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Abstract

We report on the dependence of the frequency-to-intensity noise conversion in the locking
of an ultrafast laser against a high-finesse optical resonator from the Carrier Envelope Offset
(CEO) frequency. By a proper combination of the cavity finesse and laser CEO frequency, it
is possible to optimize the signal-to-noise ratio of the laser intensity trapped into the optical
resonator. The theoretical description of the problem together with the numerical simulations
and experimental results are presented with the aim of a strong suppression of the intensity
fluctuations of the trapped laser field.

1. Introduction

Frequency-to-intensity noise conversion in the laser stabilization with respect to high-
finesse optical resonator is a well known problem [1, 2, 3] and over the years several exper-
imental solutions have been implemented to reduce the intensity noise of the cavity trapped
radiation: the use of noise-immune high-frequency modulation detection schemes [3], by
means of wide control loop bandwidths in the frequency locking schemes [4], and using cav-
ity ring-down methods [5, 6]. In the majority of the investigated cases, the laser sources op-
erated in a continuous wave regime. However, in the last twenty years thanks to the introduc-
tion of the optical frequency comb sources, the locking of ultrafast broadband laser sources
to high-finesse resonators is of extreme interest in a wide variety of sensing/spectroscopic
applications [7, 8, 9] as well as in extreme non-linear optics for the generation of coherent
radiation in the UV and XUV spectral regions [10, 11, 12]. In these applications, cavity lock-
ing is exploited to increase by several orders of magnitude either the interaction path with the
spectroscopic samples or the circulating laser intensity. In any case, low intensity noise of
the trapped laser field is a mandatory requirement to obtain the highest signal-to-noise ratio
(SNR) and temporal coherence.

In this paper, we demonstrate a novel solution to reduce the residual frequency-to-intensity
noise conversion when a pulsed laser is coupled to a high-finesse resonator. This is related
to the use of slightly detuned resonance conditions between the cavity resonances and laser
modes by acting on the carrier envelope offset frequency of the pulsed laser source. In this
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way, laser modes distant from the center of its spectrum contribute to the second order deriva-
tive frequency to intensity noise conversion with opposite sign with respect to the central
modes and therefore their quadratic contributions cancel out. By a proper combination of the
CEO frequency detuning and cavity finesse values, large cavity gain factor can be obtained
together with a strong reduction of the frequency-to-intensity noise conversion, an essential
requirement for the generation of X-ray radiation by inverse Compton scattering (ICS) [13]
with low-intensity noise. After the theoretical description of the method, a detailed experi-
mental characterization of the technique is performed using a mode-locked Yb:fiber laser at
1030 nm, and a ring cavity optical resonator. With a gain factor as large as 1130, we demon-
strated an integrated frequency to intensity noise conversion reduced from 8 % to less than
0.5 %.

The paper is structured in four sections. The principles and the theoretical treatment of
the method is presented in Sec. 2, whereas the numerical simulation are reported in Sec. 3.
Sec. 4 shows the experimental characterization of the method. Finally, Sec. 5 closes the
paper with some concluding remarks.

2. Theory

The link between the CEO frequency fceo and the frequency-to-noise conversion in an
optical cavity can be shown starting from the time-domain electric field of a mode-locked
laser. The train of pulses in time domain is given by the superposition of the field of several
modes oscillating in phase. If every mode has a frequency νm, being m∈N, the electric field
E (t) can be written as:

E (t) =
∞∑
m=0

√
Sm e

−i2πνmt+iϕm(t) (1)

where Sm is the laser power spectrum S (ν) evaluated at the frequency νm, while ϕm is a
generic phase noise. Typically, ϕm contains both slow components (essentially related to
mechanical vibrations), and fast components. In the spectral domain, Eq. 1 becomes:

E(ν) = F [E (t)] =
∞∑
m=0

√
Sm

∫
ei2π(ν−νm)teiϕm(t) dt (2)

where F [·] denotes the Fourier transform. When ∆νm � ν0, we assume that the noise
ϕm(t) = ϕ(t) is equal for all the laser teeth. Furthermore, we assume that ϕ(t)� 2π, so that
we can expand the exponential to first order, leading to

E(ν) =
∞∑
m=0

√
Sm

∫
ei2π(ν−νm)t (1 + i ϕ (t)) dt =

=
∞∑
m=0

√
Sm (δ (ν − νm) + i φ(ν − νm)) ≡

∞∑
m=0

Em(ν) (3)

Equation 3 tells us that the laser spectrum has a comb-like structure of Dirac deltas, broadened
by the noise φ(ν) = F [ϕ(t)]. Thus, the laser power is given by:

P(laser) =
∞∑
m=0

Sm |δ (ν − νm) + i φ(ν − νm)|2 =
∞∑
m=0

Sm Φm ≡
∞∑
m=0

P (laser)
m (4)
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where Φm = |δ (ν − νm) + i φ (ν − νm)|2.
Note that in Eq. 4 the crossed products cancel since different modes do not overlap.

