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A B S T R A C T   

Spatial and temporal features are studied with respect to their predictive value for failure time prediction in 
subcritical failure with machine learning (ML). Data are generated from simulations of a novel, brittle random 
fuse model (RFM), as well as elasto-plastic finite element simulations (FEM) of a stochastic plasticity model with 
damage, both models considering stochastic thermally activated damage/failure processes in disordered mate-
rials. Fuse networks are generated with hierarchical and nonhierarchical architectures. Random forests - a 
specific ML algorithm - allow us to measure the feature importance through a feature’s average error reduction. 
RFM simulation data are found to become more predictable with increasing system size and temperature. 
Increasing the load or the scatter in local materials properties has the opposite effect. Damage accumulation in 
these models proceeds in stochastic avalanches, and statistical signatures such as avalanche rate or magnitude 
have been discussed in the literature as predictors of incipient failure. However, in the present study such fea-
tures proved of no measurable use to the ML models, which mostly rely on global or local strain for prediction. 
This suggests the strain as viable quantity to monitor in future experimental studies as it is accessible via digital 
image correlation.   

1. Introduction 

Creep failure is an example of a subcritical failure process, where an 
applied load which is insufficient to instantaneously break the sample 
drives time dependent damage accumulation. This gradual accumula-
tion of damage deteriorates the strength of the material and ultimately 
results in delayed failure [1]. 

It is in general unfeasible to design structures in such a manner as to 
avoid the damage processes that lead to subcritical failure. Predicting 
the residual lifetime of a structure under subcritical load is therefore an 
important issue that is actively investigated by both physicists and en-
gineers. Reliable lifetime predictions may help to avoid catastrophic in- 
service failure of components and systems and harness substantial eco-
nomic benefits by adapting and where possible extending replacement 
cycles. 

To assist prediction, it is desirable to obtain sample specific infor-
mation about the damage accumulation process through non destructive 
means. Such information can be obtained from the macroscopic sample 
response, i.e., the time dependent creep strain or strain rate as accessible 
by surface monitoring. Additional and more detailed information can be 

drawn from analysis of the spatio-temporal pattern of energy releases as 
local creep damage accumulates, as microcrack formation is accompa-
nied by elastic energy release which can be recorded by monitoring the 
acoustic emission (AE) of the sample. 

Several empirical approaches have been proposed to predict sample 
specific failure times from macroscopic creep strain data. The simplest 
possible approach is to correlate the time tm of minimum strain rate with 
the catastrophic failure time tf , in the simplest case by assuming a linear 
relationship between both [2,3]. A variant consists in relating the failure 
time to the duration of the primary (decelerating) creep stage [4]. 

A slightly different approach towards failure time prediction based 
on macroscopic strain (strain rate) focuses, instead, on the rapid increase 
of creep strain and strain rate in the run-up to failure, which typically is 
characterized by a creep strain (strain rate) that increases like an inverse 
power of the time-to-failure. Fitting such a power law to the data 
recorded until a given moment implies a prediction of the residual 
lifetime – an approach which has been promoted by D. Sornette and 
applied, in different variations, to catastrophic phenomena from mate-
rial rupture over financial crises to childbirth [5] to the catastrophic 
breakdown of civilization as we know it [6]. 
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A related prediction approach focuses on temporal statistics of pre-
cursor events, whose magnitudes and rates also may develop charac-
teristic singularities in the approach to failure. For instance, one may 
exploit the observation made both in simulations [7] and experiments 
[8] that the AE event rate νAE accelerates towards failure according to a 
reverse Omori law, νAE∝(t − tf)

− p with p ≈ 1. This behavior is also found 
in mean-field models of thermally activated rupture [9] and allows to 
obtain the failure time by fitting the Omori law to the previous AE record 
and extracting the expected failure time tf , which is one of the fit pa-
rameters. At the same time, the approach to failure may be accompanied 
with other characteristic changes in the AE burst statistics, such as an 
increase in the AE event size or characteristic changes in the 
Gutenberg-Richter exponent of the power law type energy statistics [7], 
which may also be used for monitoring and prediction. 

Beyond the temporal record of strain, strain rate and AE, additional 
information can be obtained by simultaneously monitoring the spatial 
pattern of local strains, or more generally of damage accumulation. 
Materials failure is associated with localization of damage [7,8], and 
signatures of damage or strain localization may provide additional 
features that assist failure forecasting. To accurately describe the ma-
terial response, machine learning (ML) has arisen as a new tool in recent 
years [10]. Among the goals are finding new models [11,12], bypassing 
expensive solvers with ML as surrogate [13,14] and reducing models 
with a large number of parameters with the few necessary by inclusion 
of the proper symmetries and regularization [15]. For the special case of 
creep, research has mainly focused on making average lifetime pre-
dictions based on composition, microstructure and processing based 
features [16–18]. 

In the present investigation, we use ML approaches in a different 
sense, namely to make sample specific predictions of deformation 
behavior. In the context of plasticity, machine learning has been used to 
predict sample specific stress-strain curves in dislocation plasticity based 
on initial dislocation microstructure [19] and based on surface strain 
patterns determined in the microplastic regime [20]. A more general 
approach to predict the onset of plasticity or damage based on generic 
microstructural signatures was proposed in Ref.[21]. Regarding frac-
ture, machine learning has been used to identify critical fracture loads 
together with crack nucleation sites and propagation pathways based on 
the atomic configuration of individual samples of amorphous silica [22], 
and in the context of subcritical failure, ML has been used to predict 
sample specific failure times in disordered solids by means of random 
forest regression [23] from characteristics of local deformation events 
recorded up to a given moment in time. Even though the event statistics 
for the data used in this model is characterized by a very clear reverse 
Omori law [7], the ML approach clearly outperformed lifetime pre-
dictions based on Omori law fits. Random forests were also used to 
forecast laboratory earthquakes from AE time series records [24]. In the 
latter context, [25] have issued a Kaggle challenge to benchmark the 
performance of different ML algorithms with a prize money of 25,000 $ 
which was won by decision tree based method. 

