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Dissecting social 
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Social decision-making requires the ability to balance both the interests of 

the self and the interests of others to survive in social environments. Empathy 

is essential to the regulation of this type of interaction, and it often sustains 

relevant prosocial behaviors such as altruism and helping behavior. In the 

last decade, our capacity to assess affective and empathy-like behaviors in 

rodents has expanded our understanding of the neurobiological substrates 

that underly social decision-making processes such as prosocial behaviors. 

Within this context, oxytocinergic transmission is profoundly implicated in 

modulating some of the major components of social decision-making. Thus, 

this review will present evidence of the association between oxytocin and 

empathy-like and prosocial behaviors in nonhuman animals. Then, we  will 

dissect the involvement of oxytocinergic transmission—across different brain 

regions and pathways—in some of the key elements of social decision-making 

such as emotional discrimination, social recognition, emotional contagion, 

social dominance, and social memory. Evidence of the modulatory role of 

oxytocin on social decision-making has raised considerable interest in its 

clinical relevance, therefore we will also discuss the controversial findings on 

intranasal oxytocin administration.
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Introduction

Survival in social environments is often complex and requires an intact functioning of 
the social decision-making ability that demands the right balance between the interests of 
the self and the interests of others. Surrounded by their conspecifics, individuals immersed 
in a society constantly relate to the social dimension and make decisions according to their 
mental states and intentions. Therefore, the equilibrium between self- and other-oriented 
aspects is fundamental for the ability to make appropriate social decisions and generate 
relevant prosocial behaviors such as helping behavior and altruism (Pfattheicher et al., 2022).

Empathy is described as an individual’s ability to understand and feel the emotions of 
others. It is often considered to be one of the main factors driving prosocial behaviors like 
altruism (Bartal et al., 2011; Decety et al., 2016; Scheggia and Papaleo, 2020), a behavior 
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sometimes essential for survival in social environments (Rilling 
et al., 2008). Many non-human species have shown capabilities of 
empathy-driven prosocial behaviors towards their conspecifics 
(Decety et al., 2016; Scheggia and Papaleo, 2020), making them 
viable models for studying the neurobiological substrates of social 
decision-making processes (Scheggia et al., 2022). Along with 
empathy, social decision-making processes involving prosocial 
behaviors are affected by contextual information, such as 
familiarity (Scheggia et al., 2022), previous experiences (De Waal, 
2008), stressors (Mudra Rakshasa and Tong, 2020), goals of 
interactions (Brucks and von Bayern, 2020), and individual 
differences (Bales and Perkeybile, 2012; Alonso et al., 2020).

Oxytocin is an evolutionarily conserved neuropeptide that 
modulates a large cluster of prosocial behaviors (Burkett et al., 
2016; Yamagishi et  al., 2020) and empathy-related processes 
(Pisansky et al., 2017). In a mammal’s brain, oxytocin is released by 
the paraventricular nucleus (PVN) and supraoptic nucleus (SON; 
Sofroniew, 1983; Landgraf and Neumann, 2004). The oxytocin 
receptor (OTR) is widely expressed in several brain regions and 
peripheral organs (Gimpl and Fahrenholz, 2001), modulating 
different functions and complex behaviors. The OTR is a member 
of the rhodopsin-type (class I) GPCR family, influencing gene 
expression, neuronal excitability, synaptic adaptation, and 
neurotransmission. OTR has been found in various types of 
neurons such as glutamatergic pyramidal cells, GABAergic 
interneurons, and neuroendocrine cells (Huber et al., 2005; Jurek 
et al., 2015; Lin et al., 2018). This neuropeptide modulates social 
abilities and social behaviors such as social recognition (Oettl et al., 
2016), social preference (Dölen et al., 2013), social fear (Pisansky 
et al., 2017), emotional discrimination (Ferretti et al., 2019), and 
empathy-like (Burkett et al., 2016; Scheggia and Papaleo, 2020) and 
prosocial behaviors (Heinrichs and Gaab, 2007).

