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Abstract: Since infrared reflectography was first applied in the 1960s to visualize the underdrawings
of ancient paintings, several devices and scanning techniques were successfully proposed both as
prototypes and commercial instruments. In fact, because of the sensors’ small dimension, typically
ranging from 0.1 to 0.3 megapixels, scanning is always required. Point, line, and image scanners
are all viable options to obtain an infrared image of the painting with adequate spatial resolution.
This paper presents a newly developed, tailormade scanning system based on an InGaAs camera
equipped with a catadioptric long-focus lens in a fixed position, enabling all movements to occur by
means of a rotating mirror and precision step motors. Given the specific design of this system, as
the mirror rotates, refocus of the lens is necessary and it is made possible by an autofocus system
involving a laser distance meter and a motorized lens. The system proved to be lightweight, low
cost, easily portable, and suitable for the examination of large-scale painting surfaces by providing
high-resolution reflectograms. Furthermore, high-resolution images at different wavelengths can
be obtained using band-pass filters. The in-situ analysis of a 16th-century panel painting is also
discussed as a representative case study to demonstrate the effectiveness and reliability of the system
described herein.

Keywords: infrared reflectography; spherical scanning; SWIR scanner; underdrawings; InGaAs
camera; high-resolution imaging; painting investigation

1. Introduction

In the study of paintings, it is well known that most paint layers based on modern
or ancient pigments are transparent to near-infrared radiation between 0.8 and 2.5 mi-
crons [1–6]. Because of this phenomenon, hidden features related to the lowermost layers
of panel or canvas paintings, such as underdrawings or compositional changes made by
the artist himself or within later interventions, can be revealed through technical analysis
by means of infrared reflectography (IRR) [7–10]. In addition, increased transparency
in the near-infrared range is also the basis of many techniques that are able to increase
the legibility of text in ancient or degraded documents. A combination of the increased
transparency of pigments and the opacity of carbon-based drawings provides sufficient
contrast for the latter to be efficiently visualized by detectors in the near-infrared band.
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The most widely used devices employ silicon semiconductors, indium gallium ar-
senide (InGaAs), mercury cadmium telluride (HgCdTe, MCT), germanium (Ge), or plat-
inum silicide (PtSi). Silicon detectors are the most widespread and inexpensive, albeit only
sensitive up to 1000 nm [3], which yields acceptable results under various measurement
conditions. However, detectors for cultural heritage applications are typically based on
InGaAs cameras, cooled and uncooled, due to their high signal-to-noise ratio and sensi-
tivity between 900 and 1700 nm. A modified version of these detectors, equipped with a
suitable cooling system, enables extended sensitivity up to 2500 nm. Despite providing
good sensitivity in the reflectographic infrared range, Ge-, MCT-, and PtSi-based detec-
tors are very expensive. The main limitation shown by silicon detectors is related to the
opacity of certain pigments in the band where this material is most sensitive: for instance,
copper-based pigments such as malachite and azurite, as well as some dark-tone earths,
are not transparent when examined up to the operating band of silicon detectors. Recently,
detectors working in the mid-wave and long-wave infrared were proposed for specific
applications with promising results [11–16]. In some cases, however, scanning is required
due to the very low pixel size of short-wave infrared (SWIR) detectors (640 × 520 pixels
for the largest ones). This ensures image collection with an adequate spatial resolution
to enable in-depth studies of a work’s painting or drawing techniques—including close
examination of thin or subtle brushstrokes, shadings, and hatching with different thickness
and saturation, as well as decorations with extremely fine details.

To date, there exists a number of scanning systems, both commercially available
and tailormade prototypes. Each of these have advantages and drawbacks in terms of
cost, scanning area, scan time, and spectral resolution. Scanning can rely on single-pixel
systems [17,18] or image plane systems [18–21], some operating with a multispectral
approach [4,21–25] and others integrating 3D information [26]. The instrument presented
here, of the second type, was developed as the evolution of a former prototype with the
specific aim to address a series of observed issues [27]. In this earlier version, image
acquisition relied on the movement of the entire camera, including the optics, as a focusing
system prompted its translation back and forth to maintain a certain distance from the
painting examined when the pan and tilt position changed. Travel of the linear stage was
limited to 10 cm, which restricted the possibility of focusing and thus the painting’s total
scanning area. In addition to a longer acquisition time, the focusing system relied on
theoretical values calculated based on the initial distance from the painting and subsequent
pan and tilt position. The new instrument proposed herein allows us to improve the
scanning method by increasing the area to be scanned as well as the focus accuracy, while
decreasing the acquisition time by moving a mirror instead of the camera.

