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Abstract: Histone modifications are epigenetic mechanisms, termed relative to genetics, and they
refer to the induction of heritable changes without altering the DNA sequence. It is widely known that
DNA sequences precisely modulate plant phenotypes to adapt them to the changing environment;
however, epigenetic mechanisms also greatly contribute to plant growth and development by altering
chromatin status. An increasing number of recent studies have elucidated epigenetic regulations on
improving plant growth and adaptation, thus making contributions to the final yield. In this review,
we summarize the recent advances of epigenetic regulatory mechanisms underlying crop flowering
efficiency, fruit quality, and adaptation to environmental stimuli, especially to abiotic stress, to ensure
crop improvement. In particular, we highlight the major discoveries in rice and tomato, which are
two of the most globally consumed crops. We also describe and discuss the applications of epigenetic
approaches in crop breeding programs.

Keywords: histone modifications; rice; tomato; stress resistance; crop yield improvement

1. Introduction

In the natural environment, plants are exposed to constantly changing stimuli; some
of these changes follow regular natural cycles, such as seasonal change and the circadian
clock, while others are severe and unfavorable. As sessile organisms, plants have evolved
sophisticated mechanisms to increase their adaptation to rapidly changing conditions.
Together with the genetic signaling network, epigenetic mechanisms are also considered
critical in enhancing plants’ growth, development, and adaptation to adverse environ-
mental stimuli [1–4]. Epigenetic modifications lead to heritable altered phenotypes by
modulating gene expression through changes in chromatin accessibility, without affecting
DNA sequences [5,6]. Epigenetic markers, including DNA methylation, non-coding RNAs,
and histone modifications, all function to regulate chromatin structure and the subsequent
gene expression [7]. DNA methylation primarily occurs in three sequence contexts—CG,
CHG, and CHH—and plays a role in repressing gene expression [8]. Non-coding RNAs
mediate RNA silencing that affects protein structure [9]. Both of these two markers are
responsible for regulating gene transcription and are significantly involved in various de-
velopmental transitions. A more detailed introduction to DNA methylation and non-coding
RNA mechanisms can be referenced in [4,10]. Histone modifications specifically refer to
the post-translational modifications on N-terminal tails, including but not limited to methy-
lation, acetylation, phosphorylation, ubiquitination, glycosylation, and sumoylation [11],
that ultimately may determine chromatin configuration (open or closed) and regulate gene
transcription [6]. Previous studies demonstrated that histone modifications, especially
methylation and acetylation, are critical in mediating crop development. For instance, in
rice, flowering efficiency and grain size are two main factors that determine yield [12],
and they are under the regulation of histone modifications. Likewise, recent epigenetic
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studies in tomato are mainly focused on fruit ripening and flavor [13]. In addition, abiotic
stresses, including drought, extreme temperature (heat and freezing), heavy metal, and
excessive soil salinity constrain plant growth and crop yield [2]. Thus, it is a primary aim to
improve crop resistance to various adverse conditions. Histone modifications were found
to participate in the regulation of plant reproduction, fruit quality, and stress tolerance.
This review focuses on recent progress in understanding the role of histone modifications
with regard to rice and tomato yield and development. Indeed, the epigenetic regulatory
mechanisms underlying enhanced growing quality provide additional approaches for crop
improvement to cope with the increasing challenges for plants growth, as well as to meet
the growing demand for food supply.

2. Histone Modifications

In eukaryotic cells, the basic unit of chromatin is the nucleosome, formed by two
copies of histones (H3, H4, H2A, and H2B) and wrapped by 145–147 bp of DNA [14]. The
chromatin’s conformation undergoes reversible modification, which corresponds to the
transcriptionally inactive and active stage, respectively [15]. Epigenetic markers modulate
gene expression by controlling chromatin conformation reversion and accessibility.

Histone modifications are reversible processes under the regulation of enzymes that
either catalyze or remove specific marks termed as writers and erasers, respectively. Ad-
ditionally, these marks are annotated by reader proteins, which give rise to subsequently
altered phenotypes [16]. Both the specificity and the position along the histone tails deter-
mine the positive or negative regulation on gene expression [2].

The most used methodology for determining and quantifying the enrichment of spe-
cific histone markers upon DNA regions is chromatin immunoprecipitation (ChIP). ChIP
assays are based on the use of antibodies that recognize particular histone modifications
along DNA fragments [17,18]. However, over the last decade, plant scientists have devel-
oped technologies that allow for the capture of chromatin changes and genome architecture
at different and multiples scales [19,20]. This includes high throughput chromosome con-
formation capture (Hi-C), also combined with ChIP (HiChIP), chromosome conformation
capture (3C) which, combined with imaging methods, allows for the elucidating of chro-
mosome territories (CTs), A/B compartments, topologically associated domains (TADs),
and chromatin loops [21–26].