Given the role of oxytocin in empathy-like and prosocial 
behaviors, our review offers an overview of the involvement of 
oxytocinergic transmission in the key components of social 
decision-making across different brain regions and pathways, such 
as emotional discrimination, emotional contagion, social 
dominance, and social memory (Figure 1). Finally, we will discuss 
the contrasting studies on the impact of oxytocin-based treatments 
in the clinical population.

Oxytocin in social decision-making 
processes motivated by empathy-like 
behaviors

Some decisions and behaviors involving other individuals can 
be driven by empathy (Bartal et al., 2011; Burkett et al., 2016), 
while other kinds of prosocial behaviors, such as cooperation, are 
not necessarily related to empathy (Decety et al., 2016). The role 
of oxytocin in modulating empathy-driven behaviors—such as 
parental care and prosocial behaviors—has been largely explored 
in humans (Hurlemann et al., 2010; Guastella and Hickie, 2016) 
and rodents (Gur et al., 2014; Nakajima et al., 2014; Burkett et al., 

2016). Marlin and colleagues found that, in mice, the oxytocinergic 
signaling in the left auditory cortex processes the behavioral 
response to a mouse pup’s distress calls and is also necessary for 
the maternal retrieval of isolated pups, enhancing the salience of 
vocal stimuli (Marlin et al., 2015).

Empathy can also motivate prosocial behaviors that are 
different from parental care. In a modified version of the human 
dictator game, in which one subject can choose between sharing 
or keeping the rewards from another participant, the infusion of 
oxytocin in the basolateral amygdala (BLA) of non-human 
primates favored the selection of prosocial tendencies (Chang 
et  al., 2015). Oxytocin transmission in the insular cortex also 
mediates social decision-making in rats, modulating both 
approach and avoidance behaviors in a model of social affective 
preference (Rogers-Carter et al., 2018). Microinjections of an OTR 
antagonist in the insular cortex inhibited affective social behavior, 
with rats specifically avoiding juvenile stressed rats rather than 
stressed adults (Rogers-Carter et al., 2018). The oxytocin system 
is also involved in partner choice within groups of prairie voles. 
The intracerebroventricular infusion of a selective OTR antagonist 
prevented partner preference acquisition in mated male prairie 
voles, demonstrating the key role of oxytocin in pair bonding, 
which involves social decision-making processes (Johnson 
et al., 2016).

Several behavioral paradigms have been developed in the last 
decade aimed at investigating prosocial behaviors in rodents. It 
was found that rodents tend to approach and help stressed or 
trapped conspecifics (Bartal et al., 2011), avoid painful stimuli for 
the benefit of others (Hernandez-Lallement et al., 2020), and share 
food rewards with them (Scheggia et  al., 2022), similarly to 
primates (Tan et al., 2017; Dal Monte et al., 2020). Yamagishi and 
colleagues found that the pharmacological block of the OTR in the 
anterior cingulate cortex (ACC) provoked a delay in learning 
helping behavior in rats, while the full acquisition of this behavior 
increased the activation of the immediate early gene c-Fos in ACC 
OTR-expressing neurons (Yamagishi et al., 2020). Another work 
from the same group revealed that OTR-knock-out prairie voles 
demonstrated impaired learning of the door-opening task and less 
interest in the soaked conspecific, suggesting that oxytocin 
modulates these helping and empathy-like behaviors in rodents 
(Kitano et al., 2022).

Oxytocinergic transmission regulates key 
components of social decision-making

Social decisions require continuous interpretation of the 
surrounding context that also includes other social agents and 
their mental states and actions (Bartz et al., 2011). These decisions 
are multidimensional in nature, and involve cognitive and 
emotional facets related to both the self and others. These include 
emotional discrimination, emotional contagion, previous 
experiences, and other social factors such as group dynamics, 
where oxytocin transmission is profoundly implicated.
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Identifying and recognizing a conspecific is crucial in making 
appropriate social decisions. This ability is influenced by intra- 
and inter-species differences, in which the perception of the 
conspecific varies widely. For example, while in primates the use 
of vision and gaze plays a critical role in social perception and 
cognition, rodents largely rely on olfactive information 
(Gangopadhyay et  al., 2021). Oxytocin is involved from the 
beginning of the processes of decision-making, during which 
sensory information is extracted from the social context. In the 
olfactory system, oxytocin is required for social cue processing 
(Oettl et  al., 2016). Perception of social cues is the basis of 
understanding others’ mental and emotional states. It has been 
reported that the PVN neurons projecting to the central 
amygdala (CeA) in mouse brains are selectively involved in 
emotional discrimination, likely through the interplay between 
oxytocin signaling and corticotropin-releasing factor, highly 
expressed in the CeA and involved in fear encoding (Ferretti 

