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Normal bundle of monomial curves: an application
to rational curves

Alberto Alzati and Raquel Mallavibarrena

Abstract. In this note, we give an application to the study of general rational curves in P s.C/

of the calculation of the splitting type of the normal bundle of any smooth monomial rational
curve (i.e., embedded by monomial functions).

1. Introduction

In this paper, any degree d rational curve C in P s.C/ (d > s � 3) will be assumed
smooth and nondegenerate. Such curves, up to projective transformations, are suitable
projections of the rational normal curve �d of degree d in Pd .C/ from a projective
linear spaceL of dimension d � s � 1. Let us call f W P1.C/! P s.C/ the morphism
obtained in this way. The normal bundle of such curves splits as a direct sum of
line bundles OP1.�1/˚OP1.�2/˚ � � � ˚OP1.�s�1/ where �i are suitable integers.
In principle, one should calculate these integers for any chosen L.

In [2], the authors develop a general method to do this calculation. This method
was previously used in [1] to get the splitting type of the restricted tangent bundle
of C . However, while for the tangent bundle it is possible to get an easy formula (see
[1, Theorem 3]), for the normal bundle this is not possible.

In [3] the authors gave a method for calculating the integers �i when C is a smooth
monomial curve, i.e., when the morphism f WP1.C/!P s.C/ is given by monomials
of the same degree in two variables. In other setups,C is called “monomial” if its ideal
in P s.C/ is generated by monomials. Here we do not consider the ideal of C and we
focus on f ; for instance, the standard twisted cubic in P3.C/ is a monomial curve
according to our definition, but its ideal is not generated by monomials.

In [4], the authors study the moduli space of rational curves whose normal bundle
has a fixed splitting type and, meanwhile, they get a very simple formula to calculate
�i for smooth monomial curves. Obviously the two methods give rise to the same
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integers (see the final part of [3, §5] and [4, Theorem 3.2]), but the two approaches
are very different and we think that they are both useful for different aims.

Here we want to give a consequence of the possibility to get the splitting type
of the normal bundle of rational monomial curves as in [3]. Our main theorem will
be Theorem 3, however, it is not possible to state it without a background. In brief
we can say that our strategy will be to associate a smooth monomial curve CA as
above to any smooth rational curve C , satisfying mild assumptions, and to prove
that h0.P1; f �NC .�d � 2 � k// � h

0.P1; f �NCA.�d � 2 � k// for any k � 2
where NC and NCA are the normal bundles of C and CA in P s.C/, respectively.
As the knowledge of this cohomology implies the knowledge of the numbers ci WD
�i � d � 2, we will get that the numbers ci of C are bounded by the numbers ci of CA
(see Examples 4 and 5).

In Section 2, we fix notations and we recall the background. In Section 3, we
associate a monomial curve CA to any smooth rational curve C having a suitable
property and we prove our main theorem. In Section 4, we give our applications.

2. Notation and background material

For us, a rational curve C � P s.C/ will be the target of a morphism f W P1.C/!

P s.C/. We will work always over C. We will always assume that C is not contained
in any hyperplane and that it is smooth. Let us put d WD deg.C / > s � 3. Let 	C

be the ideal sheaf of C , then NC WD HomOC
.	C=	

2
C ;OC / as usual and, taking the

differential of f , we get

0! TP1 ! f �TPs ! f �NC ! 0

where T denotes the tangent bundle. Of course we can always write

Tf WD f
�TPs D

rM
iD1

OP1.bi C d C 2/˚O
˚.s�r/

P1 .d C 1/;

Nf WD f
�NC D

s�1M
iD1

OP1.ci C d C 2/

for suitable integers bi � 0 (see [1, (14)]) and ci � 0 (see [2, Proposition 10] where
we assumed c1 � � � � � cs�1/.

Every curve C is, up to a projective transformation, the projection to P s of a
d -Veronese embedding �d of P1 in Pd WD P .V / from a .d � s � 1/-dimensional
projective space L WD P .T / where V and T are vector spaces of dimension, respec-
tively, d C 1 and eC 1 WD d � s. For any vector 0¤ v 2 V let Œv� be the corresponding
point in P .V /. Of course we require that L \ �d D ; as we want that f is a mor-
phism.
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Let us denote by U D hx; yi a fixed 2-dimensional vector space such that P1 D

P .U /, then we can identify V with SdU (d -th symmetric power) in such a way that
the rational normal degree d curve �d can be considered as the set of pure tensors of
degree d in P .SdU/ and the d -Veronese embedding is the map

˛x C ˇy ! .˛x C ˇy/d ; .˛ W ˇ/ 2 P1:

From now on, any degree d rational curve C will be determined (up to projec-
tive equivalences which are not important in our context) by the choice of a proper
subspace T � SdU such that P .T / \ �d D ;.

