Normal bundle of monomial curves: an application to rational curves

Alberto Alzati and Raquel Mallavibarrena

Abstract

In this note, we give an application to the study of general rational curves in $\mathbb{P}^{s}(\mathbb{C})$ of the calculation of the splitting type of the normal bundle of any smooth monomial rational curve (i.e., embedded by monomial functions).

1. Introduction

In this paper, any degree d rational curve C in $\mathbb{P}^{s}(\mathbb{C})(d>s \geq 3)$ will be assumed smooth and nondegenerate. Such curves, up to projective transformations, are suitable projections of the rational normal curve Γ_{d} of degree d in $\mathbb{P}^{d}(\mathbb{C})$ from a projective linear space L of dimension $d-s-1$. Let us call $f: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{s}(\mathbb{C})$ the morphism obtained in this way. The normal bundle of such curves splits as a direct sum of line bundles $\mathcal{O}_{\mathbb{P}^{1}}\left(\xi_{1}\right) \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(\xi_{2}\right) \oplus \cdots \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(\xi_{s-1}\right)$ where ξ_{i} are suitable integers. In principle, one should calculate these integers for any chosen L.

In [2], the authors develop a general method to do this calculation. This method was previously used in [1] to get the splitting type of the restricted tangent bundle of C. However, while for the tangent bundle it is possible to get an easy formula (see [1, Theorem 3]), for the normal bundle this is not possible.

In [3] the authors gave a method for calculating the integers ξ_{i} when C is a smooth monomial curve, i.e., when the morphism $f: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{s}(\mathbb{C})$ is given by monomials of the same degree in two variables. In other setups, C is called "monomial" if its ideal in $\mathbb{P}^{S}(\mathbb{C})$ is generated by monomials. Here we do not consider the ideal of C and we focus on f; for instance, the standard twisted cubic in $\mathbb{P}^{3}(\mathbb{C})$ is a monomial curve according to our definition, but its ideal is not generated by monomials.

In [4], the authors study the moduli space of rational curves whose normal bundle has a fixed splitting type and, meanwhile, they get a very simple formula to calculate ξ_{i} for smooth monomial curves. Obviously the two methods give rise to the same

2020 Mathematics Subject Classification. Primary 14N05; Secondary 14H60.
Keywords. Rational curves, normal bundle.
integers (see the final part of [3, §5] and [4, Theorem 3.2]), but the two approaches are very different and we think that they are both useful for different aims.

Here we want to give a consequence of the possibility to get the splitting type of the normal bundle of rational monomial curves as in [3]. Our main theorem will be Theorem 3, however, it is not possible to state it without a background. In brief we can say that our strategy will be to associate a smooth monomial curve $C A$ as above to any smooth rational curve C, satisfying mild assumptions, and to prove that $h^{0}\left(\mathbb{P}^{1}, f^{*} \mathcal{N}_{C}(-d-2-k)\right) \leq h^{0}\left(\mathbb{P}^{1}, f^{*} \mathcal{N}_{C A}(-d-2-k)\right)$ for any $k \geq 2$ where \mathcal{N}_{C} and $\mathcal{N}_{C A}$ are the normal bundles of C and $C A$ in $\mathbb{P}^{s}(\mathbb{C})$, respectively. As the knowledge of this cohomology implies the knowledge of the numbers $c_{i}:=$ $\xi_{i}-d-2$, we will get that the numbers c_{i} of C are bounded by the numbers c_{i} of $C A$ (see Examples 4 and 5).

In Section 2, we fix notations and we recall the background. In Section 3, we associate a monomial curve $C A$ to any smooth rational curve C having a suitable property and we prove our main theorem. In Section 4, we give our applications.

2. Notation and background material

For us, a rational curve $C \subset \mathbb{P}^{s}(\mathbb{C})$ will be the target of a morphism $f: \mathbb{P}^{1}(\mathbb{C}) \rightarrow$ $\mathbb{P}^{s}(\mathbb{C})$. We will work always over \mathbb{C}. We will always assume that C is not contained in any hyperplane and that it is smooth. Let us put $d:=\operatorname{deg}(C)>s \geq 3$. Let \mathcal{I}_{C} be the ideal sheaf of C, then $\mathcal{N}_{C}:=\operatorname{Hom}_{\mathcal{O}_{C}}\left(\mathcal{I}_{C} / \mathcal{I}_{C}^{2}, \mathcal{O}_{C}\right)$ as usual and, taking the differential of f, we get

$$
0 \rightarrow \mathcal{T}_{\mathbb{P}^{1}} \rightarrow f^{*} \mathcal{T}_{\mathbb{P}^{s}} \rightarrow f^{*} \mathcal{N}_{C} \rightarrow 0
$$

where \mathcal{T} denotes the tangent bundle. Of course we can always write

$$
\begin{aligned}
& \mathcal{T}_{f}:=f^{*} \mathcal{J}_{\mathbb{P}^{s}}=\bigoplus_{i=1}^{r} \mathcal{O}_{\mathbb{P}^{1}}\left(b_{i}+d+2\right) \oplus \mathcal{O}_{\mathbb{P}^{1}}^{\oplus(s-r)}(d+1), \\
& \mathcal{N}_{f}:=f^{*} \mathcal{N}_{C}=\bigoplus_{i=1}^{s-1} \mathcal{O}_{\mathbb{P}^{1}}\left(c_{i}+d+2\right)
\end{aligned}
$$

for suitable integers $b_{i} \geq 0$ (see [1, (14)]) and $c_{i} \geq 0$ (see [2, Proposition 10] where we assumed $\left.c_{1} \geq \cdots \geq c_{s-1}\right)$.

Every curve C is, up to a projective transformation, the projection to \mathbb{P}^{s} of a d-Veronese embedding Γ_{d} of \mathbb{P}^{1} in $\mathbb{P}^{d}:=\mathbb{P}(V)$ from a $(d-s-1)$-dimensional projective space $L:=\mathbb{P}(T)$ where V and T are vector spaces of dimension, respectively, $d+1$ and $e+1:=d-s$. For any vector $0 \neq v \in V$ let $[v]$ be the corresponding point in $\mathbb{P}(V)$. Of course we require that $L \cap \Gamma_{d}=\emptyset$ as we want that f is a morphism.

Let us denote by $U=\langle x, y\rangle$ a fixed 2-dimensional vector space such that $\mathbb{P}^{1}=$ $\mathbb{P}(U)$, then we can identify V with $S^{d} U$ (d-th symmetric power) in such a way that the rational normal degree d curve Γ_{d} can be considered as the set of pure tensors of degree d in $\mathbb{P}\left(S^{d} U\right)$ and the d-Veronese embedding is the map

$$
\alpha x+\beta y \rightarrow(\alpha x+\beta y)^{d}, \quad(\alpha: \beta) \in \mathbb{P}^{1}
$$

From now on, any degree d rational curve C will be determined (up to projective equivalences which are not important in our context) by the choice of a proper subspace $T \subset S^{d} U$ such that $\mathbb{P}(T) \cap \Gamma_{d}=\emptyset$.

By arguing in this way, the elements of a base of T can be thought as homogeneous, degree d polynomials in x, y. In [1,2], the authors relate the polynomials of any base of T with the splitting type of \mathcal{T}_{f} and \mathcal{N}_{f}. To describe this relation we need some additional definitions.

