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Abstract. Isogeometric analysis (IGA) has been introduced as an alternative to finite elements to simplify
the integration of computer-aided design and the discretization of variational problems of continuum mechanics. In
contrast to finite elements, the basis functions of isogeometric analysis, B–splines and nonuniform rational basis splines
(NURBS), are typically not nodal which makes the interface between subdomains fat with several layers of knots and
which creates new issues in the design and analysis of iterative solvers based on domain decomposition methods.
The resulting systems of algebraic equations also tend to be much more ill-conditioned than those derived from finite
elements. The deluxe variant of the BDDC (balancing domain decomposition by constraints) algorithms have proven
successful and in this study, they are applied to two-dimensional problems formulated in H(curl). Numerical results
show very good performance even for high degrees of the underlying B–splines and fast convergence has been found for
p ≤ 7 using no more than 2(p2 +p−1) global (primal) variables per subdomain where p is the degree of the B–splines.
All our results are focused on the most difficult case with the maximum degree of continuity of the B–splines.
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1. Introduction. Isogeometric analysis has been developed as an alternative to finite elements
for a number of applications; see, e.g., [11, 2]. In this paper, we will focus on problems formulated
in H(curl) in two space dimension, (2D); see [7, 8], as well as [2]. In the current study, we will
use results for lower order finite element problems given in [19] and we could also use a result from
[24], which provides an edge lemma which is crucial in all work of this kind. We also note an early
paper, [23], on FETI algorithms for two-dimensional problems formulated in H(curl), and that the
theory for FETI and BDDC algorithms is very closely related. BDDC algorithms for finite elements
discretizations of H(curl) were constructed and analyzed in [14, 15, 10, 9, 29]; see also [13, 17] for
earlier work on H(curl) for iterative substructuring algorithms and [1, 16, 18] for multilevel and
multigrid algorithms.

Here we extend the BDDC algorithms to isogeometric discretizations of 2D H(curl). The
earliest paper on BDDC algorithms for isogeometric analysis appears to be [3]. Our current study is
a continuation of work on domain decomposition algorithms of the BDDC deluxe family of iterative
substructuring algorithms for isogeometric analysis approximations of scalar elliptic problems in
two dimensions, [4, 5], compressible linear elasticity, [20], and, most recently, almost incompressible
elasticity, [27], approximated by a mixed isogeometric analysis algorithm, as developed in [6], using
continuous pressure fields. The success with these earlier studies has inspired us to undertake our
current work.

The linear systems of equations that arise in isogeometric analysis often are extremely ill-
conditioned, in particular for splines and NURBS of high order, and we have found that use of
deluxe variants outperforms the earlier BDDC variants; see e.g. [4]. Algorithms of this family also

∗Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012, USA.
widlund@cims.nyu.edu.
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lend themselves straightforwardly to the use of adaptive algorithms for designing the global, primal,
part of these preconditioners; see e.g. [5]. Thus, not only have we developed algorithms that work
very well even for isogeometric elements based on high order B-splines and NURBS but we have also
used adaptive algorithms for finding the minimal number of primal constraints which guarantees
rapid convergence of our preconditioned conjugate gradient (PCG) algorithms. For a recent survey
paper on BDDC algorithms, see [26].

The isogeometric analysis methods considered in this paper are based on B-splines and NURBS,
see, e.g., [5, 4]. In the simplest cases of lowest order and with minimal interelement continuity,
these methods reduce to Nédélec elements of the first kind on a mesh which is the image of a very
regular square mesh; a similar case has been analyzed in great detail for H(div) problems in three
dimensions, approximated by the lowest order Raviart–Thomas elements, in [19]. We note that for
two dimensions a problem in H(curl) using Nédélec elements can be transformed into a problem in
H(div) using Raviart–Thomas elements by a simple rotation of the coordinate system. In contrast,
H(curl)−problems in three dimensions pose very significant new challenges compared to those for
H(div).

Our results immediately extend to 2D H(div) problems and it might be possible to extend them
to 3D H(div) guided by the results in [19]. However, we note that while that paper clearly spells
out that the theory for BDDC deluxe algorithms, in the finite element case, depends entirely on
establishing a face lemma, additional tools associated with the subdomain edges and vertices would
be required in a study of isogeometric analysis.

The principal complications in the design and analysis of iterative methods for isogeometric
analysis stem from the fact that the B–spline basis functions generally lack a nodal basis and as a
consequence the interface between the subdomains, into which the domain of the original problem
is being subdivided, is fat, i.e., consists of several layers of knots; see, e.g., Fig. 3.1 and Fig. 3.2 or
[20, Fig. 1]. This fat interface will be divided into fat edges and fat vertices in Subsection 3.2.

The remainder of this paper is organized as follows: Our continuos model problem is introduced
in Section 2. The isogeometric analysis algorithms for our 2D H(curl)−problem is introduced in
Section 3 where we also introduce a lowest order Nédélec problem, which is important in our devel-
opment. All the problems encountered will have fat interfaces. Section 4 introduces our adaptive
BDDC deluxe algorithms. In Section 5, we formulate a conjecture which highlights that the number
of global, primal variables associated with a fat edge, required to assure scalability and fast con-
vergence of our preconditioned conjugate gradient algorithms, will not exceed the number of thin
edges - layers of knots - of the fat edge. Finally, in Section 6, we report on a selection of numerical
experiments, which supports our conjecture.

2. The continuous model problem. The bounded Lipschitz domain of our problem, Ω ⊂ R2,
is partitioned into non-overlapping subdomains Ωi. Each of these subdomains is the image of a square
reference subdomain Ω̂i under a smooth mapping F , with a smooth inverse, constructed using the
same space of NURBS used to approximate the solution. The bilinear form which provides the
variational formulation of our problem is given by

aΩ(u,v) :=
∑
i

aΩi
(u,v) :=

∑
i

∫
Ωi

ai curl(u) curl(v) +
∑
i

∫
Ωi

bi u · v, (2.1)

where the terms in the sums represent the contributions from the subdomains Ωi; we will refer to
aΩi

(u,u) as the energy contributed by Ωi. We will assume, for simplicity, that the coefficients ai
and bi are strictly positive constants in each subdomain; they could also be replaced by symmetric,
positive definite matrices.

The variational form of our continuous model problem reads: given f ∈ L2(Ω) := (L2(Ω))2,
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find u ∈ H0(curl; Ω) such that

aΩ(u,v) =

∫
Ω

f · v, ∀v ∈ H0(curl; Ω), (2.2)

where H0(curl; Ω) consists of vector fields in L2(Ω) with curl(v)inL2(Ω) and with a vanishing
tangential trace on ∂Ω. More general boundary conditions with vanishing tangential trace, on only
part of ∂Ω, could be considered as well.

