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Abstract
The cloud is nowadays widely used for storing and managing data, and leveraging scalable and flexible IT infrastructures 
while guaranteeing continuous data and application availability from anywhere at any time. The cloud market is characterized 
by a rich and diversified offering that usually comes as predefined configurations (plans), which can be adopted to outsource 
data collections. Such plans exhibit different features and characteristics, which make different plans suitable to different 
scenarios. Seemingly a trivial problem, selecting a plan that responds well to the needs of a data owner is actually far from 
easy. In fact, the problem entails a number of challenges that need to be carefully addressed, ranging from representing and 
reasoning on plans’ characteristics, to permitting data owners to formulate (and have enforced) expressive requirements to 
identify an optimal (combination of) plan(s) without requiring deep technical knowledge of the cloud technology and jargon. 
In this paper, we address this problem, discussing some of its main challenges, and illustrating some research directions and 
state-of-the-art solutions.

Keywords  User protection requirements · Cloud plan selection · Data security and privacy · Requirements specification 
language · Cloud plan modeling

Introduction

The cloud has established itself as an effective solution for 
storing, managing, and sharing large data collections, as 
well as for executing and making available computation-
ally-intensive applications. It permits individual users and 
companies to leverage the cutting-edge, fast, elastic and 
scalable IT infrastructures and services made available by 

cloud providers, without the need to own and maintain them. 
Moving data and applications to the cloud represents an ever 
increasing trend that has been constantly observable in the 
real world for years, and is expected to grow further in the 
coming years: Gartner forecasts that, in 2023, worldwide 
public cloud spending will grow 20.7% (reaching a total of 
US$591.8 billion, up from US$490.3 billion in 2022)1 and, 
by 2025, enterprises will spend more on public cloud ser-
vices than traditional IT solutions.2 Fortunately, the cloud 
market is a diversified place, as cloud providers offer a rich 
panorama of solutions, usually characterized by predefined 
configurations (i.e., service plans, to which we refer for brev-
ity as plans) that provide different features and guarantees. 
This makes such solutions suitable to different application 
scenarios, making—as an example—a plan offering strong 
security and privacy mechanisms more indicated for storing 
collections of sensitive data, and a plan guaranteeing high 
availability and low downtimes more indicated for sharing 
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public data. Indeed, moving data to the cloud requires their 
owner to entrust the cloud provider and its services for cor-
rectly managing them, responding to her needs (e.g., ade-
quate security infrastructures or service availability levels). 
Resorting to the cloud raises a series of questions and con-
cerns that need to be carefully investigated, to ensure that 
data owners outsourcing to the cloud their data enjoy the 
potential benefits that the elastic and performant cloud-based 
solutions can offer. These issues are multiple and diverse 
(e.g., [2, 15]), and range from having effective solutions for 
properly protecting data and applications security and pri-
vacy managing trust assumptions on the different provid-
ers, to ensuring adequate performance of the selected plans, 
to balancing the requested features and the economic costs 
charged by providers, to name a few.

A key aspect to be solved when moving to the cloud con-
cerns the selection of a suitable (set of) plan(s) that responds 
well to the specific application scenario in which moving 
to the cloud is to be performed. The problem of selecting 
an optimal solution, among the diverse alternatives in the 
market, is complex for a multitude of reasons. Not only can 
different data owners have different needs, but the same 
owner may have different and dynamic needs for different 
application scenarios. A cloud plan, which may be a good fit 
for a certain owner in a specific scenario, may then be sub-
optimal -or even detrimental- for another owner, or even for 
the same owner in a different scenario. The selection of a 
sub-optimal solution may negatively impact the adoption of 
the cloud. For example, outsourcing data for a mission-criti-
cal application to a cloud plan incurring frequent downtimes 
would be detrimental for the application itself, its owners, 
as well as its users. For these reasons, selecting the ‘right’ 
solution is a key requirement for ensuring more and more 
users can adopt, and hence benefit from, the cloud.

The goal of this paper is to present an overview of the 
main challenges that arise when data owners move their 
data to the cloud and need to identify the plan(s) that bet-
ter suit their needs. We briefly illustrate these challenges 
and highlight recent research directions and state-of-the-art 
solutions that address them. The remainder of this paper 
is structured as follows—“Challenges in Outsourcing to 
the Cloud” overviews some of the main challenges to be 
addressed. Subsequent sections discuss research directions 
and state-of-the-art solutions addressing them, focusing on 
the modeling of cloud plans (“Modeling Cloud Plans”), on 
the specification of arbitrary requirements and preferences 
possibly using natural language and high-level abstractions 
(“Supporting Requirements and Preferences” and “Support-
ing Natural Language Desiderata”), and on the computation 
of optimal allocations in multicloud scenarios in full obe-
dience of restrictions imposed by the owners of large data 
collections (“Supporting Requirements in Multicloud Sce-
narios”). Finally, “Conclusions” provides our conclusions.

Challenges in Outsourcing to the Cloud

We illustrate some of the main challenges to be investigated 
when data owners wish to outsource their data to the cloud. 
In particular, we focus our attention on the challenges con-
nected to the problem of ensuring that the selected cloud 
plan(s) respond well to the needs and expectations of the 
data owners, possibly in obedience of protection require-
ments that owners may have on their data. Permitting owners 
to formulate, in a flexible and friendly yet rigorous way, the 
needs characterizing their data to be outsourced to the cloud 
(and defining solutions that enforce them suggesting which 
cloud plan, or combination thereof, better suits such needs) 
is central to empowering owners in maintaining control over 
their data. It is interesting to note that the importance of 
the problems connected to supporting users in cloud plan 
selection is recognized and addressed also by cloud provid-
ers themselves as well as by consulting and technological 
companies and organizations that, over the last years, have 
proposed models and approaches for guiding assessment of 
different plans, however typically according to pre-defined 
selection criteria and metrics (examples of such include, 
among others, the Cloud Decisions Tools by Gartner,3 
guidelines by Microsoft,4 criteria from the Cloud Industry 
Forum5 or, with a specific focus on security, by the Cloud 
Security Alliance6). The main challenges entailed by the 
problem of supporting users in selecting plans that are well 
aligned to their needs can be classified as follows.

•	 Cloud plan modeling (“Modeling Cloud Plans”): A 
first challenge connected to the problem of selecting 
a good plan for outsourcing concerns the definition of 
approaches for modeling, and subsequently evaluating, 
cloud plans. This requires to identify relevant features 
that characterize the different plans, and define metrics 
and techniques for assessing the plans based on their 
features, for example by scoring or ranking them. Early 
attempts in this regard have considered specific features 
(such as performance and costs) and proposed solutions 
based on, for example, benchmarking (e.g., [10, 14]). 
Recent lines of work have investigated the possibility of 
considering arbitrary features and properties that can be 
expressed in Service Level Agreements (SLAs) or that 
can be identified/measured/assessed (e.g., cloud provid-
ers along with their reputation, security infrastructures 

3  https://​www.​gartn​er.​com/​en/​cloud-​decis​ions.
4  https://​azure.​micro​soft.​com/​en-​us/​resou​rces/​cloud-​compu​ting-​dicti​
onary/​choos​ing-a-​cloud-​servi​ce-​provi​der.
5  https://​cloud​indus​tryfo​rum.​org/8-​crite​ria-​to-​ensure-​you-​select-​the-​
right-​cloud-​servi​ce-​provi​der/.
6  https://​cloud​secur​ityal​liance.​org/​resea​rch/​cloud-​contr​ols-​matrix/.
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and schemes, certifications) and have proposed ad-hoc 
evaluation approaches for assessing them against specific 
requirements owners may have (e.g., [8]).