In the present study, we use ML to assess the usefulness of different 
spatial and temporal features for predicting creep failure times. As data 
base we consider simulation data from two different types of models, 
namely a highly simplified model (random fuse model, RFM) of ther-
mally activated damage accumulation, as well as the stochastic FEM 
model of [7] that was used in the previous work by Biswas et al. [23]. 
These models are introduced in Section 2 together with the respective 
feature sets extracted from the simulations for sample specific failure 
time prediction. The behavior of the RFM in the run-up to failure is 
discussed in Section 3.1, while results of the ML analysis of the data sets 
are given in Section 3.2. Section 4 concludes with a critical discussion of 
the usefulness of different features, and the possibilities and limitations 
of sample specific lifetime prediction. 

2. Methods 

2.1. RFM simulations 

We consider simplified models of failure, so called random fuse 
models, which provide a scalar caricature of elastic-brittle behavior by 
modelling materials as networks of scalar load carrying elements. We 
envisage two-dimensional structures as shown in Fig. 1. In mechanical 
terms, these structures can be envisaged as modelling sheet-like mate-
rials deformed in plane stress conditions. The structures consist of beam- 
like load carrying elements of unit length, which form a two- 
dimensional lattice of junction points, or nodes. A tensile-like load is 
applied along a statistical symmetry axis of the lattice structure, corre-
sponding to the vertical direction in Fig. 1. In the continuum limit of 
infinitely many load carrying elements, the scalar character of load and 
displacement corresponds to a material of zero Poisson ratio loaded in 
uni-axial tension, for which the equations of elastostatics reduce to the 
Laplace equation. 

The elements are arranged using the following architecture: For a 
given system size L, L fibers consisting each of L vertically adjacent, 
vertically oriented elements transmit load across the system in the load- 
parallel direction, while a fixed number C < L of horizontal cross-linking 
elements is responsible for load redistribution in the load-perpendicular 
direction. Fig. 1 shows three possible variants of this construction. In the 
Random Fuse Network (RFN), horizontal cross-linking elements are 
distributed randomly. This arrangement results in the formation of 
vertical gaps, which interrupt load redistribution and exhibit an expo-
nential length distribution [26]. A deterministic hierarchical fuse 
network (D-HFN) refers to a similar system, where however the cross 
links are distributed hierarchically, and the resulting gaps have a heavy 
tailed, power-law size distribution [26]. Finally, a shuffled hierarchical 
fuse network (S-HFN) is constructed from a D-HFN by randomly shuf-
fling rows and columns of the network adjacency matrix. This con-
struction maintains the power-law gap-size distribution and shows the 
same failure phenomenology as exhibited by the D-HFN, but at the same 
time allows for averaging over different network realizations. In all 
systems, periodic boundary conditions are imposed in the load perpen-
dicular direction. In the actual simulations a D-HFN pattern for a pre-
scribed size L is constructed first, and RFN and S-HFN variants are 
generated from that, making sure that the number of horizontal fuses is 
the same. In the following, we restrict our study to RFN and S-HFN, and 
we refer to S-HFN simply as HFN from now on. 

The term ‘random fuse model’ is used because the dynamics of 
damage accumulation and fracture can be described using an electrical 
analogue [27,28]: Owing to the scalar nature of the load variable, the 
load carrying elements can be envisaged as fuses carrying currents ac-
cording to scalar constitutive equations. Identifying a fuse ij by the 
indices of its two end-nodes i and j, we use Iij to indicate the scalar force 
(current) acting on ij, and we relate it to the scalar displacements 
(voltages) Vi and Vj of the fuse endpoints through the scalar Hooke’s law 
(Ohm’s law) 

Iij = Vi − Vj, (1)  

where we have assumed a unit elastic modulus (resistance), while the 
balance equation for each node i can be computed imposing that the 
algebraic sum of the scalar forces acting on i is zero (in the electrical 
analogue: Kirchhoff’s law). An externally imposed displacement is 
simulated by applying a prescribed voltage difference between the 
upper and lower boundaries, while an imposed external load is repre-
sented by an imposed global current across the network. The response of 
the system is then captured by monitoring the evolution of the com-
plementary variable (applied voltage V for load control, global current I 
for displacement control). The RFM implies a simplification of the elastic 
problem which however preserves, in the continuum limit, essential 
aspects of fracture mechanics such as load re-distribution and stress 
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singularities at crack tips. RFM models have for this reason been widely 
used in statistical modelling of fracture [29]. 

In order to account for local strength fluctuations, each fuse ij is 
assigned a threshold θij, corresponding to a critical current at which it 
fails irreversibly (i.e., the fuse conductivity is set to zero). Thresholds are 
distributed following a Weibull cumulative distribution function of the 
form 

C
(
tij
)
= 1 − exp

[

−

(
θij

θ0

)k
]

, (2)  

where we choose θ0 = 1/Γ(1+1 /k) to set the mean value 〈θij〉 = 1, and 
we vary the shape parameter k to control the degree of heterogeneity in 
the material model, lower k leading to larger fluctuations [30]. 

