tools, and Applications. LDTA’12, ACM, Tallinn,
Estonia.

Erdweg, S., Rendel, T., Kästner, C., Ostermann, K., 2011. SugarJ: Library-based
syntactic language extensibility. In: Proceedings of the 26th ACM SIGPLAN
Conference on Object-Oriented Programming. OOPSLA’11, ACM, Portland,
Oregon, USA, pp. 391–406.

Favalli, L., Kühn, T., Cazzola, W., 2020. Neverlang and FeatureIDE just married:
Integrated language product line development environment. In: Collet, P.,
Nadi, S. (Eds.), Proceedings of the 24th International Software Product Line
Conference. SPLC’20, ACM, Montréal, Canada, pp. 285–295.

http://refhub.elsevier.com/S0164-1212(23)00099-7/sb1
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb1
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb1
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb2
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb2
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb2
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb2
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb2
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb2
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb2
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb3
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb3
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb3
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb3
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb3
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb3
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb3
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb3
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb3
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb4
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb4
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb4
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb4
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb4
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb5
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb5
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb5
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb5
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb5
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb5
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb5
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb6
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb6
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb6
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb7
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb7
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb7
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb7
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb7
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb7
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb7
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb8
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb8
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb8
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb9
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb9
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb9
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb9
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb9
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb9
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb9
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb10
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb10
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb10
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb10
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb10
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb10
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb10
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb10
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb10
http://dx.doi.org/10.1016/j.cl.2017.07.003
http://dx.doi.org/10.1145/3514232
http://dx.doi.org/10.1109/TETC.2015.2446192
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb14
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb14
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb14
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb14
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb14
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb15
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb15
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb15
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb15
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb15
http://dx.doi.org/10.1109/MS.2017.4121222
http://dx.doi.org/10.1109/MS.2017.4121222
http://dx.doi.org/10.1109/MS.2017.4121222
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb17
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb17
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb17
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb17
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb17
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb17
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb17
http://dx.doi.org/10.1016/j.cl.2015.12.001
http://dx.doi.org/10.1016/j.cl.2015.12.001
http://dx.doi.org/10.1016/j.cl.2015.12.001
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb19
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb19
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb19
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb19
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb19
http://arxiv.org/abs/2007.02699
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb21
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb21
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb21
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb21
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb21
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb22
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb22
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb22
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb22
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb22
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb22
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb22
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb23
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb23
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb23
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb23
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb23
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb23
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb23
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb23
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb23
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb24
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb24
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb24
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb24
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb24
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb25
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb25
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb25
http://dx.doi.org/10.1016/j.cl.2018.05.004
http://dx.doi.org/10.1016/j.cl.2018.05.004
http://dx.doi.org/10.1016/j.cl.2018.05.004
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb27
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb27
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb27
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb27
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb27
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb27
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb27
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb27
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb27
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb28
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb28
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb28
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb29
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb29
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb29
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb29
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb29
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb29
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb29
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb29
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb29
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb30
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb30
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb30
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb31
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb31
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb31
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb32
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb32
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb32
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb32
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb32
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb32
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb32
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb32
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb32
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb33
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb33
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb33
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb33
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb33
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb33
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb33
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb34
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb34
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb34
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb34
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb34
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb34
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb34
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb35
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb35
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb35
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb35
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb35
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb35
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb35
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb36
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb36
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb36
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb36
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb36
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb36
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb36

F. Bertolotti, W. Cazzola and L. Favalli The Journal of Systems & Software 202 (2023) 111704

F

G

G
G

H

H

H

I

K

K

K

K

K

K

K

K

K

K

K

K

K

reeman, S., Pryce, N., 2006. Evolving an embedded domain-specific language in
Java. In: Proceedings of the Dynamic Languages Symposium. DLS’06, ACM,
Portland, Oregon, USA, pp. 855–865.

amma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns: Elements
of Reusable Object-Oriented Software. In: Professional Computing Series,
Addison-Wesley, Reading, Ma, USA.