Let us indicate by $\left\langle\partial_{x}, \partial_{y}\right\rangle$ the dual space U^{*} of U, where ∂_{x} and ∂_{y} indicate the partial derivatives with respect to x and y.

Definition 1. Let T be any proper subspace of $S^{d} U$. Then

$$
\begin{aligned}
\partial T & :=\left\langle\omega(T) \mid \omega \in U^{*}\right\rangle, \\
\partial^{-1} T & :=\bigcap_{\omega \in U^{*}} \omega^{-1} T \\
r(T) & :=\operatorname{dim}(\partial T)-\operatorname{dim}(T) .
\end{aligned}
$$

Note that Definition 1 allows to define also $\partial^{k} T$ and $\partial^{-k} T$ for any integer $k \geq 1$, by induction. Moreover, we can set $\partial^{0} T:=T$. Let us recall the following:

Theorem 1. Let $T \subset S^{d} U$ be any proper subspace as above such that $\mathbb{P}(T) \cap \Gamma_{d}=\emptyset$. Then $r(T) \geq 1$ and there exist r polynomials p_{1}, \ldots, p_{r} of degree $d+b_{1}, \ldots, d+b_{r}$ respectively, with $b_{i} \geq 0$ and $\left[p_{i}\right] \in \mathbb{P}^{d+b_{i}} \backslash \operatorname{Sec}^{b_{i}}\left(\Gamma_{d+b_{i}}\right)$ for $i=1, \ldots, r$, such that

$$
T=\partial^{b_{1}}\left(p_{1}\right) \oplus \partial^{b_{2}}\left(p_{2}\right) \oplus \cdots \oplus \partial^{b_{r}}\left(p_{r}\right)
$$

and

$$
\partial T=\partial^{b_{1}+1}\left(p_{1}\right) \oplus \partial^{b_{2}+1}\left(p_{2}\right) \oplus \cdots \oplus \partial^{b_{r}+1}\left(p_{r}\right)
$$

Proof. It follows from [1, Theorem 1], because from our assumptions $S_{T}=0$ in the notation of [1]. Recall that $\operatorname{Sec}^{b}\left(\Gamma_{d+b}\right)$ is the variety generated by sets of $b+1$ distinct points of Γ_{d+b}.

From the above decomposition of T it is possible to get directly the splitting type of \mathcal{T}_{f} depending on the integers b_{i} (see [1, Theorem 3]), however, here we are interested in the splitting type of \mathcal{N}_{f}. To this aim the following Proposition is useful:

Proposition 1. In the above notations, for any integer $k \geq 0$, let us call $\varphi(k):=$ $h^{0}\left(\mathbb{P}^{1}, \mathcal{N}_{f}(-d-2-k)\right)$. Then the splitting type of \mathcal{N}_{f} is completely determined by $\Delta^{2}[\varphi(k)]:=\varphi(k+2)-2 \varphi(k+1)+\varphi(k)$.

Proof. We know that $\mathcal{N}_{f}(-d-2)=\bigoplus_{i=1}^{s-1} \mathcal{O}_{\mathbb{P}^{1}}\left(c_{i}\right)$, so that we have only to determine the integers c_{i}. By definition, $\Delta^{2}[\varphi(k)]$ is exactly the number of integers c_{i} which are equal to k. Note that, by definition, $\varphi(k)$ is strictly decreasing.

From Proposition 1 it follows that to know the splitting type of \mathcal{N}_{f} it suffices to know $\varphi(k)$ for any $k \geq 0$.

Let us consider the linear operators

$$
D_{k}: S^{k} U \otimes S^{d} U \rightarrow S^{k-1} U \otimes S^{d-1} U
$$

such that $D_{k}:=\partial_{x} \otimes \partial_{y}-\partial_{y} \otimes \partial_{x}$, and $D_{k}^{2}: S^{k} U \otimes S^{d} U \rightarrow S^{k-2} U \otimes S^{d-2} U$. Of course, as $T \subset S^{d} U$, we can restrict D_{k}^{2} to $S^{k} U \otimes T$ and we get a linear map $D_{k \mid S^{k} U \otimes T}^{2}: S^{k} U \otimes T \rightarrow S^{k-2} U \otimes \partial^{2} T$; let us define

$$
T_{k}:=\operatorname{ker}\left(D_{k \mid S^{k} U \otimes T}^{2}\right)
$$

Then we have the following:
Theorem 2. In the above notations,

$$
\begin{aligned}
& \varphi(0)=d+e \\
& \varphi(1)=2(e+1) \\
& \varphi(2)=3(e+1)-\operatorname{dim}\left(\partial^{2} T\right)
\end{aligned}
$$

and for any $k \geq 2, \varphi(k)=\operatorname{dim}\left(T_{k}\right)$.
Moreover, the number of integers c_{i} such that $c_{i}=0$ is $d-1-\operatorname{dim}\left(\partial^{2} T\right)$.
Proof. See [2, Theorem 1 and Proposition 11]; note that, for $k=2$, there are two different ways to get $\varphi(2)$.

By Proposition 1 the number of integers c_{i} such that $c_{i}=0$ is $\Delta^{2}[\varphi(0)]=$ $d-1-\operatorname{dim}\left(\partial^{2} T\right)$.

In [3], a combinatorial formula is given to calculate $\varphi(k)$, for $k \geq 2$, when C is a monomial smooth rational curve, therefore we can assume that $\varphi(k)$ is known for any monomial smooth rational curve. Moreover, a method to determine the set $\left\{\xi_{i}\right\}$ is given in [3, Theorem 4 and Remark 2]. Let us recall this method: firstly decompose T as $T=T^{1} \oplus T^{2} \oplus \cdots \oplus T^{q}$ in such a way that $\partial^{2} T=\partial^{2} T^{1} \oplus \partial^{2} T^{2} \oplus \cdots \oplus \partial^{2} T^{q}$ for some $q \geq 1$; every T^{j} is called irreducible. Secondly: decompose every irreducible $T^{j}, j=1, \ldots, q$ as explained in Theorem 1, getting the integers $b_{1}(j), \ldots, b_{r(j)}(j)$.

Thirdly: define $b_{0}(j)=b_{r(j)+1}(j)=-1$ for any $j=1, \ldots, q$ and consider the set $\left\{b_{i}(j)+b_{i+1}(j)+2\right.$ for $i=0, \ldots, r(j)$ and $\left.j=1, \ldots, q\right\}$. This is the set of positive c_{i}, while the number of null c_{i} is given by Theorem 2. By recalling that

$$
\sum_{j=1}^{q}[r(j)+1]=\operatorname{dim}\left(\partial^{2} T\right)-\operatorname{dim}(T)
$$

we get a set of $s-1$ integers $\left\{c_{i}\right\}$ and $\xi_{i}=c_{i}+d+2, i=1, \ldots, s-1$.
On the other hand, in [4], the authors give a very direct formula for calculating ξ_{i} when C is a monomial smooth rational curve of degree d (see [4, Theorem 3.2]). Such curve is the image of a map

$$
f(x: y)=\left(x^{h_{0}}: x^{h_{1}} y^{d-h_{1}}: \cdots: x^{h_{i}} y^{d-h_{i}}: \cdots: x^{h_{s}} y^{d-h_{s}}\right)
$$

with $i=0, \ldots, s$ and $h_{0}>h_{1}>\cdots>h_{s} \geq 0$. We require that this map is an embedding, hence it is necessary that: $h_{0}=d, h_{1}=d-1, h_{s-1}=1, h_{s}=0$, (see [4, Lemma 3.1]) and $s \geq 3$. Then [4, Theorem 3.2] says that

$$
\xi_{i}=d+h_{i-1}-h_{i+1} \quad \text { for } i=1, \ldots, s-1 \quad \text { (Coskun-Riedl formula). }
$$

Of course the Coskun-Riedl formula gives the same integers ξ_{i} obtained by the method described in [3]; the interested reader can find a proof of this fact in that article.