•	 Specification of arbitrary requirements and preferences 
(“Supporting Requirements and Preferences”): A cloud 
plan can be more or less appealing to a data owner 
depending on specific protection needs for her data. For 
example, due to laws or regulations, an owner may want 
to outsource data only to cloud providers based on a spe-
cific geographical area. Plans of providers located out-
side that area, regardless of how performant and/or how 
economically convenient they may be, would then be of 
no interest to that specific owner for that data collection. 
Besides such hard protection requirements that must be 
satisfied, data owners may also have soft requirements 
that can make one plan more appealing over another. 
With reference to the example above, a data owner may 
favor, among the plans in the acceptable geographical 
area, those that have a certain security certification: 
a plan that does not have it would then be considered 
acceptable, but less appealing to the owner. Different 
owners may have different requirements, or even the 
same owner may have different requirements for differ-
ent data collections, based on their specific needs and on 
the considered application scenario. A key challenge is 
therefore permitting owners to specify arbitrary require-
ments and preferences in an easy and flexible manner 
capturing, in an unambiguous way, the conditions that 
owners feel can make a plan acceptable/preferable for 
outsourcing.

•	 Use of natural language and abstractions for require-
ment specification ("Supporting Natural Language Desid-
erata”): Cloud plans are characterized by cutting-edge 
technologies, and non-technically skilled data owners 
may find difficult to identify and understand plan fea-
tures, and express their needs based on these features. For 
example, SLAs can include terms, such as ‘API Error’, 
‘Data Plane’, and ‘Load Balancer’ [18], with which own-
ers without a technical background may not be familiar, 
and different cloud providers may adopt different terms 
to refer to a same feature, further complicating the sce-
nario for non-skilled owners. A key challenge is then 
supporting all data owners in the specification of their 
needs, regardless of their technical/scientific background. 
It is therefore necessary to bridge the gap between the 
technicalities characterizing cloud plans and the data 
owners’ expertise, supporting an easy formulation of 
arbitrary requirements without requiring deep technical 
knowledge. A promising direction is to permit owners 
to formulate their requirements using natural language 
expressions and high-level and easily accessible abstrac-
tions, so that it can be possible, for example, to require a 
plan that guarantees ‘high security’, delegating to some 

automated reasoning the mapping of such high-level 
requirement to the actual low-level characteristics of the 
plans.

•	 Specification of requirements guiding multicloud allo-
cations (“Supporting Requirements in Multicloud Sce-
narios"): The cloud is a dynamic and evolving scenario, 
with new paradigms that can be beneficial to advanced 
applications. The multicloud paradigm concerns adopt-
ing more than one cloud plan at the same time to perform 
different tasks or to allocate data with different protection 
requirements. This permits to leverage multiple services 
(possibly offered by different providers) with benefits in 
terms of, for example, not being dependent on a single 
plan/provider, and leveraging, for each specific data col-
lection, the strengths of the specific adopted plan. The 
multicloud paradigm is gaining high momentum at the 
time of writing, as testified by numbers and figures that 
show the vast majority of mid-to-large companies will 
have adopted a multicloud strategy by 2023.7 A down-
side is clearly in terms of additional management over-
head. Adopting a set of cloud plans requires establishing 
and maintaining different contracts and interacting with 
their providers, and requires the payment of the economic 
costs charged by the providers. A key challenge in this 
regard is connected to the specification and enforcement 
of requirements, encompassing both requirements mode-
ling the protection needs of the different data collections, 
and global requirements governing the management of 
the overall data allocation (e.g., to avoid excessive data 
fragmentation among plans), while maintaining the over-
all economic costs under control and possibly minimized.

In the following sections, we discuss research directions 
under investigation and state-of-the-art solutions address-
ing the challenges illustrated above. When clear from the 
context, since owners of data moved to the cloud are users 
for the selected cloud plans, we use the terms owners and 
users interchangeably.

Modeling Cloud Plans

A first key challenge connected to supporting users in the 
cloud market concerns characterizing the providers and 
the plans they offer, in terms of their features and guaran-
tees, so to enable reasoning about them. This is essential 
for permitting users to compare the available plans, pos-
sibly assessing their respondence to specific requirements 
(“Supporting Requirements and Preferences”, “Supporting 

7  https://​www.​forbes.​com/​sites/​berna​rdmarr/​2022/​10/​17/​the-​top-5-​
cloud-​compu​ting-​trends-​in-​2023/.
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Natural Language Desiderata”, and “Supporting Require-
ments in Multicloud Scenarios”). Acknowledging the cen-
trality of the problem of supporting users in selecting the 
cloud plans that best suit their needs, different providers, 
companies and organizations offer support in suggesting 
prospective users some factors that should be taken into 
consideration when assessing candidates in the cloud mar-
ket. Different subjects can however suggest different fac-
tors: for example, while Microsoft suggests to consider 
aspects related to business health and processes, adminis-
tration support, technical capabilities and processes, and 
security practices4 the Cloud Industry Forum suggests 
aspects related to certifications and standards, technolo-
gies and service roadmap, data security, data governance 
and business policies, service dependencies and partner-
ships, contracts, commercials and SLAs, reliability and 
performance, migration support, vendor lock in and exit 
planning, and business health and company profile.5 In 
principle, any feature that characterizes a cloud plan can 
be used to model it, ranging from configuration param-
eters declared in the Service Level Agreements (SLAs) 
of plans, to arbitrary metadata and features of interest. A 
broad characterization of these characteristics and of how 
they can be derived is as follows.

•	 Performance and costs: A natural approach for char-
acterizing cloud plans is based on their (promised) 
performance and charged costs. A possibility in this 
direction is to measure the elastic computing, persis-
tent storage, and networking services offered by a plan 
and model their impact on the performance of the out-
sourced customer applications (e.g., [14]).

•	 Objective assessments: A second approach for charac-
terizing cloud plans consists in leveraging standards 
and/or pre-defined metrics to ‘quantify’ a set of features 
of interest, such as accountability, agility, assurance of 
service, cost, performance, security and privacy, and 
usability (e.g., [1, 10]). In the context of cybersecu-
rity, the Cloud Controls Matrix (CCM) together with its 
associated Consensus Assessment Initiative Question-
naire (CAIQ) by the Cloud Security Alliance (CSA) is 
a control framework (now at its fourth version) provid-

ing security concepts and principles to cloud providers, 
permitting users to assess the security risks associated 
with a provider [4].

•	 Subjective assessments: A third approach concerns the 
development of user-centric approaches, taking into con-
sideration subjective assessments and past experiences 
of users (e.g.,  [9, 11, 16, 20]) as well as QoS values 
observed at the user side rather than those promised by 
the providers (e.g., [22]).

All the above approaches can be used to define proper-
ties of cloud plans. A cloud plan can then be described 
in terms of the different values it assumes for the differ-
ent properties of interest (which we denote, for simplicity, 
as attributes). More precisely, a plan P can be formally 
represented as a tuple containing the values assumed by 
the attributes for P. Figure 1 illustrates an example of 
five cloud plans P1,… ,P5 , defined over a set of attrib-
utes modeling: the provider owning and offering the plan 
( �������� ); the geographical location of the servers of 
the plan ( �������� ); the encryption scheme adopted in 
the plan for protecting data at rest ( ���������� ); the secu-
rity certification awarded to the plan ( ������������� ); 
the frequency with which security audits are executed 
( ����� ); the maximum outbound bandwidth for the plan 
( ��������� ); the maximum throughput for the plan 
( ���������� ). Clearly, not all attributes must necessar-
ily assume a specific value for each plan: for example, an 
attribute may not be relevant for a specific plan (e.g., the 
encryption scheme adopted for protecting data at rest when 
considering plans that only offer computational power) or 
may not be available. Special value ‘−’ can be adopted 
in the plan specification to model the fact that, for a spe-
cific attribute, the value is unavailable/not relevant. As an 
example, plans P 3 and P 4 in Fig. 1 do not have a known 
value for attribute ����� , meaning that the frequency of 
security auditing is unknown for them.