To simulate thermally activated sub-critical creep failure, we tweak 
the voltage difference between top and bottom boundary such as to 
ensure that the total current I remains at a fixed, prescribed level. Fuses 
may in this model fail either instantaneously by overloading (θij − Iij 
< 0) or by thermal activation, which is considered in terms of crossing 
an energy barrier 

ΔU = θij − Iij. (3)  

Whenever θij ≤ Iij holds for any number of fuses, the corresponding fuses 
ij are removed instantaneously, equilibrium equations are solved again 
and the process is repeated until no instantaneous removals occur. When 
θij > Iij for every fuse ij, a Kinetic Monte Carlo step is performed to 
identify the fuse which fails next because of thermally assisted energy 
barrier crossing, and to determine the time interval Δt after which this 
happens. The attempts to cross barriers are assumed to be stochastically 
independent, and thus described by Poisson processes with the transi-
tion rates 

νij = ν0exp
(

−
θij − Iij

T

)

(4)  

with the characteristic frequency ν0 and the temperature T scaled with 
appropriate constants (e. g. Debye frequency, Boltzmann’s constant). 
The unit of time of the simulations is ν− 1

0 , thus we set ν0 = 1 without loss 
of generality. A failing fuse is selected and removed accordingly, and 
time is increased by an interval Δτ extracted from an exponential dis-
tribution with mean value ν− 1 where the total event rate is 

ν =
∑

ij∈F

νij. (5)  

Here F refers to the set of surviving fuses at a given time. Note that 
thermally activated failure of one fuse may, due to load re-distribution, 
lead to overloading of other fuses which then fail instantaneously. In this 
case we speak of an avalanche of size s where s is the number of fuses that 
fail in a correlated manner until the stability condition θij > Iij∀ij is met. 
The next event is then again thermally activated. 

A subset of simulations is also run resorting to an extremal (i.e. non- 
stochastic) failure criterion (see e.g. Alava et al. for details [29]) which is 
equivalent to the zero-temperature limit of the protocol outlined above. 
In extremal simulations, due to the absence of thermal activation all 
fuses fail by overloading – either by an increase in applied load or at 
constant load in an avalanche. Damage accumulation and failure are 
driven by increasing the applied load, and extremal simulations thus 
allow us to identify the global peak load (peak current) Ip which can be 
supported by the system of fuses before it undergoes instantaneous 
failure. 

Subcritical creep loading, on the other hand, is performed by 
applying a constant load I in the interval ]0, Ip[ at finite temperature, 
such that fuses can fail by thermal activation. For all considered com-
binations of parameter values (Table 1) we gathered data from multiple 
samples, performing for each parameter combination 1200 simulations 
with different sets of random thresholds assigned from the same statis-
tical distribution. 

2.2. Finite element data 

As an alternative source of information, and to ensure that our 
findings are not contingent on peculiarities of the creep model we use, 
data created in a previous study [23] from a two-dimensional elasto--
plastic creep finite element (FEM) model were also considered. This 
model considers a 2D square block made of a stochastically heteroge-
neous material where each element has a different, randomly assigned 
local yield stress. The block is loaded in simple plane shear. For details of 
the simulation we refer to [7,31], here we only summarize the main 
analogies and differences between FEM and RFM creep models: i) The 
RFM model is equivalent to a periodically continued domain loaded in 
pure tension without cross contraction, where the axial stress corre-
sponds to the scalar current of the electrical analogue. The FEM model, 
on the other hand, considers plane strain deformation which makes a 
tensorial treatment mandatory. The current is now replaced by the von 
Mises equivalent stress calculated from the deviatoric stress, the local 
threshold is the counterpart of a local yield stress, and the role of fuses is 
taken over by the elements. ii) Once the threshold of an element is 
exceeded by the local stress, the element deforms by a plastic incre-
mental strain Δϵ. Unlike the RFM, elements can deform repeatedly, 
however, with each threshold crossing damage is added to the element. 

Fig. 1. Two-dimensional fuse networks 
of size L = 32. External uni-axial loads 
are applied in form of fixed global cur-
rents flowing through the networks from 
top to bottom. All systems share the same 
number of horizontal cross-linking fuses. 
Gaps are emphasized in blue. Gap sizes 
are exponentially distributed in the non- 
hierarchical case (RFN) and power-law 
distributed in the hierarchical case (D- 
and S-HFN). (For interpretation of the 
references to colour in this figure legend, 
the reader is referred to the web version 
of this article.).   

Table 1 
Choice of parameters investigated for the RFM. All com-
binations of these parameters are investigated with ma-
chine learning except current 0.1 for size 128.  

parameter parameter values 

k 1,2,4,8,16 
T 0.01,0.03,0.05,0.1 
I/Ip (0.1),0.3,0.5,0.7,0.9 
L 16,32,64,128  
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After the threshold crossing, a new threshold is re-drawn from a Weibull 
distribution with shape parameter k whose mean value decreases with 
the accumulated element damage. Again, deformation proceeds either 
by thermally activated events or by stress re-distribution leading to 
overloading, causing avalanches. The avalanche size is here defined as 
the number of strain increments caused by correlated overloading be-
tween two consecutive thermally activated barrier crossing events. The 
simulation ends once the system enters a never-ending avalanche, 
pragmatically defined as an avalanche size that exceeds the total num-
ber of elements. 

The creep load is again measured in units of the zero-temperature 
failure stress of the specific system. For stress 0.7, systems of varying 
disorder (k ∈ {1,2,4,8,16}) are investigated while for stress 0.9 just k 
= 4 is explored. The recorded data are the times and locations of ther-
mally activated events as well as the sizes of the ensuing avalanches. 