Similarly, the assay for transposase-accessible chromatin combined with sequencing
(ATAC-seq) is a novel technology that can identify cis-regulatory elements and enhancer
regions in plants [27,28].

2.1. Histone Methylation

Histone methylation occurs on different lysine and arginine residues that can be mono-
, di-, and tri-methylated [29]. Histone methylation alters the chromatin status and thus
influences the accessibility of protein factors to target DNA, which subsequently regulates
gene expression. Histone methylation is established by histone methyltransferases (HMTs)
and is removed by histone demethylases (HDM). HMTs mainly contain the SDG (SET-
domain group) protein domain, which function to deposit methyl on specific histone lysine
residues [30], while the two main classes of HDM, the JMJ (jumonji-C domain-containing
protein) family and LSD1 (lysine-specific demethylases 1), act as erasers [31].

In plants, histone methylation mainly takes place in lysine (K) and arginine (R)
residues, such as K4, K9, K27, K36, and K79, on the N-terminal tails of histones H3 and
H4 [7]. Generally, H3K4me3 and H3K36me3 are reported to exert a function in transcrip-
tional activation associated with open chromatin regions, while H3K27me3, H3K9me2, and
H4R3 have been identified as repressive markers and hence, negative regulators of gene
expression [7].
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2.2. Histone Acetylation

Attachment of the acetyl group to histone tails is termed as acetylation. Histone acetyla-
tion leads to neutralization of the positive charge on the histone tail, weakening interactions
between histone and DNA and thus resulting in the increased accessibility of transcription
factors to DNA [21]. Histone acetylation is controlled by HATs (histone acetyltransferases)
and HDACs (histone deacetylases) through a reversible process, where each separately
acts as writers and erasers [32]. Four groups of HATs have been identified in Arabidop-
sis, including GNAT (GCN5-related N-acetyltransferase), MYST (MOZ, Ybf2/Sas2 and
Tip60), CREB-binding protein (CBP)/p300, and TAF1 (TATA-binding protein-associated
factor 1) [31]. HDACs in plants were classified into three families: RPD3/HDA1 (Reduced
Potassium Dependence3/Histone DeAcetylase1) superfamily, SIR2 (Silent Information
Regulator 2), and HD2 (Histone Deacetylase2) family [33]. Fourteen members were re-
ported as HDACs in tomato, including SlHDA1-SlHDA9, SlHDT1-SlHDT3 (Sl HISTONE
DEACETYLASE 1-3), and SlSRT1-SlSRT2 (Sl SIRTUIN 1-2) [34]. Overall, the histone acety-
lation marker is usually associated with gene activation, while deacetylation leads to a
compact chromatin structure and the repression of gene expression [35].

On the other hand, histone phosphorylation strengthens the interaction with other
types of histone modifications and is involved in DNA damage repair and chromatin con-
formation [36]. Histone ubiquitination is usually associated with transcriptional activation
or repression, depending on the specific position in which it occurs. It also regulates DNA
damage responses. Monoubiquitinated H2A (H2Aub) and H2B (H2Bub) are two of the
most abundant ubiquitinated histones [37] in plants.

In this work, we focus primarily on the recent findings regarding histone methylation
and the acetylation regulatory mechanisms related to the growth and development of rice
and tomato, respectively (see Table 1). For other types of histone modifications, we refer
the reader to [38,39].

Table 1. List of histone modification markers and the associated physiological processes in rice
and tomato.

Species Physiological
Process Epigenetic Mark Associated Genes Effect of Regulation Reference

Rice (Oryza
sativa)

Flowering

H3K4me3
OsTRX1, SIP1, Ehd1 Promotes flowering [40]

OsWDR5a, Ehd1 Promotes heading date and
secondary branch growth [41]

H3K36me3 OsSDG725, OsSUF4,
Ehd1 Promotes flowering [42]

De-Acetylation
(H4K8, H4K12)

OsHDA703, Ghd7,
Ehd1 Promotes flowering [43]

H2A.Z OsINO80, OsCPS1,
OsGA3OX2

Promotes flowering and
reproductive efficiency [44]

Grain size and
quality

H3K27me3
OsJMJ705, OsWOX11 Represses shoot growth [45]

OsNGR5, OsPRC2 Promotes tiller number [46]

OsVIL2, OsCKX2 Promotes cytokinin synthesis
and plant biomass [47]

H3K4me3 OsMADs Promotes grain size and yield [48]
Acetylation
(H3 and H4) OsHDR3, GW6a Promotes grain size and yield [49]

Abiotic stress

Acetylation
(H4K5, H4K16, H3K9)

OsHDA710, OsLEA3,
OsABI5 Increases salt tolerance [50]

Acetylation
(H3)

OsIDS1, OsLEA1,
OsSOS1 Increases salt tolerance [51]

H3K36me3 OsSDG708 Increases drought resistance [52]
H3K4me3 OsJMJ703 Increases drought tolerance [53]
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Table 1. Cont.