3. Rational complete curves and main theorem

Let C be any smooth rational curve of degree d. The morphism $f: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{s}(\mathbb{C})$ is given by a $(s+1, d+1)$ matrix M of rank $s+1$ such that

$$
(x: y) \rightarrow M\left[x^{d} x^{d-1} y \cdots y^{d}\right]^{t}
$$

where $[\cdots]^{t}$ denotes transposition. In other words, the parametric equations for C are

$$
\left[\begin{array}{c}
X_{0} \\
X_{1} \\
\cdots \\
X_{s}
\end{array}\right]=M\left[\begin{array}{c}
x^{d} \\
x^{d-1} y \\
\cdots \\
y^{d}
\end{array}\right]
$$

As $\operatorname{rank}(M)=s+1$ we can apply the Gauss elimination to M and we can transform it in a row echelon form. This is equivalent to multiply M on the left by a suitable non singular $(s+1, s+1)$ matrix, i.e., to change the projective coordinate system in $\mathbb{P}^{s}(\mathbb{C})$. By another change, if necessary, we can also assume that all pivots are 1.

The point $f(1: 0)=\left(m_{1,1}: m_{2,1}: \cdots: m_{s+1,1}\right)$ belongs to C, in particular $\left(m_{1,1}: m_{2,1}: \cdots: m_{s+1,1}\right) \neq(0: 0: \cdots: 0)$, hence we can assume that the first pivot is $m_{1,1}=1$ and that $m_{i, 1}=0$ for $i \geq 2$, i.e., $f(1: 0)=(1: 0: \cdots: 0)$. Let us consider the second column of M in the row echelon form (hence $m_{i, 2}=0$ for $i \geq 3$). If the second pivot would be not $m_{2,2}=1$ then C would be singular at $(1: 0: \cdots: 0)$, but C is smooth, hence $m_{2,2}=1$.

We give the following:
Definition 2. Let M be the above matrix. If $m_{s+1, j}=0$ for $j=1, \ldots, d ; m_{s+1, d+1}$ $=1 ; m_{s, j}=0$ for $j=1, \ldots, d-1$ and $m_{s, d}=1$, then we say that C is complete.

To any smooth rational curve C, whose associated matrix M is in a row echelon form as above, we can associate a monomial rational curve $C A$ whose parametric equations are

$$
\left[\begin{array}{c}
X_{0} \\
X_{1} \\
\cdots \\
X_{s}
\end{array}\right]=M^{\prime}\left[\begin{array}{c}
x^{d} \\
x^{d-1} y \\
\cdots \\
y^{d}
\end{array}\right]
$$

where M^{\prime} is the matrix of the pivots of M, i.e., $M^{\prime}:=\left(m_{i, j}^{\prime}\right)$ is a matrix of type $(s+1, d+1)$ such that $m_{i, j}^{\prime}=1$ if and only if $m_{i, j}=1$ is a pivot of M and $m_{i, j}^{\prime}=0$ otherwise. The meaning of the above definition is clarified by the following fact, easy to prove: if C is complete, then $C A$ is smooth of degree d; while, in general, $C A$ is smooth of degree $d^{\prime}<d$, or singular of degree d.

Example 1. Here is a typical example of complete, smooth, rational curve C with $s=5$ and $d=9,(*$ denotes any complex number $)$:

$$
M=\left[\begin{array}{llllllllll}
1 & * & * & * & * & * & * & * & * & * \\
0 & 1 & * & * & * & * & * & * & * & * \\
0 & 0 & 0 & 0 & 1 & * & * & * & * & * \\
0 & 0 & 0 & 0 & 0 & 1 & * & * & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

In other words, putting $t:=y / x$, the affine parametric equations of C are

$$
\begin{aligned}
& X_{0}=1+* t+\cdots+* t^{9} \\
& X_{1}=t+* t^{2}+\cdots+* t^{9} \\
& X_{2}=t^{4}+* t^{5}+\cdots+* t^{9}
\end{aligned}
$$

$$
\begin{aligned}
& X_{3}=t^{5}+* t^{6}+\cdots+* t^{9} \\
& X_{4}=t^{8}+* t^{9} \\
& X_{5}=t^{9}
\end{aligned}
$$

Then the affine parametric equations for $C A$ are

$$
\begin{aligned}
& X_{0}=1, \\
& X_{1}=t, \\
& X_{2}=t^{4}, \\
& X_{3}=t^{5}, \\
& X_{4}=t^{8}, \\
& X_{5}=t^{9} .
\end{aligned}
$$

In practice: for any i, take the monomials in t of minimal degree appearing in the polynomials $X_{i}(t)$.

Example 2. Here is a typical example of a non complete, smooth, rational curve C with $s=4$ and $d=8$ such that $C A$ is still smooth, ($*$ denotes any complex number, but there is at least a non zero number in the last column):

$$
M=\left[\begin{array}{lllllllll}
1 & * & * & * & * & * & * & * & * \\
0 & 1 & * & * & * & * & * & * & * \\
0 & 0 & 0 & 0 & 1 & * & * & * & * \\
0 & 0 & 0 & 0 & 0 & 1 & * & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & * & *
\end{array}\right]
$$

Now, putting $t:=y / x$, the affine parametric equations of C are

$$
\begin{aligned}
& X_{0}=1+* t+\cdots+* t^{8} \\
& X_{1}=t+* t^{2}+\cdots+* t^{8} \\
& X_{2}=t^{4}+* t^{5}+\cdots+* t^{8}, \\
& X_{3}=t^{5}+* t^{6}+\cdots+* t^{8}, \\
& X_{4}=t^{6}+* t^{7}+* t^{8}
\end{aligned}
$$

Then the affine parametric equations for the degree $d^{\prime}=6$ curve $C A$ are

$$
\begin{aligned}
& X_{0}=1 \\
& X_{1}=t \\
& X_{2}=t^{4} \\
& X_{3}=t^{5}, \\
& X_{4}=t^{6} .
\end{aligned}
$$

Note that, as we want that $C A$ is smooth, $m_{s, d^{\prime}}=m_{s+1, d^{\prime}+1}=1$. In this example, $d^{\prime}=\operatorname{deg}(C A)=6<\operatorname{deg}(C)=8$.

We have the following:
Theorem 3. Let C be a smooth, rational curve of degree d in $\mathbb{P}^{s}(\mathbb{C})$ and let us assume that $C A$ is a smooth monomial rational curve of degree $d^{\prime} \leq d$ associated to C as above. Let φ_{C} and $\varphi_{C A}$ be, respectively, the functions defined by Proposition 1 for curves C and $C A$. Then, for any $k \geq 2, \varphi_{C}(k) \leq \varphi_{C A}(k)$.