2.3. Machine learning methodology 

When deciding which machine learning method should be used for 
our prediction problem, there are roughly three groups of methods to 
think about: Neural networks, kernel methods like the support vector 
machine, and decision tree based methods. The chosen method should 
ideally meet the following criteria: i) it should be applicable to data from 
both sources (FEM and RFM) to allow for comparison; ii) it should scale 
computationally well enough to handle tens of millions of samples as the 
average number of events per FEM trajectory is of the order of 104; iii) it 
should offer the possibility of obtaining information regarding feature 
importance; iv) it should be able to yield a time to failure distribution 
(such as to be able to assess prediction scatter) as our data stem from 
stochastic processes. 

Convolutional neural networks (CNN) - the backbone of almost all 
modern neural network architectures for image recognition [32–34] - 
are applicable to the FEM data, as these data can be conveniently 
transformed to a time series of images. For RFM this is not possible as 
there is no convenient way to convert the adjacency and edge threshold 
information into an image without either losing key information 
regarding adjacency or creating an image of very large size. The alter-
native to CNNs would be graph neural networks (GNN) which are 
capable of handling both data types. Modern GNNs typically operate by 
converting each sample into a graph structure in which each node draws 
information from the neighbor nodes and the edges connecting them. 
The process of drawing information is called graph convolution. The 
final prediction is made by summing over all nodes. Thus the number of 
convolutions determines the amount of nonlocal information that the 
network can analyze. Unfortunately, today’s GNNs cannot perform 
nearly the same number of convolutions as CNN based architectures 
because computational cost and memory requirements increase rapidly 
with increasing graph size [35,36]. Building deep GNNs is still an open 
problem and interpretation is also not straightforward. Additionally, 
when looking at a well-established area of GNN application such as 
molecular machine learning, one has to realize that the RFMs used here 
define much larger graphs than their molecular counterparts. As 
example, take the QM9 dataset [37] whose largest molecules have 29 
atoms/nodes while our largest graphs have 214 nodes. To summarize: 
Point i) is not met for CNNs, for GNNs point iii) is not met and point iv) is 
questionable. Given the fact that each node has almost no information 
about the state of the entire network due to the limited number of 
convolutions, chances of success for GNNs are slim in this setting. 

For kernel methods like kernel ridge regression, the computational 
cost of training scales in proportion with the third power of the size of 
the training set and the memory requirement with the second power due 
to the kernel matrix [38]. Given the fact that the training set size here 
can reach well above a few millions, kernel methods can be ruled out for 
reasons of numerical cost. As kernel methods belong to the class of 
instance based models, meaning they make predictions based on sim-
ilarity/distance to samples in the training set, they do not make an 

assessment of individual features, since they only care about the total 
distance. 

Decision tree based regressors meet requirements (i), (ii) and (iii), 
while point (iv) is met by random forests. Given the success of random 
forests in laboratory-scale earthquake prediction in a past publication 
[24], the fact that a recent Kaggle challenge for laboratory-scale earth-
quake prediction was also won by a tree based algorithm [25], and the 
promising results obtained with the random forest method in a previous 
publication [23], we consider random forests as the regressor of choice 
for this study. 

2.4. Random forests 

Random forests are constructed by bootstrapping of decision trees, 
which means that, instead of considering the predictions of a single tree, 
one takes the average over the predictions of an ensemble of regressors 
that have been trained on different random subsamples of the training 
data. This mitigates against overfitting (for which single decision trees 
are notorious) and provides additional probabilistic information in 
terms of the statistical distribution of predictions. Statistical signatures 
of this distribution, such as the variance of predicted lifetimes, provide a 
means not only to forecast a single lifetime value but also to estimate the 
reliability of the predicted lifetime in terms of the expected scatter of the 
predictions. Single decision trees divide the feature space recursively 
into partitions. The predicted value of a variable – here: the residual 
lifetime – in each partition is the average of the actual values of that 
variable for the training samples that fall into the partition. The parti-
tioning is done on form of binary decisions (‘splits’) based on single 
features, taking in each recursive step the decision which minimizes the 
mean squared error of the ensuing predictions. Feature importance is 
determined in terms of the (normalized) average error reduction that is 
achieved by making splits based on a given feature [39]. For details we 
refer to [40–42]. 

Scikit version 0.23.2 is used for implementation of the machine 
learning scheme [43]. All machine learning algorithms rely on sets of 
hyperparameters which control the working of the algorithms. In the 
context of random forests, these hyperparameters describe the manner 
in which random subsamples of the training data are constructed (size of 
the subsamples, size of the forest) and how the trees are organized 
(number of binary decisions made). Apart from the number of trees 
(1000), we use default parameters for the random forest (which can be 
found in the manual of version 0.23.2), because preliminary studies as 
well as the previous work of Biswas et al. [23] indicate that the results 
are insensitive to the choice of hyperparameters. To measure prediction 
performance, besides summary statistical signatures like the mean 
squared error, the machine learning prediction (ML) at time t is 
compared to a set of four simple baseline predictions tBA 

tBA(t) =
(
tref − t

)
H
(
tref − t

)
, (6)  

where tref is one of four reference times. H is the Haeviside function to 
avoid prediction of a negative remaining time to failure. Two simple 
reference times are the average and median lifetime of the entire 
training set. For the other two, one compares t with the lifetimes tf in the 
training set, ignores all lifetimes smaller than t and takes the mean or 
median lifetime of the remaining samples. We refer to the first two 
reference as static mean and median whereas the last two as dynamic 
mean and median. 