By arguing in this way, the elements of a base of T can be thought as homoge-
neous, degree d polynomials in x, y. In [1, 2], the authors relate the polynomials of
any base of T with the splitting type of Tf and Nf . To describe this relation we need
some additional definitions.

Let us indicate by h@x; @yi the dual space U � of U , where @x and @y indicate the
partial derivatives with respect to x and y.

Definition 1. Let T be any proper subspace of SdU . Then

@T WD h!.T /j! 2 U �i;

@�1T WD
\
!2U�

!�1T;

r.T / WD dim.@T / � dim.T /:

Note that Definition 1 allows to define also @kT and @�kT for any integer k � 1,
by induction. Moreover, we can set @0T WD T . Let us recall the following:

Theorem 1. Let T �SdU be any proper subspace as above such that P .T /\�d D;.
Then r.T /� 1 and there exist r polynomials p1; : : : ;pr of degree d C b1; : : : ; d C br
respectively, with bi � 0 and Œpi � 2 PdCbinSecbi .�dCbi

/ for i D 1; : : : ; r , such that

T D @b1.p1/˚ @
b2.p2/˚ � � � ˚ @

br .pr/

and

@T D @b1C1.p1/˚ @
b2C1.p2/˚ � � � ˚ @

brC1.pr/:

Proof. It follows from [1, Theorem 1], because from our assumptions ST D 0 in
the notation of [1]. Recall that Secb.�dCb/ is the variety generated by sets of b C 1
distinct points of �dCb .

From the above decomposition of T it is possible to get directly the splitting type
of Tf depending on the integers bi (see [1, Theorem 3]), however, here we are inter-
ested in the splitting type of Nf . To this aim the following Proposition is useful:
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Proposition 1. In the above notations, for any integer k � 0, let us call '.k/ WD
h0.P1;Nf .�d � 2 � k//. Then the splitting type of Nf is completely determined by
�2Œ'.k/� WD '.k C 2/ � 2'.k C 1/C '.k/.

Proof. We know that Nf .�d � 2/ D
Ls�1
iD1 OP1.ci /, so that we have only to deter-

mine the integers ci . By definition, �2Œ'.k/� is exactly the number of integers ci
which are equal to k. Note that, by definition, '.k/ is strictly decreasing.

From Proposition 1 it follows that to know the splitting type of Nf it suffices to
know '.k/ for any k � 0.

Let us consider the linear operators

Dk W S
kU ˝ SdU ! Sk�1U ˝ Sd�1U;

such that Dk WD @x ˝ @y � @y ˝ @x , and D2
k
W SkU ˝ SdU ! Sk�2U ˝ Sd�2U .

Of course, as T � SdU , we can restrict D2
k

to SkU ˝ T and we get a linear map
D2
kjSkU˝T

W SkU ˝ T ! Sk�2U ˝ @2T ; let us define

Tk WD ker.D2
kjSkU˝T

/:

Then we have the following:

Theorem 2. In the above notations,

'.0/ D d C e;

'.1/ D 2.e C 1/;

'.2/ D 3.e C 1/ � dim.@2T /;

and for any k � 2, '.k/ D dim.Tk/.
Moreover, the number of integers ci such that ci D 0 is d � 1 � dim.@2T /.

Proof. See [2, Theorem 1 and Proposition 11]; note that, for k D 2, there are two
different ways to get '.2/.

By Proposition 1 the number of integers ci such that ci D 0 is �2Œ'.0/� D
d � 1 � dim.@2T /.

In [3], a combinatorial formula is given to calculate '.k/, for k � 2, when C is
a monomial smooth rational curve, therefore we can assume that '.k/ is known for
any monomial smooth rational curve. Moreover, a method to determine the set ¹�iº is
given in [3, Theorem 4 and Remark 2]. Let us recall this method: firstly decompose T
as T D T 1 ˚ T 2 ˚ � � � ˚ T q in such a way that @2T D @2T 1 ˚ @2T 2 ˚ � � � ˚ @2T q

for some q � 1; every T j is called irreducible. Secondly: decompose every irreducible
T j , j D 1; : : : ; q as explained in Theorem 1, getting the integers b1.j /; : : : ; br.j /.j /.
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Thirdly: define b0.j / D br.j /C1.j / D �1 for any j D 1; : : : ; q and consider the
set ¹bi .j /C biC1.j /C 2 for i D 0; : : : ; r.j / and j D 1; : : : ; qº. This is the set of
positive ci , while the number of null ci is given by Theorem 2. By recalling that