Proof. Firstly, let us assume that C is complete, hence $d^{\prime}=d$, and let us consider the affine parametric equations af C as in the above examples. These equations define a regular map

$$
f: \mathbb{A}^{1} \rightarrow \mathbb{P}^{s}
$$

as follows $(*$ denotes any complex number):

$$
\begin{aligned}
X_{0} & =1+* t+\cdots+* t^{d} \\
X_{1} & =t+* t^{2}+\cdots+* t^{d}, \\
& \vdots \\
X_{i} & =t^{p_{i}}+* t^{p_{i}+1}+\cdots+* t^{d} \\
& \vdots \\
X_{s-1} & =t^{d-1}+* t^{d}, \\
X_{s} & =t^{d}
\end{aligned}
$$

For any non zero complex number q let us define
(1) an isomorphism $\psi_{q}: \mathbb{A}^{1} \rightarrow \mathbb{A}^{1}$,

$$
\psi_{q}(t)=t / q
$$

(2) a rational curve C_{q} in \mathbb{P}^{s} whose affine parametric equations are

$$
\begin{aligned}
X_{0} & =1+q * t+\cdots+q^{d} * t^{d} \\
X_{1} & =t+q * t^{2}+\cdots+q^{d-1} * t^{d}, \\
& \vdots \\
X_{i} & =t^{p_{i}}+q * t^{p_{i}+1}+\cdots+q^{d-p_{i}} * t^{d} \\
& \vdots \\
X_{s-1} & =t^{d-1}+q * t^{d}, \\
X_{s} & =t^{d}
\end{aligned}
$$

defining a map

$$
f_{q}: \mathbb{A}^{1} \rightarrow \mathbb{P}^{s} ;
$$

(3) a linear isomorphism

$$
F_{q}: \mathbb{P}^{s} \rightarrow \mathbb{P}^{s}
$$

whose associated $(s+1, s+1)$ matrix is

$$
\operatorname{diag}\left(1, q, \ldots, q^{p_{i}}, \ldots, q^{d-1}, q^{d}\right)
$$

The definitions are given in order to get

$$
F_{q}\left[f_{q}\left(\psi_{q}\right)\right]=f
$$

then we have that every curve C_{q} is projectively equivalent to C and they all have the same splitting type for the normal bundle in \mathbb{P}^{s}. Moreover, the smooth curve $C A$ is obtained from C_{q} by letting $q \rightarrow 0$, hence, by semicontinuity, we have $\varphi_{C}(k) \leq$ $\varphi_{C A}(k)$.

If C is not complete, but $C A$ is still smooth, of degree $d^{\prime}<d$, the above proof must be changed a little, taking into account that, in these cases,

$$
X_{s}=t^{p_{s}}+* t^{p_{s}+1}+\cdots+* t^{d}
$$

with $p_{s}=d^{\prime}$, but the conclusion is the same.
When C is complete there is another proof of the main theorem "by hands" without using any degeneration argument. We give here a sketch of it because we think that it is useful when one has to calculate the value $\varphi_{C}(k)$ to get the splitting type of \mathcal{N}_{f} according to Proposition 1.

Let T_{C} and $T_{C A}$ be the ($e+1$)-dimensional vector spaces determining C, and respectively $C A$, as explained in Section 2. Let us fix a monic monomial base for $T_{C A}$. By looking at the $(s+1, d+1)$ matrix M for C (in a row echelon form, with all pivots equal to 1) we see that a base for $T_{C A}$ can be chosen by taking exactly the monomials in the string $\left\langle x^{d}, x^{d-1} y, \ldots, x y^{d-1}, y^{d}\right\rangle$ not corresponding to the $s+1$ pivots of the matrix.

It is possible to choose two corresponding bases: $\left\langle\tau_{0}, \tau_{1}, \ldots, \tau_{e}\right\rangle$ for T_{C} and $\left\langle\tilde{\tau}_{0}, \tilde{\tau}_{1}, \ldots, \tilde{\tau}_{e}\right\rangle$ for $T_{C A}$, such that $\operatorname{lt}\left(\tau_{i}\right)=\tilde{\tau}_{i}$ for $i=0, \ldots, e$, where $\operatorname{lt}(\tau)$ denote the leading term of a polynomial $\tau \in \mathbb{C}[x, y]$ with respect to y.

For any $k \geq 2$, let us consider the generic element $\sum_{p=0}^{e} f_{p} \otimes \tau_{p} \in S^{k} U \otimes T_{C}$ and let us apply the operator D_{k}^{2} to it. We get

$$
\begin{gathered}
D_{k}^{2}\left[\sum_{p=0}^{e} f_{p} \otimes \tau_{p}\right]=\sum_{p=0}^{e}\left(\partial_{y} \partial_{y} f_{p} \otimes \partial_{x} \partial_{x} \tau_{p}-2 \partial_{x} \partial_{y} f_{p} \otimes \partial_{x} \partial_{y} \tau_{p}\right. \\
\left.+\partial_{x} \partial_{x} f_{p} \otimes \partial_{y} \partial_{y} \tau_{p}\right)
\end{gathered}
$$

Now, let us consider all the degree $d-2$ monomials in $\mathbb{C}[x, y]$ involved by the $3(e+1)$ polynomials $\left\{\partial^{2} \tau_{0}, \partial^{2} \tau_{1}, \ldots, \partial^{2} \tau_{e}\right\}$ generating $\partial^{2} T_{C}$, i.e., $x^{d-2}, x^{d-3} y, \ldots$, $x^{d-2-\beta_{r}} y^{\beta_{r}}$. We can write

$$
D_{k}^{2}\left[\sum_{p=0}^{e} f_{p} \otimes \tau_{p}\right]=\sum_{q=0}^{\beta_{r}} A_{q} \otimes x^{d-2-q} y^{q}
$$

so that $D_{k}^{2}\left[\sum_{p=0}^{e} f_{p} \otimes \tau_{p}\right]=0$ if and only if $A_{q}=0$ for $q \in\left[0, \beta_{r}\right]$.
Now, let us consider all the degree $d-2$ monomials in $\mathbb{C}[x, y]$ involved by the $3(e+1)$ monomials $\left\{\partial^{2} \tilde{\tau}_{0}, \partial^{2} \tilde{\tau}_{1}, \ldots, \partial^{2} \tilde{\tau}_{e}\right\}$ generating $\partial^{2} T_{C A}$. Thanks to our choice of bases $\left\langle\tau_{0}, \tau_{1}, \ldots, \tau_{e}\right\rangle$ and $\left\langle\tilde{\tau}_{0}, \tilde{\tau}_{1}, \ldots, \tilde{\tau}_{e}\right\rangle$ we have that

$$
\left\{\partial^{2} \tilde{\tau}_{0}, \partial^{2} \tilde{\tau}_{1}, \ldots, \partial^{2} \tilde{\tau}_{e}\right\} \subseteq\left\{x^{d-2}, x^{d-3} y, \ldots, x^{d-2-\beta_{r}} y^{\beta_{r}}\right\}
$$