et  al., 2019). In addition, cortical areas are involved in the 
discrimination of conspecifics based on emotional states. Indeed, 
optogenetic inhibition of somatostatin-positive cells in the 
prelimbic region of the PFC (PL), which are highly enriched in 
OTR (Nakajima et  al., 2014), impairs this ability (Scheggia 
et al., 2020).

Oxytocinergic signaling is also associated with mouse models 
of emotional contagion, a cognitive process by which observation 
of a conspecific in distress induces a similar affective experience 
in the observer. For example, both intranasal oxytocin 
administration (Pisansky et al., 2017; Zoratto et al., 2018) and 
chemogenetic stimulation of OTR-containing neurons (Pisansky 
et al., 2017) in mice increased the socially transmitted adoption of 
others’ emotional states, with a subsequent downregulation of 
OTR in the amygdala when oxytocin was chronically given 
(Pisansky et al., 2017). State matching with a familiar conspecific 
under stress can also motivate consolation behavior (Burkett et al., 

FIGURE 1

Core components of social decision-making. A simplified diagram showing some of the core components of the process of decision-making in a 
social environment. An anthropomorph mouse in the process of making a choice that could benefit others highlights how specific facets of this 
process are shared between rodents and humans. The diagram emphasizes the transformation from sensory information (social perception) to the 
motor output, that is a prosocial versus a selfish action. The interactions between the decision-making process and the consequences of the 
actions help to consolidate memories able to modulate future decisions.
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2016), providing social buffering. This behavior was abolished by 
infusing an oxytocin receptor antagonist into the ACC. These 
reports highlight the relevance of oxytocinergic transmission in 
recognizing, understanding, and eventually sharing others’ 
emotions, which is often crucial for successfully navigating the 
social environment.

Social groups involve dominant and subordinate members, 
forming a hierarchy that can affect multiple behaviors (Qu et al., 
2017). Therefore, hierarchies represent an important variable in 
social interactions and prosocial behaviors (Cronin, 2012). In 
both mice and rats, social dominance consistently promotes 
prosocial actions (Gachomba et al., 2022; Scheggia et al., 2022) 
similarly to non-human primates, showing that prosocial 
behaviors are more often directed towards downward ranks 
(Cronin, 2012). In this context, oxytocin reduces the differences 
in social behavior between dominant and subordinate members, 
thereby flattening the status hierarchy (Jiang and Platt, 2018). In 
line with this evidence, the oxytocinergic system underlying the 
establishment and maintenance of social hierarchies in rats 
(Timmer et al., 2011) and dominant mice shows increased OTR 
levels when compared with subordinate individuals (Lee 
et al., 2019).

The oxytocinergic network is sensitive to early-life stressors 
that can provoke long-term social impairments. He and colleagues 
showed that when mandarin voles— socially monogamous 
rodents with biparental attachment in their pups—were raised 
under paternal deprivation, they manifested anxiety-like behavior 
and lower social preference during adulthood (He et al., 2019). 
Importantly, the authors found that voles deprived of paternal 
influence had significantly fewer oxytocin neurons in the PVN 
and a decreased OTR in the medial PFC (mPFC) in both females 
and males, and optogenetic stimulation of PVN-to-PL projecting 
neurons restored this impairment (He et al., 2019).