qX
jD1

Œr.j /C 1� D dim.@2T / � dim.T /

we get a set of s � 1 integers ¹ciº and �i D ci C d C 2, i D 1; : : : ; s � 1.
On the other hand, in [4], the authors give a very direct formula for calculating �i

when C is a monomial smooth rational curve of degree d (see [4, Theorem 3.2]).
Such curve is the image of a map

f .x W y/ D .xh0 W xh1yd�h1 W � � � W xhiyd�hi W � � � W xhsyd�hs /

with i D 0; : : : ; s and h0 > h1 > � � � > hs � 0. We require that this map is an embed-
ding, hence it is necessary that: h0 D d , h1 D d � 1, hs�1 D 1, hs D 0, (see [4,
Lemma 3.1]) and s � 3. Then [4, Theorem 3.2] says that

�i D d C hi�1 � hiC1 for i D 1; : : : ; s � 1 .Coskun–Riedl formula/:

Of course the Coskun–Riedl formula gives the same integers �i obtained by the
method described in [3]; the interested reader can find a proof of this fact in that
article.

3. Rational complete curves and main theorem

Let C be any smooth rational curve of degree d . The morphism f W P1.C/! P s.C/

is given by a .s C 1; d C 1/ matrix M of rank s C 1 such that

.x W y/!MŒxdxd�1y � � �yd �t

where Œ� � � �t denotes transposition. In other words, the parametric equations for C are26664
X0

X1

� � �

Xs

37775 DM
26664

xd

xd�1y

� � �

yd

37775 :
As rank.M/ D s C 1 we can apply the Gauss elimination toM and we can trans-

form it in a row echelon form. This is equivalent to multiplyM on the left by a suitable
non singular .s C 1; s C 1/ matrix, i.e., to change the projective coordinate system
in P s.C/. By another change, if necessary, we can also assume that all pivots are 1.
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The point f .1 W 0/ D .m1;1 W m2;1 W � � � W msC1;1/ belongs to C , in particular
.m1;1 W m2;1 W � � � W msC1;1/ ¤ .0 W 0 W � � � W 0/, hence we can assume that the first piv-
ot ism1;1D 1 and thatmi;1D 0 for i � 2, i.e., f .1 W 0/D .1 W 0 W � � � W 0/. Let us consider
the second column of M in the row echelon form (hence mi;2 D 0 for i � 3). If the
second pivot would be not m2;2 D 1 then C would be singular at .1 W 0 W � � � W 0/, but
C is smooth, hence m2;2 D 1.

We give the following:

Definition 2. LetM be the above matrix. IfmsC1;j D 0 for j D 1; : : : ; d ;msC1;dC1
D 1; ms;j D 0 for j D 1; : : : ; d � 1 and ms;d D 1, then we say that C is complete.

To any smooth rational curve C , whose associated matrix M is in a row echelon
form as above, we can associate a monomial rational curve CA whose parametric
equations are 26664

X0

X1

� � �

Xs

37775 DM 0
26664

xd

xd�1y

� � �

yd

37775
where M 0 is the matrix of the pivots of M , i.e., M 0 WD .m0i;j / is a matrix of type
.sC 1;d C 1/ such thatm0i;j D 1 if and only ifmi;j D 1 is a pivot ofM andm0i;j D 0
otherwise. The meaning of the above definition is clarified by the following fact, easy
to prove: if C is complete, then CA is smooth of degree d ; while, in general, CA is
smooth of degree d 0 < d , or singular of degree d .

Example 1. Here is a typical example of complete, smooth, rational curve C with
s D 5 and d D 9, (� denotes any complex number):

M D

266666664

1 � � � � � � � � �

0 1 � � � � � � � �

0 0 0 0 1 � � � � �

0 0 0 0 0 1 � � � �

0 0 0 0 0 0 0 0 1 �

0 0 0 0 0 0 0 0 0 1

377777775 :

In other words, putting t WD y=x, the affine parametric equations of C are

X0 D 1C �t C � � � C �t
9;

X1 D t C �t
2
C � � � C �t9;

X2 D t
4
C �t5 C � � � C �t9;
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X3 D t
5
C �t6 C � � � C �t9;

X4 D t
8
C �t9;

X5 D t
9:

Then the affine parametric equations for CA are

X0 D 1;

X1 D t;

X2 D t
4;

X3 D t
5;

X4 D t
8;

X5 D t
9:

In practice: for any i , take the monomials in t of minimal degree appearing in the
polynomials Xi .t/.