3. The discrete problem. Following [7], we now introduce our discrete problem as well as
a related problem based on the lowest order Nédélec elements of the first kind which will be used
in developing our understanding; we will need to consider Nedédélec element problems with fat
interfaces.

3.1. Isogeometric discretization. To simplify the writing, we will assume that Ω consists
of only one patch and that the boundary condition is given by a zero tangential component along
the entire boundary of the patch; our results are equally valid for multi-patch cases. The introduc-
tion of the discrete space of [7] begins by introducing the B–splines, Bpi (x) and Bqj (y), which are

familiar from work on problems formulated in H1, and the tensor-product B–spline basis functions
Bpqij (x, y) := Bpi (x)Bqj (y) on the reference domain Ω̂. Two spaces spanned by these basis functions
are denoted, following [7], by

Spα1
:= span{Bpi } and Spqα1α2

:= Spα1
⊗ Sqα2

= span{Bpi B
q
j }.

The components of the vectors α1 and α2 encode the number of continuous derivatives at the knots of
the partitioning of the intervals of the B–splines. As in previous studies, since the mapping F , which
defines Ω as an image of the reference domain Ω̂ and its inverse are very regular, our preconditioners
designed using B–splines can easily be extended to cases where the B–splines are replaced by NURBS.
Therefore, we can focus our discussion on problems associated with the reference domain Ω̂, which
we assume to be a unit square.

As shown in [7], using a simple dimensional argument, the gradient operator maps Spqα1α2
onto

the curl-free subspace of

(Sp−1
α1−1 ⊗ Sqα2

,Spα1
⊗ Sq−1

α2−1).

We will use all elements of this space as our approximations of H(curl; Ω). Here αi − 1, i = 1, 2 is
obtained from αi by subtracting 1 from each of its components except if a component equals −1;
such a component will not be changed. Applying the curl operator to the elements in that space
gives us elements in the space Sp−1

α1−1 ⊗ S
p−1
α2−1. Thus, if in a reference subdomain Ω̂i,

u := (

m4∑
i=m1+1

n4∑
j=n1

γ
(1)
ij B

p−1
i (x)Bqj (y),

m4∑
i=m1

n4∑
j=n1+1

γ
(2)
ij B

p
i (x)Bq−1

j (y)), (3.1)

we find, assuming that we have a uniform mesh, that for any subdomain in the interior of the patch,

curl(u) =
p

h

m4∑
i=m1+1

n4∑
j=n1+1

(−γ(1)
ij + γ

(1)
i,j−1 + γ

(2)
ij − γ

(2)
i−1,j)B

p−1
i (x)Bq−1

j (y), (3.2)

by using [3, (2.7)], a formula for the derivative of Bpi (x) :

d

dx
Bpi (x) =

p

h
(Bp−1

i (x)−Bp−1
i+1 (x)).
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When considering boundary value problems which define the minimal energy - the discrete
harmonic - extensions of values given on the interface, that is central to developing our method, the
tangential component of u, as in (3.1), will enter. We note that for any domain Ω, defined by a

non-trivial map F : Ω̂→ Ω, both the horizontal and vertical components will play a role given that
the relevant vector-valued space, which is central in developing our method, is defined by the space
Vh given by [7, (19)] which involves the Jacobian JF of F :

Vh := {u : u ◦ F := (JF )−T û, û ∈ (Sp−1
α1−1 ⊗ Sqα2

,Spα1
⊗ Sq−1

α2−1)}.

This Jacobian will typically not be diagonal. It is important to note that the mapping defining
this space is curl-preserving and, as a consequence, the tangential component of any element will be
preserved.

By imposing the boundary conditions, we then have the discrete spaces

V̂h,0 := (Sp−1,q
α1−1,α2

× Sp,q−1
α1,α2−1) ∩H0(curl; Ω̂),

Vh,0 := Vh ∩H0(curl; Ω) := {u : u ◦ F = J−TF û, û ∈ V̂h,0},

and the discrete problem reads: given f ∈ L2(Ω), find uh ∈ Vh,0 such that

a(uh,vh) =

∫
Ω

f · vh, ∀vh ∈ Vh,0.

3.2. The fat interface. Due to their high regularity, B-spline basis functions have a large
support. As a consequence, more than one layer of index pairs (i, j) will be associated with basis
functions which do not vanish on all of the interface of any subdomain. As in our previous papers
[3, 4], we will refer to this index set as the fat interface. The thickness of the fat interface will
depend on p and q, the degrees of the spline spaces, and on the degree of continuity of the splines.
We will now assume that q = p, i.e., we have the same degree for the two coordinates x and y
and that the number of continuous derivatives, k, is the same and maximal, i.e., k = p − 1, at all
the interior knots of Ω̂. With no interior multiple knots, as we have just assumed, the support of
Bpi is the union of p + 1 closed intervals between consecutive knots numbered i, . . . , i + p + 1. The
lower part of the fat interface parallel to the x−axis, is determined by the values of (i, j) of the
tensor product splines with supports which are intersected, in their interiors, by the lower part of
the boundary of the subdomain Ω̂i. This defines equivalence classes of index pairs (i, j) associated
with the fat interface and the interior of the subdomain. The fat interface is further divided into
equivalence classes associated with the edges and the vertices of the subdomain, respectively.

A fat vertex set consists of the index pairs with basis functions that do not vanish at a particular
subdomain vertex shared by four subdomains. A fat edge set consists of the index pairs with basis
functions that vanish at all subdomain vertices but have supports which intersect, in their interiors,
one of the subdomain edges. The remaining pairs of index pairs for a subdomain belong to the
interior set of the subdomain and their associated variables can therefore be eliminated locally. As
for the index pairs associated with the boundary of the patch, their basis functions have supports
which intersect either one subdomain or two. For the first case these index pairs are assigned to the
interior set while in the second case they are associated with a fat edge.

We can examine formula (3.1) for p = 3 and k = 2 to determine the sets of knots belonging
to a fat vertex and a horizontal fat edge. Fig. 3.1 depicts the fat vertex of the lower left vertex of
Ω̂i and lists its pairs of indices for the case where (i?, j?) marks the index pair of that subdomain
vertex. The figure also introduces the parameters, borrowed from (3.1), for the Nédélec space which
is introduced later in this section. We note that the squares of this figure are subsets of four different
subdomains, potentially, with different material coefficients.
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Turning to the lower, horizontal, fat edge, we find that it consists of three relevant layers of
basis functions for the first component of u and two for the second. We call each such layer a thin
edge. See Figure 3.2, which also provides the set of index pairs of this fat edge. The elements of the
top half of this fat edge belong to Ω̂i and the rest to a subdomain, Ω̂j , just below.