Species Physiological
Process Epigenetic Mark Associated Genes Effect of Regulation Reference

Tomato
(Solanum

lycopersicum)

Fruit ripening

H3K27me3
SlJMJ6 Represses fruit ripening [54]

SlLHP1b Represses fruit softening and
ethylene accumulation [55]

SlNF-YB, SlCHS1 Represses flavonoid
accumulation [56]

H3K4me3 SlJMJ7 Promotes ethylene
biosynthesis [57]

Acetylation SlHDA3, SlACSs, SlE4,
SlLOX8

Promotes ripening and
carotenoid accumulation [58]

Acetylation
(H3) SlHDT1

Promotes carotenoid
accumulation and ethylene

biosynthesis
[59]

Acetylation
(H3K9, H3K27)

SlERF.F12, SlTPL2,
SlHDA1/HDA3 Promotes fruit ripening [60]

H3K4me3 SlNOR, SlAAT1 Promotes fruit ripening and
ester synthesis [61]

H3K27me3 SlNOR, SlAAT1 Represses fruit ripening and
ester synthesis [61]

Abiotic stress

H3K4me3 H3K36me3 SlSDG33/34 Promotes drought tolerance [62]

De-Acetylation
SlHDA3 Promotes drought resistance [63]

SlHDA5 Promotes salt and drought
resistance [64]

SlHDA1 Promotes salt and drought
resistance [65]

H3K27me3 SlJMJ4 Represses plant sensitivity to
ABA [66]

3. Role of Histone Modifications in Improving Yield in Rice (Oryza sativa L.)

Rice is one of the major staple crops worldwide; thus, increasing rice yields is con-
sidered a great concern for food production. Recently, it has been shown that histone
modifications make great contributions to rice growth, particularly by improving flowering
efficiency, grain quality, and tolerance to adverse environments. Here we review the major
histone modification mechanisms regulating flowering time, shoot and grain formation,
and finally, response to abiotic stress (Figure 1).

3.1. Flowering

Flowering is the transition from vegetative growth to reproductive development,
which directly influences reproduction efficiency and yield.

Hd3a [67] and RFT1 [68] are two florigen genes dominating the flowering process
and are under the control of the photoperiod. Additionally, a photoperiod-independent
flowering pathway is mediated in rice by the B-type response regulator Ehd1. Flowering
time, also termed heading date, is critical in determining yield and is modulated by
histone modifications.

Recent work has revealed how H3K4me3 levels are regulated by OsTRX1 (TrithoRaX-
like protein 1), hence subsequently affecting flowering time. OsTRX1 was found to interact
with the transcription factor SIP1 (SDG723/OsTRX1/OsSET33 Interaction Protein 1) and
was then recruited to its target Ehd1. Induction of Ehd1 levels promotes flowering by
upregulating the expression of florigen genes [69]. Loss of function mutants in OsTRX1
and SIP1 both led to reduced H3K4me3 levels at the Ehd1 locus, thereby inhibiting Ehd1
expression and resulting in a late heading date [40].
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Figure 1. Overview of the histone modifications regulating flowering initiation in rice: TRX1
(TRITHORAX-like protein 1) interacts with SIP1 (SDG723/OsTRX1/OsSET33 Interaction Protein 1)
to promote H3K4me3 deposition on the Ehd1 (Early heading date 1) locus, thereby inducing flowering;
the COMPASS complex that includes WD40 and SDG723 (Set Domain Group protein 723) positively
induces flowering and panicle branches by increasing H3K4me3 levels on Ehd1 promoter. SUF4
(SUppresor of Fri 4) mediates H3K36me3 on Hd3a (Heading date 3a) and RFT1 (Rice Flowering Time
Locus T1) promoters by interacting with histone methyltransferase SDG725. Conversely, histone
deacetylase HDA703 deacetylates histone H4 (see histones in purple) on the Ghd7 (Grain number, plant
height, and heading date7) locus, thereby promoting the transcriptional activation of Ehd1.