To complete the discussion about the laser, we remind that the frequencies of its modes
are [14]

ν(laser)
m = mfrep +

∆φcep

2π
frep = mfrep + fceo (5)

where frep is the separation of the teeth corresponding to the repetition rate of the laser,
while ∆φcep is its Carrier-Envelope Phase shift, generated by the different phase and group
velocities in the laser cavity. We also defined the Carrier-Envelope Offset as fceo = ∆φcep

2π
frep.

The laser pulses can be coupled to an optical cavity, in order to stack them and increase
their power with a passive gain proportional to the resonator finesse. In particular, for an
overcoupled cavity of finesse F , the maximum achievable gain is 2

π
F .

The spatial modal structure of the cavity is given by the well known Hermite-Gaussian
polynomial, with optical frequencies corresponding to

ν(cav)
n,x,y = FSR

(
n+

x+ 1/2

2π
arccos (MH) +

y + 1/2

2π
arccos (MV)

)
(6)

where n, x and y are positive integers that indicate the longitudinal, horizontal and vertical
order of the mode, respectively, while FSR is the Free Spectral Range of the cavity. MH and
MV are the horizontal and vertical stability parameters, respectively, found by the Round-Trip
Matrix of the cavity in the ABCD-matrix formalism. In general, MH can be different from
MV, and they must stay in the range ±1 in a stable resonator [15]. In general, FSR is in-
versely proportional to the cavity length and depends on the wavelength in case of significant
intracavity and/or mirrors dispersion. At this level, we neglect these dispersion effects.

If we consider the fundamental mode only (x = y = 0), Eq. 6 becomes

ν(cav)
n = nFSR + fcav. (7)

where we defined fcav = FSR [arccos (MH)/4π + arccos (MV)/4π]. The highest passive
gain is achieved when the laser and the cavity teeth are perfectly coupled. This condition
can be obtained and maintained during time exploiting the well known Pound-Drever-Hall
(PDH) technique [16], which, in our case, stabilizes the FSR of the cavity to match the laser
teeth. Starting from Eq. 5 and Eq. 7, if we stabilize the nth

0 tooth of the cavity with the mth
0

tooth of the laser, with n0 = m0, we can write

ν(laser)
m0

= ν(cav)
m0

⇒ m0 frep + f0 = m0 FSR

where f0 = fceo − fcav is the relative frequency offset between laser and cavity. The PDH
technique fixes the FSR of the cavity to FSR = frep + f0

m0
. A clear representation of the two

combs coupling is reported in Fig. 2. A perfect overlap of the cavity and the laser modes is
possible only if f0 = 0, otherwise, each tooth has a detuning given by ∆νm = f0

m0
∆m, where

∆m = m−m0. When the laser-cavity locking condition is achieved, only relative detunings
are relevant. Thus, it is equivalent to introduce noise from the laser or the cavity, and from
now on we attribute all the noise to the laser without loss of generality. On the other hand,
the same results can be achieved by assuming ϕ(t) = 0, while introducing a noise δFSR(t)
on the cavity frequencies.
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Figure 1: Laser and cavity modes in frequency domain. In this representation, the cavity is stabilized to the
laser on the tooth n0 = m0 with the PDH technique. The teeth with indexes n 6= m0 have a detuning ∆νm,
which is positive for m > m0 or negative for m > m0. In this scheme fcav > fceo, so f0 < 0.

Now, we study how f0 affects the laser-cavity coupling, hence the intracavity power and
its noise. We start from considering the intracavity power in relation with the incoming laser
power and the cavity response:

P(cav) =
∞∑
m=0

P (laser)
m

1−R1

1 +R− 2
√
R cos 2π∆νm

FSR

=

=
∞∑
m=0

P (laser)
m Γ(∆νm) ≡

∞∑
m=0

P (cav)
m (∆νm) (8)

where Γ(∆νm) is the gain of the cavity for the mode m detuned by ∆νm, R1 is the input
cavity mirror power reflectivity, and R the product of all the cavity mirrors’ reflectivity. The
total cavity gain Γtot is then given by the weighted average of the single modes gains over
all the coupled modes. In terms of power, assuming an incoming radiation power P(laser), the
stored power is simply given by P(cav) = P(laser) · Γtot.

Γtot =

∑
m P

(cav)
m (∆νm)∑
m P

(laser)
m

(9)

While Γtot is not directly accessible, the transmitted power does, and it is directly proportional
to the gain as P(trans) = (1− R2) P(laser)Γtot.