Once these sets of pairs of indices have been determined, we can easily determine subspaces
associated with any fat vertex, fat edge, and the interior of any subdomain by simply making all
coefficients zero except for those of the relevant pairs of indices.

We remark thatthe discussion based on Figures 3.1 and 3.2 directly extend to any odd degree
p, for uniform meshes, and away from the boundary of the patch. The same concepts can easily be
extended to even degree and more general meshes.

For any choice of p, we will have interfaces with 2p−1 layers of thin edges for k = p−1. We can
also develop algorithms for smaller values of k for which the number of layers will be smaller and,
in our experience, will provide faster convergence. In fact, given our experience with other problem
classes, we expect that convergence rates, using smaller primal spaces than for k = p − 1, will be
just as satisfactory for cases when k < p− 1.

Using formula (3.2) and temporarily ignoring the material coefficients, we find that ‖curl(u)‖2L2

will involve elements

(
p2

h2
)

∫
Bp−1
i (x)Bp−1

j (y)Bp−1
k (x)Bp−1

` (y)dxdy,

of a matrix with up to 25 non–zero elements per row for the case of p = 3. Given the fact that the
B-splines are linearly independent, the resulting quadratic form can be bounded from above and
below by positive constants times

(
p2

h2
)
∑
i

∑
j

(−γ(1)
ij + γ

(1)
i,j−1 + γ

(2)
ij − γ

(2)
i−1,j)

2. (3.3)

These constants are independent of h, since they result from a local argument which depends on a
fixed number of elements, but will depend on the parameter p.

The quadratic form (3.3), with p = 1, also appears if we compute the contribution to the square
of the L2−norm of the curl of an element of NDh

1 , the lowest order Nédélec finite element space of

the first kind, defined using the γ
(1)
ij and γ

(2)
ij as parameters. When doing so, we should orient the

tangent vectors of the four sides of any element with the element to the left. Starting with the lowest

edge of an element, we assign the parameter γ
(1)
i,j−1 to that edge and moving counter-clock-wise the

values γ
(2)
i,j ,−γ

(1)
i,j , and −γ(2)

i−1,j to the other edges; see Figures 3.1 and 3.2. The computation is then
completed after introducing the simple basis functions of the Nédélec space.

We can also use the same type of arguments, which are essentially about mass matrices and
linear independence of basis functions, to bound the quadratic form originating from the second
term of the bilinear form of the given problem from below and above in terms of the quadratic form
generated for the lowest order Nédélec elements. A similar result is established in [3, Sect. 5] using
different arguments.

4. Adaptive BDDC deluxe: the choice of primal constraints using generalized eigen-
value problems. The BDDC algorithms are based on partitioning the space of interface functions
into a primal subspace of functions, which have continuous tangential components all across the
interface and belongs to the fully assembled space, and a much larger dual subspace which allows
for multiple values of the parameters across the interface. The primal degrees of freedom (dofs) are
assigned separately for each equivalence class of the interface. In our case, the equivalence classes
are associated with the fat edges and fat vertices as defined in Section 3 and illustrated in Fig. 3.1
and Fig. 3.2. While the dual variables and those of the interior of the subdomains are associated
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Lower left fat vertex of subdomain Ω̂i associated with the index pair (i?, j?)
first component of u second component of u
(i? − 2, j? − 1), (i? − 2, j? − 2), (i? − 2, j? − 3), (i? − 3, j? − 1), (i? − 3, j? − 2),
(i? − 1, j? − 1), (i? − 1, j? − 2), (i? − 1, j? − 3), (i? − 2, j? − 1), (i? − 2, j? − 2),

(i? − 1, j? − 1), (i? − 1, j? − 2)

Lower right fat vertex of subdomain Ω̂i associated with the index pair (i?+N, j?)
first component of u second component of u

(i?+N−2, j?− 1), (i?+N−2, j?− 2), (i?+N−2, j?− 3), (i?+N−3, j?− 1), (i?+N−3, j?− 2),
(i?+N−1, j?− 1), (i?+N−1, j?− 2), (i?+N−1, j?− 3) (i?+N−2, j?− 1), (i?+N−2, j?− 2),

(i?+N−1, j?− 1), (i?+N−1, j?− 2)

Fig. 3.1. Nédélec elements of lowest order corresponding to the case p = 3, k = 2, with arrows indicating the
direction of the tangent. Lower left fat vertex, with the 12 degrees of freedom associated with the 12 pairs of indices
given in the table. The center of this figure is at a vertex of Ω̂i represented by (i?, j?). The same information is also
provided for the lower right fat vertex of the subdomain centered at (i? + N, j?).

with local subdomain problems, which can be handled by individual processors of a parallel com-
puting system, the primal variables are part of a global problem. Therefore it is very important to
use primal spaces that are as small as possible while obtaining robust and fast convergence of our
iterations. The best way of assuring this is to select the primal variables using adaptive algorithms;
see [5] for an early study of such BDDC algorithms and [19] and [21] for further details.

We now derive suitable primal constraints by using generalized eigenvalue problems for the dif-
ferent equivalence classes associated with the fat interface. In our two dimensional case, a subdomain
edge is shared by two subdomains, whereas a subdomain vertex is shared by four.

4.1. Fat edge primal subspaces. Let us first focus on the case of an edge of the subdomain
Ωi and denote by E the set of dofs of the associated fat edge. Let Γi be the set of all dofs of the
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Lower horizontal fat edge of subdomain Ω̂i
first component of u second component of u
(i?, j? − 1), (i?, j? − 2), (i?, j? − 3), (i?, j? − 1), (i?, j? − 2),
(i? + 1, j? − 1), (i? + 1, j? − 2), (i? + 1, j? − 3), (i? + 1, j? − 1), (i? + 1, j? − 2),
(i? + 2, j? − 1), (i? + 2, j? − 2), (i? + 2, j? − 3), (i? + 2, j? − 1), (i? + 2, j? − 2),
. . . . . .