In addition, a positive correlation between H3K4me3 levels and flowering was also
proved by another study. In fact, COMPASS (COMplex of Proteins Associated with Set1)
complex, which is formed mainly by WD40 protein OsWDR5a and SDG 723 (SET Domain
Group protein 723) was shown to positively regulate flowering and panicle branches by
promoting H3K4me3 levels. OsWDR5a can promote Ehd1 H3K4me3 deposition by binding
to its promoter. As a result, plants with a lower expression of OsWDR5a showed reduced
H3K4me3 levels at Ehd1 and displayed unfavorable agronomic traits that reduce yield,
such as delayed heading date, fewer secondary branches, and limited grain number, further
confirming the positive correlation between H3K4me3 and flowering [41].

The transcription factor OsSUF4 was identified to interact with H3K36 methyltrans-
ferase SDG725. This interaction was required to recruit SDG725 to the promoter regions of
the florigen genes Hd3a and RFT1 for H3K36me3 deposition, thereby promoting gene induc-
tion and ultimately, flowering. Interestingly, loss of function mutant suf4Ri-1 phenocopies
SDG725-knockdown mutant 725Ri-1, exhibiting a late flowering phenotype, regardless of
the photoperiods. Furthermore, reduced H3K36me3 levels were detected in suf4Ri-1 [42].
Altogether, this study preludes to a major role for H3K36me3 histone markers in activating
florigen genes in rice.

In addition to histone methylation, histone acetylation also participates in controlling
rice flowering. Histone deacetylase HDA703 regulates rice heading date through facilitating
histone H4 deacetylation of Ghd7, a repressor of rice heading acting upstream of Ehd1 [70].
As a result, overexpression of HDA703 represses Ghd7 expression, resembling the phenotype
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of Ghd7-silencing mutants, displaying accelerated growth rate throughout the whole period,
including early heading [43].

Furthermore, histone variants also appear to be involved. Indeed, it was reported that
OsINO80, an established chromatin-remodeling factor [71], interacts with histone variant
H2A.Z to regulate flowering, seed germination, and reproductive efficiency through the
gibberellin biosynthesis pathway. OsINO80-knockdown mutants showed decreased H2A.Z
enrichments in GA biosynthesis genes such as CPS1 (ent-CoPalyl diphosphate Synthetase 1)
and GA3ox2 (Gibberellin 3-oxidase 2), which led to impaired GA signaling and displayed a
late flowering phenotype and reproductive development deficiency [44].

3.2. Shoot Development and Grain Formation

Apart from flowering efficiency, shoot and grain development are two additional traits
in determining rice yield, which are also regulated by chromatin dynamics.

Enrichment of H3K27me3 at the promoter of genes associated with grain formation is
correlated with distinct phenotypic responses. For instance, OsJMJ705, a major H3K27me3
demethylase in rice, can regulate shoot development through interaction with WUSCHEL-
related homebox (WOX) genes, which are essential in controlling meristem development.
Indeed, OsJMJ705 was found to mediate H3K27me3 removal from WOX11 targets to
activate their expression and promote shoot growth. As a result, genes involved in meristem
identity that belong to the Oryza sativa homeobox (OSH) family, as well as transcripts
encoding for chloroplast biogenesis and energy metabolism, were downregulated in wox11
and jmj705 mutants. Their expression profile was linked to various shoot growth defects,
including decreased panicle length and reduced number of spikelets per panicle [45]. In
accordance with the H3K27me3 role in gene repression, this study revealed a negative
regulation through H3K27me3 on shoot growth.

Consistently, it was also found that the application of nitrogen fertilizer alters the
genome-wide H3K27me3 pattern via NGR5 (Nitrogen-mediated tiller Growth Response
5)-dependent recruitment of PRC2 (Polycomb repressive complex 2) [46]. Recruitment of
PRC2 led to altered H3K27me3 levels on loci encoding for branching-inhibitory genes and
resulted in increased tiller number. This research also demonstrated that rice tillering and
yield can be enhanced by improving NGR5 levels, without the excessive application of
nitrogen fertilizer [46]

Similarly, OsVIL2 (Oryza sativa VIN3-Like 2) can positively regulate grain size through
chromatin remodeling of OsCKX2 (CYTOKININ OXIDASEI DEHYDROGENASE2) locus,
which promotes cytokinin degradation and subsequently modulates panicle branches and
grains number. In fact, H3K27me3 levels on the OsCKX2 promoter region were increased
in OsVIL2 overexpressing lines, which indicates the repressed expression of OsCKX2 and
in turn, elevated levels of cytokinin, increased plant biomass, including increased tiller and
spikelet number, and ultimately, higher yield [47]. This study demonstrated a positive role
of H3K27me3 in regulating grain number by repressing negative regulators of the process.