hosh, D., 2011. DSL for the uninitiated. ACM Queue Mag. 9 (6), 1–11.
rönninger, H., Krahn, H., Rumpe, B., Schindler, M., Völkel, S., 2008. Monticore:

A framework for the development of textual domain specific languages. In:
Schäfer, W., Dwyer, M., Gruhn, V. (Eds.), Companion Proceedings of the 30th
International Conference on Software Enginering. Companion ICSE’08, IEEE,
Leipzig, Germany, pp. 925–926.

emer, D., Lindsay, P., 2001. Specification-based retrieval strategies for module
reuse. In: Grant, D.D., Sterling, L. (Eds.), Proceedings of the 5th Australian
Software Engineering Conference. ASEC’01, IEEE, Canberra, Australia, pp.
235–243.

enriques, P.R., Varanda Pereira, M.J., Mernik, M., Lenič, M., Gray, J., Wu, H.,
2005. Automatic generation of language-based tools using the LISA system.
In: IEE Proceedings — Software, Vol. 152, No. 2. pp. 54–69.

interreiter, D., Linsbauer, L., Reisinger, F., Prähofer, H., Grünbacher, P., Egyed, A.,
2018. Feature-oriented evolution of automation software systems in indus-
trial software ecosystems. In: Mahulea, C., Seatzu, C. (Eds.), Proceedings of
the 23rd International Conference on Emerging Technologies and Factory
Automation. ETFA’18, IEEE, Torino, Italy, pp. 107–114.

SO/IEC/IEEE International Standard, 2017. Systems and Software Engineering—
Vocabulary. Standard 24765-2017, http://dx.doi.org/10.1109/IEEESTD.2017.
8016712.

ang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S., 1990. Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21, Carnegie Mellon University, Pittsburgh, Pennsylvania,
USA.

araila, M., 2009. Evolution of a domain specific language and its engi-
neering environment—Lehman’s laws revisited. In: Tolvanen, J.-P., Gray, J.,
Rossi, M., Sprinkle, J. (Eds.), Proceedings of Te 9th OOPSLA Workshop on
Domain-Specific Modeling. DSM’09, Orlando, FL, USA, pp. 1–7.

ats, L.C.L., Visser, E., Wachsmuth, G., 2010. Pure and declarative syntax defini-
tion: Paradise lost and regained. In: Proceedings of ACM Conference on New
Ideas in Programming and Reflections on Software. Onward! 2010, ACM,
Reno-Tahoe, Nevada, USA.

lint, P., van der Storm, T., Vinju, J., 2009a. EASY meta-programming with
rascal. In: Fernandes, J.M., Lämmel, R., Visser, J., Saraiva, J. (Eds.), Proceedings
of the International Summer School on Generative and Transformational
Techniques in Software Engineering III. GTTSE’09, In: Lecture Notes in
Computer Science, vol. 6491, Springer, Braga, Portugal, pp. 222–289.

lint, P., van der Storm, T., Vinju, J., 2009b. RASCAL: A domain specific language
for source code analysis and manipulation. In: Walenstein, A., Schupp, S.
(Eds.), Proceedings of the International Working Conference on Source Code
Analysis and Manipulation. SCAM’09, IEEE, Edmonton, Canada, pp. 168–177.

lint, P., van der Storm, T., Vinju, J., 2019. Rascal, 10 years later. In: Proceedings
of the 19th International Working Conference on Source Code Analysis and
Manipulation. SCAM’19, IEEE, Cleveland, OH, USA, p. 139.

loibhofer, S., Pointhuber, T., Heisinger, M., Mössenböck, H., Stadler, L.,
Leopoldseder, D., 2020. SymJEx: Symbolic execution on te GraalVM. In:
Marr, S. (Ed.), Proceedings of the 17th International Conference on Managed
Programming Languages and Runtimes. MPLR’20, ACM, pp. 63–72.

osar, T., Bohra, S., Mernik, M., 2016. Domain specific languages: A systematic
mapping study. Inf. Softw. Technol. 71, 77–91.

rahn, H., Rumpe, B., Völkel, S., 2010. MontiCore: A framework for compositional
development of domain specific languages. Int. J. Softw. Tools Technol.
Transf. 12 (5), 353–372.

rishnamurthi, S., 2015. Desugaring in practice: Opportunities and challenges. In:
Asai, K., Sagonas, K. (Eds.), Proceedings of the Workshop on Partial Evaluation
and Program Manipulation. PEPM’15, ACM, Mumbai, India, pp. 1–2.