The characterization illustrated above can then be adopted 
to address different problems, ranging from resource allo-
cation in the cloud (e.g., [12, 17, 21]), to the definition of 
approaches, possibly based on multicriteria decision making, 
for combining and evaluating user requirements (e.g., [3, 
13]). Such a general plan modeling can support users in the 
formulation of both hard and soft requirements modeling 
their needs, possibly with the use of natural language expres-
sions, also in multicloud scenarios. It also naturally fits sce-
narios characterized by the presence of a broker in charge of 
collecting user requirements, evaluating them, and assess-
ing the degrees with which the different plans respond to 
them [19]. In the next sections, we illustrate in more details 
such problems, along with possible solutions.

Fig. 1   Abstract representation of five cloud plans
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Supporting Requirements and Preferences

A cloud plan can be more or less suitable for a user depend-
ing on how well it responds to the specific requirements of 
the user and of her data. A key challenge in supporting users 
to move their data to the cloud concerns therefore granting 
users the possibility of formulating expressive and arbitrary 
requirements, modeling their needs and preferences, in an 
easy and friendly—yet unambiguous—way. In this section, 
we illustrate a possible approach for supporting users in for-
mulating arbitrary requirements and preferences through a 
flexible and expressive, yet easy to use, specification lan-
guage [7]. We illustrate the rationale and main building 
blocks (“Rationale and Building Blocks”), and how require-
ments and preferences can be specified (“Specification”) and 
assessed (“Assessment”).

Rationale and Building Blocks

The two main concepts of requirements and preferences 
define hard and soft constraints that make, respectively, a 
plan acceptable (i.e., satisfying the hard requirements) and 
preferable (according to the degree with which it satisfies 
the soft preferences). The key idea behind the definition of 
such requirements and preferences is the specification of 
conditions over the values of the attributes characterizing 
the plans, identifying values that are acceptable or unaccep-
table (requirements) and that are to be preferred over other 
ones (preferences). As will be illustrated in the remainder 
of this section, preferences can also take into consideration 
the relative importance that the user assigns to the different 
attributes.

As for the specification of requirements, the main build-
ing block –upon which an easy yet flexible language (“Speci-
fication”) is built– is the concept of attribute term. An attrib-
ute term t  over an attribute a of a cloud plan permits to 
evaluate whether the value assumed by a for a plan belongs 
(or does not belong) to a given set of values. More precisely, 
a positive attribute term t  of the form ‘ a in {vi,… , vj} ’ is 
satisfied if a has a value in {vi,… , vj} , while a negative term 
t of the form ‘ a not in {vi,… , vj} ’ is satisfied if a does not 

have a value in {vi,… , vj} . For example, with reference to 
the attributes in Fig. 1, positive term ‘ �������� in {Alpha, 
Beta, Gamma} ’ is satisfied for a plan if its provider is Alpha, 
Beta, or Gamma. Negative term ‘ ���������� not in {DES} ’ 
is satisfied for a plan if it does not adopt DES as an encryp-
tion scheme. In the following, for readability, we use nota-
tion a(vi,… , vj) ( ¬ a(vi,… , vj) , respectively) as a shorthand 
for referring to positive (negative, respectively) attribute 
term a  in {vi,… , vj} ( a  not in {vi,… , vj} , respectively). 
Given an attribute a , its acceptable values are those that 
satisfy the hard requirements specified by the user.

As for the specification of preferences, the main build-
ing block is the concept of preferable value. Given the 
acceptable values for an attribute a , the user can specify 
her preferences that make one value preferable to another. 
For example, considering the values assumed by the plans 
in Fig. 1 for attribute �������� , assume that values Alpha, 
Beta, and Gamma satisfy all the requirements specified by 
the user. On these values, the user can specify preferences 
modeling which values are preferable to which other values, 
for example stating that Alpha is preferable to Beta, which is 
in turn preferable to Gamma (“Specification”).

Specification

We now illustrate how requirements and preferences can be 
specified by users.

Requirements: Requirements can be distinguished in 
base and complex requirements. A base requirement cor-
responds to an attribute term, be it positive ( a in {vi,… , vj} ) 
or negative ( a not in {vi,… , vj} ). Complex requirements, 
on the other hand, permit to capture and model more articu-
late needs, such as alternatives or conditional requirements 
among attribute terms. More precisely, the specification lan-
guage permits to express the following requirements.

•	 A base requirement is of the form r = t , with t an attrib-
ute term. It restricts the values that can be assumed, 
for the attribute over which t is defined, by a plan to be 
considered acceptable. Requirements r1 and r2 in Fig. 2 

Fig. 2   An example of a set of requirements for the plans in Fig. 1
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are two examples of base requirements for the plans in 
Fig. 1, stating that the plans considered acceptable are 
only plans with provider Alpha, Beta, or Gamma ( r1 ), 
and which guarantee data encryption with a scheme that 
is different from DES, and has been declared (as modeled 
by the inclusion of the special value ‘−’ in the negative 
term in r2).

•	 An ANY requirement is of the form r = ANY({t1,… , tn}) , 
with {t1,… , tn} a set of attribute terms. It models alterna-
tives among attribute terms, and requires that at least one 
among t1,… , tn be satisfied by a plan to be considered 
acceptable. For example, requirement r3 in Fig. 2 requires 
plans to have a security certification certA, certB, or 
certC, or to be audited every 6 or 12 months.

•	 An ALL requirement is of the form r = ALL({t1,… , tn}) , 
with {t1,… , tn} a set of attribute terms. It requires that 
all the attribute terms t1,… , tn be satisfied by a plan to 
be considered acceptable. For example, requirement r4 in 
Fig. 2 requires plans to ensure a (specified) throughput 
different from 5, a bandwidth equal to 15, 20, or 25, and 
to specify an explicit value for the security certification 
and for the server location.

•	 An IF-THEN requirement is of the form if all({t1,… , tk}

) then any({tk+1,… , tn} ), with {t1,… , tn} a set of attrib-
ute terms. It models conditional requirements, and 
requires that if all attribute terms t1,… , tk appearing in 
the premise are satisfied by a plan, then—to be consid-
ered acceptable—at least one among terms tk+1,… , tn 
in the consequence must also be satisfied. For example, 
requirement r5 in Fig. 2 requires plans that encrypt data 
with 3DES to have a security certification certA, or to be 
audited every 6 months.

•	 A FORBIDDEN requirement is of the form forbid-
den({t1,… , tn} ), with {t1,… , tn} a set of attribute terms. 
It models forbidden configurations and requires that at 
least one among t1,… , tn be not satisfied by a plan to 
be considered acceptable. For example, requirement r6 
in Fig. 2 requires plans not to have a security certifi-
cation certC and an unspecified value for the auditing 
frequency.

•	 An AT_LEAST requirement is of the form at_
least(m, {t1,… , tn} ), with {t1,… , tn} a set of attribute 
terms, and m ≤ n an integer value. It requires that at least 
m of the attribute terms appearing in the requirement 
be satisfied by a plan to be considered acceptable. For 
example, requirement r7 in Fig. 2 requires plans to satisfy 
at least two among (i) having servers located in locA 
or locB; (ii) encrypting data with AES; and (iii) being 
audited every 6 or 12 months.