Let δ be the dimension of $\partial^{2} T_{C A}$. Let us fix δ monic distinct monomials among $\left\{\partial^{2} \tilde{\tau}_{0}, \partial^{2} \tilde{\tau}_{1}, \ldots, \partial^{2} \tilde{\tau}_{e}\right\}$ generating $\partial^{2} T_{C A}$. These monomials are obviously independent and give rise to a base \mathfrak{B} for $\partial^{2} T_{C A}$. Let us order this base \mathscr{B} with respect to the ascending powers of y. Let us call

$$
\begin{aligned}
F_{k} & :=\operatorname{ker}\left(D_{k \mid S^{k} U \otimes T_{C A}}^{2}\right) \\
& =\left\{\sum_{p=0}^{e} f_{p} \otimes \tilde{\tau}_{p} \in S^{k} U \otimes T_{C A} \mid D_{k}^{2}\left[\sum_{p=0}^{e} f_{p} \otimes \tilde{\tau}_{p}\right]=0\right\}
\end{aligned}
$$

Obviously, the condition $D_{k}^{2}\left[\sum_{p=0}^{e} f_{p} \otimes \tilde{\tau}_{p}\right]=0$ involves only the δ degree $d-2$ monomials belonging to \mathscr{B}. Let us define

$$
\begin{aligned}
E_{k}:= & \left\{\sum_{p=0}^{e} f_{p} \otimes \tau_{p} \in S^{k} U \otimes T_{C} \mid D_{k}^{2}\left[\sum_{p=0}^{e} f_{p} \otimes \tau_{p}\right]=\sum_{q=0}^{\beta_{r}} A_{q} \otimes x^{d-2-q} y^{q}\right. \\
& \text { and } \left.A_{q}=0 \text { only for the } \delta \text { monomials } x^{d-2-q} y^{q} \text { belonging to } \mathscr{B}\right\} .
\end{aligned}
$$

Obviously $\varphi_{C}(k)=\operatorname{dim}\left[\operatorname{ker}\left(D_{k \mid S^{k} U \otimes T_{C}}^{2}\right)\right] \leq \operatorname{dim}\left(E_{k}\right)$.
To complete the proof of the theorem it is sufficient to prove that $\operatorname{dim}\left(E_{k}\right) \leq$ $\operatorname{dim}\left(F_{k}\right)=\varphi_{C A}(k)$. Note that E_{k} and F_{k} are both subspaces of $\mathbb{C}^{(e+1)(k+1)}$ and that this vector space is given by all the coefficients of the generic polynomials $f_{p} \in$ $S^{k}(U), p=0, \ldots, e$.

We have only δ relations defining E_{k}, one to one with the elements of \mathfrak{B}. Every relation is of the following type and it does not depend on k :

$$
\sum_{p=0}^{e}\left(a_{p} \partial_{x} \partial_{x} f_{p}+b_{p} \partial_{x} \partial_{y} f_{p}+c_{p} \partial_{y} \partial_{y} f_{p}\right)=0, \quad a_{p}, b_{p}, c_{p} \in \mathbb{C}
$$

hence they give rise to a $(\delta, 3(e+1))$ matrix N of complex numbers which is the union of $e+1$ blocks of type $(\delta, 3)$, each one in a row echelon form due to the above choice for \mathscr{B}.

The δ relations defining E_{k} inside $\mathbb{C}^{(e+1)(k+1)}$ can be written in matricial form as

$$
N\left[\begin{array}{llllll}
\partial_{x} \partial_{x} f_{0} & \partial_{x} \partial_{y} f_{0} & \partial_{y} \partial_{y} f_{0} & \cdots & \partial_{x} \partial_{x} f_{e} & \partial_{x} \partial_{y} f_{e} \tag{e}
\end{array} \partial_{y} \partial_{y} f_{e}\right]^{t}=0
$$

Note that the set of $k+1$ variables related to every polynomial f_{p} is distinct from the set of $k+1$ variables related to any other polynomial $f_{p^{\prime}}$ if $p^{\prime} \neq p$.

We can argue in the same way with the δ relations defining F_{k} inside $\mathbb{C}^{(e+1)(k+1)}$ getting an analogue matrix $N A$ and a matrix relation analogous to (e),

$$
N A\left[\begin{array}{lllllll}
\partial_{x} \partial_{x} f_{0} & \partial_{x} \partial_{y} f_{0} & \partial_{y} \partial_{y} f_{0} & \cdots & \partial_{x} \partial_{x} f_{e} & \partial_{x} \partial_{y} f_{e} & \partial_{y} \partial_{y} f_{e} \tag{a}
\end{array}\right]^{t}=0
$$

Note that $N A$ is obtained from N simply by putting equal to zero every number appearing in N which is not a pivot in a single block. Moreover, $\delta \leq 3(e+1)$ (in fact, $\left.\varphi_{C A}(2)=3(e+1)-\delta \geq 0\right)$ and therefore $\operatorname{rank}(N)=\operatorname{rank}(N A)=\delta$, being both the union of blocks in a row echelon form. Moreover, both matrices have the same pivots in the same position.

It follows that there exists a non singular upper triangular matrix Z of complex numbers, of order δ, such that $N^{\prime}:=Z N$, all complex numbers over the pivots of N are zero and the pivots of every block of N^{\prime} are the same and in the same position with respect to N and hence $N A$ (see the example below). Of course, E_{k} can be defined inside $\mathbb{C}^{(e+1)(k+1)}$ also by the δ relations

$$
N^{\prime}\left[\begin{array}{llllll}
\partial_{x} \partial_{x} f_{0} & \partial_{x} \partial_{y} f_{0} & \partial_{y} \partial_{y} f_{0} & \cdots & \partial_{x} \partial_{x} f_{e} & \partial_{x} \partial_{y} f_{e} \tag{ee}
\end{array} \quad \partial_{y} \partial_{y} f_{e}\right]^{t}=0
$$

Now we can see that the dimension of E_{k} inside $\mathbb{C}^{(e+1)(k+1)}$ is the dimension of the vector space over \mathbb{C} generated by the set \mathcal{E} of coefficients of those polynomials among $\left\{\partial_{x} \partial_{x} f_{0}, \partial_{x} \partial_{y} f_{0}, \partial_{y} \partial_{y} f_{0}, \ldots, \partial_{x} \partial_{x} f_{e}, \partial_{x} \partial_{y} f_{e}, \partial_{y} \partial_{y} f_{e}\right\}$ such that in (ee) the corresponding columns of N^{\prime} do not contain a pivot. The same is true for the dimension of F_{k} by considering (a) and $N A$, note that the quoted columns are the same for N^{\prime} and $N A$ hence the set \mathscr{E} is the same.

If $k=2$ the dimensions of E_{2} and F_{2} are exactly the number of such columns, i.e., $3(e+1)-\delta$, because the polynomials $\left\{\partial_{x} \partial_{x} f_{0}, \ldots, \partial_{y} \partial_{y} f_{e}\right\}$ have degree 0 . If $k \geq 3$, to calculate $\operatorname{dim}\left(E_{k}\right)$ and $\operatorname{dim}\left(F_{k}\right)$ it is necessary to take into account all the relations among the elements of \mathcal{G} arising from (ee) and (a). Of course, to prove that $\operatorname{dim}\left(E_{k}\right) \leq \operatorname{dim}\left(F_{k}\right)$, it is enough to prove that, passing from (ee) to (a), no new relations are introduced. It can be shown that this is true by a simple case by case examination.

In the following Example 3, we will illustrate how the above proof works. Applications of Theorem 3 will be explained later, in Examples 4 and 5.