Example 2. Here is a typical example of a non complete, smooth, rational curve C
with s D 4 and d D 8 such that CA is still smooth, (� denotes any complex number,
but there is at least a non zero number in the last column):

M D

2666664
1 � � � � � � � �

0 1 � � � � � � �

0 0 0 0 1 � � � �

0 0 0 0 0 1 � � �

0 0 0 0 0 0 1 � �

3777775 :
Now, putting t WD y=x, the affine parametric equations of C are

X0 D 1C �t C � � � C �t
8;

X1 D t C �t
2
C � � � C �t8;

X2 D t
4
C �t5 C � � � C �t8;

X3 D t
5
C �t6 C � � � C �t8;

X4 D t
6
C �t7 C �t8:

Then the affine parametric equations for the degree d 0 D 6 curve CA are

X0 D 1;

X1 D t;

X2 D t
4;

X3 D t
5;

X4 D t
6:
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Note that, as we want that CA is smooth,ms;d 0 DmsC1;d 0C1D 1. In this example,
d 0 D deg.CA/ D 6 < deg.C / D 8.

We have the following:

Theorem 3. Let C be a smooth, rational curve of degree d in P s.C/ and let us
assume that CA is a smooth monomial rational curve of degree d 0 � d associated to
C as above. Let 'C and 'CA be, respectively, the functions defined by Proposition 1
for curves C and CA. Then, for any k � 2, 'C .k/ � 'CA.k/.

Proof. Firstly, let us assume that C is complete, hence d 0 D d , and let us consider the
affine parametric equations af C as in the above examples. These equations define a
regular map

f W A1 ! P s

as follows (� denotes any complex number):

X0 D 1C �t C � � � C �t
d ;

X1 D t C �t
2
C � � � C �td ;

:::

Xi D t
pi C �tpiC1 C � � � C �td ;

:::

Xs�1 D t
d�1
C �td ;

Xs D t
d :

For any non zero complex number q let us define

(1) an isomorphism  q W A1 ! A1,

 q.t/ D t=qI

(2) a rational curve Cq in P s whose affine parametric equations are

X0 D 1C q � t C � � � C q
d
� td ;

X1 D t C q � t
2
C � � � C qd�1 � td ;

:::

Xi D t
pi C q � tpiC1 C � � � C qd�pi � td ;

:::

Xs�1 D t
d�1
C q � td ;

Xs D t
d

defining a map
fq W A

1
! P sI
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(3) a linear isomorphism
Fq W P

s
! P s

whose associated .s C 1; s C 1/ matrix is

diag.1; q; : : : ; qpi ; : : : ; qd�1; qd /:

The definitions are given in order to get

FqŒfq. q/� D f I

then we have that every curve Cq is projectively equivalent to C and they all have
the same splitting type for the normal bundle in P s . Moreover, the smooth curve CA
is obtained from Cq by letting q ! 0, hence, by semicontinuity, we have 'C .k/ �
'CA.k/.

If C is not complete, but CA is still smooth, of degree d 0 < d , the above proof
must be changed a little, taking into account that, in these cases,

Xs D t
ps C �tpsC1 C � � � C �td

with ps D d 0, but the conclusion is the same.

When C is complete there is another proof of the main theorem “by hands” with-
out using any degeneration argument. We give here a sketch of it because we think
that it is useful when one has to calculate the value 'C .k/ to get the splitting type
of Nf according to Proposition 1.

Let TC and TCA be the .e C 1/-dimensional vector spaces determining C , and
respectively CA, as explained in Section 2. Let us fix a monic monomial base for TCA.
By looking at the .s C 1; d C 1/ matrix M for C (in a row echelon form, with all
pivots equal to 1) we see that a base for TCA can be chosen by taking exactly the
monomials in the string hxd ; xd�1y; : : : ; xyd�1; yd i not corresponding to the s C 1
pivots of the matrix.

It is possible to choose two corresponding bases: h�0; �1; : : : ; �ei for TC and
hz�0; z�1; : : : ; z�ei for TCA, such that lt.�i / D z�i for i D 0; : : : ; e, where lt.�/ denote
the leading term of a polynomial � 2 CŒx; y� with respect to y.