•	 An AT_MOST requirement is of the form at_
most(m, {t1,… , tn} ), with {t1,… , tn} a set of attribute 
terms, and m ≤ n an integer value. Similarly to AT_LEAST 
requirements, it requires that at most m of the attribute 

terms appearing in the requirement be satisfied by a plan 
to be considered acceptable. For example, requirement r8 
in Fig. 2 requires plans to satisfy at most two among (i) 
not having a specified value for the auditing frequency; 
(ii) having servers located in locC; and (iii) being offered 
by provider Gamma.

We note that the different forms of requirements sup-
ported by the language permit a user to formulate her needs 
in different ways. For example, an all requirement over a 
set of n attribute terms can also be formulated as a set of n 
base requirements, one for each attribute term in the all 
requirement. To illustrate, requirement r4 in Fig. 2 could also 
have been expressed with a set of four base requirements 
restricting the values assumed by attributes ���������� , 
��������� , ������������� , and �������� as per the cor-
responding attribute terms in r4 . An at_most(m, (t1,… , tn) ) 
requirement such that m = n corresponds to an ALL(t1,… , tn) 
requirement covering all the involved attribute terms. A base 
requirement over an attribute term t  may be formulated as 
an all ( t )  requirement, or even as an any ( t )  requirement. 
The possibility to formulate requirements in different man-
ners demonstrates that the language provides for great flex-
ibility and user-friendliness, permitting users to capture and 
formulate their needs freely, in what they feel is the most 
convenient way.

Preferences: Preferences can be specified on attribute val-
ues (modeling a preference relationship among values), and 
on attribute themselves (modeling the relative importance 
given to the attributes).

•	 Preferences on attribute values specify that some values 
are preferable to other ones (clearly, preferences apply 
only to acceptable attribute values). The specification 
of such preferences can rely on different approaches. 
An intuitive and user-friendly approach is based on the 
definition of a total order relationship among values 
(or, more generally, among sets of equally acceptable 
values). A graphical representation (e.g., as a hierarchy 
where values in higher positions are preferable to values 
in lower positions) can further help users in visualiz-
ing and specifying these preferences. Figure 3 illustrates 
an example of hierarchies over attributes representing 
the preferences for the attributes of the plans in Fig. 1. 
For example, the preferences specified for the values of 
attribute �������� state that provider Alpha is preferable 
to Beta, in turn preferable to Gamma. Note that these 
are the acceptable values for �������� (i.e., they sat-
isfy the requirements in Fig. 2). Note also that attribute 
����� is the only attribute for which special value ‘−’ is 
in the preference hierarchy, since it is the only attribute 
for which the requirements in Fig. 2 do not exclude this 
possibility (for every other attribute a , this value is ruled 
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out by either a negative attribute term ¬a(−) or by a posi-
tive attribute term a(v1,… , vk) with − ∉ {v1,… , vk}).

•	 Preferences on attributes specify the perceived relative 
importance of different attributes. Intuitively, this can be 
specified by assigning weights to the different attributes, 
with higher weights corresponding to higher importance 
perceived by the user. For example, a user considering 
the throughput more important than other properties 
of cloud plans may assign a higher weight to attribute 
���������� , and lower weights to the remaining attrib-
utes.

Assessment

Based on the evaluation of the requirements specified by the 
user, a plan can be classified in acceptable/unacceptable, 
depending on whether the plan satisfies such requirements. 
Acceptable plans can then be ranked according to the extent 
to which they satisfy user preferences.

Acceptable plans: As illustrated in “Rationale and Build-
ing Blocks”, requirements model the conditions that a plan 
must satisfy to be considered acceptable. In particular, 
given a set of requirements and a set of available plans, 
only those plans that satisfy all the requirements formu-
lated by the user can be considered acceptable to the user. 
To this end, a Boolean interpretation of the requirements 
and of the attribute values that characterize cloud plans 
can be adopted, with the added benefit that such a Boolean 
interpretation makes it possible to identify whether there 
are conflicting requirements that would inevitably result in 
an empty set of acceptable plans. In a nutshell, the attrib-
ute terms appearing in the set of requirements are inter-
preted as Boolean variables. Each plan is interpreted as a 
truth assignment to attribute terms: given a term t  over an 
attribute a , a plan evaluates 1 for t  if the value it assumes 
for a satisfies t  . For example, consider the plans in Fig. 1, 
and an attribute term t  = ��������(Alpha,Beta,Gamma). 
Term t evaluates to 1 according to plan P1 , since the value 
(Alpha) assumed by �������� satisfies t . On the contrary, 
t evaluates to 0 according to plan P4 , since value Delta does 

not satisfy t . Requirements are then interpreted as Boolean 
formulas over the Boolean variables modeling attribute 
terms, and a plan satisfies a requirement if it satisfies the 
Boolean formula modeling it. The Boolean interpretation 
of the different kinds of requirements clearly depends on 
their formulation [7]. For example, the Boolean interpreta-
tion of requirement any({t1,… , t

n
} ) corresponds to disjunc-

tion b1 ∨⋯ ∨ bn , with bi the Boolean variable modeling ti . 
Consider requirement r3 in Fig. 2, which includes attribute 
terms �������������(certA,certB,certC) and �����(6 M, 
12 M), and plan P3 in Fig. 1. The truth value assigned by P3 
to �������������(certA,certB,certC) is 1, while the value 
assigned to �����(6 M,12 M) is 0 as the plan does not guar-
antee a security audit every 6 or 12 months. Since 1 ∨ 0 = 1 , 
r3 is satisfied by P3 . Given a set of requirements, a plan is 
acceptable if it satisfies all Boolean formulas resulting from 
the translation of the requirements. With reference to the 
plans in Fig. 1 and the requirements in Fig. 2, plans P 1 , P2 , 
and P3 are acceptable, while P4 and P5 are not acceptable as 
they do not satisfy, respectively, requirements r1 , r2 , r4 , r6 , 
and r7 , and requirements r1 and r5.

Preferred plans: Once acceptable plans have been identi-
fied, they can be ranked according to the preferences set by 
the user. Different solutions can be adopted to rank plans. 
A first approach is based on the classical notion of Pareto 
dominance, according to which a plan Pa is ranked higher 
than (i.e., it is preferable to) plan Pb if, for each attribute 
characterizing them, Pa has a value that is preferred or 
equal to that of Pb and, for at least one attribute, a value 
that is preferred to that of Pb . Considering the acceptable 
plans P1 , P2 and P3 in Fig. 1, for example, P1 is preferable 
to P3 (they assume equal values for attributes �������� 
and ���������� , and for all other attributes the values in 
P1 are preferable to those in P3 ). Similarly, P2 is prefer-
able to P3 (they assume the same values for ���������� , 
������������� , and ���������� , and for all other attrib-
utes the values in P2 are preferable to those in P3 ). However, 
nothing can be said for the relationship between P1 and 
P2 : for example, for �������� the value in P1 is preferable 
to that in P2 but, on the contrary, for �������� the value 

Fig. 3   An example of preferences on attribute values for the plans in Fig. 1
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in P2 is preferable to that in P1 . Adopting a Pareto-based 
approach, therefore, plans P1 and P2 are incomparable. Fig-
ure 4a illustrates the Pareto-based ranking for the acceptable 
plans in Fig. 1.