Example 3. Let us consider a rational smooth curve C of degree 10 in \mathbb{P}^{6} given by a matrix M as follows ($*$ denotes any complex number, blank denotes 0):

$$
M=\left[\begin{array}{lllllllllll}
1 & * & * & * & * & * & * & * & * & * & * \\
& 1 & * & * & * & * & * & * & * & * & * \\
& & 1 & * & * & * & * & * & * & * & * \\
& & & & & 1 & * & * & * & * & * \\
& & & & & & 1 & * & * & * & * \\
& & & & & & & & & 1 & * \\
& & & & & & & & & & 1
\end{array}\right]
$$

then $T_{C A}=\left\langle x^{7} y^{3}, x^{6} y^{4}, x^{3} y^{7}, x^{2} y^{8}\right\rangle, e+1=4$; while T_{C} is generated by

$$
\begin{aligned}
& \tau_{0}=* x^{10}+* x^{9} y+* x^{8} y^{2}+x^{7} y^{3}, \\
& \tau_{1}=* x^{10}+* x^{9} y+* x^{8} y^{2}+x^{6} y^{4}, \\
& \tau_{2}=* x^{10}+* x^{9} y+* x^{8} y^{2}+* x^{5} y^{5}+* x^{4} y^{6}+x^{3} y^{7}, \\
& \tau_{3}=* x^{10}+* x^{9} y+* x^{8} y^{2}+* x^{5} y^{5}+* x^{4} y^{6}+x^{2} y^{8} .
\end{aligned}
$$

We have that $\partial^{2} T_{C A}=\left\langle x^{7} y, x^{6} y^{2}, x^{5} y^{3}, x^{4} y^{4}, x^{3} y^{5}, x^{2} y^{6}, x y^{7}, y^{8}\right\rangle, \delta=8$ and the monomials involved by $\partial^{2} T_{C}$ are: $x^{8}, x^{7} y, x^{6} y^{2}, x^{5} y^{3}, x^{4} y^{4}, x^{3} y^{5}, x^{2} y^{6}, x y^{7}, y^{8}$. We have to forget x^{8} and to consider the relations given by the other 8 monomials. The matrix $N=N^{0} \cup N^{1} \cup N^{2} \cup N^{3}$ is of type $(8=\delta, 12=3(e+1))$ and it is the union of 4 submatrices of type $(8,3)\left(\hbar_{j}\right.$ denotes a non zero complex number),

On the other hand $N A$ is the following:

From N^{\prime} we get

$$
\left[\begin{array}{l}
\partial_{x} \partial_{x} f_{0} \\
\partial_{x} \partial_{y} f_{0} \\
\partial_{y} \partial_{y} f_{0} \\
\partial_{y} \partial_{y} f_{1} \\
\partial_{x} \partial_{x} f_{2} \\
\partial_{x} \partial_{y} f_{2} \\
\partial_{y} \partial_{y} f_{2} \\
\partial_{y} \partial_{y} f_{3}
\end{array}\right]=\left[\begin{array}{cccc}
\alpha & \beta & \gamma & \delta \\
\natural_{13} & \varepsilon & \zeta & \eta \\
& \natural_{14} & \vartheta & \iota \\
& & \rho & \lambda \\
& & \mu & v \\
& & \natural_{15} & \xi \\
& & & \natural_{16}
\end{array}\right]\left[\begin{array}{l}
\partial_{x} \partial_{x} f_{1} \\
\partial_{x} \partial_{y} f_{1} \\
\partial_{x} \partial_{x} f_{3} \\
\partial_{x} \partial_{y} f_{3}
\end{array}\right] .
$$

From $N A$ we get analogous relations where every greek letter is zero.
Now, let us choose $k=3$, so that $f_{p}=a_{p} x^{3}+3 b_{p} x^{2} y+3 c_{p} x y^{2}+d_{p} y^{3}$ and $\partial_{x} \partial_{x} f_{p}=6\left(a_{p} x+b_{p} y\right)$ and so on. In this case, $\mathcal{E}=\left\{a_{1}, b_{1}, c_{1}, a_{3}, b_{3}, c_{3}\right\}$. By dividing all polynomials by 6 we can write all the above relations as

$$
\left[\begin{array}{ll}
a_{0} & b_{0} \\
b_{0} & c_{0} \\
c_{0} & d_{0} \\
c_{1} & d_{1} \\
a_{2} & b_{2} \\
b_{2} & c_{2} \\
c_{2} & d_{2} \\
c_{3} & d_{3}
\end{array}\right]=\left[\begin{array}{cccc}
\alpha & \beta & \gamma & \delta \\
\natural_{13} & \varepsilon & \zeta & \eta \\
& \natural_{14} & \vartheta & \iota \\
& & \rho & \lambda \\
& & \mu & v \\
& & \natural_{15} & \xi \\
& & & \natural_{16}
\end{array}\right]\left[\begin{array}{ll}
a_{1} & b_{1} \\
b_{1} & c_{1} \\
a_{3} & b_{3} \\
b_{3} & c_{3}
\end{array}\right] .
$$

We get the following relations:

$$
\begin{aligned}
a_{0} & =\alpha a_{1}+\beta b_{1}+\gamma a_{3}+\delta b_{3}, \\
b_{0} & =\alpha b_{1}+\beta c_{1}+\gamma b_{3}+\delta c_{3}, \\
b_{0} & =\natural_{13} a_{1}+\varepsilon b_{1}+\zeta a_{3}+\eta b_{3}, \\
c_{0} & =\natural_{13} b_{1}+\varepsilon c_{1}+\zeta b_{3}+\eta c_{3}, \\
c_{0} & =\natural_{14} b_{1}+\vartheta a_{3}+\iota b_{3},
\end{aligned}
$$

$$
\begin{aligned}
d_{0} & =\natural_{14} c_{1}+\vartheta b_{3}+\iota c_{3}, \\
c_{1} & =\rho a_{3}+\lambda b_{3}, \\
d_{1} & =\rho b_{3}+\lambda c_{3}, \\
a_{2} & =\mu a_{3}+\nu b_{3}, \\
b_{2} & =\mu b_{3}+\nu c_{3}, \\
b_{2} & =\square_{15} a_{3}+\xi b_{3}, \\
c_{2} & =\square_{15} b_{3}+\xi c_{3}, \\
c_{2} & =\natural_{16} b_{3}, \\
d_{2} & =\natural_{16} c_{3}, \\
c_{3} & =d_{3}=0 .
\end{aligned}
$$

It is easy to see that $\varphi_{C A}(3)=\varphi_{C}(3)=0$ if $\bigsqcup_{15} \neq \bigsqcup_{16}$ and $\natural_{13} \neq \natural_{14}$. If $\natural_{15}=\natural_{16}$ but $\natural_{13} \neq \natural_{14}$ then $\varphi_{C A}(3)=\varphi_{C}(3)=1$. If $\natural_{15}=\bigsqcup_{16}$ and $\natural_{13}=\natural_{14}$ then $\varphi_{C A}(3)=2$ while for E_{3} we have two generators with a relation at most, hence $\varphi_{C}(3) \leq 2$ and we have $\varphi_{C}(3) \leq \varphi_{C A}(3)$ in any case.

In general, to get $\varphi_{C}(3)$ we should know the exact values of the entries of M, but in Example 3 this is not important: the Coskun-Riedl formula proves that $\varphi_{C A}(3)=0$ a priori. Therefore we can conclude that $\varphi_{C}(3)=0$ for any curve C as above.