For any k � 2, let us consider the generic element
Pe
pD0 fp ˝ �p 2 S

kU ˝ TC

and let us apply the operator D2
k

to it. We get

D2
k

h eX
pD0

fp ˝ �p

i
D

eX
pD0

.@y@yfp ˝ @x@x�p � 2@x@yfp ˝ @x@y�p

C @x@xfp ˝ @y@y�p/:
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Now, let us consider all the degree d � 2 monomials in CŒx; y� involved by the
3.eC 1/ polynomials ¹@2�0; @2�1; : : : ; @2�eº generating @2TC , i.e., xd�2; xd�3y; : : : ;
xd�2�ˇryˇr . We can write

D2
k

h eX
pD0

fp ˝ �p

i
D

ˇrX
qD0

Aq ˝ x
d�2�qyq

so that D2
k
Œ
Pe
pD0 fp ˝ �p� D 0 if and only if Aq D 0 for q 2 Œ0; ˇr �.

Now, let us consider all the degree d � 2 monomials in CŒx; y� involved by the
3.e C 1/ monomials ¹@2z�0; @2z�1; : : : ; @2z�eº generating @2TCA. Thanks to our choice
of bases h�0; �1; : : : ; �ei and hz�0; z�1; : : : ; z�ei we have that

¹@2z�0; @
2
z�1; : : : ; @

2
z�eº � ¹x

d�2; xd�3y; : : : ; xd�2�ˇryˇr º:

Let ı be the dimension of @2TCA. Let us fix ı monic distinct monomials among
¹@2z�0; @

2z�1; : : : ; @
2z�eº generating @2TCA. These monomials are obviously indepen-

dent and give rise to a base B for @2TCA. Let us order this base B with respect to the
ascending powers of y. Let us call

Fk WD ker.D2
kjSkU˝TCA

/

D

² eX
pD0

fp ˝ z�p 2 S
kU ˝ TCA j D

2
k

h eX
pD0

fp ˝ z�p

i
D 0

³
:

Obviously, the condition D2
k
Œ
Pe
pD0 fp ˝ z�p� D 0 involves only the ı degree d � 2

monomials belonging to B. Let us define

Ek WD

² eX
pD0

fp ˝ �p 2 S
kU ˝ TC j D

2
k

h eX
pD0

fp ˝ �p

i
D

ˇrX
qD0

Aq ˝ x
d�2�qyq

and Aq D 0 only for the ı monomials xd�2�qyq belonging to B

³
:

Obviously 'C .k/ D dimŒker.D2
kjSkU˝TC

/� � dim.Ek/.
To complete the proof of the theorem it is sufficient to prove that dim.Ek/ �

dim.Fk/ D 'CA.k/. Note that Ek and Fk are both subspaces of C.eC1/.kC1/ and
that this vector space is given by all the coefficients of the generic polynomials fp 2
Sk.U /, p D 0; : : : ; e.

We have only ı relations defining Ek , one to one with the elements of B. Every
relation is of the following type and it does not depend on k:

eX
pD0

.ap@x@xfp C bp@x@yfp C cp@y@yfp/ D 0; ap; bp; cp 2 C;
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hence they give rise to a .ı; 3.e C 1// matrix N of complex numbers which is the
union of e C 1 blocks of type .ı; 3/, each one in a row echelon form due to the above
choice for B.

The ı relations definingEk inside C.eC1/.kC1/ can be written in matricial form as

N
�
@x@xf0 @x@yf0 @y@yf0 � � � @x@xfe @x@yfe @y@yfe

�t
D 0: (e)

Note that the set of kC 1 variables related to every polynomial fp is distinct from
the set of k C 1 variables related to any other polynomial fp0 if p0 ¤ p.

We can argue in the same way with the ı relations defining Fk inside C.eC1/.kC1/

getting an analogue matrix NA and a matrix relation analogous to (e),

NA
�
@x@xf0 @x@yf0 @y@yf0 � � � @x@xfe @x@yfe @y@yfe

�t
D 0: (a)

Note that NA is obtained from N simply by putting equal to zero every number
appearing inN which is not a pivot in a single block. Moreover, ı � 3.eC 1/ (in fact,
'CA.2/D 3.eC 1/� ı � 0) and therefore rank.N /D rank.NA/D ı, being both the
union of blocks in a row echelon form. Moreover, both matrices have the same pivots
in the same position.

It follows that there exists a non singular upper triangular matrix Z of complex
numbers, of order ı, such that N 0 WD ZN , all complex numbers over the pivots of N
are zero and the pivots of every block ofN 0 are the same and in the same position with
respect to N and hence NA (see the example below). Of course, Ek can be defined
inside C.eC1/.kC1/ also by the ı relations

N 0
�
@x@xf0 @x@yf0 @y@yf0 � � � @x@xfe @x@yfe @y@yfe

�t
D 0: (ee)

Now we can see that the dimension of Ek inside C.eC1/.kC1/ is the dimension of
the vector space over C generated by the set G of coefficients of those polynomials
among ¹@x@xf0; @x@yf0; @y@yf0; : : : ; @x@xfe; @x@yfe; @y@yfeº such that in (ee) the
corresponding columns of N 0 do not contain a pivot. The same is true for the dimen-
sion of Fk by considering (a) and NA, note that the quoted columns are the same for
N 0 and NA hence the set G is the same.