A different approach, which has the advantage of ena-
bling a total ranking among plans (and can also accom-
modate the preferences on the attributes), is based on the 
computation of a distance between each acceptable plan 
and an ideal plan. The ideal plan is a (possibly non-exist-
ing) plan which assumes, for all attributes, the preferred 
value. Intuitively, the closer a plan is to such ideal plan, 
the more it satisfies user preferences. The idea is then to 
consider plans as points in a m-dimensional space, with 
m the number of attributes. The coordinate for an attrib-
ute in a plan is obtained by associating the value of the 
attribute with a number (score) reflecting its position in 
the preference hierarchy. With reference to the preferences 
of our example, Fig. 3 reports, for each attribute a and 
each value v , the score associated with v , computed as 
follows: given k the number of partitions in which accept-
able values are grouped (i.e., the number of elements in 
the hierarchy representing the preferences for the values 
of a ), and starting from the least preferred value for which 
the score is 1/k, at each step in the hierarchy the score of 
the associated values increases of 1/k. Clearly, the top ele-
ment will have score 1. For example, attribute ���������� 
has k = 2 partitions (one for AES and one for 3DES). The 
score for 3DES, being the least preferred value, is 1/2, and 
the score for AES is therefore 1∕2 + 1∕2 = 1 . Given a plan 
P, its coordinates are then the scores of its attribute values 
in the preference hierarchies. For example, consider the 
preferences in Fig. 3: plan P1 in Fig. 1 will be represented 

as vector [1 2/3 1 1 1 1 1]. Indeed, the ideal plan will be 
represented by a point having value 1 for each coordinate 
(i.e., for each attribute). With this spatial representation of 
plans, the distance between a plan and the ideal plan can 
be simply assessed through the evaluation of the Euclid-
ean distance between the points representing them. The 
Euclidean distance between two points (one representing 
the plan under assessment with the coordinates illustrated 
above, and the other representing the ideal plan with coor-
dinate 1 for each attribute) is simply given by the square 
root of the sums of the squares of the difference between 
the coordinates, coordinate-wise (i.e., attribute-wise). To 
illustrate, consider—for simplicity—two points with coor-
dinates [1  1  1] and [1  2/3  3/4]: their Euclidean distance 
is simply computed as 

√

(1 − 1)2 + (1 − 2∕3)2 + (1 − 3∕4)

=
√

(0)2 + (1∕3)2 + (1∕4)2 = 0.42 . Figure 4 graphically 
illustrates the ranking induced over the acceptable plans 
of our running example (where each plan reports, besides 
its attribute values, also the related scores, modeling the 
coordinates in the space), where the Euclidean distance 
from the ideal plan is reported in boldface on the right-
hand side of each plan.

It is interesting to note that such distance-based ranking 
can also easily enforce preferences on attributes, by simply 
considering the weights associated with attributes to scale 
the corresponding dimensions (i.e., weight the correspond-
ing coordinates) accordingly.

Fig. 4   Rankings of plans P1 , P2 , and P3 in Fig. 1 according to the preferences in Fig. 3



SN Computer Science           (2023) 4:340 	 Page 9 of 16    340 

SN Computer Science

Supporting Natural Language Desiderata

The approach illustrated in “Supporting Requirements and 
Preferences”, while effectively supporting users in specify-
ing arbitrary requirements and preferences, requires users to 
reason—and hence understand—low-level parameters char-
acterizing cloud plans, for identifying acceptable values to 
be used in the specification language. In this section, we 
illustrate a possible approach to support users in the adop-
tion of natural language expressions and high-level concepts 
in the formulation of their desiderata [5]. We discuss the 
rationale and main building blocks (“Rationale and Building 
Blocks”), and how desiderata can be specified (“Specifica-
tion”) and assessed (“Assessment”).

Rationale and Building Blocks

To support users in easily formulating their desiderata, 
a possible approach builds on two main building blocks: 
abstract parameters and abstract concepts.

•	 Abstract parameters: Abstract parameters model the 
attributes that characterize cloud plans (e.g., those on 
which the requirements and preferences illustrated in 
“Supporting Requirements and Preferences” are formu-
lated) and permit to formulate requirements using natural 
language expressions (i.e., linguistic labels such as high 
or low). To illustrate, consider the plans and attributes in 
Fig. 1: since attribute ��������� is used to model and 
characterize plans, an abstract parameter for ��������� 
will be defined. Rather than specifying requirements 
directly on the ��������� (crisp) values that make a plan 
acceptable (or more or less preferable) as illustrated in 
“Supporting Requirements and Preferences”, its abstract 
interpretation permits users to adopt in their requirements 
natural language expressions, stating, for example, that 
they are interested in plans with high ��������� . In 
this way, users can more easily specify requirements on 
the characteristics of the different plans, without using 
crisp values of the attributes modeling them. Abstract 
parameters can then be used by users whenever they are 

unsure about the specific crisp value they are requesting 
for an attribute, but are aware of the attribute semantics 
and are able to linguistically specify, with periphrases or 
adjectives, a requirement for it.

•	 Abstract concepts: Abstract parameters already provide 
user-friendliness in terms of the possibility of adopting 
natural language expressions, but map directly to the spe-
cific attributes of plans and hence still require a certain 
degree of understanding. Abstract concepts represent 
higher-level abstractions of (sets of) attributes, with a 
semantics that can be more easily understandable also to 
users who may not have sufficient technical background 
to fully understand the semantics of low-level attributes. 
����������� is an example of an abstract concept, rep-
resenting an intuitive high-level abstraction of a series of 
attributes (e.g., ��������� and ���������� in our run-
ning example). Like for abstract parameters, also abstract 
concepts can be used to specify requirements with natural 
language expressions. For example, users can require a 
plan that exhibits high �����������.

Both abstract parameters and concepts require the definition 
of a set of linguistic labels, which are used in requirement 
specification (“Specification”) and evaluation (“Assess-
ment”). Such linguistic labels are associated with abstract 
parameters and concepts, and can be arbitrarily defined, with 
the aid of domain experts, possibly by the users themselves 
to quantify parameters and concepts.

The relationship existing between abstract param-
eters and abstract concepts is modeled through a set 
of implication rules, which govern the implications 
between a combination of linguistic values for a set of 
abstract parameters and a linguistic value for an abstract 
concept. Intuitively, each label defined for an abstract 
concept should be associated with an implication rule, 
providing for a complete and clear interpretation of 
abstract concepts. To illustrate, consider abstract concept 
����������� as an abstraction over abstract parameters 
���������� and ��������� , and assume it is associ-
ated with three linguistic labels low, med and high. Fig-
ure 5a illustrates an example of implication rules defining 
abstract concept ����������� . These rules state that: (i) 

Fig. 5   An example of implica-
tion rules for the definition of 
abstract concept ����������� 
(a) and of user desiderata (b)
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if a plan guarantees high bandwidth and high through-
put, then its performance is high; (ii) if a plan guarantees 
medium bandwidth, then its performance is medium; and 
(iii) if a plan guarantees low bandwidth or low through-
put, then its performance is low.