Opposite to the general effect of H3K27me3, enhanced H3K4me3 levels in the promoter
of OsMADS (Os Mcm1, Agamous, Deficiens, Srf), which modulates grain size in rice, led to
wider grains and increased yield [48].

Together with histone methylation, histone acetylation also functions to regulate grain
size. Ubiquitin receptor HDR3 (Homolog of Da1 on Rice chromosome 3) facilitated H3 and
H4 acetylation by stabilizing HAT GW6a (Grain Weight 6a), resulting in larger grain size
and enhanced yield of rice [49].

3.3. Abiotic Stress

In rice, chromatin dynamics also appear to be critical for resistance to abiotic stress [50,53].
In one study, six histone markers (H3K4me3, H3K27me3, H4K12ac, H3K9ac, H3K27ac, and
H3K36me3) were investigated in response to salt stress, demonstrating extensive yet precise
gene regulatory effects through histone modifications [72].
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Interestingly, AGO2 (ARGONAUTE2), despite its function in the small-RNA directed
gene silencing, was found to optimize cytokinin distribution in shoots and roots, thereby
increasing salt tolerance in rice by altering BG3 (BIG GRAIN3) histone methylation lev-
els and inducing its expression [73]. Histone deacetylase OsHDA710, which belongs to
the HDAC RPD3/HDA1 family, also negatively controls salt tolerance by reducing the
expression of stress responsive genes, including OsLEA3 (Os Late Embryogenesis Abundant
protein3), OsABI5 (Os ABA Insensitive 5), and OsbZIP72 (Os Basic leucine ZIPPER 72) [50].

IDS1 (INDETERMINATE SPIKELET1) was identified as a HDAC recruiter in the salin-
ity stress response. IDS1 encodes for the apetala2/ethylene response factor, and negatively
regulates rice salt tolerance by interacting with and recruiting histone deacetylase HDA1,
resulting in the repression of key salt stress-responsive genes, including LEA1 and SOS1
(Salt Overly Sensitive1). Consistently, mutant lines ids1-1 showed stronger tolerance and
higher survival rate under NaCl treatment [51]. Plants suffering from drought stress can
also shape their adaptation through histone modification mediated mechanisms. SDG708
(SET domain group protein 708), a H3K36 methyltransferase, was reported to improve the
drought resistance of rice by preventing water loss and promoting stomatal closure [52].
OsJMJ703 catalyzes histone demethylation in the context of drought stress. In detail, the
knockdown of OsJMJ703 increases H3K4me3 levels, leading to accelerated flowering and
enhanced tolerance in drought treatment. By contrast, the overexpression of OsJMJ703
causes hypersensitivity to drought stress [53].

Altogether, these studies demonstrated that various types of epigenetic marks de-
termine the very fine and robust regulation of gene expression primarily during plant
adaptation. This suggests the use of epigenetic approaches in generating climate-smart rice
plants and ensuring crop safety.

4. Role of Histone Modifications in Improving Fruit Quality in Tomato (Solanum lycopersicum)

Tomato is one of the world’s most economically important plants and favorable fruits.
Up until now, epigenetic studies on tomato have primarily focused on increasing fruit
ripening and quality, as well as improving its resistance to abiotic stress. Here, we focus on
the major histone modifications and chromatin modifiers that affect tomato development,
as well as its tolerance to environmental changes (Figure 2).

4.1. Fruit Ripening

In the context of fruit ripening, tomato has served as a model plant due to its features
such as a short life cycle and its well-annotated genome [74]. Fruit ripening marks the ter-
minal stage of its development and directly affects quality and flavor [75]. By analyzing the
fruit ENCODE data, a sequenced reference database of seven climacteric fruit species [76],
it was found that in immature tomato fruit, H3K27me3 was enriched primarily at the
ethylene biosynthesis genes, while the same mark was absent from these regions upon fruit
ripening. This suggests that H3K27me3 acts as a negative regulator of the ripening process
(Figure 2) [77].

In accordance, histone demethylase SlJMJ6 was demonstrated to promote tomato
fruit ripening by facilitating H3K27me3 demethylation, as overexpression of SlJMJ6 led
to activated expression of ripening-related genes and an acceleration of the tomato fruit
ripening process [54].