If k D 2 the dimensions of E2 and F2 are exactly the number of such columns,
i.e., 3.e C 1/ � ı, because the polynomials ¹@x@xf0; : : : ; @y@yfeº have degree 0. If
k � 3, to calculate dim.Ek/ and dim.Fk/ it is necessary to take into account all the
relations among the elements of G arising from (ee) and (a). Of course, to prove that
dim.Ek/ � dim.Fk/, it is enough to prove that, passing from (ee) to (a), no new
relations are introduced. It can be shown that this is true by a simple case by case
examination.

In the following Example 3, we will illustrate how the above proof works. Appli-
cations of Theorem 3 will be explained later, in Examples 4 and 5.
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Example 3. Let us consider a rational smooth curve C of degree 10 in P6 given by a
matrix M as follows (� denotes any complex number, blank denotes 0):

M D

26666666664

1 � � � � � � � � � �

1 � � � � � � � � �

1 � � � � � � � �

1 � � � � �

1 � � � �

1 �

1

37777777775
then TCA D hx7y3; x6y4; x3y7; x2y8i, e C 1 D 4; while TC is generated by

�0 D �x
10
C �x9y C �x8y2 C x7y3;

�1 D �x
10
C �x9y C �x8y2 C x6y4;

�2 D �x
10
C �x9y C �x8y2 C �x5y5 C �x4y6 C x3y7;

�3 D �x
10
C �x9y C �x8y2 C �x5y5 C �x4y6 C x2y8:

We have that @2TCA D hx7y; x6y2; x5y3; x4y4; x3y5; x2y6; xy7; y8i, ı D 8 and the
monomials involved by @2TC are: x8; x7y; x6y2; x5y3; x4y4; x3y5; x2y6; xy7; y8:
We have to forget x8 and to consider the relations given by the other 8 monomials.
The matrix N D N 0 [N 1 [N 2 [N 3 is of type .8D ı; 12D 3.eC 1// and it is the
union of 4 submatrices of type .8; 3/ (\j denotes a non zero complex number),

N D

2666666666664

\1 � � � � � � � � � � �

\2 � \4 � � � � � � � �

\3 \5 � � � � � � �

\6 � � � � � �

\7 � � � � �

\8 � \10 � �

\9 \11 �

\12

3777777777775
;

N 0 D

2666666666664

\1 � � � �

\2 \4 � � �

\3 \5 � �

\6 � �

\7 � �

\8 \10 �

\9 \11

\12

3777777777775
:
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On the other hand NA is the following:2666666666664

\1

\2 \4

\3 \5

\6

\7

\8 \10

\9 \11

\12

3777777777775
:

From N 0 we get 2666666666664

@x@xf0

@x@yf0

@y@yf0

@y@yf1

@x@xf2

@x@yf2

@y@yf2

@y@yf3

3777777777775
D

2666666666664

˛ ˇ  ı

\13 " � �

\14 # �

� �

� �

\15 �

\16

3777777777775

26664
@x@xf1

@x@yf1

@x@xf3

@x@yf3

37775 :

From NA we get analogous relations where every greek letter is zero.
Now, let us choose k D 3, so that fp D apx3 C 3bpx2y C 3cpxy2 C dpy3 and

@x@xfp D 6.apx C bpy/ and so on. In this case, G D ¹a1; b1; c1; a3; b3; c3º. By
dividing all polynomials by 6 we can write all the above relations as2666666666664

a0 b0

b0 c0

c0 d0

c1 d1

a2 b2

b2 c2

c2 d2

c3 d3

3777777777775
D

2666666666664

˛ ˇ  ı

\13 " � �

\14 # �

� �

� �

\15 �

\16

3777777777775

26664
a1 b1

b1 c1

a3 b3

b3 c3

37775 :