2.5. Feature selection 

For the FEM data, two different feature sets have been used: The 
features described the previous work of Biswas et al. [23] and a new set 
consisting of time, total damage as proxy for the total strain, thermally 
activated event rate, the average avalanche amplitude over a finite time 
window, and a spatial damage localization parameter. The latter 
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quantity is defined resorting to domain knowledge, which tells us that 
for the imposed loading conditions (simple shear imposed on the 
boundaries of a quadratic domain), an incipient shear band must be 
aligned with the domain boundaries. Accordingly, we determine the 
maximum value of strain (or equivalently damage) within a rectangle of 
predefined width that spans the system parallel to one of its boundaries, 
i.e. in one of the two directions of a potential shear band. The rectangle 
width is varied (2,4,8,32 elements) such as to achieve optimum pre-
diction performance. To calculate the thermally activated event rate, a 
running average is used over nav = floor

( Nav
N
)

events where Nav is the 
average number of thermally activated events in a simulation and N an 
integer value that needs to be chosen. We refer to N as rate parameter. In 
this study the values 50,100,200 are compared. The event rate r at the 
ith event then is defined as 

ri =
nav

(
ti − t(i− nav)

) (7)  

The average avalanche amplitude is calculated over the same running 
window. 

For the RFM data, also two feature sets are used. For the first set, the 
features are time, voltage, the total damage measured as the number of 
failed fuses, as well as the maximum number of failed fuses aligned in 
the direction perpendicular to the applied load, which corresponds to 
the propagation direction of an emergent tensile crack. The second 
feature set consists of time, voltage, the total damage measured as the 
number of failed fuses and the maximum crack size. The latter is ob-
tained by determining all connected clusters of broken fuses. The size of 
such a cluster is defined as the number of broken fuses. The largest crack, 
i.e. the largest connected component, is found by using the graph 
implementation of scipy [44]. No rate based features were calculated for 
the RFM data as this implies a smoothing/averaging step which can only 
be meaningfully performed if the time series is of sufficient length. 
Typical RFM parameter combinations exhibit (on average) 101 − 102 

thermal events until failure, whereas the FEM model has event numbers 
in the order 104 − 105. This makes rate features unfeasible for the RFM 
model (Table 2). 

3. Results and discussion 

3.1. Macroscopic RFM model behaviour 

Fig. 2 shows average time-voltage curves, for a relative applied load I 
/Ip = 0.1 and temperature T = 0.1, and for varying Weibull shape pa-
rameters k, in hierarchical and non-hierarchical systems of size L = 128. 
In a typical creep strain vs time curve, one can identify three regimes: a 
strain hardening regime at small t/tf during which the strain rate de-
creases, a stationary regime with almost constant strain rate for inter-
mediate t/tf , and strain softening (accelerating creep rate) towards the 
end of the sample lifetime tf . Fig. 2 confirms this picture, with a devi-
ation in the case of very low disorder (high k) where the initial strain 
hardening part becomes less and less prominent. A more complete pic-
ture of the influence of simulation parameters on the behavior of the 
system is presented in the Appendix (Figs. S1–S5), where results for 
different temperatures and applied loads are compiled. 

3.2. Machine learning 

To measure the performance of machine learning algorithms, usually 
statistical signatures like the coefficient of determination 

R2
X(t) = 1 −

∑
i

(
tX,i − ta,i

)2

∑
i

( 〈
ta,i
〉
− ta,i

)2 (8)  

are used. Here the subscript X = ML refers to a machine learning pre-
diction and X=BA to a baseline prediction. tX,i(t) is the predicted lifetime 
and ta,i the actual lifetime. The average 〈..〉 is, in the following, always 
evaluated over the entire data set. 

For failure time prediction it is important to know how the prediction 
quality evolves over time. Thus, we define time dependent prediction 
error and score: 

eX(t) =
|tX(t) − ta(t)|

tf
(9)  

sML = 1 −
eML

eBA
(10)  

were t is the time at which the prediction is made, and times are 
normalized by the sample lifetime as tf . The ML score should ideally be 
one or at least above zero which indicates superiority of the forest 
regression compared to the baseline estimate. These quantities are 
collected for each individual sample and sorted into bins according to 
the value of t

tf . For binning we use equi-spaced partitions which divide 
the unit interval into 100 bins for the FEM and 20 bins for the RFM data, 
thus accounting for the fact that the RFM produce fewer data points in a 
simulation. 

3.2.1. Baseline evaluation 
For the FEM data (Fig. 3) in the limit of high disorder, the mean 

lifetime performs very badly as a prediction of the lifetime of individual 
samples, irrespective whether the mean is taken over the total or the 
surviving population. The reason is the extremely high scatter of the 
lifetime distribution which exhibits a coefficient of variation much 
larger than one. The median lifetime, which is less dominated by 
extremely long-lived samples, performs better but still badly (Fig. 3, top 
left). 

When considering more ordered systems, the difference between 
median-based baselines and mean-based baselines vanishes especially at 
the start of the simulation up roughly half of the lifetime. This is ex-
pected as with decreasing disorder the lifetime distributions become less 
skewed, thus median and mean start to coincide. When close to failure, 
paradoxically, the dynamic baselines that consider only the surviving 
population perform worse than the static baselines that consider the 
whole initial population. This is the case because the surviving popu-
lation exhibits a stronger outlier sensitivity: Its mean and median are 
increasingly dominated by the fittest samples which may show atypi-
cally high lifetimes. 