LHP1,a component of PRC1 (Polycomb Repressive Complex 1), presents two vari-
ants, SlLHP1a and SlLHP1b, in tomato. SlLHP1b delays fruit softening and ethylene
accumulation through colocalization with H3K27me3, and the overexpression of SlLHP1b
downregulated ripening-related genes. This finding not only revealed the epigenetic mecha-
nisms of how PcG (Polycomb Group) proteins regulate fruit ripening, but also strengthened
the negative role of H3K27me3 [66].
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H3K27me3 levels on target genes; histone demethylase JMJ (JUMONJI) 7 removes H3K4me3 markers
on promoter regions, thereby reducing the expression of genes involved in ethylene biosynthesis.
Conversely, JMJ6 reduces H3K27me3 levels on the same genes and induces their expression. Similarly,
removal of histone deacetylases HDT1 promotes histone acetylation of genes involved in carotenoid
accumulation and ethylene biosynthesis.

In addition to that, transcriptional regulators such as NF-Y (Nuclear factor Y) are
essential in flavonoid biosynthesis for forming NF-Y complexes and binding the CCAAT
box in the promoter of the CHS1 (CHALCONE SYNTHASE1) gene [78]. The low expression
of NF-YB genes led to increased levels of H3K27me3 at the CHS1 locus and subsequently, to
reduced expression of CHS1, inhibiting the accumulation of flavonoid, and thus resulting
in fruits with pink color and colorless peels [56]. Conversely, SlJMJ7 negatively regulates
tomato fruit ripening by removing H3K4me3 methylation, which subsequently leads to the
downregulation of ripening-related genes involved in ethylene biosynthesis [57]. These
examples indicate that in tomato, the action of JMJs can be related to the activation or
repression of gene expression, based on the type of histone methylation being removed,
prompting future deeper investigations regarding the mechanisms of recognition of the
histone marks.

Tomato fruit ripening is also modulated by histone acetylation (Figure 2). RNAi lines
for SlHDA3 showed early ripening, increased accumulation of carotenoid, and improved
ethylene production, correlated with the activated expression of ethylene biosynthesis
genes (ACSs, ACOs), as well as ripening-related genes, including E4, E8, PG, Pti4, and
LOXB [63]. Similarly, the histone deacetylase SlHDT1 negatively regulates ripening by
repressing carotenoid accumulation and ethylene biosynthesis. SlHDT1-RNAi lines showed
early ripening, providing evidence of increased histone H3 acetylation levels correlating
with fruit development [59]. SlERF.F12, a member of the ERF.F (Ethylene response factor.
F) subfamily, is involved in delaying ripening by recruiting co-repressor TPL2 (TOPLESS
2) and HDA1/HDA3 (histone deacetylases 1/3) to their associated genes. As a result,
H3K9Ac and H3K27Ac levels at promoter regions are decreased, leading to repressed
transcription [60].
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The transition from flower to fruit, also termed fruit set, is a critical shift in determining
crop yield [79]. Differentially expressed genes (DEGs) were associated with the presence of
H3K9ac or H3K4me3 markers during the flower-to-fruit transition. Enrichment in H3K9ac
and/or H3K4me3, but low association with H3K27me3, was spotted in the same gene
sets [60]. Besides the fruit set process, histone methylation also involves tomato flavor
ester biosynthesis. NOR (NON RIPENING) positively regulates tomato fruit ripening, and
SlAAT1 (Sl Alcohol AcylTransferases1) dominates ester synthesis. A recent study showed
that H3K4me3 in the NOR and SlAAT1 loci increased, while H3K27me3 marks in these loci
were removed as the fruits ripened. NOR activates SlAAT1 transcription and contributes to
volatile ester production in tomato. The binding site of NOR on the SlAAT1 promoter is
more accessible during fruit ripening [61]

4.2. Abiotic Stress

Tomato histone H3 lysine methyltransferases SDG (Set Domain Group) 33 and SDG34
were also studied to decipher the involvement of histone methylation in relation to drought
response. Single mutants of sdg33 and sdg34 showed enhanced tolerance to drought, while
double mutant sdg33sdg34 showed even higher resistance, indicating an additive effect.
Phenotypic responses were correlated with changes of H3K4me3 and H3K36me3 deposi-
tion at the target genes, with sdg33sdg34 mutants exhibiting reduced methylation levels
compared to the wild type [62]. Apart from its role in fruit ripening, NF-Y transcriptional
regulators were also identified to respond to osmotic stress [80], primarily by mediating
H3K27me3 levels at the target genes [75].