We get the following relations:

a0 D ˛a1 C ˇb1 C a3 C ıb3;

b0 D ˛b1 C ˇc1 C b3 C ıc3;

b0 D \13a1 C "b1 C �a3 C �b3;

c0 D \13b1 C "c1 C �b3 C �c3;

c0 D \14b1 C #a3 C �b3;
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d0 D \14c1 C #b3 C �c3;

c1 D �a3 C �b3;

d1 D �b3 C �c3;

a2 D �a3 C �b3;

b2 D �b3 C �c3;

b2 D \15a3 C �b3;

c2 D \15b3 C �c3;

c2 D \16b3;

d2 D \16c3;

c3 D d3 D 0:

It is easy to see that 'CA.3/D 'C .3/D 0 if \15 ¤ \16 and \13 ¤ \14. If \15 D \16
but \13 ¤ \14 then 'CA.3/D 'C .3/D 1. If \15 D \16 and \13 D \14 then 'CA.3/D 2
while for E3 we have two generators with a relation at most, hence 'C .3/ � 2 and we
have 'C .3/ � 'CA.3/ in any case.

In general, to get 'C .3/ we should know the exact values of the entries of M , but
in Example 3 this is not important: the Coskun–Riedl formula proves that 'CA.3/D 0
a priori. Therefore we can conclude that 'C .3/ D 0 for any curve C as above.

Remark 1. Unfortunately, it is not possible to get a good bound for 'C .k/ from
below: for any k, it is easy to count how many generators and relations are necessary
to define ker.D2

kjSkU˝TC
/ inside C.eC1/.kC1/, but every relation can provide a big

number of linear equations for ker.D2
kjSkU˝TC

/ and it is hard to determine a reason-
able bound for the independent ones. On the other hand, if we consider all of them, we
have that the bound from below becomes quickly a negative number, as k increases.

Remark 2. It is very natural to ask whether it is possible to extend the above sketched
proof to curves C not complete, when CA is smooth of degree d 0 < d . However this
is not possible. It is easy to give counterexamples.

4. Applications

The immediate application of Theorem 3 is the following:

Corollary 1. Let C be a complete, smooth, rational curve of degree d in P s.C/ and
let CA be the associated smooth rational monomial curve as before, with normal bun-
dles NC and NCA, respectively. Let fC WP1.C/!P s.C/ and fCA WP1.C/!P s.C/
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be the related morphisms. Let 'C .k/ and 'CA.k/ be the two functions introduced in
Section 2 for any integer k � 0. Then

(i) if 'CA.k/ D 0 for k � k0 (k0 suitable integer) then 'C .k/ D 0 for k � k0;

(ii) if �2'CA.k/ D 0 for k � k0 (k0 suitable integer) then �2'C .k/ D 0 for
k � k0;

(iii) assume that f �CANCA ' OP1.� 01/˚OP1.� 02/˚ � � � ˚OP1.� 0s�1/ and let us
put � WD max¹� 01; : : : ; �

0
s�1º, then f �CNC ' OP1.�1/ ˚ OP1.�2/ ˚ � � � ˚

OP1.�s�1/ with �i � � for any i D 1; : : : ; s � 1;

(iv) the natural multiplication map

H 0.C;OC .v � 1//˝H
0.P s;OPs .1//! H 0.C;OC .v//

is surjective for any integer v � � � 1.

Proof. (i) and (ii) follow directly by Theorem 3.
(iii) For a suitable integer k0� 0 it is surely true that�2'CA.k/ D 0 for k � k0;

let us assume that k0 is the minimal integer with this property. Recall that

f �CANCA.�d � 2/ D

s�1M
iD1

OP1.c0i /;

with c01 � c
0
2 � � � � � c

0
s�1, and that �2Œ'CA.k/� is exactly the number of integers c0i

which are equal to k. Hence, if �2'CA.k/ D 0 for k � k0, we have that c01 D k0 � 1
and � D k0 C d C 1. By (ii) we have that �2'C .k/ D 0 for k � k0. Recall that

f �CNC .�d � 2/ D

s�1M
iD1

OP1.ci /;

with c1 � c2 � � � � � cs�1, and that �2Œ'C .k/� is exactly the number of integers ci
which are equal to k. Hence c1 � k0 � 1 and �i D ci C d C 2 � k0 C d C 1D � for
any i D 1; : : : ; s � 1.