To judge baseline performance across parameters, a box whisker plot 
(Fig. 4) of R2 is used. Each data point in the plot represents the baseline 
performance for one combination of parameters (e. g. k = 1, T = 0.01, 
etc.). All baseline medians and averages (green line and dot) are above 
R2 = 0. The worst case performance assessed by the farthest outlier in 
the negative domain is for all four baselines of the same magnitude. The 
dynamically updated median has the highest average (green dot) and 
highest median performance (green line). The spread in performance 
between the dynamic baselines is similar, whereas the static baselines 
show a larger spread in performance (box length). To explain the 
negative R2 values in Fig. 4, we show in Figs. S6 and S7 the empirical 
complementary cumulative lifetime distribution (ccdf) of normalized 
lifetimes tN =

tf − 〈tf 〉
σ(tf ) where σ(tf ) is the standard deviation. The distribu-

tions show a spread between 5 and 20 times the standard deviation and 

Table 2 
Overview over feature sets used for the RFM data.   

FEM features 

Set 1 time, avalanche size,min. line damage, max. line damage 
Set 2 time, avalanche rate, average avalanche amplitude  

total damage  
RFM features 

Set 1 time, voltage, max. line damage vertical  
max. line damage horizontal, total damage 

Set 2 time, voltage, total damage, max. crack size  
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with lower temperature the appearance of a tail. Few long living samples 
cause large errors as (i) they heavily distort the baseline predictions for 
the mean baseline – thus, shorter living samples are badly predicted; (ii) 
they are more or less ignored by the median baselines, thus give bad 
predictions for the ”Methusalem” samples in the test set. In addition to 
these points, we note that it is actually surprising that these very simple 
baselines show reasonable performance as they incorporate neither 
domain knowledge nor a sophisticated statistical approach. 

The static median is the best performing baseline for FEM, thus we 
choose it as baseline there. For RFM, the dynamic median is chosen as it 
has the highest average and median performance, although it is very 
similar to the dynamic mean. 

3.2.2. Performance 
When considering the score-time curve for the FEM data in Fig. 5, the 

new feature set 2 (full lines) performs slightly better than the feature set 
used by Biswas et al. [23], but for the highly disordered samples, both 
feature sets fail to outperform the baseline until just before the failure 
event. Even then, the mean error is still of the order of five times the 
mean residual lifetime, thus the prediction cannot be called successful. 
For less disordered samples, the ML algorithm outperforms the baseline 
across the entire specimen lifetime. The time series parameter N does 
not affect the performance while the shear zone width shows a small 

peak performance at a width of four elements, but not a game changing 
improvement (Fig. 6). As established in a previous work [23], different 
applied loads also do not strongly affect the quality of the ML model 
predictions (Fig. 5), even though the absolute lifetimes may change by 
many orders of magnitude. Higher disorder generally leads to a decrease 
in prediction performance. 

Random forests trained on RFM data can outperform the corre-
sponding dynamic median baseline, but it depends strongly on the sys-
tem parameters to which extent this is the case. This can be seen when 
comparing Figs. 7 and 8. Small systems show a less stable trend as these 
systems produce only few thermally activated events before failure and 
thus deliver less reliable statistics for the plot, but also make the task 
harder for the random forest. Similar problems are encountered in or-
dered systems where, owing to the small scatter in strength, load re- 
distribution produces large avalanches, resulting again in a small 
number of large events (Fig. S5) and poor statistics. 

To gain more systematic insight on how ML performance depends on 
the simulation parameters, we calculate the average rank correlation as 
illustrated in the following for the system size: We iterate over all 
combinations of k,T and I

Ip, calculate for each combination the rank 

correlation between system size L and R2, and take the average over all 
combinations. The results are compiled in Table 3. 

Increasing temperature and system size, and reducing material 

Fig. 2. Normalized average time-voltage curve for L = 128, I
Ip = 0.1 and T = 0.1. Data of nonhierarchical networks are on the right and of hierarchical networks on 

the left. 

Fig. 3. Prediction error of different baselines, as function of time-to-failure in the FEM simulated data. The dynamic baselines calculate the mean or median lifetimes 
from the sub-population of the training set that still survives at time t, whereas static baselines consider the entire population. 
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disorder, lead to increased prediction performance while increasing the 
load (applied current) does the opposite. For disorder and temperature 
the correlation depends strongly on network architecture. The trend 
with regards to temperature is most pronounced for the nonhierarchical 
networks. This can be understood as follows: In the low-temperature 
limit, the crack path is identical to the quasistatic extremal fracture 
path which is controlled by the intrinsic fluctuations in material strength 
and local network geometry. Thus, the prediction problem is tanta-
mount to identifying the extremal path and assessing its strength – an 
inherently difficult problem since the algorithm relies on the activity 
record, but has no direct ‘structural’ information about local strength or 
network morphology. Increasing temperature leads to increased activity 
at other sites of the network and to more widespread damage, whereas 
‘quenched’ structural features such as strength or morphology variations 
become less important in determining the fracture scenario. As pre-
dictions use the activity record, this leads to better predictions at higher 

temperature. In this context it is important to note that the hierarchical 
network architecture reduces the importance of stress concentrations 
and facilitates activity spread across the system [26]; because activity is 
diffusely spread even at zero temperature, the effect of temperature on 
predictability is reduced in hierarchical systems. High currents and 
small systems lead to quick failure, thus to shorter activity records which 
provide the prediction algorithm with less information to work with. 
The effect of disorder is ambiguous as high disorder leads to an 
increasing range of possible fracture paths, thus a larger feature space, 
but also to more activity as a source of information, while low disorder 
can lead to fracture after few thermally activated events, creating little 
information about fracture precursors that might be used to improve 
predictions above the baseline. 