In a recent work, SlHDA3 was reported to be involved in stress responses. SlHDA3
RNAi lines showed shorter hypocotyl and root length, earlier yellowing and rolling leaves,
and faster degradation of chlorophyll compared to wild type plants when exposed to
drought, indicating that SlHDA3 might work as a positive regulator of abiotic stress
tolerance [63]. Based on similar mechanisms, SlHDA5-RNAi lines exhibited less tolerance
to salt and drought stresses, with chlorophyll in leaves degrading earlier and wilting
faster in stressed conditions [64]. Likewise, SlHDA1-RNAi lines also showed decreased
expression of genes that encode defensive proteins and demonstrated reduced capacity to
withstand drought and salinity pressures [61]. These findings emphasize the critical role of
HDACs in safeguarding tomato plants against adverse effects due to water scarcity and
high salinity.

In addition to salt and drought stress, histone methylation also modulates tomato
resistance to heavy metal, such as Cd (cadmium). Overexpression of the histone demethy-
lase SlJMJ524 exhibited enhanced tolerance to cadmium at the adult stage, showing lower
Cd uptake and accumulation compared to WT plants [81]. Conversely, the overexpres-
sion of SlJMJ4 promotes ABA-induced leaf senescence by decreasing H3K27me3 levels
of ABA synthesis-related genes SlNAP2 (Sl NAC domain-containing Protein 2), SlORE1 (Sl
ORESARA1), and SlNCED3 (Sl Nine-Cis Epoxycarotenoid Dioxygenase 3), as well as activating
their expression. SlJMJ4 increased plants sensitivity to ABA by binding to key genes related
to ABA synthesis and signaling [66]. These findings not only support the notion that
H3K27me3 negatively regulates stress associated gene expression, but also reveal a variety
of processes that are affected by histone modifications. Chromatin markers can also be
manipulated to improve tomato tolerance to low temperatures (0–12°C). Indeed, plant
regulator coronatine was applied to enhance tomato’s chilling resistance by promoting
H3K4me3 modifications and upregulating the expression of chilling responsive genes [82].

Overall, more histone modification-related components should be the target of molec-
ular designs for tomato breeding.

5. Epigenetic Engineering in Crop Improvement

Epigenetic engineering is the directed editing of epigenetic marks at specific loci. ZFN
(zinc finger nucleases) and TALENs (transcription activator-like effector nucleases) were
first applied as epi-genome engineering tools, followed by the identification of CRISPR
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(Clustered Regularly Interspaced Short Palindromic Repeats) and its associated Cas (en-
donuclease) as one more advanced and powerful tool [83]. The utilization of deactivated
Cas9 (dCas9) is prevalent due to its capacity to bind to the targeted area without including
cleavage. This is achieved by using an enzymatically inactive version of the Cas9 protein.
dCas9 can be fused with epigenetic modifiers and therefore initiate epigenetic regulation
that causes transgenerational inherited phenotypic changes.

Epi-Breeding and CRISPR-Cas9 Applications

The term epi-breeding refers to the application of epigenetic variation in crop ame-
lioration [84,85]. Heritable variants of epigenetic markers are termed “epialleles”, and
they can be adopted in epi-breeding and in making contributions to crop development
as they influence agronomic traits [86–88]. The identification and application of epialleles
with phenotypic variation has the potential to further benefit crop production, consid-
ering that genetic diversity has been overexploited by intensive breeding in long-term
agricultural practices. DNA methylation, in particular, is partially heritable, indicating
that agronomically important traits, such as seed dormancy, flowering time, and yield,
can be impacted by modifications in DNA methylation status [89–91]. A more detailed
description of the approaches and the potential of epigenetic variation for breeding can
be referenced in [92,93]. Epialleles appear both naturally and artificially. In rice, several
epialleles were identified which displayed altered agronomic traits. For example, epi-d1
is an epiallele caused by the epigenetic silencing of DWARF1 [94], showing a metastable
dwarf phenotype. Upregulation of OsSPL14, (Squamosa Promoter binding protein-Like 14),
which is usually affected by microRNA excision, led to larger panicle branching and a
higher yield in rice [95].

In tomato, it was demonstrated that naturally produced epialleles contained an altered
accumulation of vitamin E in the fruits [96]. Specifically, the cnr (colorless non-ripening)
mutation caused hypermethylation in the promoter of the SBP-box transcription factor and
led to a delay in fruit ripening [97]. With the continuous discovery of naturally occurred
epialleles and the generation of artificial ones, it will become more applicable to adopt
epi-breeding in agriculture practices in the near future.