(iv) For any integer v � 1, let us recall the following exact sequence due to Ein
(see [5, Theorem 2.4]):

0! N �C .v/! OC .v � 1/˝H
0.P s;OPs .1//! P 1ŒOC .v/�! 0

where N �C is the dual of NC and P 1ŒOC .v/� denotes the principal parts bundle
of OC .v/. If h1.C;N �C .v// D 0 we have that

H 0.C;OC .v � 1//˝H
0.P s;OPs .1//! H 0.C;P 1ŒOC .v/�/

is surjective. On the other hand, H 0.C;P 1ŒOC .v/�! H 0.C;OC .v// is always sur-
jective (see [5, Proposition 2.3]). Hence the natural multiplication map is surjective if
h1.C;N �C .v// D 0.
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By Serre duality h1.C;N �C .v//D h
0.C;NC .�v � 2//, so that h1.C;N �C .v//D 0

if h0.P1;OP1.�i � v � 2// D 0 for any i D 1; : : : ; s � 1, i.e., �i � v C 1 for any
i D 1; : : : ; s � 1 and this is true if v � � � 1 by (iii).

Now we give two examples of application of Theorem 3 to find bounds for the
splitting type of rational curves. We will choose two monomial curves and we will find
bounds for the values of the numbers ci for all complete curves C whose associated
curves CA are the chosen ones.

Example 4. Let us choose d D 17, e D 7, s D d � e � 1 D 9 and let CA be the
projection to P8.C/ of the rational normal curve �17 from L WD P8.TCA/ where
TCA WD hx

15y2; x12y5; x9y8; x8y9; x5y12; x4y13; x3y14; x2y15i. CA is a monomial
smooth rational curve and, by using the results of [3], it is easy to see that the function
'CA.k/ has the following values for k � 0:

k 0 1 2 3 4 5 6 7 � � �

'CA.k/ 24 16 8 4 2 0 0 0 � � �

hence the string of integers ci for CA is the following: .4; 4; 2; 2; 1; 1; 1; 1/.
Assume that CA is the associated monomial curve to a smooth rational curve C

of degree 17 in P8.C/. Assume also that 'C .2/D 'CA.2/. By Theorem 3 we can say
that the function 'C .k/, a priori, has the following values for k � 0:

k 0 1 2 3 4 5 6 7 � � �

'C .k/ 24 16 8 " � 0 0 0 � � �

with 0 � " � 4 and 0 � � � 2. Hence the function�2'C .k/ has the following values,
for k � 0:

k 0 1 2 3 4 5 6 7 � � �

�2'C .k/ 0 " 8 � 2"C � " � 2� � 0 0 0 � � �

As �2'C .k/ � 0 we get 8 � 2"C � � 0 and " � 2� � 0.
By considering all the constraints, we have that the possible strings of ci for C are

.4; 4; 2; 2; 1; 1; 1; 1/;

.4; 3; 3; 2; 1; 1; 1; 1/;

.3; 3; 3; 3; 1; 1; 1; 1/;

.4; 3; 2; 2; 2; 1; 1; 1/;

.3; 3; 3; 2; 2; 1; 1; 1/;

.4; 2; 2; 2; 2; 2; 1; 1/;

.3; 3; 2; 2; 2; 2; 1; 1/;

.3; 2; 2; 2; 2; 2; 2; 1/;

.2; 2; 2; 2; 2; 2; 2; 2/:
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Note that, according to the sufficient condition stated in [4, Corollary 2.6], all
above cases are possible.

Example 5. Let us choose d D 17, e D 6, s D d � e � 1 D 10 and let CA be the
projection to P8.C/ of the rational normal curve �17 from L WD P8.TCA/ where
TCA WD hx

15y2;x12y5;x9y8;x8y9;x4y13;x3y14;x2y15i.CA is a monomial smooth
rational curve and, by using the results of [3], it is easy to see that the function 'CA.k/
has the following values for k � 0:

k 0 1 2 3 4 5 6 7 � � �

'CA.k/ 23 14 6 2 0 0 0 0 � � �

hence the string of integers ci for CA is the following: .3; 3; 2; 2; 1; 1; 1; 1; 0/.
Assume that CA is the associated monomial curve to a smooth rational curve C

of degree 17 in P9.C/. Assume also that 'C .2/D 'CA.2/. By Theorem 3 we can say
that the function 'C .k/, a priori, has the following values for k � 0:

k 0 1 2 3 4 5 6 7 � � �

'C .k/ 23 14 6 " 0 0 0 0 � � �

with 0 � " � 2. Hence the function �2'C .k/ has the following values for k � 0:

k 0 1 2 3 4 5 6 7 � � �

�2'C .k/ 1 2C " 6 � 2" " 0 0 0 0 � � �

The possible strings of ci for C are

.3; 3; 2; 2; 1; 1; 1; 1; 0/;

.3; 2; 2; 2; 2; 1; 1; 1; 0/;

.2; 2; 2; 2; 2; 2; 1; 1; 0/:

Note that, according to the sufficient condition stated in [4, Corollary 2.6], all
above cases are possible.
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