In this context, this paper describes the operating principle, construction process, and
testing of a device that is capable of collecting high-resolution reflectographic images based
on spherical scanning, a well-known technique in photographic applications [28]. In this
system, image acquisition is performed by rotating the camera around its nonparallax
point [29], allowing the collection of a series of images that are then merged to expand the
final field of view.

Several products are currently used to obtain panoramic images: these include, among
others, tripod heads that enable rotations around one or two axes and, in some configura-
tions, are available with a motorized option. However, these heads are primarily designed
for photographic cameras and lack important features such as full remote control, sufficient
angular resolution, and, most importantly, the ability to implement autofocus for proper
image focusing. Our tailormade device was developed and upgraded to meet all the re-
quirements related to resolution, field of view, versatility, and cost. The prototype proposed
in this work is based on an InGaAs camera mounted in a fixed position and pointed at
a 45◦ elliptical mirror that is moved to scan the target surface. Rotation of the mirror,
instead of the camera, allows for faster and more precise movements with less inertia due
to the reduced weight of the mirror compared to that of the camera. Focusing is ensured
by a motorized lens, which, again, promotes rapid and accurate focusing. The system
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is controlled in the LabVIEW™ environment using inexpensive, but high-performance,
Arduino boards and modules, with a wireless connection.

After a series of preliminary tests, the system was evaluated for the in-situ technical
analysis of a 16th-century panel painting. The artwork is currently undergoing scientific
analysis and conservation treatment at the Centro per la Conservazione ed il Restauro dei
Beni Culturali (CCR) “La Venaria Reale”, located in Venaria Reale, province of Turin, Italy.

2. Materials and Methods
2.1. Optical and Mechanical Components

The prototype proposed in this article consists of a modular system that can be further
implemented and upgraded. As illustrated in Figure 1, its main components are the camera
and lens, a mirror, three motors for movement, and a laser for distance measurement. Once
assembled, the system can be attached to a supporting bar, which is then mounted on a
tripod stand. Figure 1 shows the system fully mounted and ready for scanning. The basic
idea is to equip the scanning system with a focusing module consisting of a time-of-flight
distance meter and a motor acting on the focus ring of the lens. Focusing is a crucial
step for the optical configuration of the system: in fact, in order to reduce the scanner’s
weight and size without unduly decreasing the dimension of the scanned area, linear
translations must be avoided in favor of a spherical system, as commonly employed in
panoramic photography.
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Figure 1. Components and modules of the scanning system.

However, the typical situation in panoramic photography is significantly different
from the reflectographic setup. As a matter of fact, in the former case, objects are normally
located far away from the camera, while usual distances between IRR systems and target
paintings range between 30 and 200 cm. Under these conditions, a panoramic scan would
produce increasing deformations as the angle of rotation from the normal to the painting’s
surface increases. In addition, moving away from the normal would result in a noticeable
loss in terms of spatial resolution. These issues can be addressed by increasing the painting–
camera working distance through the use of a lens with a long focal length so as not to
decrease spatial resolution. The limited depth of field of lenses with long focal lengths,
however, makes refocusing necessary. Details of the components used to assemble the
scanning prototype are reported in Table 1.
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Table 1. Details of the components used to assemble the scanning prototype.

Component Manufacturer Model Tech Specifics

Camera Xenics™, Leuven,
Belgium

Xeva-1.7-320
InGaAs camera

Sensitivity between 0.9 and 1.7 µm, 320 × 256-element
array with a pixel pitch of 20 µm, and cooling system,
yielding 14-bit grayscale images.

Lens Tamron™, Saitama,
Japan

500 mm f/8 SP
macro-tele lens

Compact design considering its focal length; it has few
glass elements and a minimum focal distance of
approximately 1.7 m. At this distance, the optical
magnification is about 3:1, which means that at a 1.7 m
distance a given painting would be sampled at
560 pixels per inch at the center of the scanned area.

Mirror GSO™, Guan Sheng
Optical, Taiwan Elliptical mirror

The mirror surface has aluminate layer providing 94%
reflectivity, mirror size 104 × 150 mm, precision
1/12 RMS, thickness 18.7 mm.