ühn, T., Cazzola, W., 2016. Apples and oranges: Comparing top-down and
bottom-up language product lines. In: Rabiser, R., Xie, B. (Eds.), Proceedings
of the 20th International Software Product Line Conference. ACM, SPLC’16,
pp. 50–59.

ühn, T., Cazzola, W., Olivares, D.M., 2015. Choosy and picky: Configuration
of language product lines. In: Botterweck, G., White, J. (Eds.), Proceedings
of the 19th International Software Product Line Conference. SPLC’15, ACM,
Nashville, TN, USA, pp. 71–80.

ühn, T., Cazzola, W., Pirritano Giampietro, N., Poggi, M., 2019. Piggyback
IDE support for language product lines. In: Thüm, T., Duchien, L. (Eds.),
Proceedings of the 23rd International Software Product Line Conference.
SPLC’19, ACM, Paris, France, pp. 131–142.
15
Kühn, T., Leuthäuser, M., Götz, S., Seidl, C., Aßmann, U., 2014. A metamodel fam-
ily for role-based modeling and programming languages. In: Combemale, B.,
Pearce, D.J., Barais, O., Vinju, J. (Eds.), Proceedings of the 7th International
Conference Software Language Engineering. SLE’14, In: Lecture Notes in
Computer Science, vol. 8706, Springer, Västerås, Sweden, pp. 141–160.

Latifi, F., Leopoldseder, D., Wimmer, C., Mössenböck, H., 2021. CompGen: Gen-
eration of fast JIT compilers in a multi-language VM. In: Guha, A. (Ed.),
Proceedings of the 17th International Symposium on Dynamic Languages.
DLS’21, ACM, Chicago, IL, USA, pp. 35–47.

Lavazza, L., Abualkishik, A.Z., Liu, G., Morasca, S., 2023. An empirical evaluation
of the cognitive complexity measure as a predictor of code understandability.
J. Syst. Softw. 197.

Leduc, M., Degueule, T., Combemale, B., van der Storm, T., 2017. Revisiting
visitors for modular extension of executable DSMLs. In: Gray, J. (Ed.),
Proceedings of 20th International on Model Driven Engineering Languages
and Systems. MoDELS’17, IEEE, Austin, TX, USA, pp. 112–122.

Leduc, M., Degueule, T., Van Wyk, E., Combemale, B., 2020. The software language
extension problem. Softw. Syst. Model. 19 (2), 263–267.

Lehman, M.M., Kahen, G., Fernández-Ramil, J.C., 2002. Behavioural modelling of
long-lived evolution processes - Some issues and an example. J. Softw. Maint.
Evol. 14 (5), 335–351.

Lindeman, R.T., Kats, L.C.L., Visser, E., 2011. Declaratively defining domain-
specific language debuggers. In: Schultz, U. Pagh (Ed.), Proceedings of the
10t International Conference on Generative Programming and Components.
GPCE’11, ACM, Portland, OR, USA, pp. 127–136.

Long, J., 2001. Software reuse antipatterns. ACM SIGSOFT Softw. Eng. Notes 26
(4), 68–76.

Lorenzen, F., Erdweg, S., 2016. Sound type-dependent syntactic language exten-
sion. In: Majumdar, R. (Ed.), Proceedings of the 43rd Annual Symposium on
Principles of Programming Languages. PoPL’16, ACM, St. Petersburg, FL, USA,
pp. 204–216.

Maga, C.R., Jazdi, N., Göhner, P., 2011. Reusable models in industrial automation:
Experiences in defining appropriate levels of granularity. In: Bittanti, S.,
Colaneri, P. (Eds.), Proceedings of the 18th IFAC World Congress, Vol. 44.
IFAC’11, Elsevier, Milan, Italy, pp. 9145–9150.