As far as the peak power of the intracavity pulses Ppeak is concerned, we find an implicit
dependence on f0 hidden in the coupling with the cavity. Indeed, the cavity acts as a filter for
the laser, both in amplitude and in phase. The additional phase experienced by each mode,
which impacts on the temporal structure of the pulses, must be taken into account to properly
estimate Ppeak. As f0 increases, both the cavity spectral filtering effect and the phase become
more and more important, broadening in time the stored pulses and lowering Ppeak. We can
write:

Ppeak = max

{∣∣∣F−1
[√

S (ν)Fcav (ν) eiφcav(ν)
]∣∣∣2} (10)
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where Fcav and φcav are the cavity filter function in amplitude and phase. In experimental
setups there is often an additional detuning fpdh, given by an electronic offset in the PDH sta-
bilization, which locks the modem0 not exactly on the line maximum. The PDH stabilization
offset can be included in the theory by simply considering ∆νm =

(
f0
m0

)
∆m+ fpdh.

At this point, we are able to debate on a particularly interesting and important issue:
the noise transfer from the laser and the cavity to the stored power in the coupled system.
There are essentially two noise sources for the stored power: the laser intensity noise and the
frequency noise. Intensity noise is substantially due to power fluctuations of the laser source,
and we will not cover it in this work. On the contrary, frequency noise induces fluctuations in
the stored power because it causes time-dependent additional detuning δf(t). This frequency
noise is strictly dependent on the phase noise, indeed δf(t) = (2π)−1dϕ(t)/dt. Furthermore,
it can be associated to a δf(ν) and a spectral distribution with a standard deviation σδf . The
introduction of σδf is quite important, because this is a parameter directly accessible from
the experimental setup, by measuring the integrated frequency noise discriminated by the
cavity while the locking with the laser is maintained [17]. To study the influence of δf on the
power fluctuations, the function Γ(∆νm + δf) can be expanded around the offset detuning
frequency ∆νm as

Γ(∆νm + δf) ≈ Γ(∆νm) +
dΓ

dν

∣∣∣∣
∆νm

δf +
1

2

d2Γ

dν2

∣∣∣∣
∆νm

δf 2. (11)

Therefore, recalling that the total cavity gain is the average gain of the teeth, weighed on the
coupled laser spectrum S (ν), and the same holds for the fluctuations, we separate the gain in
two components Γtot and δΓtot, respectively writable as:

Γtot =

∑
m SmΓ (∆νm + δf)∑

m Sm
≈
∑

m SmΓ (∆νm)∑
m Sm

=
1

N

∑
m

SmΓ (∆νm) (12)

δΓtot (δf) =
1

N

∑
m

Sm [Γ (∆νm + δf)− Γ (∆νm)] =

=
1

N

(∑
m

Sm
dΓ

dν

∣∣∣∣
∆νm

δf +
1

2

∑
m

Sm
d2Γ

dν2

∣∣∣∣
∆νm

δf 2

)
(13)

Γtot in Eq. 12 is noise-immune, and it is only an implicit function of the system offset f0

and of the eventual fpdh. We also defined N ≡
∑

m Sm to simplify the notation on the latter
equations. The first term of Eq. 13 is an odd function when fpdh = 0, thus the sum over all
the modes around m0 vanishes, because ∆νm < 0 or ∆νm > 0 for m < m0 or m > m0,
respectively. Hence dΓ

dν

∣∣
∆νm

< 0 or dΓ
dν

∣∣
∆νm

> 0. In the case of fpdh differs from zero, the
symmetry is broken and a non-negligible noise from this term arises, although it that can be
reduced by improving the stabilization. The second term is the most important for us, because
it can be adjusted by manipulating the offset f0 (hence fceo) to reduce the noise transfer. In
Fig. 2 a representation of the noise transfer reduction via f0 principle is given. The second-
order derivative of Γ is an even function, with both positive and negative values encountered
at increasing detuning. When f0 = 0, all the teeth contributes with a negative d2Γ

dν2

∣∣
∆νm

, so

5
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Figure 2: Representation of the effect of f0 on the evaluation point of the cavity gain and its derivatives (from
above to below: Γ with the laser teeth, dΓ/dν, and d2Γ/dν2 as functions of ν). At increasing offset, the gain
progressively decreases with the distance from the central mode m0. The first derivative terms on the right
balance the ones on the left, since dΓ/dν is an even function (when fpdh = 0). On the other hand, d2Γ/dν2

is odd. Thus, the central modes contributions are compensated by the external modes, where the second order
derivative becomes positive.

that the noise sums constructively. On the other hand, when f0 increases, the evaluation point
of the derivative changes proportionally with ∆m. The most external modes in the spectrum
can have d2Γ

dν2

∣∣
∆νm

> 0, thus they compensate the parabolic noise contributions of the internal
teeth close to m0. The more f0 grows, the more the noise suppression is efficient, but the
drawback is that an increasing of f0 lowers Γtot. For this reason, the key-point is to compare
the gain loss with the noise suppression effect. As we will show in the next sections, the
noise suppression is more effective than the gain drop, and, consequently, it is possible to
dramatically reduce the intensity noise without a large decrease in the stored power.