Remark 1. Unfortunately, it is not possible to get a good bound for $\varphi_{C}(k)$ from below: for any k, it is easy to count how many generators and relations are necessary to define $\operatorname{ker}\left(D_{k \mid S^{k} U \otimes T_{C}}^{2}\right)$ inside $\mathbb{C}^{(e+1)(k+1)}$, but every relation can provide a big number of linear equations for $\operatorname{ker}\left(D_{k \mid S^{k} U \otimes T_{C}}^{2}\right)$ and it is hard to determine a reasonable bound for the independent ones. On the other hand, if we consider all of them, we have that the bound from below becomes quickly a negative number, as k increases.

Remark 2. It is very natural to ask whether it is possible to extend the above sketched proof to curves C not complete, when $C A$ is smooth of degree $d^{\prime}<d$. However this is not possible. It is easy to give counterexamples.

4. Applications

The immediate application of Theorem 3 is the following:
Corollary 1. Let C be a complete, smooth, rational curve of degree d in $\mathbb{P}^{s}(\mathbb{C})$ and let $C A$ be the associated smooth rational monomial curve as before, with normal bundles \mathcal{N}_{C} and $\mathcal{N}_{C A}$, respectively. Let $f_{C}: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{s}(\mathbb{C})$ and $f_{C A}: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{s}(\mathbb{C})$
be the related morphisms. Let $\varphi_{C}(k)$ and $\varphi_{C A}(k)$ be the two functions introduced in Section 2 for any integer $k \geq 0$. Then
(i) if $\varphi_{C A}(k)=0$ for $k \geq k_{0}$ (k_{0} suitable integer) then $\varphi_{C}(k)=0$ for $k \geq k_{0}$;
(ii) if $\Delta^{2} \varphi_{C A}(k)=0$ for $k \geq k_{0}$ (k_{0} suitable integer) then $\Delta^{2} \varphi_{C}(k)=0$ for $k \geq k_{0} ;$
(iii) assume that $f_{C A}^{*} \mathcal{N}_{C A} \simeq \mathcal{O}_{\mathbb{P}^{1}}\left(\xi_{1}^{\prime}\right) \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(\xi_{2}^{\prime}\right) \oplus \cdots \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(\xi_{s-1}^{\prime}\right)$ and let us put $\mu:=\max \left\{\xi_{1}^{\prime}, \ldots, \xi_{s-1}^{\prime}\right\}$, then $f_{C}^{*} \mathcal{N}_{C} \simeq \mathcal{O}_{\mathbb{P}^{1}}\left(\xi_{1}\right) \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(\xi_{2}\right) \oplus \cdots \oplus$ $\mathcal{O}_{\mathbb{P}^{1}}\left(\xi_{s-1}\right)$ with $\xi_{i} \leq \mu$ for any $i=1, \ldots, s-1$;
(iv) the natural multiplication map

$$
H^{0}\left(C, \mathcal{O}_{C}(v-1)\right) \otimes H^{0}\left(\mathbb{P}^{s}, \mathcal{O}_{\mathbb{P}^{s}}(1)\right) \rightarrow H^{0}\left(C, \mathcal{O}_{C}(v)\right)
$$

is surjective for any integer $v \geq \mu-1$.
Proof. (i) and (ii) follow directly by Theorem 3.
(iii) For a suitable integer $k_{0} \gg 0$ it is surely true that $\Delta^{2} \varphi_{C A}(k)=0$ for $k \geq k_{0}$; let us assume that k_{0} is the minimal integer with this property. Recall that

$$
f_{C A}^{*} \mathcal{N}_{C A}(-d-2)=\bigoplus_{i=1}^{s-1} \mathcal{O}_{\mathbb{P}^{1}}\left(c_{i}^{\prime}\right),
$$

with $c_{1}^{\prime} \geq c_{2}^{\prime} \geq \cdots \geq c_{s-1}^{\prime}$, and that $\Delta^{2}\left[\varphi_{C A}(k)\right]$ is exactly the number of integers c_{i}^{\prime} which are equal to k. Hence, if $\Delta^{2} \varphi_{C A}(k)=0$ for $k \geq k_{0}$, we have that $c_{1}^{\prime}=k_{0}-1$ and $\mu=k_{0}+d+1$. By (ii) we have that $\Delta^{2} \varphi_{C}(k)=0$ for $k \geq k_{0}$. Recall that

$$
f_{C}^{*} \mathcal{N}_{C}(-d-2)=\bigoplus_{i=1}^{s-1} \mathcal{O}_{\mathbb{P}^{1}}\left(c_{i}\right)
$$

with $c_{1} \geq c_{2} \geq \cdots \geq c_{s-1}$, and that $\Delta^{2}\left[\varphi_{C}(k)\right]$ is exactly the number of integers c_{i} which are equal to k. Hence $c_{1} \leq k_{0}-1$ and $\xi_{i}=c_{i}+d+2 \leq k_{0}+d+1=\mu$ for any $i=1, \ldots, s-1$.
(iv) For any integer $v \geq 1$, let us recall the following exact sequence due to Ein (see [5, Theorem 2.4]):

$$
0 \rightarrow \mathcal{N}_{C}^{*}(v) \rightarrow \mathcal{O}_{C}(v-1) \otimes H^{0}\left(\mathbb{P}^{s}, \mathcal{O}_{\mathbb{P}^{s}}(1)\right) \rightarrow \mathcal{P}^{1}\left[\mathcal{O}_{C}(v)\right] \rightarrow 0
$$

where \mathcal{N}_{C}^{*} is the dual of \mathcal{N}_{C} and $\mathcal{P}^{1}\left[\mathcal{O}_{C}(v)\right]$ denotes the principal parts bundle of $\mathcal{O}_{C}(v)$. If $h^{1}\left(C, \mathcal{N}_{C}^{*}(v)\right)=0$ we have that

$$
H^{0}\left(C, \mathcal{O}_{C}(v-1)\right) \otimes H^{0}\left(\mathbb{P}^{s}, \mathcal{O}_{\mathbb{P}^{s}}(1)\right) \rightarrow H^{0}\left(C, \mathcal{P}^{1}\left[\mathcal{O}_{C}(v)\right]\right)
$$

is surjective. On the other hand, $H^{0}\left(C, \mathcal{P}^{1}\left[\mathcal{O}_{C}(v)\right] \rightarrow H^{0}\left(C, \mathcal{O}_{C}(v)\right)\right.$ is always surjective (see [5, Proposition 2.3]). Hence the natural multiplication map is surjective if $h^{1}\left(C, \mathcal{N}_{C}^{*}(v)\right)=0$.

By Serre duality $h^{1}\left(C, \mathcal{N}_{C}^{*}(v)\right)=h^{0}\left(C, \mathcal{N}_{C}(-v-2)\right)$, so that $h^{1}\left(C, \mathcal{N}_{C}^{*}(v)\right)=0$ if $h^{0}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}\left(\xi_{i}-v-2\right)\right)=0$ for any $i=1, \ldots, s-1$, i.e., $\xi_{i} \leq v+1$ for any $i=1, \ldots, s-1$ and this is true if $v \geq \mu-1$ by (iii).