Fig. 3.2. Nédélec elements of lowest order corresponding to the case p = 3, k = 2, with arrows indicating the
direction of the tangent. Lower fat edge, with the degrees of freedom associated with the pairs of indices given in the
table. The left-most, lower vertex of Ω̂i is represented by the index pair (i?, j?).

fat interface of Ωi and let E′ := Γi \ E. Then, the subdomain Schur complement S(i), obtained by
eliminating the interior variables of the subdomain, can be written as

S(i) =

(
S

(i)
E′E′ S

(i)
E′E

S
(i)T
E′E S

(i)
EE

)
,

and where a Schur complement of S(i) is given by

S̃
(i)
EE := S

(i)
EE − S

(i)T
E′ES

(i)−1
E′E′ S

(i)
E′E ,

which represents the minimal energy extension of the values on the fat edge E onto the rest of Γi.
Assuming that the fat edge E is shared by the subdomains Ωi and Ωj , consider now the generalized
eigenvalue problem

S̃
(i)
EE : S̃

(j)
EEφ = λS

(i)
EE : S

(j)
EEφ, (4.1)

recalling that, for any two positive definite matrices A and B, their parallel sum is defined by

A : B := (A−1 +B−1)−1.
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After selecting the eigenvectors {v1, v2, . . . , vNΠE
} of the eigenproblem (4.1) that are associated

with the NΠE smallest eigenvalues, we perform a BDDC change of basis introducing the selected
eigenvectors as elements of the primal space. This change of basis uses all the eigenvectors of
the generalized eigenvalue problems; see, e.g., [5, eq. (3.16)] for the matrix form of the BDDC
preconditioner.

4.2. Fat vertex primal subspaces. Consider now a vertex of the subdomain Ωi and denote
by V the set of dofs of the associated fat vertex and let V ′ := Γi \ V . Then the subdomain Schur
complement S(i) can be written as

S(i) =

(
S

(i)
V ′V ′ S

(i)
V ′V

S
(i)T
V ′V S

(i)
V V

)
,

and

S̃
(i)
V V := S

(i)
V V − S

(i)T
V ′V S

(i)−1
V ′V ′ S

(i)
V ′V

represents the minimal energy extension of the values of the fat vertex V onto the rest of Γi.
Assuming that the fat vertex V is shared by the four subdomains Ωi, Ωj , Ωk, and Ω`, we consider
the generalized eigenvalue problem

S̃
(i)
V V : S̃

(j)
V V : S̃

(k)
V V : S̃

(`)
V V φ = λS

(i)
V V : S

(j)
V V : S

(k)
V V : S

(`)
V V φ, (4.2)

where

A : B : C : D := (A−1 +B−1 + C−1 +D−1)−1.

After selecting the eigenvectors {v1, v2, . . . , vNΠV
} of the eigenproblem (4.2) that are associated

with the NΠV smallest eigenvalues, we perform a BDDC change of basis to introduce the selected
eigenvectors as elements of the primal space.

Alternative generalized eigenvalue problems have been considered for equivalence classes with
more than two subdomains; see [5] for a comparative study of several alternatives for standard elliptic
problems. In this study, we have selected the variant called Vpar in [5], based on using parallel sums
on both sides of the vertex eigenvalue problems (4.2), which has proven most successful in that study.
We have also obtained results with the variant Vmix in [5], based on replacing ths parallel sum with
a standard sum in the left-hand side of the generalized eigenvalue problems (4.2) and found no real
difference.

The condition number of our algorithm can be estimated using the smallest eigenvalues not
chosen when selecting elements of the primal space for the fat edges and the fat vertices; see, e.g.,
[5].

5. The fat interface and its primal variables. In attempting to develop a further under-
standing, we cannot rely on eigenvectors of generalized eigenvalue problems but must construct a
primal space. For any primal subspace the complimentary subspace is known as the dual subspace.

The restriction of the dual component of w to a fat edge E will be denoted by w
(i)
E,∆. If all the fat

vertex dofs are chosen to be primal, all that is then required to prove an estimate of the condition
number of our BDDC deluxe algorithm would be a bound of the form

w
(i)T
E,∆S

(i)
EEw

(i)
E,∆ ≤ C(p)(1 + log(H/h))2w

(i)T
E S̃

(i)
EEw

(i)
E . (5.1)

We note that this is an estimate for only one subdomain at a time, a feature of BDDC deluxe, which
can greatly simplifies the analysis; see [4, Sect. 4] or [26, Sect. 4].
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In what follows, we also denote by a thin edge, the mesh line associated with the basis functions
of Nedéléc space introduced in Subsection 3.2.

Given the close connection between 2D problems in H(curl) and H(div), we will try to use
the two-dimensional counter-part of [19, Lemma 4.8]. That result, for a standard lowest order finite
element problem, would be the origin of a factor (1+log(H/h))2 in our final result with H/h standing
for maxiHi/hi where Hi is the diameter of the subdomain Ωi and hi its minimal mesh size of the
elements of Ωi. Translating this result for H(div) and Raviart-Thomas elements to H(curl), we find
that for the lowest order Nédélec elements and with an edge e of a thin interface, we have a thin
edge lemma:

w
(i)T
e,∆ S(i)

ee w
(i)
e,∆ ≤ C(1 + log(H/h))2w(i)T

e S̃(i)
ee w

(i)
e . (5.2)

Here w
(i)
e,∆ is the dual part of the restriction of w(i) to the thin edge e obtained by subtracting

the average of w(i) · t over e from the tangential component of w
(i)
e ; here t is the unit tangent

vector along e. We will also refer to this condition as a primal constraint. This edge lemma suggests
obvious primal elements for our algorithm making the average over each thin edge of the tangential
component of all elements of the dual space vanish. The proofs in [19] were developed for tetrahedral
meshes, but they can easily be revised to hold for the hexahedral case.

We have tried to find a similar, simple, and effective choice of primal constraints for the fat
vertices of the fat interface but without success. We then noticed, in our experiments, that for all p,
our adaptive algorithm assigns a relative large number of primal variables to each fat vertex when
we insist on scalability and small condition numbers for our BDDC deluxe algorithm; see Section 6.
Thus, while the overall number of dofs for a fat vertex equals 2(p − 1)p, in all our successful runs,
the number of fat vertex primal variables have exceeded (p− 1)p. We note that the number of dofs
of a fat edge typically is considerably much larger than that of a fat vertex and that our numerical
experiments, indicate that 2p− 1 primal variables per fat edge serve our purposes very well.

For a subdomain in the interior of a patch, each fat edge is shared by two subdomains and each
vertex by four. The primal variables are shared between all relevant subdomains. Taking these
facts into account, we find that the number of primal variables per subdomain is ( 1

24)(2p − 1) +
( 1

44), 2p(p − 1) = 2(p2 + p − 1), if we use one primal variable for each thin edge and make all fat
vertex variables primal.

We remark that in our work on adaptive BDDC deluxe algorithms for scalar elliptic problems
reported in [5], we have found that smaller primal spaces have been sufficient for rapid convergence
of our iterations.