Mäkitalo, N., Taivalsaari, A., Kiviluoto, A., Mikkonen, T., Capilla, R., 2020. On
opportunistic software reuse. Computing 102 (11), 2385–2408.

Méndez-Acuña, D., Galindo, J.A., Degueule, T., Combemale, B., Baudry, B., 2016.
Leveraging software product lines engineering in the development of ex-
ternal DSLs: A systematic literature review. Comput. Lang. Syst. Struct. 46,
206–235.

Mendonca, M., Branco, M., Cowan, D., 2009. S.P.L.O.T.—Software Product Lines
Online Tools. In: Companion Proceedings of the 24th Conference on Object-
Oriented Programming Systems Languages and Applications. Companion
OOPSLA’09, ACM, Orlando, FL, USA, pp. 761–762.

Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfeld, R., Jazayeri, M.,
2005. Challenges in software evolution. In: Proceedings of the Eighth Inter-
national Workshop on Principles of Software Evolution. IWPSE’05, IEEE Press,
Lisbon, Portugal, pp. 13–22.

Mernik, M., 2013. An object-oriented approach to language compositions for
software language engineering. J. Syst. Softw. 86 (9), 2451–2464.

Mernik, M., Heering, J., Sloane, A.M., 2005. When and how to develop domain
specific languages. ACM Comput. Surv. 37 (4), 316–344.

Mernik, M., Lenič, M., Avdičaušević, E., Žumer, V., 2002. LISA: An interactive en-
vironment for programming language development. In: Horspool, N.R. (Ed.),
Proceedings of the 11th International Conference on Compiler Construction.
CC’02, In: Lecture Notes in Computer Science, vol. 2304, Springer, Grenoble,
France, pp. 1–4.

Mosses, P.D., 2019a. A component-based formal language workbench. In: Mona-
han, R., Prevosto, V., Proença, J. (Eds.), Proceedings of the 5th Workshop on
Formal Integrated Development Environment. F-IDE’19, Porto, Portugal, pp.
29–34.

Mosses, P.D., 2019b. Software meta-language engineering and CBS. J. Comput.
Lang. 50, 39–48.

Niephaus, F., Felgentreff, T., Hirschfeld, R., 2019. GraalSqueak: Toward a
smalltalk-based tooling platform for polyglot programming. In: Finocchi, I.
(Ed.), Proceedings of the 16th International Conference on Managed Pro-
gramming Languages and Runtimes. MPLR’19, ACM, Athens, Greece, pp.
14–26.

Oliveira, B.C.d.S., Cook, W.R., 2012. Extensibility for the masses: Practical
extensibility with object algebras. In: Noble, J. (Ed.), Proceedings of the
26th European Conference on Object-Oriented Programming. ECOOP’12, In:
Lecture Notes in Computer Science, vol. 7313, Springer, Beijing, China, pp.
2–27.

Pech, V., Shatalin, A., Völter, M., 2013. JetBrains MPS as a tool for extending
java. In: Binder, W. (Ed.), Proceedings of the 10th International Conference
on Principles and Practices of Programming on the Java Platform. PPPJ’13,
ACM, Stuttgart, Germany, pp. 165–168.