Distance meter
Chengdu JRT Meter
Technology Co., Ltd,

Chengdu, China

Time-of-flight laser
distance meter

Wavelength 635 nm, range 0.02–50 m, accuracy ±2 mm,
power < 1 mW (class II laser). Distance is measured by
measuring the time taken by the laser beam to travel a
distance. Module is controlled by using a TTL/serial
communication protocol.

Motors OSM Technology Co.,
Ltd., Nanjing, China Stepper motors

Current 2A, torque 59 Ncm, each motor has different
gear ratio depending on the weight to be moved.
Angular resolution of all movements is 0.02◦.

2.2. Electronic and Software Components

As shown in Figure 2, the camera and modules are controlled in the LabVIEW™
environment, using an Arduino Uno microcontroller equipped with a motor shield board
and a Bluetooth Serial Port Protocol module. This configuration allowed the research team
to reduce the number of wired connections to one only (for the camera), while operating all
other controls wirelessly.
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Figure 2. Graphical scheme showing the assembling of the individual components into the operating
scanning system.

Figure 3 illustrates the control module used for the scanning system, which is based
on an Arduino Uno board, a motor shield, three stepper motor drivers, and a Bluetooth
communication module.
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Figure 3. Control module of the scanning system based on the Arduino Uno board.

The screen interface used to control the software program can be seen in Figure 4. In
the LabVIEW™ environment, it was possible to integrate the motion control, refocusing
system, and distance measurement within a single application that allows the operator to
manage both the software and hardware components.
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2.3. Optical Scheme

The system’s innovative optical design is based on a mirror that is moved instead of
the camera, yielding a reduction of one fifth in weight and enabling lens and camera to be
varied without significantly changing the system configuration. The catadioptric lens, with
a central obstruction that contains the secondary mirror, lends itself very well to be used in
combination with a time-of-flight laser distance meter. It is possible, in fact, to frontally
accommodate an additional small mirror at a 45◦ angle to reflect the laser beam toward the
elliptical mirror and then to the painting surface for the distance measurement, as the mirror
position changes and so does the area of the painting viewed by the camera. A scheme
of the system’s optical design is shown in Figure 5a. The laser beam used to measure the
camera–painting working distance first hits the 45◦ mirror and then the elliptical mirror
in the optical path (red lines); after distance measurement, the laser is disabled and the
infrared radiation is focused on the camera plane for image acquisition (green lines). Given
the peculiarity of this optical scheme, the scanning area is limited by two factors: first, the
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lens’ field of view is partially obscured by the mirror, and second, its shallow depth of
field prevents the ability to image areas that are located far from the normal to the painting
surface. In this configuration, maximum dimension of the scanning area is 2 × 2 m, a
limit that can be exceeded by increasing the lens’ focal length and moving away from the
painting, and performing focus stacking for more peripheral areas. Additionally, the system
can be equipped with band-pass filters, mounted between the camera and lens, to carry
out a multiband acquisition. Lens focus was calibrated against the stepper motors’ position
using a U.S. Air Force (USAF) resolution optical target, which also allowed us to evaluate
the instrument’s actual spatial resolution, usually reported as a theoretical value dividing
the sensor size by the field of view in real-world units. Figure 5b shows the optical target
located at a distance of 1.7 m, as in the actual capture of the painting. The system is able to
resolve up to group 2 and element 6 on the select target, corresponding to 7.13 line/pairs
per millimeter and equal to a resolving power of 70.15 µm, which indicates the approximate
resolution limit.
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Figure 5. (a) Scheme of the system’s optical design showing the path of the laser beam used to
measure the camera–painting working distance (red lines) and the path of the infrared radiation
focused on the camera plane for image acquisition (green solid lines for the path outside the lens
and green dashed lines for the path inside the lens). (b) USAF resolution target as captured by the
scanning system.

Images obtained by scanning, in which the mirror is rotated and tilted as in the pro-
posed case, turn out to be rotated around the optical axis due to the mirror’s rotation with
respect to the lens’ optical axis. As illustrated in Figure 6, a reference frame (x′, y′, z′) can
be obtained by considering the painting coordinates (x, y, z) with the camera placed orthog-
onally to its surface and then applying a rotation by an angle α. Figure 6a,c, representing
rotation for the camera and mirror, show no difference in this reference frame. On the
other hand, rotation of the camera or mirror by an angle β yields a new reference frame
(x′′ , y′′ , z′′ ) that appears different for each configuration. The reference frame represented
in Figure 6c, in fact, undergoes an additional rotation β around the z′′ axis with respect to
the camera alone (Figure 6b).
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2.4. Post-Processing and Merging