A last step useful to understand the impact of noise suppression is to evaluate how a
frequency noise σδf affects the integrated noise σP of the intracavity power. This is directly
given by the fluctuation of the gain Γtot, namely σΓ. To simplify the notation, we define
α ≡ 1

N

∑
m Sm

dΓ
dν

∣∣
∆νm

and β ≡ 1
2N

∑
m Sm

d2Γ
dν2

∣∣
∆νm

, then:

σ2
Γ =

〈
δΓ2

tot

〉
− 〈δΓtot〉2 =

〈(
α δf + β δf 2

)2
〉
−
〈
α δf + β δf 2

〉2
=

=α2
〈
δf 2
〉

+ β2
〈
δf 4
〉

+ 2αβ
〈
δf 3
〉
− α2 〈δf〉2 − β2

〈
δf 2
〉2 − 2αβ 〈δf〉

〈
δf 2
〉

=

=α2σ2
δf + β2σ2

δf2 (14)

In case of no PDH offset, α = 0 and Eq. 14 becomes σΓ = |β| σδf2 . Notice that in the
calculations, we exploited the fact that 〈δf〉 = 0 and 〈δf 3〉 = 0 for symmetry. The relative

6



noise of the cavity gain is simply given by

σΓ,rel =
σΓ

Γtot

(15)

Equivalently, the relative intracavity power noise is σP,rel = σP/P
(cav)
tot = σΓ,rel.

Finding a simple relation between σδf and σδf2 is important, because we have direct
access to the first quantity, but not to the second. This relation can be found for instance
rewriting Eq. 14 in the case of Gaussian-distributed noise δf . For simplicity, we define
δf = x and δf 2 = y = x2, so that the Gaussian distribution of δf can be written as∫ ∞

−∞

1√
2πσx

e
− x2

2σ2x dx =

∫ ∞
0

2√
2πσx

e
− x2

2σ2x dx =

∫ ∞
0

1√
2πσx

√
y
e
− y

2σ2x dy (16)

where we performed the substitution y = x2, so that dx = 1/2
√
y dy. Notice that the domain

of y is R+, so we exploited the symmetry of the Gaussian distribution of x to change the
integration range from (−∞,+∞) to [0,+∞). The distribution of the variable y = δf 2 is
thus 1√

2πσx
√
y
e
− y

2σ2x . Its variance is by definition

σ2
y =

∫ ∞
0

1√
2πσx

√
y
e
− y

2σ2x y2 dy −

(∫ ∞
0

1√
2πσx

√
y
e
− y

2σ2x y dy

)2

= 2σ4
x (17)

This result tells us that σδf2 =
√

2σ2
δf , so Eq. 14 becomes:

σ2
Γ = α2σ2

δf + 2β2σ4
δf (18)

Some important considerations can be done looking at our simple analytical model. First,
we expect different behaviors for different values of the finesse, since it is directly related to
the cavity linewidth as well as the gain function and its derivatives. In particular, we expect
a higher sensitivity to the suppression effect for higher finesse. The same holds for the width
of the laser spectrum, since for a wider spectrum, more external teeth with a wider detuning
are involved, contributing to the noise suppression.

At this point, a further question arises: is it possible to exploit f0 and different finesse
values to obtain a strongly suppressed intensity noise with a desired gain? In the next Sections
we will show that it is actually possible, though some experimental limitations occur.

3. Simulations

The cavity-laser system has been simulated to comprehend the impact of f0 (thus of fceo)
on the total gain, on its relative noise, and on the peak power of the stored pulses. Notice
that, since we showed σP,rel = σΓ,rel, from now we will refer to it as a unique σrel. These
simulations allow estimating the effective cost paid in terms of gain reduction to have a
strong noise suppression. All the calculations have been performed with Wolfram Mathe-
matica and Matlab. We took the experimental data as technical parameters for the simula-
tions (see Sec. 4), in particular, we set the repetition rate of the laser to frep = 100 MHz.
To simulate the spectrum shape S (ν), we used a supergaussian function of the 4th order
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Figure 3: From top to bottom: gain (black), stored pulses peak power (green), and relative power noise σrel

(red) as functions of f0. Traces are normalized to their respective values in foff = 0. Here the finesse is 4300.

of the form S (ν) ∝ exp
[
− ln 2 (2 (ν − ν0) /∆ν)8], where the FWHM ∆ν is given by

∆ν = −c/λ2
0 ∆λ, and ν0 = c/λ0, being ∆λ = 2.7 nm the corresponding FWHM in the

wavelength domain, and λ0 = 1035 nm the central wavelength. As far as the cavity is con-
cerned, we simulated a 4-mirrors crossed cavity in overcoupled configuration, switching be-
tween the two different values of the finesse of 4300 and 1800. We set the offset of the PDH
error signal to 0, assuming a perfect locking of mode m0. Nevertheless, values of fpdh up
to some kHz do not affect the results appreciably. Then, we took σδf = 5 kHz, which is
the value we experimentally measured. Finally, we assumed δf Gaussian distributed, so we
estimated σrel from Eq. 18.