http://refhub.elsevier.com/S0164-1212(23)00099-7/sb37
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb37
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb37
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb37
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb37
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb38
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb38
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb38
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb38
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb38
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb39
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb40
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb40
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb40
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb40
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb40
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb40
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb40
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb40
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb40
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb41
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb41
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb41
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb41
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb41
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb41
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb41
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb42
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb42
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb42
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb42
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb42
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb43
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb43
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb43
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb43
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb43
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb43
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb43
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb43
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb43
http://dx.doi.org/10.1109/IEEESTD.2017.8016712
http://dx.doi.org/10.1109/IEEESTD.2017.8016712
http://dx.doi.org/10.1109/IEEESTD.2017.8016712
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb45
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb45
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb45
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb45
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb45
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb45
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb45
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb46
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb46
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb46
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb46
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb46
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb46
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb46
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb47
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb47
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb47
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb47
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb47
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb47
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb47
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb48
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb48
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb48
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb48
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb48
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb48
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb48
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb48
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb48
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb49
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb49
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb49
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb49
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb49
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb49
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb49
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb50
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb50
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb50
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb50
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb50
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb51
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb51
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb51
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb51
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb51
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb51
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb51
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb52
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb52
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb52
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb53
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb53
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb53
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb53
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb53
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb54
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb54
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb54
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb54
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb54
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb55
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb55
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb55
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb55
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb55
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb55
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb55
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb56
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb56
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb56
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb56
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb56
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb56
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb56
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb57
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb57
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb57
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb57
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb57
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb57
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb57
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb58
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb58
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb58
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb58
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb58
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb58
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb58
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb58
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb58
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb59
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb59
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb59
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb59
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb59
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb59
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb59
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb60
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb60
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb60
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb60
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb60
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb61
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb61
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb61
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb61
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb61
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb61
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb61
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb62
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb62
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb62
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb63
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb63
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb63
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb63
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb63
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb64
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb64
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb64
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb64
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb64
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb64
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb64
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb65
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb65
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb65
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb66
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb66
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb66
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb66
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb66
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb66
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb66
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb67
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb67
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb67
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb67
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb67
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb67
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb67
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb68
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb68
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb68
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb69
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb69
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb69
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb69
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb69
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb69
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb69
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb70
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb70
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb70
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb70
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb70
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb70
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb70
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb71
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb71
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb71
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb71
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb71
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb71
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb71
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb72
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb72
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb72
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb73
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb73
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb73
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb74
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb74
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb74
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb74
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb74
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb74
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb74
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb74
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb74
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb75
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb75
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb75
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb75
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb75
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb75
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb75
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb76
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb76
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb76
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb77
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb77
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb77
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb77
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb77
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb77
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb77
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb77
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb77
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb78
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb78
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb78
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb78
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb78
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb78
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb78
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb78
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb78
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb79
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb79
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb79
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb79
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb79
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb79
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb79

F. Bertolotti, W. Cazzola and L. Favalli The Journal of Systems & Software 202 (2023) 111704

R

R

R

S

S

S

T

T

T

T

V

V

V

V

V
V

V

W

W

W

a
t
a
C
a
c

osenmüller, M., Siegmund, N., Thüm, Saake, G., 2011. Multi-dimensional vari-
ability modeling. In: Czarnecki, K., Eisenecker, U.W. (Eds.), Proceedings of
the 5th Workshop on Variability Modeling of Software-Intensive Systems.
VaMoS’11, ACM, Namur, Belgium, pp. 11–20.

ubin, J., Czarnecki, K., Chechik, M., 2013. Managing cloned variants: A frame-
work and experience. In: Jarzabek, S., Gnesi, S. (Eds.), Proceedings of the
17th International Software Product Line Conference. SPLC’13, ACM, Tokyo,
Japan, pp. 101–110.

umpe, B., Hölldobler, K., Kautz, O., 2021. MontiCore: Language Workbench and
Library, Handbook. Aachen, Germany.

en, A., 1997. The role of opportunism in the software design reuse process.
IEEE Trans. Softw. Eng. 23 (7), 418–436.

erebrenik, A., Mens, T., 2015. Challenges in software ecosystems research. In:
Crnkovic, I. (Ed.), Proceedings of the 2015 European Conference on Software
Architecture Workshops. ECSAW’15, ACM, Dubrovnik, Croatia, pp. 1–6.

teinberg, D., Budinsky, D., Paternostro, M., Merks, E., 2008. EMF: Eclipse
Modeling Framework. Addison-Wesley.

hanhofer-Pilisch, J., Lang, A., Vierhauser, M., Rabiser, R., 2017. A systematic
mapping study on DSL evolution. In: Felderer, M., Olsson, H. Holmström,
Skavhaug, A. (Eds.), Proceedings of the 43rd Euromicro Conference on
Software Engineering and Advanced Applications. SEAA’17, IEEE, Vienna,
Austria, pp. 149–156.

hüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., Leich, T.,
2014. FeatureIDE: An extensible framework for feature-oriented software
development. Sci. Comput. Program. 79 (1), 70–85.

racz, W., 1990. Where does reuse start? ACM SIGSOFT Softw. Eng. Notes 15
(2), 42–46.

ratt, L., 2008. Domain specific language implementation via compile-time
meta-programming. ACM Trans. Program. Lang. Syst. 30 (6), 31:1–31:40.

acchi, E., Cazzola, W., 2015. Neverlang: A framework for feature-oriented
language development. Comput. Lang. Syst. Struct. 43 (3), 1–40. http://dx.
doi.org/10.1016/j.cl.2015.02.001.

acchi, E., Cazzola, W., Combemale, B., Acher, M., 2014. Automating variability
model inference for component-based language implementations. In: Hey-
mans, P., Rubin, J. (Eds.), Proceedings of the 18th International Software
Product Line Conference. SPLC’14, ACM, Florence, Italy, pp. 167–176.

acchi, E., Cazzola, W., Pillay, S., Combemale, B., 2013. Variability support in
domain-specific language development. In: Erwig, M., Paige, R.F., Van Wyk, E.
(Eds.), Proceedings of 6th International Conference on Software Language
Engineering. SLE’13, In: Lecture Notes on Computer Science, vol. 8225,
Springer, Indianapolis, USA, pp. 76–95.

an Wyk, E., Bodin, D., Gao, J., Krishnan, L., 2010. Silver: an extensible attribute
grammar system. Sci. Comput. Program. 75 (1–2), 39–54.

oelter, M., 2013. DSL engineering.
ölter, M., Pech, V., 2012. Language modularity with the MPS language work-

bench. In: Proceedings of the 34th International Conference on Software
Engineering. ICSE’12, IEEE, Zürich, Switzerland, pp. 1449–1450.

ölter, M., Siegmund, J., Berger, T., Kolb, B., 2014. Towards user-friendly
projectional editors. In: Combemale, B., Pearce, D.J., Barais, O., Vinju, J.J.
(Eds.), Proceedings of the 7th International Conference on Software Language
Engineering. SLE’14, In: Lecture Notes in Computer Science, vol. 8706,
Springer, Västerås, Sweden, pp. 41–61.

achsmuth, G.H., Konat, G.D.P., Visser, E., 2014. Language design with the
Spoofax language workbench. IEEE Softw. 31 (5), 35–43.

immer, C., Würthinger, T., 2012. Truffle: A self-optimizing runtime system. In:
Leavens, G.T. (Ed.), Proceedings of the 3rd Annual Conference on Systems,
Programming and Applications: Software for Humanity. SPLASH’12, ACM,
Tucson, AZ, USA, pp. 1–2.

ürthinger, T., 2014. Graal and truffle: Modularity and separation of concerns
as cornerstones for building a multipurpose runtime. In: Companion Pro-
ceedings of the 13th International Conference on Modularity. Companion
Modularity’14, ACM, Lugano, Switzerland, pp. 3–4.
16
Würthinger, T., Wimmer, C., Woß, A., Stadler, L., Duboscq, G., Humer, C.,
Richards, G., Simon, D., Wolczko, M., 2013. One VM to rule them all. In:
Hirschfeld, R. (Ed.), Proceedings of the 2013 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming & Software.
Onward!’13, ACM, Indianapolis, IN, USA, pp. 187–204.

Würthinger, T., Wöß, A., Stadler, L., Duboscq, G., Simon, D., Wimmer, C., 2012.
Self-optimizing AST interpreters. In: Warth, A. (Ed.), Proceedings of the
8th Symposium on Dynamic Languages. DSL’12, ACM, Tucson, AZ, USA, pp.
73–82.

Xu, Y., Ramanathan, J., Ramnath, R., Singh, N., Deshpande, S., 2011. Reuse by
placement: A paradigm for cross-domain software reuse with high level
of granularity. In: Schmid, K. (Ed.), Proceedings of the 12th International
Conference on Software Reuse. ICSR’11, In: Lecture Notes in Computer
Science, vol. 6727, Springer, Pohang, South Korea, pp. 69–77.