The following lemma is central in the analysis of the finite element case.
Lemma 1. (trace theorem) For all w ∈ H(curl; Ω̃),

‖w · t‖2
H−1/2(∂Ω̃)

≤ C(H2‖curl(w)‖2
L2(Ω̃)

+ ‖w‖2
L2(Ω̃)

).

Here C is a constant independent of H, the diameter of Ω̃.
Proof. A standard result for H(div), which is a counterpart of this lemma, obtained by using

Green’s formula, is given in [28, Lemma 2.1]. Our proof is then obtained for H(curl) by a rotation
of the variables.

We find by using Lemma 1 that

b‖w · t‖2
H−1/2(∂Ω̃)

≤ max(1, bH2/a)(a‖curl(w)‖2
L2(Ω̃)

+ b‖w‖2
L2(Ω̃)

)

To advance our understanding, we could assume the (biH
2
i /ai) have modest values for all i; we will

refer to such problems as being curl-dominated. However, our experiments suggest good convergence
also for mass-dominated problems; see Tests 5 and 6 in the next section..
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a) b) c)

Fig. 6.1. a) Example of quarter-ring domain with 4 × 4 subdomains. b) Domain for central jumping coefficient
test with central region denoted in gray. c) Domain for checkerboard jumping coefficient test.

In the finite element case, the energy defined by the bilinear form aΩi
(·, ·) of (2.1), restricted to

the discrete harmonic functions, can be bounded by bi times the square of the H−1/2(∂Ωi)−norm of
the tangential component provided that the average over ∂Ωi of that component vanishes; see [19,
Corollary 4.3] for the corresponding result for H(div).

We are now ready to formulate a conjecture which is strongly supported by our numerical
experiments:

Conjecture 1. Consider a BDDC deluxe algorithm with all fat vertex variables primal and
choose the primal subspace associated with the fat edges such that

∫
e
w∆ · t = 0 for all thin edges

and all elements of the dual space. Then, the condition number of the BDDC deluxe algorithm is
bounded by

C(p)(1 + log(H/h))2.

Here C(p) is independent of the number of subdomains and the dimension of the subdomain problems,
i.e., of H/h.

In our numerical experiments, we essentially see no growth of C(p) with p. Therefore, a thin
edge lemma similar to (5.2), with a constant growing only logarithmically with p, might be within
reach for p > 1. The arguments using the lowest order Nedéléc elements could then potentially
be eliminated. We note that such a result is available for 2D elliptic problems formulated in H1

by combining [22, Lemmas 4.14 and 4.15]. That interesting paper focuses on cases without fat
interfaces, and also develops other tools for higher order isogeometric analysis which are required
for the analysis of FETI-DP and BDDC algorithms which are not of the deluxe family.

6. Numerical results. The model problem (2.2) is discretized on a 2D unit square and a
quarter-ring domain, see Fig. 6.1, using isogeometric NURBS spaces with a mesh size h, spline
degree p and, in all experiments reported, with a maximum regularity of k = p − 1. The domain
is decomposed into K non-overlapping subdomains of characteristic size H. The Schur complement
problems are solved by the PCG method with our isogeometric BDDC deluxe preconditioners, with
a zero initial guess and a stopping criterion of a 10−6 reduction of the Euclidean norm of the PCG
residual.

In the following tests, we study how the convergence rate of the BDDC preconditioner depends
on the discretization parameters h,K, p and on the number of primal constraints for each fat vertex
(NΠV ) and fat edge (NΠE). We recall that the number of dofs for each fat vertex is 2p(p− 1), while
the number of thin edges for each fat edge is 2p−1. Except for the experiments of the first subsection,
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p = 2, k = 1, NΠE = 2, NΠV = 4
h = 1/8 h = 1/16 h = 1/32 h = 1/64 h = 1/128

K cond nit cond nit cond nit cond nit cond nit

2× 2 4.80 7 5.21 7 5.69 7 6.16 7 6.63 7
4× 4 20.77 14 22.49 16 24.26 17 25.82 19
8× 8 74.24 26 80.77 29 87.48 29

16× 16 287.52 47 311.48 52
32× 32 1144.54 66

Table 6.1
Test 1, quasi-optimality and scalability test with non-adaptive coarse space. Unit square domain, p = 2, k = 1.

BDDC deluxe condition number cond and iteration counts nit as functions of the number of subdomains K and mesh
size h. NΠE :=number of primal dofs for each fat edge; NΠV :=number of primal dofs for each fat vertex.

the primal space is build using the adaptive strategy described in Section 4. The condition number,
cond, of the BDDC deluxe preconditioned operator is estimated using the parameters of the conjugate
gradient algorithm and Lanczos’ algorithm.

The numerical tests were performed with a MATLAB code based on the GeoPDEs library, see
[12, 25], run on a Linux workstation.

6.1. Test 1: quasi-optimality and scalability with non-adaptive coarse space. The 2D
H(curl) discrete model problem is solved on the unit square for fixed spline parameters p = 2, k = 1.
All fat vertex dofs are primal, i.e. NΠV = 4, while for each fat edge, we select only one primal
constraint on each of the two outmost thin edges, thus NΠE = 2. Table 6.1 shows the results
varying the number of subdomains K and the fine mesh size h. Moving along the diagonal of the
table, the subdomain to element mesh size ratio H/h is kept constant and we see that this primal
space choice is not scalable for an increasing number of subdomains K, since both iteration counts
and condition numbers grow with K. On the other hand, we have quasi-optimality with respect to
the ratio H/h, since moving along each row the ratio H/h increases and the growth now appears to
be logarithmic. This experiment shows that even for this quite simple case, two thin edge constraints
per fat edge will not always result in a scalable algorithm.

6.2. Test 2: quasi-optimality and scalability with an adaptive coarse space. In all
tests from now on, the 2D H(curl) discrete model problem is solved adopting the adaptive coarse
space strategy described in Section 4.