Fig. 3 shows the results of the simulations of normalized Γtot, σrel, and Ppeak as functions
of f0, for a cavity of finesse 4300. We chose a normalized plot to highlight the different trends
of the traces. Notice that the peak power has been calculated from the laser spectrum, taking
into account the cavity spectral filter effect and mode-dependent phase. After multiplying
all these terms, an Inverse Fourier Transform allows estimating the shape of the resulting
pulses inside the cavity in temporal domain, thus Ppeak. As it can be easily noticed, all
simulated quantities decrease when the laser-cavity offset f0 rises. Nevertheless, there is a
faster drop in terms of relative noise with respect to the other traces. For example, in the
first 10 MHz, the normalized amplitude of the noise reduces to 0.27, while the peak power
remains around 0.70, and the total gain (average intracavity power) stays at about 0.75. Thus,
in general, there is always an advantage in terms of signal-to-noise ratio for both Ppeak and
Pcav, leaving the point f0 = 0. This general behavior has immediate repercussions in all those
applications of non-linear optics such as the generation of high order harmonics (HHG) and
ICS X-ray generation. In HHG, a slight noise reduction in the fundamental harmonic could
lead to a substantial enhancement for high-order harmonics noise. Since the framework in
which this work has been developed is the study and realization of optical cavities for ICS
X-rays generation, we will concentrate only on the cavity gain and its noise, omitting further

8



0 1 0 2 0 3 0 4 0 5 0
5 0 0

1 0 0 0

1 5 0 0

2 0 0 0
2 5 0 0
3 0 0 0
3 5 0 0

0 1 0 2 0 3 0 4 0 5 0
0 . 1

0 . 5
1

5
1 0

5 0
Ga

in

f 0  ( M H z )

 G a i n  F i n e s s e  4 3 0 0
 G a i n  F i n e s s e  1 8 0 0

a )a )

σ r
el (

%)

f 0  ( M H z )

 σ r e l  F i n e s s e  4 3 0 0
 σ r e l  F i n e s s e  1 8 0 0

σr e l  s u p p r e s s i o n

b )

Figure 4: Gain (a) and relative σrel (b) in logarithmic scale for F = 4300 and F = 1800. For both configura-
tions, the PDH offset is zero and σδf = 5 kHz. The blue line in panel a) indicates the higher gain value possible
for F = 1800 at f0 = 0, namely gain 1130. The same gain is reached for finesse 4300 at f0 = 30 MHz. In
panel b), we show the suppression of σrel between the two configurations highlighted in panel a).

considerations on Ppeak. Indeed, in ICS experiments, scattering efficiency is more sensitive
to average power variations than to intracavity pulses temporal broadening [? ]. As a second
simulation, we compared the behaviors of two cavities with different values of finesse. In
particular, we calculated total gain and relative noise for finesse values of 4300 and 1800,
and the results are reported in Fig. 4. In panel a) we report Γtot, while in panel b) σrel, for a
cavity with finesse values of 4300 and 1800. The gain decreases similarly for the two cases,
although the maximum gain is a function of the finesse. We start from a gain of 2680 for
F = 4300, and of 1130 for F = 1800. The noise at zero offset is different for the two
cases, too, being 26.2 % and 4.6 %, respectively. For both finesse values, the gain decreases
slower than the noise. From these simulations, the question arisen at the end of the theoretical
section seems to have a positive answer: one can reduce the noise at a certain gain by setting
a finesse higher than needed, and then increasing f0 until the desired gain is reached, having
a relative noise lower than the standard configuration of f0 = 0. For example, in this case
the gain of 1130 can be conveniently reached starting from F = 4300 and increasing f0 until
Γtot = 1130 is reached (approximately f0 = 27 MHz, instead of choosing a finesse of 1800
and couple it to the laser with f0 = 0. In this way, the same gain is achieved with a noise
reduction of a factor 6.4 (0.72 % against 4.6 %).

4. Experiment

In this Section we report on the experiment we performed to study and prove the f0-
dependent noise suppression. The experimental setup is schematized in Fig. 5. The laser
source is the Orange Yb:fiber mode-locked oscillator from Menlo Systems, with a repetition
rate of 100 MHz, and a bandwidth of 20 nm, centered at 1035 nm. A BK7 window (with
a thickness of 5 mm) is inserted in the laser cavity, to control fceo by a manual micromet-
ric rotation stage (labelled RS in the schematics). The laser output power is on the order
of 200 mW. The output pulses pass through a NewFocus Wideband 4004 IR Electro-Optic
Modulator (EOM), that introduces a frequency modulation at 3.5 MHz, needed for the Pound-
Drever-Hall (PDH) cavity-laser stabilization. Though not strictly required for this experiment
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Figure 5: Scheme of the setup used for our experiment. The source laser is represented in orange. RS: micro-
metric rotation stage; EOM: Electro-Optic modulator; CVBG: Chirped Volume Bragg Grating; AOM: Acousto-
optical modulator; M1, M2, M3, M4: cavity mirrors; P1 and P2: photodetectors; LP: 100 kHz 5th-order low-
pass filter; PZT: piezoelectric actuator.