Specification

Abstract parameters and abstract concepts can be used by 
users, as a sort of easy-to-use vocabulary, for formulating 
their requirements. The idea is to support users in specify-
ing their degree of satisfaction given by different combina-
tions of conditions on abstract parameters and/or abstract 
concepts. The intuition is to permit users to specify a set 
of desiderata, stating—for example—that a plan providing 
‘high’ �������� and ‘high’ ����������� is highly satis-
factory, while a plan providing ‘low’ �������� or ‘low’ 
����������� is less satisfactory. In other words, the spec-
ification of user desiderata corresponds to a set of rules 
that specify how a certain combination of linguistic values 
for abstract parameters and/or abstract concepts is satisfac-
tory. More concretely, user desiderata can be formulated 
as a set of if-then rules, similarly to the implication rules 
governing the definition of abstract concepts, with expres-
sions over abstract parameters and abstract concepts (and 
their linguistic labels) in the premise, and a level (again 
expressed with a linguistic label) for an ad hoc variable 
������������ in the consequence, modeling the overall 
user satisfaction. Figure 5b illustrates an example of user 
desiderata, defining plans with high performance as highly 

satisfactory, plans with a medium frequency of security 
auditing (with ����� an abstract parameter) as satisfactory 
to a medium extent, and plans with low performance or 
low security (with �������� an abstract concept similarly 
to ����������� ) as satisfactory to a low extent.

Assessment

We now illustrate how linguistic values can be mapped to 
the attribute values characterizing cloud plans, and how the 
abstract concepts and the user desiderata can be quantified 
and assessed.

From crisp values to linguistic values: Considering that 
desiderata are expressed with linguistic values, and possibly 
on abstract concepts, it is necessary to reason on how such 
desiderata can map to the actual (crisp) parameters charac-
terizing cloud plans. To map linguistic labels to the actual 
crisp parameters, an intuitive approach could associate pre-
defined sets of crisp values to the different linguistic labels. 
For example, assume that the domain of crisp values that can 
be assumed by parameter ��������� is the continuous inter-
val [0, 25]Gb/s , and that two labels small and high are to be 
mapped to it. The domain could be partitioned in two disjoint 
intervals, with one label each. For example, small could be 
associated with values in the [0, 10)Gb/s interval, and high 
with values in the [10, 25]Gb/s interval. This approach would 
certainly do, but it would create sharp boundaries between 
pairs of adjacent values that are associated to different 
labels. With reference to the ��������� domain partition-
ing, a sharp boundary is created around value 10 Gb/s: value 
9.999Gb/s would be considered small, while the—almost 
equal—value 10Gb/s would be considered large.

A less strict interpretation where the same crisp value 
could be mapped, with different degrees, to different lin-
guistic labels would be more in line with the uncertainty 
and imprecision of the natural language expressions used 
in desiderata. To this end, a fuzzy-based modeling can be 
employed, interpreting abstract parameters and concepts as 
fuzzy variables, and the linguistic labels (adopted in users’ 
desiderata as well as in implication rules) as fuzzy sets. In a 
nutshell, a fuzzy variable is a variable that can assume crisp 
as well as linguistic values. A fuzzy set is a set in which, in 
contrast to the classical set theory where an element either 
belongs or does not belong to a set, elements have degree of 
memberships. The degree � with which an element belongs 
to a fuzzy set is regulated by the definition of a member-
ship function. Membership functions can be defined with 
different shapes (e.g., triangular, trapezoidal, sigmoidal) 
and permit a gradual assessment of the membership of val-
ues to fuzzy sets. Assuming that the labels (i.e., the fuzzy 
sets) that can be associated with ��������� are small and 
large, Fig. 6a illustrates an example of two membership 
functions regulating the membership of crisp ��������� 

Fig. 6   An example of membership functions for abstract parameter 
��������� (a), abstract concept ����������� (b), and the ad-hoc var-
iable ������������ (c). The degree � of membership is on the y-axis
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values to the fuzzy sets representing linguistic labels small 
and large. The functions operate over the domains of crisp 
values that can be assumed by ��������� , and dictate how 
a crisp value ‘belongs’ to the set: in other words, they permit 
to assess how much a crisp value is ‘representative’ of the 
linguistic label interpreted as the fuzzy set. It is interesting to 
note that the same value can belong, possibly with different 
membership degrees, to different fuzzy sets (and hence be 
representative, up to different degrees, of different linguistic 
labels). For instance, consider a crisp ��������� value v 
and the membership functions in Fig. 6a: the more v grows, 
the more it belongs (i.e., the higher its degree � of member-
ship) to the fuzzy set large, and the less it belongs (i.e., the 
lower its degree � of membership) to the fuzzy set small.

Membership functions then establish a correspondence 
between the crisp values of the low-level attributes and 
the linguistic labels of the corresponding abstract param-
eters. The same approach can also be used to reason on the 
linguistic values assumed by abstract concepts and by the 
ad-hoc variable ������������ . Being however abstract 
concepts and ������������ arbitrary abstractions, they 
do not have a naturally associated domain of crisp values, 
which is however needed to quantify how much a plan is 
compliant with such abstractions (e.g., how much a plan 
guarantees ����������� and how much it is satisfactory). 
Any domain of crisp values could be defined, such as in the 
continuous interval [0, 1]. Figure 6b–c illustrate examples of 
membership functions for the abstract concept ����������� 
and for the ad hoc variable ������������ . Note that the 
domains for the membership functions have been defined as 
[−0.5, 1.5] to guarantee that the centroid of any area defined 
by a membership degree over the different membership func-
tions covers the whole interval [0, 1].

Abstract concepts and desiderata quantification: Fuzzy 
logic, besides providing a means for interpreting linguistic 
labels, permits also the evaluation of how much a cloud plan 
satisfies user desiderata, using fuzzy inferences. A fuzzy 
inference takes as input a set of crisp values, interprets such 
values with a fuzzy modeling as illustrated above (i.e., evalu-
ating them against membership functions characterizing the 
fuzzy sets representing the linguistic labels), evaluates a set 
of if–then rules based on such fuzzy modeling obtaining 
a (fuzzy) result, transforms such fuzzy result into a crisp 
value, and returns it. Our user desiderata can then be fully 
evaluated with fuzzy inferences, with a two-layers approach.

•	 The first layer of inferences is in charge of ‘quantifying’ 
values for the abstract concepts used in the desiderata. 
It does so by mapping the crisp values of the attributes 
characterizing cloud plans to their associated abstract 
concepts appearing in the desiderata. The quantification 
of such concepts leverages the implication rules govern-
ing their definition.

•	 The second layer of inferences is in charge of ‘quanti-
fying’ the ������������ . It reasons over the abstract 
parameters and abstract concepts used in the desiderata 
and, for the concepts, it leverages the quantification 
returned by the first layer.

The first layer adopts a set of Fuzzy Inference Systems 
(FISs), with a FIS for each abstract concept appearing in 
the desiderata (to quantify it). The second layer adopts a 
FIS, quantifying user’s satisfaction based on the evaluation 
of her desiderata. Figure 7 graphically illustrates such an 
architecture.To illustrate the working of the fuzzy infer-
ence process, consider the first desideratum in Fig.  5b 
“  ⟨����������� = ����⟩ ⟹ ⟨𝚜𝚊𝚝𝚒𝚜𝚏𝚊𝚌𝚝𝚒𝚘𝚗 = ����⟩ ” . 
According to the inference rules in Fig. 5a, abstract con-
cept ����������� is governed based on abstract parameters 
���������� and ��������� . Plans (e.g., see Fig. 1) are 
characterized by the values they assume for such attributes, 
and not directly by their ����������� (abstract concept), 
which should then be quantified. A first inference process 
to quantify the performance of plans would then operate as 
follows: (i) the crisp values for ���������� and ��������� 
(e.g., Fig. 1) are taken as input; (ii) the inference rules defin-
ing concept ����������� (e.g., Fig. 5a) are translated into 
if-then rules and applied, as rulebase, to the (fuzzified) 
input values; (iii) a quantification of ����������� based 
on ��������� and ���������� is returned. With such 
assessment for ����������� , a second inference process 
would then be executed to quantify the satisfaction for the 
user formulating the desiderata. This inference process oper-
ates like the first one, with the difference that it takes as 
input the quantification of ����������� (and of the other 
abstract concepts appearing in the desiderata) and operates 

Fig. 7   Two-layers architecture for evaluating user desiderata
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on it (them) considering, as rulebase, the user’s desiderata, 
translated in if-then rules. If the desiderata include (also) 
conditions on abstract parameters (e.g., the second rule 
in Fig. 5b, operating on abstract parameter ����� ), these 
are directly evaluated in the second layer since, for these, 
no abstract concept quantification is needed from the first 
layer. The second layer reasons on a rulebase including the 
desiderata, and returns a quantification for ������������ , 
hence assessing the degree with which a plan satisfies the 
user desiderata.