We first consider the unit square domain and make all fat vertex variables primal, thus using
adaptivity only for the fat edges (Tables 6.2 and 6.3). Table 6.2 shows the results varying the
number of subdomains K and the fine mesh size h for fixed p = 2, k = 1, with two choices of
primal constraints: (NΠE = 2, NΠV = 4) and (NΠE = 3, NΠV = 4). In the first case, (NΠE =
2, NΠV = 4), moving along the diagonal of the table, the subdomain to element mesh size ratio
H/h is kept constant and we see that this primal space choice is not scalable for an increasing
number of subdomains K, since both iteration counts and condition numbers grow rapidly with
K. However, we do observe quasi-optimality with respect to the ratio H/h, since moving along
each row the ratio H/h increases and the growth appears to be logarithmic. Conversely, in the
second case, (NΠE = 3, NΠV = 4), the solver seems both to be scalable in K, since iterations
and condition numbers remain bounded moving along the diagonals, and quasi-optimal in H/h. A
different behavior occurs in the case p = 3, k = 2, reported in Table 6.3. Here the choices of primal
constraints are the following: (NΠE = 2, NΠV = 12) and (NΠE = 3, NΠV = 12). In both cases,
moving along the diagonals of the table, the solver appears scalable in K, even though for large
values of the ratio H/h we are still far from the asymptotic behavior. On the other hand, moving
along each row, the condition number growth seems more than logarithmic. We note that the second
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p = 2, k = 1, NΠE = 2, NΠV = 4
h = 1/8 h = 1/16 h = 1/32 h = 1/64 h = 1/128

K cond nit cond nit cond nit cond nit cond nit

2× 2 1.16 5 1.30 5 1.48 6 1.69 6 1.92 6
4× 4 61.28 16 71.48 18 83.86 20 97.35 22
8× 8 398.30 60 470.20 67 556.20 73

16× 16 1705.37 94 2014.53 137
32× 32 6917.75 154

p = 2, k = 1, NΠE = 3, NΠV = 4
h = 1/8 h = 1/16 h = 1/32 h = 1/64 h = 1/128

K cond nit cond nit cond nit cond nit cond nit

2× 2 1.16 5 1.05 4 1.07 4 1.10 4 1.15 5
4× 4 1.61 8 2.21 9 2.89 10 3.69 11
8× 8 1.70 8 2.38 10 3.17 12

16× 16 1.73 8 2.44 10
32× 32 1.73 8

Table 6.2
Test 2, quasi-optimality and scalability test with adaptive coarse space. Unit square domain, p = 2, k = 1.

BDDC deluxe condition number cond and iteration counts nit as functions of the number of subdomains K and mesh
size h. NΠE :=number of primal dofs for each fat edge; NΠV :=number of primal dofs for each fat vertex.

p = 3, k = 2, NΠE = 2, NΠV = 12
h = 1/8 h = 1/16 h = 1/32 h = 1/64 h = 1/128 h = 1/256

K cond nit cond nit cond nit cond nit cond nit cond nit

2× 2 3.13 7 6.80 7 10.37 7 13.34 7 16.05 8 18.74 8
4× 4 5.27 14 20.07 18 50.09 21 93.92 25 129.70 27
8× 8 6.46 16 30.89 32 100.00 45 255.09 58

16× 16 6.99 16 39.44 36 151.54 64
32× 32 7.32 16 44.25 36

p = 3, k = 2, NΠE = 3, NΠV = 12
h = 1/8 h = 1/16 h = 1/32 h = 1/64 h = 1/128 h = 1/256

K cond nit cond nit cond nit cond nit cond nit cond nit

2× 2 1.14 5 1.23 5 1.39 6 1.57 6 1.78 6 2.02 6
4× 4 3.45 11 14.02 14 37.85 18 66.49 21 91.83 23
8× 8 4.49 15 23.12 31 89.45 46 251.19 63

16× 16 4.91 16 28.44 34 131.82 66
32× 32 5.06 16 31.32 34

Table 6.3
Test 2, quasi-optimality and scalability test with adaptive coarse space. Unit square domain, p = 3, k = 2.

BDDC deluxe condition number cond and iteration counts nit as functions of the number of subdomains K and mesh
size h. NΠE :=number of primal dofs for each fat edge; NΠV :=number of primal dofs for each fat vertex.

choice of NΠE results in a much better performance.

Then, we consider the quarter-ring domain and use adaptivity for both the fat vertices and
edges. Table 6.4 shows the results varying the number of subdomains K and the fine mesh size
h for fixed p = 2, k = 1, with two choices of primal constraints: (NΠE = 3, NΠV = 2) and
(NΠE = 3, NΠV = 3). In the first case, (NΠE = 3, NΠV = 2), the primal space choice is not scalable
for an increasing number of subdomains K, since both iteration counts and condition numbers grow
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p = 2, k = 1, NΠE = 3, NΠV = 2
h = 1/8 h = 1/16 h = 1/32 h = 1/64 h = 1/128

K cond nit cond nit cond nit cond nit cond nit

2× 2 1.06 5 1.02 4 1.02 4 142.26 5 520.22 5
4× 4 54.02 13 221.69 19 849.28 23 3427.22 30
8× 8 281.07 40 1161.11 64 4559.94 79

16× 16 1360.93 102 5540.98 141
32× 32 6168.46 190

p = 2, k = 1, NΠE = 3, NΠV = 3
h = 1/8 h = 1/16 h = 1/32 h = 1/64 h = 1/128

K cond nit cond nit cond nit cond nit cond nit

2× 2 1.06 4 1.02 4 1.02 4 1.05 4 1.08 4
4× 4 1.76 8 2.40 9 3.11 10 3.96 10
8× 8 2.10 10 3.01 12 3.99 14

16× 16 2.29 10 3.42 13
32× 32 2.40 10

Table 6.4
Test 2, quasi-optimality and scalability test with adaptive coarse space. Quarter ring domain, p = 2, k = 1.

BDDC deluxe condition number cond and iteration counts nit as functions of the number of subdomains K and mesh
size h. NΠE :=number of primal dofs for each fat edge; NΠV :=number of primal dofs for each fat vertex.

p = 3, k = 2, NΠE = 5, NΠV = 6
h = 1/8 h = 1/16 h = 1/32 h = 1/64 h = 1/128

K cond nit cond nit cond nit cond nit cond nit

2× 2 1.19 5 1.08 5 1.05 5 1.04 4 1.04 4
4× 4 17.68 11 24.75 13 28.19 16 29.98 18
8× 8 53.02 29 64.22 34 71.22 38

16× 16 130.04 54 136.79 57
32× 32 248.96 83

p = 3, k = 2, NΠE = 5, NΠV = 7
h = 1/8 h = 1/16 h = 1/32 h = 1/64 h = 1/128

K cond nit cond nit cond nit cond nit cond nit

2× 2 1.09 5 1.05 5 1.05 4 1.04 4 1.04 4
4× 4 2.80 10 2.90 10 2.97 11 3.34 12
8× 8 2.93 12 2.95 12 3.25 13

16× 16 2.97 12 3.00 12
32× 32 3.01 12

Table 6.5
Test 2, quasi-optimality and scalability test with adaptive coarse space. Quarter ring domain, p = 3, k = 2.