A challenging phase in the creation of a high-resolution reflectogram is the post-
processing of an enormous amount of single 14-bit grayscale captured images. The ad-
ditional rotation of each image further increases the level of difficulty that burdens the
merging process. After detector calibration, accomplished through the Xeneth software
wizard, dark subtraction and flat field correction are needed in the capture conditions. The
so-obtained images can be corrected through the imtransform function in MATLAB Pro-
cessing Toolbox™ [30], using the angular position information embedded in each recorded
image. Subsequent merging can be achieved by means of several methods available for
this specific purpose. The most commonly used applications in panoramic photography
are PTGui 12.21 [31], Huging 2022.0.0 [32], GigaPan Stitch 2.1.0161 [33], Image Composite
Editor 2.0.3 [34], the merging tool of Adobe Photoshop® 24.3.0 [35], and other computa-
tional methods based on different approaches [36]. In this research, all the abovementioned
applications were tested to select the most efficient, which turned out to be Image Com-
posite Editor: this application was able to combine all 2000 images collected from the top
and bottom sections of the painting by using the panorama stitching option with known
image positions. Distortions were found to be quite small and were adjusted in Adobe
Photoshop® [35], using the painting’s visible light photograph as a reference.

2.5. Case Study

After a series of preliminary tests, the infrared scanning system described herein was
evaluated for the in-situ technical analysis of a remarkable 16th-century panel painting,
titled Genealogy of the Virgin and attributed to Italian painter Gandolfino da Roreto, who
was active in the Piedmont region during the Early Renaissance (Figure 7). The painting,
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owned by the Diocese of Novara, comes from the Church of Santa Maria Assunta in
Grignasco, province of Novara, Italy, and is approximately dated to 1510–1520. Dimensions
of the panel are 173 × 83 cm. Over the centuries, the painting has undergone at least one
significant conservation treatment. IRR was performed as part of a broader analytical
campaign aiming to shed light on the work’s materials and techniques, as well as any
extant issues possibly related to previous interventions or to its conservation condition
deteriorating over time. The painting is currently held in the CCR “La Venaria Reale”
laboratories, where it is undergoing scientific analysis and conservation treatment under
the supervision of the Soprintendenza Archeologia, Belle Arti e Paesaggio per le Province
di Biella, Novara, Verbano-Cusio-Ossola e Vercelli. The instrumental setup for IRR is
illustrated in Figure 8; scanning was performed by mounting the painting on a supporting
easel in horizontal position and positioning the scanner 150 cm away from the painting
surface. Two 350 W halogen lamps and diffusers were used for lighting.
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Figure 8. Instrumental setup for IRR of the panel painting in the CCR “La Venaria Reale” conservation
laboratories. Scanning was performed by placing the work in horizontal position on an easel.

3. Results and Discussion

Reflectographic analysis of the panel was performed in two separate scans, due to
the large surface of the painting examined, in order to minimize the blur effect caused
by the lens’ limited depth of focus. All acquisitions were carried out in the 1.0–1.7 µm
spectral range. A critical parameter that affects the scan time significantly is the choice
of overlapping area between adjacent images: while with camera rotation this can equal
20–30%, with mirror rotation it is recommended not to fall below 50%, which also facilitates
the automatic stitching process that follows. For the panel painting investigated in this
paper, a total of 4000 individual images were captured: 2000 for the top half and 2000 for
the bottom half (Figure 9a). This choice was meant to ensure uniform lighting over the
entire painting surface and to limit the distortion of peripheral areas, while facilitating
image recomposition. Total acquisition time was about 2 h. Although the focusing method
employed proved to be fast, in the presence of very dark backgrounds the measurement
often gave rise to errors. This encountered problem was solved by imposing a condition on
the distance measurement, according to which if the latter differed by more than 1% from a
theoretical value, calculated assuming that the painting was perfectly flat, the measured
value would be discarded in favor of the theoretical value.

The best-suited stitching software to manage the significant number of images acquired
automatically was found to be Image Composite Editor. In fact, this application was able to
fully assemble the 2000 images collected from the artwork’s top and bottom sections with
limited resulting distortions, as shown in Figure 9b. The final IRR image, adjusted using
the painting’s visible light photograph as a reference, is shown in Figure 9c. Hugin is also
potentially performant, but in many cases requires the manual input of control points in
order to perform the alignment. In fact, the image rotation effect caused by the mirror’s tilt
movement greatly burdens the recognition of individual images in the alignment process.
Preliminary correction of the images, achieved by straightening the individual shots for the
mirror position angle, did not produce a significant gain in terms of processing time.
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Figure 9. (a) All individual infrared images captured from the top and bottom sections of the panel
painting are placed side by side in preparation for the merging process. (b) Stitching of the individual
2000 + 2000 image sets. (c) Final recomposition with flat field correction, image registration, and gray
levels optimization.