(but already integrated in our experimental setup), an optical amplification stage follows. The
laser beam is stretched in time and selected in frequency domain by an Optigrate BG Pulse
Chirped Volume Bragg Grating (CVBG) and power-enhanced by a 4 m long Yb-fiber ampli-
fier (based on Liekki Yb1200-12/125DC-PM), pumped by a multimode 976 nm laser diode
(Photontec M976). The CVBG is required to avoid nonlinear effects inside the amplifier’s
fiber. Here, the pulse length is stretched from 200 fs to 380 ps, while the spectrum is reduced
to a FWHM of 2.7 nm, with a shape well described by the 4th-order supergaussian function
used in the simulations. The output power from the amplifier has been set to 1.1 W. Then
the pulses go through a NEOS Acousto-optical Modulator (AOM), necessary for the mea-
surement of the cavity finesse exploiting the technique described in [19]. At this point, the
laser is coupled with a four-mirror crossed ring cavity. The four mirrors by Layertec have a
negligible dispersion in the spectral region of interest. M1 and M4 are flat, while M2 and M3
are curved, with a radius of curvature of 750 mm. Since our cavity is overcoupled, we ex-
ploited two different input couplers M1 to switch between two different finesse values. One
input coupler has a power reflectivity of R = 99.66 % and gives a finesse 1800 (measured
1785 ± 50, Γtot = 1137 ± 30), while the other has R = 99.86 % and gives a finesse of 4300
(measured 4270 ± 110, Γtot = 2720 ± 70). All the other mirrors have a high reflectivity
(R > 0.99999). The Free Spectral Range of the cavity is controlled by a piezoelectric actu-
ator (PZT) attached to the mirror M4. The active stabilization of the cavity against the laser
is based on the PDH error signal generated from the beam reflected from M1. It is detected
by the photodetector P1 (Fermionics Opto-Technology FD500W), and low-pass filtered at
100 kHz to cancel the high-frequency components. The PDH error signal is then sent to a
PID controller, which elaborates the signal and applies it to the PZT. The transmitted signal
is measured by the photodiode P2 (Thorlabs PBD150A, bandwidth 5 MHz) behind M2.

We measured the Relative Intensity Noise (RIN) of the laser before coupling to the cavity,
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Figure 6: a) RIN of the laser before coupling to the cavity. b) Frequency noise of the laser-cavity coupled
system.

showing the results in the left panel of Fig. 6. The measurement has been performed using a
large bandwidth photodetector and an Agilent E4445A Spectrum Analyzer, high-pass filtered
at approximately 150 Hz to remove the DC component. The high-pass (HP) filter response
has been removed to estimate the integrated noises. Then, the relative integrated noise from
1 Hz to 1 MHz of the laser is σrel = 0.03 %. For what concerns the RIN behavior, we observe
a decreasing curve on the whole band (except for the region influenced by the filter). The
higher average level approaches −90 dB Hz−1, except for a −80 dB Hz−1 noise peak, while
the minimum approached at 1 MHz is below −130 dB Hz−1. Several peaks are noticeable in
the intensity noise spectrum, in particular between 100 Hz and 2 kHz. Those are due to the
amplifier pump diode’s electrical noise, which is directly transferred to the amplified signal,
although it is cut at approximately 1 kHz by Ytterbium spontaneous decay [20].

At this point, we coupled the laser to the cavity (in this case F = 4300), and we measured
the frequency noise of the coupled system, shown in panel b) of Fig. 6. This measurement has
been performed by acquiring the PDH error signal after LP, and converting it into a detuning
signal by the so-called discriminator constant kd, defined as kd = δν

δV
, where δν is a detuning

variation between the laser and the cavity frequencies, while δV is the corresponding vari-
ation on the PDH signal. We have kd = 1.56× 105 Hz V−1. To better estimate the noise
without feedback contributions, such measurement has been performed with a weak lock.
The low-frequency peaks are mainly due to mechanical vibrations. On the other hand, the
noise around 10 kHz comes from the piezoelectric actuator resonance. Other contributions
derives from the laser frequency noise spectrum but are not distinguishable from the cavity
ones, since the discriminator measures only relative detunings. The highest frequency noise
level is reached by mechanical contributions, and it is approximately 103 − 104Hz2/Hz. The
sharp cut at 100 kHz is due to the LP filter of the PDH stabilization. The integrated noise
from panel b) gives the experimental σδf = 5063 Hz.