Supporting Requirements in Multicloud 
Scenarios

The approaches illustrated in the previous sections permit 
to empower users to specify requirements and preferences, 
which are then evaluated against a set of cloud plans to 
assess how well each plan responds to such needs. When 
resorting to the cloud for the storage and management of 
large and heterogeneous data collections, the scenario can 
become more complicated, as different datasets may have 
different (and even possibly contrasting) needs, which 
may be difficult—if at all possible—to be formulated as a 
single set of requirements/preferences. The selection of a 
single cloud plan may, in these scenarios, not be an optimal 
strategy: a single plan satisfying the diverse requirements 
of all datasets may not exist, or may be too costly (e.g., 
fulfilling the requirements of the most critical dataset(s)). 
In these scenarios, a more promising solution could be 
that of selecting a set of cloud plans, adopting the multi-
cloud paradigm: the joint adoption of multiple cloud plans/
services to optimize the satisfaction of a set of disparate 
needs (“Challenges in Outsourcing to the Cloud”). A key 
requirement in these scenarios is to empower users who 
wish to outsource a heterogeneous data collection with the 
possibility of specifying arbitrary requirements that can 
guide the allocation of the different datasets to different 
plans. Such an approach should be carefully designed, as 
the adoption of multiple plans can cause an increase in 
the management overhead and in the economic costs to be 
sustained for establishing multiple contracts with different 
providers. Given a collection of datasets and a set of can-
didate cloud plans, the goal is therefore that of finding an 
optimal allocation of datasets to (a subset of) plans, so to 
ensure that the specific needs of each dataset be properly 
satisfied by the plan selected for its outsourcing, trying to 
balance the satisfaction of requirements and the economic 
costs entailed by outsourcing.

In this section, we illustrate a possible approach for sup-
porting owners of collections of a datasets, with diverse 
and possibly contrasting requirements for different data-
sets, to determine an optimal allocation of such datasets to 

cloud plans [6]. We illustrate the rationale and main build-
ing blocks (“Rationale and Building Blocks”), and how 
requirements can be specified (“Specification”) and assessed 
(“Assessment”).

Rationale and Building Blocks

Considering the peculiarities of the problem of allocating 
different datasets to a set of plans, users should be supported 
in the specification (and enforcement) of two main kinds of 
requirements:

•	 Protection requirements, which permit to easily model 
the specific protection needs of the different datasets in 
the collection to be outsourced; and

•	 Global requirements, which are not related to single data-
sets but model additional restrictions (e.g., on the number 
of plans to be adopted in the allocation) that users may wish 
to impose on how the datasets are allocated to the plans.

In this section, we illustrate the main building blocks on 
which protection requirements for datasets can be formu-
lated. Global requirements, being more immediate in their 
formulation, will be covered in “Specification”.

A possible approach for supporting users in formulating 
the protection requirements of their datasets builds on the 
concept of security property, a high-level concept that can 
be used to easily capture the protection needs of the differ-
ent datasets. For simplicity, classical properties can include 
Confidentiality, Integrity, and Availability, but different 
properties can also be considered. Such properties can be 
associated with domains of labels, used to ‘quantify’ them. 
To illustrate, consider two properties Confidentiality and 
Availability, where Confidentiality is associated with two 
labels modeling high confidentiality (HC) and low confi-
dentiality (LC) and, similarly, Availability is associated with 
two labels modeling high availability (HA) and low avail-
ability (LA). Intuitively, the labels associated with a property 
p are totally ordered through a total order relationship ≻p , 
with higher labels representing a larger quantification. For 
example, with respect to property Confidentiality, it holds 
that ��≻C�� , meaning that high confidentiality HC domi-
nates low confidentiality LC. The mapping between labels 
and plans is based on the definition of expressions (e.g., 
Boolean formulas, or more in general modeling some form 
of (fuzzy) reasoning) over the attributes characterizing the 
cloud plans. A default label ⊥ , common to all properties, can 
be used when a property is of no interest. Figure 8 illustrates 
an example of labels HC, LC, HA, and LA (high and low C
onfidentiality and Availability). These expressions (as well 
as the properties themselves) can be defined with the support 
of domain experts, or could be specified by skilled users. In 
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the example, HA corresponds to requiring encryption with 
AES and certA security certification.

For the definition (and satisfaction) of requirements, secu-
rity classes are defined as vectors of labels, with a label for 
each relevant property. For example, [HC, HA] is a security 
class defined over the two properties ( C and A ) in Fig. 8. 
Since the labels of each property are totally ordered, the 
security classes combining the labels of different proper-
ties are partially ordered, and thus form a lattice of security 
classes. Security classes are characterized by a dominance 
relationship ⪰ according to which a security class c1 domi-
nates another class c2 (denoted c1 ⪰ c2 ) iff the dominance 
relationship holds for each of its components (i.e., labels in 
the tuple). For instance, [��,��]⪰[��,��] , since ��≻C�� 
and ��≻A�� . Figure 9 illustrates the lattice defined over 
the security classes induced by the properties and labels in 
Fig. 8.

Specification

We now illustrate how a user wishing to allocate a collection 
of datasets to a set of plans can specify protection require-
ments for the datasets, and global requirements guiding the 
overall allocation.

Protection requirements: Security classes are used as build-
ing bocks for specifying the protection requirements for the 
datasets to be outsourced. Intuitively, security classes specify 
the minimum guarantees to be provided to the datasets for 
the considered properties: datasets cannot be outsourced to 
a plan that does not provide at least such guarantees. In the 
computation of an allocation, it has however to be considered 
that a dataset can be outsourced in encrypted form, wrapped 
in a layer of encryption administered by its owner. Intuitively, 
this provides an additional protection layer to the dataset (espe-
cially when confidentiality is a property of interest), since it 
can be accessed only by authorized/trusted subjects who know 
the encryption key. It is then to be expected that the protec-
tion requirement of a dataset may be impacted (and hence be 
different) by the (plaintext/encrypted) format in which the 
dataset will be outsourced. For example, with reference to the 
properties and labels in Fig. 8, a high confidentiality (HC) 
protection requirement for a plaintext dataset may be lowered 

(e.g., to LC) if the dataset is encrypted before outsourcing, 
accounting for the extra-layer of protection ensured by owner-
side encryption.