The reflectogram reveals interesting aspects of the artist’s technique. Most significantly,
there is evidence of the presence of an underdrawing over the entire surface of the panel
painting. Such underlying drawing is executed with a brush and a carbon-based ink,
likely used in combination with a dry medium to adjust or reinforce certain details in the
composition (Figures 10 and 11). Figure 10 depicts a detail of the Virgin’s sister, Salome,
with her two sons, James the Greater and John the Evangelist: in this area, the outline strokes
of the drawing and the shading on John the Evangelist’s chest are noticeable (highlighted
with a green arrow). On the other hand, a distinct trace along James’ proper right arm,
of difficult interpretation, might be cautiously attributed to a pentimento or compositional
change, with the child formerly depicted closer to Salome and one of his eyes visible in IRR
where the cheek is currently located (highlighted with a red arrow). An additional change
between subsequent versions of the painting is detected in correspondence to Salome’s
proper left hand, whose middle finger in the underdrawing appears bent (Figure 11).

Furthermore, an outstanding compositional change appears to have been made in
the background landscape seen beyond a curtain in the painting’s upper right quadrant
(Figure 12). Indeed, a house with roof, walls, and windows, present in the underdrawing,
was apparently not reported in the final painting phase, which includes, instead, a natural
landscape with hills and vegetation. The corresponding area in the painting’s upper left
quadrant does not show any compositional changes in the infrared reflectogram.

Further fascinating details of the artist’s technique can be drawn from close inspection
of the area in Figure 13. In fact, the sleeve of Joseph’s robe appears to have been added at a
later stage, on top of the figure’s bare arm; careful shading on the elbow and armpit is also
visible. This observation, along with the infrared response of Joseph’s back, suggests that
the child was originally naked, similar to all others in the composition, and clothing was
later added likely because he is located in the foreground.
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Figure 10. Detail of the painting’s lower right quadrant, depicting the Virgin’s sister, Salome, with her
two sons, James the Greater and John the Evangelist. Compared to the visible light photograph (left),
the IRR image (right) shows compositional changes such as the shading on John the Evangelist’s
chest and an overall modified position for James the Greater, highlighted with green and red arrows.
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Figure 11. Detail of Salome’s proper left hand holding the baby. Compared to the visible light
photograph (top), the IRR image (bottom) shows compositional changes such as the figure’s middle
finger in bent position.
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Figure 12. Detail of the painting’s upper right quadrant, depicting a landscape scene beyond a curtain.
Compared to the visible light photograph (a), the IRR image (b) shows compositional changes such
as a house with roof, walls, and windows.
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Figure 13. Detail of the painting’s lower left quadrant, depicting two children. Compared to
the visible light photograph (left), the IRR image (right) shows compositional changes such as a
subsequent addition of a sleeve in Joseph’s robe.

4. Conclusions

The spherical infrared scanning system implemented in this work, equipped with
mirror handling, was proven to provide a conveniently portable and versatile system
for reflectographic applications even on large-scale panel paintings. The use of a mirror
significantly reduces the weight of the handling system. On the other hand, the addition of
an autofocus mechanism on the lens, on a theoretical level, enables the operators to have
virtually no limits in terms of selected dimensions of the scanned surface. In fact, the main
drawback of this system is related to the lens’ depth of field and the partial obstruction of
the lens’ field of view due to the mirror. The combination of the LabVIEW™ software with
the low-cost, modular Arduino system enables the creation of an inexpensive and wireless
handling and control system.
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The system is modular and it is possible to change the type of camera and lens; as
an alternative to the laser focusing system, a theoretical focusing system based on the
angular position of the framed area can be used. In-situ testing on Gandolfino da Roreto’s
16th-century large-scale panel painting made it possible to evaluate the effectiveness and
performance of the proposed system. The selected Image Composite Editor stitching
software was able to stitch a considerable number of images with adequate overlapping.
Further developments are currently underway to improve acquisition times and preprocess
the collected images in order to facilitate merging.
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