Exploiting the setup described above, we compared the Relative Intensity Noise of the
signal transmitted from the mirror M2 with the two available finesse values and different f0,
bearing in mind that such signal is directly proportional to the intracavity power. In addition,
we acquired temporal traces of the transmitted beam to have a better visualization of the
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Figure 7: Resonance peaks (black) and voltage applied to the piezoelectric actuator (red) during a scan of the
cavity length. The distance between two peaks is equal to a variation of the cavity length, corresponding to a
FSR. In panel a), f0 is null, thus the secondary peaks around the central one are symmetric and considerably
lower than it. In panel b) the opposite situation is shown: f0 = frep/2 = 50 MHz, so the primary peak and its
neighbor on the right have the same intensity and symmetry of secondary peaks is broken.

results.
As mentioned at the beginning of this Section, the control of f0 is allowed by the presence

of a BK7 window inside the laser cavity. The window can rotate at different angles with
respect to the beam, thus modifying the intracavity dispersion, and inducing a fceo change.
As explained in Ref. [21] and in Ref. [22], when f0 is minimized, only one transmission
peak is maximized in a cavity scan. On the contrary, when f0 = frep/2 two consecutive
peaks have the same intensity, visibly lower than the maximum of the previous situation.
We experimentally found these points (see Fig. 7) by adjusting the BK7 window angle, so
calibrating the control of f0. Indeed, from simple goniometric considerations, f0 can be
written as a function of the window angle θ:

f0 (θ) =
frep/2

− 1√
1−k2 sin2 θ0

+ 1√
1−k2 sin2 θmax

(
1√

1− k2 sin2 θ
− 1√

1− k2 sin2 θ0

)
(19)

where θ0 and θmax are the angular positions of f0 = 0 and f0 = frep/2 respectively, taking the
perpendicular position of the window as θ = 0, while k = nair/nBK7 = 1/1.507 at 1035 nm.
Estimating the uncertainties on the rotation stage and possible mount hysteresis, we claim an
error of ±5 MHz on our f0 measurements.

To investigate the noise transfer from the frequency detuning to the stored power, we ac-
quired different RIN traces, exposed in Fig. 8. Here, a comparison between the transmitted
power RIN for finesse 1800 and for finesse 4300 in both cases with f0 = 0 and f0 = 45 MHz
is shown (curves from (a) to (d)). As a reference baseline for these measurements, we report
the laser RIN in orange (f). The choice of f0 = 45 MHz is not accidental, but we experi-
mentally set it to the value such that the configuration with F = 4300 and f0 = 45 MHz has
the same gain as the configuration with F = 1800 and f0 = 0. Indeed, we measured the
same cavity passive gain comparing the transmission power levels for finesse 1800, f0 = 0
and finesse 4300, f0 = 45 MHz, so having the occasion to directly compare the contribution
of f0 on noise suppression. It is worth noting that we fixed the PID lock parameters (cho-
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Figure 8: RIN traces from photodetector P2. From top to bottom (labeled in the legend both in colors and letters)
traces acquired for: (a) F = 4300 and f0 = 0, (b) F = 1800 and f0 = 0, (c) F = 4300 and f0 = 45 MHz, (d)
F = 1800 and f0 = 45 MHz, (e)∗ F = 4300 and f0 = 45 MHz with PID parameters optimized for this case,
and (f) laser RIN baseline. Except for data (e) and (f), all the traces have been measured by leaving the PID
cavity-lock parameters unaltered.

sen by optimizing the cavity lock for finesse 1800, f0 = 0) in order to compare different
finesse values and offsets without changing the loop gain or bandwidth. As a last step, we
acquired also a RIN of the transmitted signal with finesse 4300 and f0 = 45 MHz optimizing
the feedback parameters (trace (e)). This latter measurement shows a further enhancement
in terms of power fluctuations. The higher trace, namely the one labeled (a), is the one of
finesse 4300 and f0 = 0. Before 10 kHz it is constant at about −50 dB Hz−1, while a broad
peak at 11 kHz appears at the piezoelectric actuator resonance. After the resonance, the trace
falls and reaches the background floor around 400 kHz. The same drop is noticeable in trace
(b), which is the RIN of finesse 1800 and f0 = 0. On the other hand, the average is 20 dB
lower than the previous, and no piezoelectric actuator resonances are visible. A substantial
change is noticeable looking at trace (c), acquired for finesse 4300 but high f0. Though, the
gain is the same for this curve and (b), while the noise is on average 10 dB lower between
100 Hz and 10 kHz, and 20 dB lower between 10 kHz and 50 kHz. Furthermore, the noise
fall reaches the floor at 200 kHz instead of 400 kHz. A similar behavior can be encountered
for trace (d), namely the one obtained from finesse 1800 and f0 = 45 MHz (with a lower
average of about 10 dB before 10 kHz). A difference in the RIN fall around 10 kHz of the
two curves (a) and (b) and the three curves (c), (d), and (e) can be observed. We attribute it
to the general noise reduction in presence or absence of f0, thus a rescaling of the RIN level
also for frequencies above the PID bandwidth. The best noise suppression case is then repre-
sented in trace (e), where we combined the effect of f0 with an optimization of the feedback
parameters. The feedback noise reduction is evident between 100 Hz and 10 kHz (which is
the feedback bandwidth, i.e., the actuator mechanical resonance frequency), where the noise
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Figure 9: Time domain traces of finesse 1800 - f0 = 0 (red, left), finesse 4300 - f0 = 45 MHz before (blue,
central) and after (green, right) the PID optimization. Cavity gain (thus stored power) is essentially the same in
all represented cases. The traces have been merged in a unique time axis for simplicity of representation.

remains on average below −90 dB Hz−1.
From the RINs, we calculated the relative noise integrating from 1 Hz to 1 MHz obtaining

the following values: σa = 32.5 %, σb = 8.0 %, σc = 2.5 %, σd = 1.2 %, and σe = 0.4 %.
Sigmas are labeled with the same letter of the correspondent RIN. Notice that there is good
correspondence between the simulated noise decreasing trend and the experimental values.