Given a collection of datasets and a set of security classes, 
the data owner can then easily formulate protection requirements 
for the datasets by associating with each dataset d one or two 
security classes (d) and , for the plaintext ( )  and/or 
encrypted ( ) representation of d . Intuitively, the class (d) 
( , respectively) specified for the plaintext (encrypted, 
respectively) representation of dataset d denotes, as mentioned 
above, the minimum guarantees to be provided for d in case d is 
outsourced in plaintext (encrypted, respectively). To illustrate, 
consider a company wishing to allocate to cloud plans a collec-
tion composed of datasets projects and past_projects, 
including all data related to the current and past projects of the 
company; admin, including all data related to the company 
administration; and archive, including data to be archived. 
Figure 10 illustrates an example of protection requirements for 
these datasets, where symbol ‘ − ’ denotes the fact that no specific 
requirement is formulated for the plaintext/encrypted representa-
tion of a dataset. Note that the possibility of formulating a 
requirement for one (plaintext/encrypted) representation only 
nicely models the possibility to force the consideration of only 
one format (either plaintext or encrypted) for a dataset: the one 
for which the requirement is specified. With reference to the 
datasets in Fig. 10, assume that fast retrieval is needed for data 
related to the current and past projects: since encryption and 
decryption inevitably incur additional latency, a possibility is to 
avoid considering owner-side encryption, and therefore specify 
a protection requirement only for the plaintext versions of data-
sets projects and past_projects. The administrative 
dataset admin, on the other hand, has two different protection 
requirements, meaning it could be outsourced in plaintext or in 
encrypted form. Depending on whether admin will then be 
outsourced plaintext/encrypted, one of the two protection Fig. 8   An example of security properties with labels and expressions

Fig. 9   Security lattice induced by the security properties and labels 
in Fig. 8
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requirements will be enforced. “Assessment” will illustrate how 
such protection requirements can be satisfied in the definition of 
an allocation of datasets to cloud plans.

Global requirements: As mentioned in “Specification”, 
considering the peculiarities of the multicloud scenario and 
of the problem of allocating different datasets to different 
plans, there is the need to support users in specifying global 
requirements on the overall allocation. The rationale is that 
resorting to a set of plans, while certainly a promising strat-
egy for accommodating the needs of heterogeneous datasets, 
inevitably brings an additional overhead given by the need 
to start and manage multiple contracts with the involved 
providers. Hence, to guide the overall allocation, the global 
requirements that may be specified demand that: (i) a certain 
set of datasets should be outsourced to the same plan (co-
location requirement), to model the fact that such data are 
expected to be frequently accessed together and hence it can 
be more convenient to allocate them to the same plan; (ii) 
a certain set of datasets should not be outsourced in plain-
text to the same plan (separation requirement), to impede 
joint visibility over these datasets in their entirety when this 
can disclose sensitive information; (iii) a maximum number 
of plans should be selected for the allocation (max_plans 
requirement), to avoid excessive fragmentation of the data-
sets; and (iv) a minimum storage occupation should be used 
for each selected plan (min_storage requirement), to ensure 
that the inevitable overhead given by the adoption of the 
different plans is compensated by the fact that every plan is 
used to store at least a reasonable amount of data. The speci-
fication of global requirements simply demands the defini-
tion of the datasets to be co-located or separated, and of two 
thresholds for the number of plans and minimum storage. 
Figure 11 illustrates an example of global requirements for 
our running example. They state that: (i) datasets �������� 
and ����_�������� should be allocated to the same plan; 
(ii) datasets �������� and ����� should not be allocated in 
plaintext to the same plan; and (iii) the maximum number of 
plans selected for the allocation and the minimum storage at 
each plan are, respectively, 3 and 30GB.

Assessment

The protection and global requirements illustrated in “Speci-
fication” can be used to restrict the allocation of a dataset to 
a plan based on whether such allocation respects all speci-
fied requirements. Indeed, multiple allocations satisfying 
all requirements may exist, possibly entailing different eco-
nomic costs depending on the selected plans. Different strat-
egies could be adopted to select one allocation over another 
one, and a natural solution is to compute an allocation that: 
(i) satisfies all the requirements; and (ii) minimizes the eco-
nomic costs of the overall allocation. In other words, the 
allocation should select a (optimal) combination of plans 

that satisfies all constraints, while ensuring no different allo-
cation could satisfy all requirements at a lower cost.

As for the enforcement of the protection requirements, 
it is first necessary to determine, for each dataset, the set 
of candidate plans satisfying protection requirements that 
may be selected for the allocation. To this end, it is possi-
ble to reason over the security classes (used for specifying 
protection requirements) and their associated expressions 
(e.g., those in Fig. 10 for our running example), evaluated 
against the attribute values of the available plans. A possi-
ble approach is to determine the security class of each plan, 
defined as the highest security class cmax (in the lattice) 
for which its attributes satisfy the expression character-
izing cmax . To illustrate, consider the plans in Fig. 1 and 
the lattice in Fig. 9. Security class [��,��] is satisfied by 
P5 , since its attribute values satisfy the expressions associ-
ated with with LC and HA. Since P5 does not satisfy other 
classes dominating [��,��] , then [��,��] is the class of 
P5 . Figure 12 illustrates the lattice in Fig. 9 reporting also, 
on the right-hand side of each class c , the plans having 
c as their class. Intuitively, a plan can be a candidate for 
a dataset d only if its security class is equal to, or domi-
nates, the class of d ’s protection requirement: indeed, any 
plan that satisfies a security class equal to or dominating 
d ’s protection requirement provides at least the protec-
tion guarantees requested for d . Figure 12 illustrates, on 
the left-hand-side of each class c , the datasets that have c 
as protection requirement. When a class is a requirement 
for the encrypted representation of a dataset, we denote 
the dataset with a gray background. Note that, whenever 
two different protection requirements are specified for a 
dataset d depending on its plaintext/encrypted representa-
tion, d may have two different sets of candidate plans. To 
illustrate, consider the lattice in Fig. 12. Dataset ������� , 
which can only be outsourced in encrypted form with a 

Fig. 10   An example of protection requirements for a collection of 
datasets

Fig. 11   An example of global allocation requirements for the datasets 
in Fig. 10
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protection requirement [⊥,��] (Fig. 10) could be allocated 
to P 3 or P 4 (which have the same class as ������� ), as 
well as to P 2 , P 5 , and P 1 whose classes appear higher 
in the lattice. Dataset ����� , which can be outsourced in 
plaintext of encrypted, has two sets of candidate plans: if 
outsourced plaintext, it could only be allocated to P1 while, 
if outsourced in encrypted form, it could be allocated 
also to P5 (which has the same class as that of encrypted 
����� ), besides P1 (whose class is higher in the lattice).

In principle, given the set of candidate plans for a dataset, 
any of them could be finally selected for storing the data-
set without violating any protection requirement. Aiming at 
minimizing the overall cost entailed by the allocation, it is 
necessary to compute an optimal allocation, selecting a plan 
for each dataset in such a way that the selected set of plans 
satisfy all global requirements and no other allocation would 
entail lower costs while satisfying all constraints. To this 
end, the problem can be translated into a binary program-
ming problem, aimed at minimizing an objective function 
that models the economic costs of the allocation. The prob-
lem of computing an optimal allocation satisfying arbitrary 
user requirements in multicloud scenario can then be easily 
solved leveraging off-the-shelf solvers.

Conclusions

We discussed the problem of supporting and guiding data 
owners in adopting cloud-based services for storing and 
managing their data in the cloud. We illustrated some of the 
main challenges that characterize the problem, and illus-
trated research directions that address these challenges. We 

focused on presenting solutions for: (i) modeling cloud plan 
characteristics, (ii) supporting users in specifying (and have 
enforced) arbitrary requirements and preferences, possibly 
leveraging natural language expressions and high-level and 
easy-to-understand abstractions, and (iii) computing optimal 
allocations in multicloud scenarios in obedience of protec-
tion requirements while minimizing economic costs. The 
challenges and solutions discussed are central for empower-
ing data owners in maintaining control over their data and 
applications while resorting to the cloud, ultimately facilitat-
ing an even wider adoption of the cloud paradigm.
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