Now we give two examples of application of Theorem 3 to find bounds for the splitting type of rational curves. We will choose two monomial curves and we will find bounds for the values of the numbers c_{i} for all complete curves C whose associated curves $C A$ are the chosen ones.

Example 4. Let us choose $d=17, e=7, s=d-e-1=9$ and let $C A$ be the projection to $\mathbb{P}^{8}(\mathbb{C})$ of the rational normal curve Γ_{17} from $L:=\mathbb{P}^{8}\left(T_{C A}\right)$ where $T_{C A}:=\left\langle x^{15} y^{2}, x^{12} y^{5}, x^{9} y^{8}, x^{8} y^{9}, x^{5} y^{12}, x^{4} y^{13}, x^{3} y^{14}, x^{2} y^{15}\right\rangle . C A$ is a monomial smooth rational curve and, by using the results of [3], it is easy to see that the function $\varphi_{C A}(k)$ has the following values for $k \geq 0$:

$$
\begin{array}{cccccccccc}
k & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \cdots \\
\varphi_{C A}(k) & 24 & 16 & 8 & 4 & 2 & 0 & 0 & 0 & \cdots
\end{array}
$$

hence the string of integers c_{i} for $C A$ is the following: $(4,4,2,2,1,1,1,1)$.
Assume that $C A$ is the associated monomial curve to a smooth rational curve C of degree 17 in $\mathbb{P}^{8}(\mathbb{C})$. Assume also that $\varphi_{C}(2)=\varphi_{C A}(2)$. By Theorem 3 we can say that the function $\varphi_{C}(k)$, a priori, has the following values for $k \geq 0$:

$$
\begin{array}{cccccccccc}
k & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \cdots \\
\varphi_{C}(k) & 24 & 16 & 8 & \varepsilon & \eta & 0 & 0 & 0 & \cdots
\end{array}
$$

with $0 \leq \varepsilon \leq 4$ and $0 \leq \eta \leq 2$. Hence the function $\Delta^{2} \varphi_{C}(k)$ has the following values, for $k \geq 0$:

$$
\begin{array}{cccccccccc}
k & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \cdots \\
\Delta^{2} \varphi_{C}(k) & 0 & \varepsilon & 8-2 \varepsilon+\eta & \varepsilon-2 \eta & \eta & 0 & 0 & 0 & \cdots
\end{array}
$$

As $\Delta^{2} \varphi_{C}(k) \geq 0$ we get $8-2 \varepsilon+\eta \geq 0$ and $\varepsilon-2 \eta \geq 0$.
By considering all the constraints, we have that the possible strings of c_{i} for C are

$$
\begin{aligned}
& (4,4,2,2,1,1,1,1), \\
& (4,3,3,2,1,1,1,1), \\
& (3,3,3,3,1,1,1,1), \\
& (4,3,2,2,2,1,1,1), \\
& (3,3,3,2,2,1,1,1), \\
& (4,2,2,2,2,2,1,1), \\
& (3,3,2,2,2,2,1,1), \\
& (3,2,2,2,2,2,2,1), \\
& (2,2,2,2,2,2,2,2) .
\end{aligned}
$$

Note that, according to the sufficient condition stated in [4, Corollary 2.6], all above cases are possible.

Example 5. Let us choose $d=17, e=6, s=d-e-1=10$ and let $C A$ be the projection to $\mathbb{P}^{8}(\mathbb{C})$ of the rational normal curve Γ_{17} from $L:=\mathbb{P}^{8}\left(T_{C A}\right)$ where $T_{C A}:=\left\langle x^{15} y^{2}, x^{12} y^{5}, x^{9} y^{8}, x^{8} y^{9}, x^{4} y^{13}, x^{3} y^{14}, x^{2} y^{15}\right\rangle . C A$ is a monomial smooth rational curve and, by using the results of [3], it is easy to see that the function $\varphi_{C A}(k)$ has the following values for $k \geq 0$:

$$
\begin{array}{cccccccccc}
k & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \cdots \\
\varphi_{C A}(k) & 23 & 14 & 6 & 2 & 0 & 0 & 0 & 0 & \cdots
\end{array}
$$

hence the string of integers c_{i} for $C A$ is the following: ($3,3,2,2,1,1,1,1,0$).
Assume that $C A$ is the associated monomial curve to a smooth rational curve C of degree 17 in $\mathbb{P}^{9}(\mathbb{C})$. Assume also that $\varphi_{C}(2)=\varphi_{C A}(2)$. By Theorem 3 we can say that the function $\varphi_{C}(k)$, a priori, has the following values for $k \geq 0$:

$$
\begin{array}{cccccccccc}
k & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \cdots \\
\varphi_{C}(k) & 23 & 14 & 6 & \varepsilon & 0 & 0 & 0 & 0 & \cdots
\end{array}
$$

with $0 \leq \varepsilon \leq 2$. Hence the function $\Delta^{2} \varphi_{C}(k)$ has the following values for $k \geq 0$:

$$
\begin{array}{cccccccccc}
k & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \cdots \\
\Delta^{2} \varphi_{C}(k) & 1 & 2+\varepsilon & 6-2 \varepsilon & \varepsilon & 0 & 0 & 0 & 0 & \cdots
\end{array}
$$

The possible strings of c_{i} for C are

$$
\begin{aligned}
& (3,3,2,2,1,1,1,1,0) \\
& (3,2,2,2,2,1,1,1,0) \\
& (2,2,2,2,2,2,1,1,0)
\end{aligned}
$$

Note that, according to the sufficient condition stated in [4, Corollary 2.6], all above cases are possible.

Acknowledgments. We wish to thank R. Re for many helpful conversations and the referee for suggesting a shorter proof of our main theorem.

Funding. This work is within the framework of the national research project "Geometry on Algebraic Varieties" Prin (Cofin) 2020 of MUR.

References

[1] A. Alzati and R. Re, $P G L(2)$ actions on Grassmannians and projective construction of rational curves with given restricted tangent bundle. J. Pure Appl. Algebra 219 (2015), no. 5, 1320-1335 Zbl 1305.14021 MR 3299686
[2] A. Alzati and R. Re, Irreducible components of Hilbert schemes of rational curves with given normal bundle. Algebr. Geom. 4 (2017), no. 1, 79-103 Zbl 1369.14066 MR 3592466
[3] A. Alzati, R. Re, and A. Tortora, An algorithm for the normal bundle of rational monomial curves. Rend. Circ. Mat. Palermo (2) 67 (2018), no. 2, 291-306 Zbl 1401.14153 MR 3833009
[4] I. Coskun and E. Riedl, Normal bundles of rational curves in projective space. Math. Z. 288 (2018), no. 3-4, 803-827 Zbl 1391.14067 MR 3778979
[5] L. Ein, Vanishing theorems for varieties of low codimension. In Algebraic geometry (Sundance, UT, 1986), pp. 71-75, Lecture Notes in Math. 1311, Springer, Berlin, 1988 Zbl 0673.14025 MR 951641

Received 27 June 2022; revised 19 February 2023.

Alberto Alzati

Dipartimento di Matematica, Università di Milano, Via C. Saldini 50, 20133 Milano, Italy; alberto.alzati@unimi.it

Raquel Mallavibarrena

Facultad de Ciencias Matemáticas, Universidad Complutense Madrid, Plaza de Ciencias 3, 28040 Madrid, Spain; raquelm@mat.ucm.es