The core of this work resides in the difference between σb and σc. Indeed, these mea-
surements have been obtained at the same gain (thus at the same cavity stored power), but the
power fluctuations are lowered by f0 of a factor 3.2. Of course, the compensation becomes
more evident after the PID optimization, which leads to an integrated relative noise reduced
of a factor 20 with respect to the one from trace (b).

For a better visualization of the results, we report the three cases of interest (b), (c), and
(e) transmission power traces in Fig. 9. All the represented measures were acquired by the
same detector used for the RINs and sent to the oscilloscope. The color used in the picture
recalls the correspondent cases in Fig. 8. Thus, from left to the right, we encounter cases (b),
(c), and (e). As expected, the relative noise is subjected to a drop as f0 increases, passing from
σb = 8.0 % for F = 1800 and f0 = 0, to σe = 0.4 % for F = 4300 and f0 = 45 MHz and
optimized feedback, while maintaining the same gain. Notice that even though the order of
magnitude of the relative noises is the same of simulation (as well as their drop at increasing
f0), the measured values are lower than the predicted ones in most of the cases. This fact can
be ascribed to a partial suppression given by the PDH feedback, as can be seen from the RIN
traces.

A last comment should be addressed to the comparison between the simulations and the
experimental data. Indeed, the value of f0 at which the two configurations have the same
gain is quite different between the simulations and the experiment (30 MHz versus 45 MHz,
respectively). This might be due to an approximated modeling of the spectrum and to uncer-
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tainties on the f0 measurement. Actually, this is not the point, since the aim of this work is
not to find the exact values of the gain and the noise as functions of f0, rather to prove that
gain drops slower than relative noise, and that this behavior can be effectively exploited in
real setups.

5. Conclusions

In conclusion, we demonstrated both theoretically and experimentally the suppression
effect of f0 (thus of fceo) over the frequency noise contribution to power fluctuations of a
laser-cavity locked system. We showed that increasing f0 leads to a substantial noise reduc-
tion, visible both in terms of integrated relative noise and its spectrum. We also demonstrated
that the cavity gain decreases slower than the noise. This finding opens the possibility of
exploiting higher finesse to obtain a desired cavity gain (stored power), while maintaining
substantially lower power instabilities. In particular, we experimentally showed that a cavity
gain of approximately Γtot = 1130 can be obtained either with a finesse of 1800 and an offset
f0 = 0, or with a finesse of 4300 and an offset f0 = 45 MHz. However, the relative noise in
these two cases is very different, passing from 8.0 % to 2.5 %, respectively. In the last con-
figuration, an optimization of the PID parameters allowed us to further decrease the relative
noise to 0.4 %.
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[3] Ma, L., Ye, J., Dubé, P. & Hall, J. Ultrasensitive frequency-modulation spectroscopy
enhanced by a high-finesse optical cavity: theory and application to overtone transitions
of C2H2 and C2HD. J. Opt. Soc. Am. B. 16, 2255-2268 (1999,12)

[4] Gatti, D., Gotti, R., Sala, T., Coluccelli, N., Belmonte, M., Prevedelli, M., Laporta, P. &
Marangoni, M. Wide-bandwidth Pound–Drever–Hall locking through a single-sideband
modulator. Opt. Lett.. 40, 5176-5179 (2015,11)

[5] Berden, G., Peeters, R. & Gerard Meijer Cavity ring-down spectroscopy: Experimen-
tal schemes and applications. International Reviews In Physical Chemistry. 19, 565-607
(2000)

[6] Long, D., Fleisher, A., Wojtewicz, S. & Hodges, J. Quantum-noise-limited cavity ring-
down spectroscopy. Applied Physics B. 115 pp. 149-153 (2014)

[7] Adler, F., Thorpe, M., Cossel, K. & Ye, J. Cavity-Enhanced Direct Frequency Comb
Spectroscopy: Technology and Applications. Annual Review Of Analytical Chemistry. 3,
175-205 (2010), PMID: 20636039

15



[8] Bernhardt, B., Ozawa, A., Jacquet, P., Jacquey, M., Kobayashi, Y., Udem, T., Holzwarth,
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H., Krausz, F. & Hänsch, T. A frequency comb in the extreme ultraviolet. Nature. 436,
234-237 (2005)
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