3.2.3. Feature selection 
Regarding feature selection, two main questions should be answered: 

Fig. 4. Box and whisker plot of R2 for RFM data with respect to different baseline choices. The data points correspond to different sets of simulation parameters, the 
green line indicates the median R2, the green dot the average, the box bounds are located at the 25th and 75th percentile respectively and the whisker at the 5th and 
95th percentile. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.). 

Fig. 5. Prediction score for the FEM data with the dotted lines representing feature set 1 already used in a previous publication [23] and the full lines the new set 2. 
The baseline is the static median. 
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What are the most important features and how focused is the random 
forest on the top features? If the model attention is spread equally among 
all features, then no reduction in dimensionality is possible. For each 
feature set, we count how often a specific feature is deemed the most 
important according to the normalized average error reduction criterion 
(Fig. 9). To measure the attention spread of the model, we calculate the 
Gini Impurity [40] 

1 −
∑Nfeat

i=1
p2

i (11)  

from the normalized average error reduction (aer) pi (
∑Nfeat

i=1 pi = 1) of 
feature i. Nfeat is the number of features of the model. Close to zero Gini 
impurity indicates a model focused on a single feature. 

Fig. 9 shows that damage based features dominate the partitioning 

Fig. 6. Hyperparameters of feature set 2 for FEM data which show no significant impact on the prediction performance as measured by R2. The rate parameter N is 
used to calculate event rates according to Eq. (7) in Section 2.3. 

Fig. 7. Prediction score calculated for system with T = 0.03 and I
Ip = 0.7 for different values of k. The ML models were trained on feature set 1. The baseline for 

comparison is the dynamic median. 
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process for FEM data whereas models for predicting RFM behavior 
mainly use voltage (i.e., strain) as the source of their predictions. The 
importance of damage based features for the FEM model is easily 
rationalized, as this model shows shear banding behavior which leads to 
a large total damage as well as high damage concentration in the 
incipient shear band, a feature which can be easily detected since the 
direction of the incipient shear band is known from continuum me-
chanics (thus using domain knowledge). In the RFM, on the other hand, 
failure is controlled by cracks which comprise only a small number of all 
fuses; moreover, the cracks meander across the system in a self-affine 
manner (non-hierarchical systems) or via system-wide jumps (hierar-
chical systems), such that the crack direction undergoes random varia-
tions. This makes it difficult to identify the critical crack in terms of 
global damage or simple damage localization parameters. 

For feature set 1 the avalanche amplitude is the least important 
feature regardless of investigated system and with a normalized aer 
ranging from zero to p = 5.71× 10− 6. In feature set 2 the event rate and 

averaged avalanche amplitude are the least important features which 
never exceed an aer of p = 1.29× 10− 4. In fact, if the event rate is the 
least important feature, the second least important feature is always the 
averaged avalanche amplitude which never exceeds an aer of 2.56×

10− 2. It is thus safe to say that, for our FEM data and feature sets, the 
avalanche amplitude and avalanche rate are not very useful for failure 
time prediction. 

For the RFM data, models with high attention spread can occur 
where even the least important feature has an aer of p ≈ 0.17. To 
investigate the consequences, we compare the model performance as 
measured by R2 with the Gini impurity in Fig. 10. Every data point 
represents one combination of model parameters and the color repre-
sents the most important feature of the model trained on the specific 
combination. Attention focus and model performance correlate posi-
tively, although this correlation is less pronounced for hierarchical 
networks where in a number of cases, attention diversified models 
achieve comparable performance to focused models. When we calculate 
average rank correlations between the Gini impurity and the model 
parameters in the same ways as we have done previously for R2 

(Table 4), we can see that the numerical values of temperature and 
system size correlate positively with attention concentration, while 
higher current/load and higher disorder have the opposite effect. This 
trend is most stable for temperature with some deviations in the case of 
feature set 2 and hierarchical networks. While the trends for system size, 
current and disorder are not surprising, one might argue that higher 
temperature should cause a more stochastic/chaotic trajectory. How-
ever, this is only true on the micro scale of single elements but not on the 
system scale. To understand why, we observe that the RFMs considered 
here are disordered systems where stochastic time evolution has two 
different origins, namely (a) thermal fluctuations (‘annealed disorder’) 
and (b) structural disorder which is reflected by fluctuating thresholds/ 
energy barriers and differing local network morphologies (‘quenched 
disorder’). Quenched disorder leads to an unpredictable avalanche 

Fig. 8. Prediction score calculated for system with T = 0.03 and I
Ip = 0.9. The ML models were trained on feature set 2. The baseline for comparison is the dy-

namic median. 