Francesco Bertolotti is currently a Computer Science
Ph.D. student at Università degli Studi di Milano and a
member of the ADAPT Laboratory. Previously, he was
an assistant researcher at the same University where
he also got his master degree in Computer Science.
His research interests are programming languages, soft-
ware quality, machine/deep learning techniques and
their reciprocal cross-fertilization. He can be contacted
at francesco.bertolotti@unimi.it for any question.

Walter Cazzola is currently an Associate Professor in
the Department of Computer Science of the Università
degli Studi di Milano, Italy and the Chair of the ADAPT
laboratory. Dr. Cazzola designed the mChaRM frame-
work, @Java, [a]C#, Blueprint programming languages
and he is currently involved in the designing and devel-
opment of the Neverlang language workbench. He also
designed the JavAdaptor dynamic software updating
framework and its front-end FiGA. He has written over
100 scientific papers. His research interests include (but
are not limited to) software maintenance, evolution

nd comprehension, programming methodologies and languages. He served on
he program committees or editorial boards of the most important conferences
nd journals about his research topics. He is associate editor for the Journal of
omputer Languages published by Elsevier. More information about Dr. Cazzola
nd all his publications are available at http://cazzola.di.unimi.it and he can be
ontacted at cazzola@di.unimi.it for any question.

Luca Favalli is currently a Computer Science Postdoc-
toral Researcher at Università degli Studi di Milano. He
got his Ph.D. in computer science from the Università
degli Studi di Milano. He is involved in the research ac-
tivity of the ADAPT Lab and in the development of the
Neverlang language workbench and of JavAdaptor. His
main research interests are software design, software
(and language) product lines and dynamic software
updating with a focus on how they can be used to
ease the learning of programming languages. He can
be contacted at favalli@di.unimi.it for any question.

http://refhub.elsevier.com/S0164-1212(23)00099-7/sb80
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb80
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb80
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb80
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb80
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb80
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb80
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb81
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb81
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb81
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb81
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb81
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb81
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb81
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb82
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb82
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb82
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb83
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb83
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb83
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb84
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb84
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb84
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb84
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb84
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb85
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb85
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb85
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb86
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb86
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb86
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb86
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb86
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb86
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb86
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb86
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb86
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb87
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb87
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb87
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb87
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb87
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb88
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb88
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb88
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb89
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb89
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb89
http://dx.doi.org/10.1016/j.cl.2015.02.001
http://dx.doi.org/10.1016/j.cl.2015.02.001
http://dx.doi.org/10.1016/j.cl.2015.02.001
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb91
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb91
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb91
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb91
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb91
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb91
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb91
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb92
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb92
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb92
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb92
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb92
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb92
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb92
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb92
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb92
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb93
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb93
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb93
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb94
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb95
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb95
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb95
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb95
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb95
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb96
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb96
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb96
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb96
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb96
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb96
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb96
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb96
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb96
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb97
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb97
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb97
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb98
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb98
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb98
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb98
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb98
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb98
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb98
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb99
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb99
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb99
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb99
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb99
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb99
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb99
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb100
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb100
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb100
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb100
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb100
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb100
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb100
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb100
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb100
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb101
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb101
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb101
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb101
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb101
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb101
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb101
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb102
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb102
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb102
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb102
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb102
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb102
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb102
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb102
http://refhub.elsevier.com/S0164-1212(23)00099-7/sb102
mailto:francesco.bertolotti@unimi.it
http://cazzola.di.unimi.it
mailto:cazzola@di.unimi.it
mailto:favalli@di.unimi.it

	On the granularity of linguistic reuse
	Introduction
	Problem Statement
	Motivation

	Background
	Erdweg Language Composition Taxonomy
	State-of-the-Art
	Language Product Lines
	The Neverlang Ecosystem
	Terminology

	Modeling Reuse
	Workbench Agnostic Linguistic Reuse
	Linguistic Reuse in Neverlang
	Language Composition Taxonomy

	Evaluation
	Results
	Composition Mechanisms Evaluation Framework
	Threats to Validity

	Related Work
	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References