BDDC deluxe condition number cond and iteration counts nit as functions of the number of subdomains K and mesh
size h. NΠE :=number of primal dofs for each fat edge; NΠV :=number of primal dofs for each fat vertex.

with K. Nor do we have quasi-optimality with respect to the ratio H/h, since moving along each
row the ratio H/h increases and the growth appears to be quadratic. Conversely, in the second
case, (NΠE = 3, NΠV = 3), the solver seems both scalable in K, since iterations and condition
numbers remain bounded moving along the diagonals, and quasi-optimal in H/h, since the growth
of the condition number now appears to be logarithmic moving along the rows. Analogous findings
hold in case of spline parameters p = 3, k = 2, see Table 6.5, where the scalable and quasi-optimal
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p = 4, k = 3, NΠE = 7, NΠV = 17
h = 1/16 h = 1/32 h = 1/64 h = 1/128

K cond nit cond nit cond nit cond nit

2× 2 1.45 5 7.99 7 16.28 6 23.86 5
4× 4 28.91 16 36.93 18 40.02 20
8× 8 45.36 32 48.53 35

16× 16 54.59 39

p = 4, k = 3, NΠE = 7, NΠV = 18
h = 1/16 h = 1/32 h = 1/64 h = 1/128

K cond nit cond nit cond nit cond nit

2× 2 1.08 5 1.05 5 1.05 5 1.04 4
4× 4 2.89 10 2.52 11 3.07 11
8× 8 2.95 12 2.88 13

16× 16 3.30 13
Table 6.6

Test 2, quasi-optimality and scalability test with adaptive coarse space. Quarter-ring domain, p = 4, k = 3.
BDDC deluxe condition number cond and iteration counts nit as functions of the number of subdomains K and mesh
size h. NΠE :=number of primal dofs for each fat edge; NΠV :=number of primal dofs for each fat vertex.

Fig. 6.2. Test 2, quasi-optimality test with adaptive coarse space for spline parameter pairs (p = 2, k = 1),
(p = 3, k = 2), (p = 4, k = 3) on the quarter-ring domain. Plots of BDDC deluxe condition number cond (top
panels) and iteration counts nit (bottom panels) as functions of the ratio H/h. NΠE :=number of primal dofs for
each fat edge; NΠV :=number of primal dofs for each fat vertex.

primal choice is (NΠE = 5, NΠV = 7), and for p = 4, k = 3, see Table 6.6, where the scalable and
quasi-optimal primal choice is (NΠE = 7, NΠV = 18). We have also plotted the condition numbers
and iteration counts in Figures 6.2 and 6.3 for greater clarity. While we do not have a precise rule
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Fig. 6.3. Test 2, scalability test with adaptive coarse space for spline parameter pairs (p = 2, k = 1), (p =
3, k = 2), (p = 4, k = 3) on the quarter-ring domain. Plots of BDDC deluxe condition number cond (top panels)
and iteration counts nit (bottom panels) as functions of the number of subdomains K. NΠE :=number of primal dofs
for each fat edge; NΠV :=number of primal dofs for each fat vertex.

p = 2, k = 1, h = 1/32, K = 8× 8

unit square domain
NΠV = 1 NΠV = 2 NΠV = 3
cond nit cond nit cond nit

NΠE = 1 975.50 99 764.97 122 405.96 59
NΠE = 2 972.20 96 646.67 109 398.18 60
NΠE = 3 878.96 49 560.94 52 1.70 8

quarter-ring domain
NΠV = 1 NΠV = 2 NΠV = 3
cond nit cond nit cond nit

NΠE = 1 565.67 101 370.12 82 203.98 56
NΠE = 2 516.69 93 322.76 80 188.87 54
NΠE = 3 457.42 46 281.07 41 2.10 10

Table 6.7
Test 3, choice of adaptive primal constraints for each fat edge (NΠE) and fat vertex (NΠV ). BDDC deluxe

condition number cond and iteration counts nit as functions of NΠE and NΠV . Fixed mesh size h = 1/32, number
of subdomains K = 8 × 8, p = 2, k = 1.

for the minimal number of vertex and edge constraints required in order to guarantee scalability
and/or quasi-optimality of our BDDC preconditioner, we present in the next section a numerical
study of the optimal choices of vertex and edge primal constraints for specific test cases.
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p = 3, k = 2, h = 1/32, K = 4× 4

unit square domain
NΠV = 5 NΠV = 6 NΠV = 7
cond nit cond nit cond nit

NΠE = 3 103.58 29 90.00 24 24.34 21
NΠE = 4 82.79 23 26.41 20 19.20 20
NΠE = 5 4.81 11 4.81 11 2.90 12

quarter-ring domain
NΠV = 5 NΠV = 6 NΠV = 7
cond nit cond nit cond nit

NΠE = 3 240.97 33 124.78 24 39.48 18
NΠE = 4 237.58 28 68.17 20 20.53 15
NΠE = 5 174.45 19 24.74 13 2.90 10

Table 6.8
Test 3, choice of adaptive primal constraints for each fat edge (NΠE) and fat vertex (NΠV ). BDDC deluxe

condition number cond and iteration counts nit as functions of NΠE and NΠV . Fixed mesh size h = 1/32, number
of subdomains K = 4 × 4, p = 3, k = 2.

k = p− 1, h = 1/64, K = 4× 4

unit square domain quarter-ring domain
p NΠE NΠV cond nit NΠE NΠV cond nit

2 3 3 2.89 10 3 3 3.11 10
3 5 7 2.85 11 5 7 2.97 11
4 7 18 2.13 10 7 18 2.52 11
5 9 29 2.24 10 9 32 2.15 10
6 11 59 1.04 5 11 56 1.60 8
7 13 82 2.03 9 13 82 6.81 14

Table 6.9
Test 4, robustness with respect to the spline polynomial degree p. NΠE :=number of primal dofs for each fat

edge, NΠV :=number of primal dofs for each fat vertex, BDDC deluxe condition number cond and iteration counts
nit as functions of the spline polynomial degree p. Fixed mesh size h = 1/64, number of subdomains K = 4 × 4,
k = p− 1.

6.3. Test 3: choice of adaptive primal constraints for each fat edge (NΠE) and fat
vertex (NΠV ). In this test, we study, in more depth, the number of primal constraints for fat edges
(NΠE) and fat vertices (NΠV ), needed to obtain a robust BDDC solver. In Tables 6.7 and 6.8, we
report on results for the case of spline parameters (p = 2, k = 1) and (p = 3, k = 2), respectively.
For (p = 2, k = 1), both on the unit square and quarter-ring domain, the robust choice of primal
constraints is (NΠE = 3, NΠV = 3), since the condition number drops from several hundreds to 1.70
and 2.10, respectively, only in this case. For (p = 3, k = 2), on the unit square, the robust choice of
primal constraints yielding single digits condition numbers is (NΠE = 5, NΠV = 5), whereas on the
quarter-ring, we need (NΠE = 5, NΠV = 7) primal constraints.