In this context, CRISPR/Cas9 has revolutionized genome editing and made epigenetic
modification faster, easier, and cheaper [98]. CRISPR-Cas9 offers a site-specific modifica-
tion of epigenetic markers, which may result in a significant improvement in plant fruit
quality and resistance to various stresses, further confirming the potential within epi-
breeding approaches [88,99]. For example, histone-modifying enzymes regulating stress
tolerance were engineered to improve salt and/or drought resistance in transgenic plants.
CRISPR/Cas9 was conducted on rice to generate the HDA710 knockout mutant, which
displayed stronger resistance to salt and ABA [50]. The same approach was also used to
investigate the function of OsHDA710 in callus formation of the mature rice embryo, which
revealed that Oshda710 showed impaired callus formation. By assessing CRISPR/Cas9, an
epiallele of JMJ705 was generated to confirm its role in regulating starvation stress. Simi-
larly, Ossnrk1a1 mutants were also generated to study their association with JMJ705 [100],
confirming CRISPR/Cas9 as highly effective in generating mutants for functional genetics.
CRISPR/Cas9 approaches were also applied in studies related to agronomic traits, such
as plant height. To investigate the role of SE1 (Silencing element of EUI1) interacting
complex in processes involving histone deacetylation and H3K27me3 methylation of EUI1
(ELONGATED UPPERMOST INTERNODE1) chromatin, a mutant for OsVAL2, one of the
components of the SE1-associated complex, was generated using CRISPR/Cas9. All the
CRISPR Osval2 mutants showed increased expression of EUI1 and displayed reduced plant
height [101], proving that SE1-interacting complex is required for its repression, leading to
elongated panicles, which benefit seed production.

CRISPR/Cas9 has also been applied to tomato fruit ripening studies. A tomato double
mutant of the histone variant Slh2a.z was generated by gene-editing. Slh2a.z fruits exhibited
reduced fresh weight and increased carotenoid content. Correlated with the loss of the
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H2A.Z variant, the expression of genes involved in carotenoid biosynthesis was significantly
upregulated. This study provided evidence that epigenetic regulation via histone variants
can also affect tomato ripening [102]. In addition, the NONRIPENING (NOR) deficient
mutant was generated by CRISPR/Cas9, which showed reduced expression of SlAAT1 and
lower volatile ester production in ripening tomato fruits though its governing of SlAAT1
histone methylation [73].

In summary, CRISPR/Cas9 represents an emerging gene-editing tool that also allows
the targeting of the specific loci of epigenetic marks. Currently, the CRISPR-Cas9 approach
shows equivalent efficiency compared to other genome editing methods, but it is an
easier and less expensive tool, and it can target several regions (multiplex) within the same
organism. CRISPR-Cas9 has already been extensively used in genome editing and is quickly
becoming the most common technique to modify histone modifications in plants [103].
Several crop genomes, including maize, rice, cotton, potato, tomato, soybean, and sweet
orange, have already been efficiently edited using CRISPR-Cas9 [99,103–105]. Moreover,
epigenome editing mediated by CRISPR-Cas9 results in a gradual and proportional effect
on the binding of epigenetic marks, and it has less dramatic off-target activity in comparison
with genome editing methods. All these strategies work towards the same and the final
goal of obtaining crops with higher yields or improved fruit quality in order to meet
human demands.

6. Conclusions and Future Perspectives

In this review, we looked at the epigenetic mechanisms, with a focus on histone
modifications contributing to rice and tomato growth and development, highlighting new
approaches to improve the crop yield and fruit quality of the most dependable staple crops
and vegetables in the world.

Here, we discussed how histone methylation and acetylation were involved in in-
creasing plant flowering efficiency, fruit quality, and resistance to stress. Other types of
histone modifications, such as phosphorylation and ubiquitination, which could potentially
offer more solutions towards crop improvement, are still being investigated. So far, the
generation of epialleles through epigenome editing technology is primarily intended for
investigating the function of individual genes in specific regulatory mechanisms, rather
than in developing crops for breeding purposes.

The hesitance towards the use of epigenetically modified crops may be attributed
to concerns regarding their safety, as well as lack of awareness. However, it should be
noted that breeding materials generated through this approach have the potential to signifi-
cantly enhance food security, provided that the underlying mechanisms are thoroughly
understood, and appropriate safety measures are implemented.

Epi-breeding can provide alternative and valuable methods for crop improvement,
especially under the context that genetic variations have been overexploited by long-
standing domestication and excessive breeding.

One of the limitations of epi-breeding resides in the lack of transgenerational inheri-
tance of edited or modified histone markers, posing a challenge to its practical application.
However, such a disadvantage could provide an opportunity to seek solutions to counteract
the spreading of so called “genetic” contamination by ensuring that seeds from the same
generation are employed.

With an increasing number of studies revealing the epigenetic mechanisms to improve
crops and the function of the epialleles generated, epi-breeding may become a more
practical way to contribute to food security under the trending climate change.
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