Table 3 
Average rank correlation between the prediction performance R2 and the 
simulation parameters for RFM data. Correlations obtained from random forests 
trained on feature set 1 are shown on the upper part of the table, those for feature 
set 2 on the lower part.  

parameter nonh. 
kendall 

nonh. 
spearman 

hier. kendall hier. spearman 

size 0.247 0.234 0.283 0.267 
k 0.088 0.062 0.412 0.469 
temperature 0.85 0.88 0.35 0.33 
current -0.683 -0.72 -0.567 -0.59 
size 0.247 0.226 0.27 0.245 
k 0.062 0.05 0.425 0.444 
temperature 0.8 0.83 0.433 0.43 
current -0.667 -0.71 -0.6 -0.6  
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dynamics with scale-free statistical signatures even at zero temperature, 
and studies by other authors [3] show that ML methods cannot well 
predict this type of avalanche dynamics. On the other hand, at very high 
temperature the barrier fluctuations become asymptotically irrelevant 
(temperature ‘irons out’ the structural fluctuations) and as a conse-
quence the material becomes indeed more predictable. This interpreta-
tion can be supported by considering the normalized lifetimes tN =

tf − 〈tf 〉
σ(tf ) , 

where σ(tf ) is the life time standard deviation. The empirical comple-
mentary cumulative lifetime distribution (Figs. S6 and S7) shows that 
higher temperature leads to a relatively more centralized lifetime dis-
tribution, whereas low temperature leads to a more pronounced tail. 
When comparing Tables 3 and 4, we notice that the different simulation 
parameters tend to have opposite-sign correlations with R2 and Gini 
impurity, further supporting the connection between R2 and ML model 
attention. 

4. Conclusion 

In this work, we determine the usefulness of a set of spatial and 
temporal features for predicting the time to failure in creep simulations 
by machine learning. The data for this study stem from a random fuse 
model (RFM) describing brittle, thermally activated statistical failure 
and an elasto-plastic finite element method (FEM) approach [7] which 
has been used in a previous study [23]. Fuse networks are created with 
two different morphologies (hierarchical vs nonhierarchical) as hierar-
chical architecture was shown to modify systems behavior in the 
approach to failure [26]. To measure performance, we compare the 
trained models with a simple statistical baseline. We make use of the 
ability of a special method of data science (random forest/decision trees) 
to measure the importance of a single feature for predictions via the 
average error reduction. Predictability of RFM systems is found to in-
crease with increasing size, temperature and order, whereas increasing 
load/current has the opposite effect. Increasing size leads to smaller 
sample-by-sample variation, higher current to fewer events until failure 
thus ”emitting” less information, while high disorder increases struc-
tural fluctuations leading to broader lifetime distributions. Increasing 
temperature centralizes the lifetime distribution by smoothing out 
threshold fluctuations, thus increasing predictability. The features 

deemed most important by the random forest algorithm for prediction of 
FEM simulation data are the damage localized in a shear band and the 
total damage, whereas predictions for RFM data rely mainly on voltage. 
Note that voltage is the equivalent of strain in the RFM model and that 
damage in the FEM model is a monotonically increasing function of 
strain, hence, it is fair to say that in both cases the algorithms rely mostly 
on strain-like features. Avalanche-related features and event rate were 
found to be of little predictive power for the ML models in the case of 
FEM, whereas RFMs are too brittle – there are not enough events to 
calculate a sensible time dependent event rate. This suggests that future 
experimental studies - contrary to existing literature suggesting strain 
rate [2–4], event rate and amplitude [7–9] - should rely more strongly 
on strain-based features for predictions of the time to failure in a creep 
setting. In real life situations, strain patterns might be accessed nonde-
structively by surface monitoring, and the possibility of using such 
patterns for life time prediction was explored by Koivisto et al. [3] who 
considered the coefficient of spatial variation of strain (or incremental 
strain / strain rate) alongside spatial signatures of catastrophic failure 
accessible by thermography. These authors found that heterogeneities of 
strain correlate with sample lifetime even at early stages of creep life, 
and that this correlation becomes stronger after the strain-rate minimum 
is passed and the sample enters the tertiary creep stage. While such 
spatial features, considered in isolation, may be insufficent for reliable 
prediction [3], they may be an important source of information in ML 
based approaches. Spatial information is particularly useful in situations 
where (as in case of emergent shear bands in our FEM model, whose 
direction is for a given loading known from continuum mechanics) 
domain knowledge can be used to a priori design spatial features in such 
a manner that they capture the relevant deformation modes. 

Data availability 

The average, median and standard deviation of the peak current and 
voltage at peak current of the extremal simulations can be found here 
https://zenodo.org/record/7131727#.YzfJObTP1PY and the FEM raw 
data can be found here https://zenodo.org/record/7131771#.Yzgh 
RbTP1PY. 

Fig. 9. Fraction of times a feature has been the most important one in a model trained on the specified feature set.  
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Code availability 

The codes used in this paper are available at https://simlab.ww.uni-e 
rlangen.de/publications/predicting-creep-failure-by-machine-learni 
ng/. 
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Fig. 10. Gini Impurity as a measure of attention spread versus model performance of the RFM data with hierarchical network data on the left and nonhierarchical on 
the right. The top row stem from ML models trained on feature set 1 and the bottom row on feature set 2. The color shows the top feature for the specific data point. 
Hollow dots indicate that for this data point the static median baseline’s R2 is higher than the random forest model. 

Table 4 
Average rank correlation between different simulation parameters and the Gini 
impurity of the ML model, for RFM data. Correlations obtained from random 
forests trained on feature set 1 are shown on the upper part of the table, those for 
feature set 2 on the lower part.  

parameter nonh. kendall nonh. spearman hier. kendall hier. speaman 

size -0.53 -0.536 -0.423 -0.419 
k -0.338 -0.375 -0.587 -0.706 
temperature -0.95 -0.97 -0.9 -0.94 
current 0.75 0.74 0.45 0.44 
size -0.507 -0.519 -0.52 -0.524 
k -0.55 -0.625 -0.488 -0.569 
temperature -0.967 -0.98 -0.717 -0.74 
current 0.667 0.67 0.583 0.62  
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