6.4. Test 4: robustness with respect to the spline polynomial degree p. In Table 6.9,
we report the BDDC condition numbers and iteration counts for an increasing polynomial degrees
up to p = 7 and for maximal regularity k = p − 1, with fixed parameters K = 4 × 4, h = 1/64, on
both the unit square and the quarter-ring domains. By fixing NΠE = 2p−1, i.e. the number of thin
edges, and with a suitable choice NΠV , reported in the table, the solver is robust with respect to
growth of p, since single digits condition numbers are obtained with a linear increase of the number
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p = 2, k = 1, 1/h = 64 ,K = 4× 4
NΠE = 3, NΠV = 3 NΠE = 3, NΠV = 4

a cond nit cond nit

1e− 6 1.13 4 1.00 3
1e− 4 1.18 6 1.18 6
1e− 2 2.08 9 2.07 9
1e+ 0 3.11 10 3.11 10
1e+ 2 3.16 10 3.16 9
1e+ 4 4.88 11 3.16 10
1e+ 6 7.33 14 3.16 10

p = 3, k = 2, 1/h = 64 ,K = 4× 4
NΠE = 5, NΠV = 9 NΠE = 5, NΠV = 10

a cond nit cond nit

1e− 6 1.10 5 1.07 4
1e− 4 1.19 6 1.14 6
1e− 2 1.55 8 1.55 8
1e+ 0 2.59 9 2.59 9
1e+ 2 2.64 9 2.64 9
1e+ 4 1.74e+6 32 2.64 11
1e+ 6 2.83e+8 90 2.64 11

Table 6.10
Test 5, robustness with respect to the coefficient a in the H(curl) bilinear form. BDDC deluxe condition num-

ber cond and iteration counts nit as functions of coefficient a. NΠE :=number of primal dofs for each fat edge;
NΠV :=number of primal dofs for each fat vertex.

of edge constraints and a slightly faster than linear increase of the number of vertex constraints.

6.5. Test 5: robustness with respect to the coefficient a in the H(curl) bilinear form.
In Table 6.10, we study the BDDC deluxe performance when the coefficient a in the H(curl) bilinear
form (2.1) varies by 12 orders of magnitude, from 10−6 to 106. The quarter-ring domain is discretized
with mesh size 1/h = 64, K = 4×4 subdomains, selecting p = 2, k = 1 (top) or p = 3, k = 2 (bottom)
and different choices of the number of primal constraints for each fat edge (NΠE) and for each fat
vertex (NΠV ). In the mass-dominated case (small values of a), the BDDC deluxe preconditioner
performs very well in all tests considered. In the curl-dominated case (large values of a), the BDDC
performance degenerates when p = 3, k = 2 and NΠE = 5, NΠV = 9 primal constraints are selected,
while a robust performance is restored by increasing the number of primal dofs for each fat vertex
to NΠV = 10. The condition number reduction is striking, since cond drops 6 orders of magnitude
by selecting just one more primal constraints per fat vertex.

6.6. Test 6: robustness with respect to jumping coefficients. We study here the BDDC
deluxe performance in case of central and checkerboard jumping coefficient test. The quarter-ring
domain is discretized with mesh size 1/h = 64, K = 4× 4 subdomains, selecting p = 2, k = 1 (top)
or p = 3, k = 2 (bottom) and different choices of number of primal dofs for each fat edge (NΠE) and
for each fat vertex (NΠV ).

In the central jumping coefficient test (Table 6.11 and Fig. 6.1 b)), the coefficient a of the H(curl)
bilinear form varies by 12 orders of magnitude, from 10−6 to 106, in the central region consisting of
2× 2 gray subdomains, whereas a = 1 outside the central region. In the mass-dominated case, the
BDDC deluxe preconditioner performs very well in all tests considered. In the curl-dominated case,
the BDDC performance degenerates when p = 3, k = 2 and NΠE = 5, NΠV = 9 primal constraints
are selected, while a robust performance is restored by increasing the number of primal dofs for each
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p = 2, k = 1, 1/h = 64 ,K = 4× 4
NΠE = 3, NΠV = 3 NΠE = 3, NΠV = 4

a in the jumping region cond nit cond nit

1e− 6 2.14 7 1.15 6
1e− 4 1.19 6 1.14 6
1e− 2 2.30 9 2.30 9
1e+ 0 3.11 10 3.11 10
1e+ 2 3.14 10 3.14 10
1e+ 4 14.08 12 3.14 10
1e+ 6 11.39 16 3.14 11

p = 3, k = 2, 1/h = 64 ,K = 4× 4
NΠE = 5, NΠV = 9 NΠE = 5, NΠV = 10

a in the jumping region cond nit cond nit

1e− 6 5.42 13 4.62 13
1e− 4 4.08 11 2.12 10
1e− 2 2.12 10 1.65 8
1e+ 0 2.59 9 2.59 9
1e+ 2 2.62 10 2.62 10
1e+ 4 6.65e+5 21 2.90 11
1e+ 6 5.40e+7 52 12.67 18

Table 6.11
Test 6, central jumping coefficient test, quarter ring domain. BDDC deluxe condition number cond and iteration

counts nit as functions of coefficient a in the central jump region of 2 × 2 gray subdomains, while a = 1 outside the
central region (see Fig. 6.1 b). NΠE :=number of primal dofs for each fat edge; NΠV :=number of primal dofs for
each fat vertex.

fat vertex to NΠV = 10.

In the checkerboard jumping coefficient test (Table 6.12 and Fig. 6.1 c)), the coefficient a of the
H(curl) bilinear form varies of 12 orders of magnitude, from 10−6 to 106, in the gray subdomains,
whereas a = 1 in the white subdomains. The behavior of the preconditioner is analogous to the
central jumping coefficient case, with a good BDDC performance in the mass-dominated case, while
in the curl-dominated case, for p = 3, k = 2, we need to increase the number of vertex primal
constraints NΠV for each fat vertex from 9 to 10 in order to obtain a robust performance, even
though the increase of the condition number with NΠV = 9 is less abrupt than in the central
jumping coefficient case.

We remark that in this test we have maintained the maximal regularity at the interface of the
subdomains, in order to challenge the performance of the solver. We believe that reducing the
regularity of the approximation space to C0 at the jumping interface would improve the behavior of
the BDDC preconditioner, as observed for different PDE problems in our previous works [3, 4].
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