The PVN oxytocin neurons also project to the anterior 
olfactory bulb, where OTR is largely expressed (Knobloch 
et  al., 2012). Stimulating this pathway increased social 
recognition memory in female rats, while its inhibition 
prevented the ability (Oettl et al., 2016). Social memory is 
another important aspect with an influence on social 
decision-making processes. The role of the hippocampus in 
social behaviors has recently gained attention (Okuyama 
et al., 2016; for review, see Okuyama, 2018). In particular, the 
identification of the so-called “social place cells” in the dorsal 
hippocampus of bats (Omer et  al., 2018) and rats (Danjo 
et al., 2018) points to this area as fundamental for processing 
self- and other-related information in the spatial dimension. 
The OTR is largely expressed across different subfields of the 
hippocampus (for review, see Cilz et al., 2019) and has an 
influence on social behaviors. It has been reported that the 
OTR conditional silencing selectively in CA2/CA3 or 
forebrain pyramidal neurons reduced the persistence of long-
term social memory without affecting sociability or social 
novelty. In agreement with these findings, pharmacological 
stimulation of OTR on hippocampal slices provoked 

long-term potentiation (Lin et al., 2018). Intriguingly, Raam 
and colleagues showed that optogenetic inhibition of 
intrahippocampal connections between OTR-containing cells 
in dorsal CA2/CA3, projecting to the ventral CA1, impaired 
social but not non-social discrimination in mice (Raam et al., 
2017). In a Magel2tm1.1Mus-deficient mouse, a model of autism-
like disorders, an enhanced GABAergic activity of CA3 
glutamatergic cells was found to be  associated with an 
increased expression of OTR and somatostatin interneurons 
in both the dentate gyrus and CA2/CA3 regions. This effect 
might be  responsible for their deficits in social memory, 
assessed using the social three-chamber task (Bertoni et al., 
2021). Importantly, systemic administration of oxytocin in 
Magel2tm1.1Mus-deficient pups restored both hippocampal 
dysfunction and behavioral deficits during adulthood 
(Bertoni et al., 2021), highlighting the clinical relevance of 
oxytocin in the sphere of social cognition and behavior.

This evidence strongly supports the crucial role of oxytocin in 
modulating neural activity across several brain areas, recruited at 
different levels of the decision-making process, with significant 
effects on social and prosocial behaviors.

Translating animal models: From 
endogenous system to oxytocin-based 
treatments

Fluctuations in endogenous oxytocin levels have been 
connected to both positive and negative modulations of social 
and prosocial behaviors (Crockford et al., 2014; Marsh et al., 
2021; Tabak et al., 2022). This can be attributed to the influence 
of the oxytocin system on neural areas or circuitries related to 
reward (Scheele et al., 2013) and emotional processing, such as 
fear processing (Meyer-Lindenberg et  al., 2011), attentional 
resources, and salience attribution to social stimuli (Dölen et al., 
2013; Wei et al., 2022). Moreover, the anxiolytic effects driven by 
oxytocin changes can further contribute to the expression of 
social behaviors mainly due to the influence on the 
hypothalamic–pituitary–adrenal axis and the amygdala activity 
(Eckstein et al., 2015; Mitre et al., 2016; Neumann and Slattery, 
2016). Furthermore, endogenous oxytocin levels are highly 
susceptible to sex, age, personality traits and predisposition, 
previous history, and context (Marsh et  al., 2021). Genetics, 
epigenetics, and neurobiological factors have an impact on 
endogenous oxytocin, such as OTR variances (Rodrigues et al., 
2009; Saphire-Bernstein et al., 2011; Spencer et al., 2022) and 
fluctuations across the lifespan (Audunsdottir and Quintana, 
2022; Zak et  al., 2022). These factors could modify the 
modulatory effects of oxytocin on social behaviors (Van 
IJzendoorn et al., 2011; Declerck et al., 2020; Marsh et al., 2021). 
For instance, contextual information associated with danger or 
social threat can stimulate oxytocin release that can be associated 
with aggressive-defensive or antisocial behaviors (Hurlemann 
and Marsh, 2019).

https://doi.org/10.3389/fnmol.2022.1061934
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Coccia et al. 10.3389/fnmol.2022.1061934

Frontiers in Molecular Neuroscience 05 frontiersin.org

Dysregulation or malfunctioning of the oxytocin system has 
been reported in neuropsychiatric (Green et al., 2001; Yamasue and 
Domes, 2017; Goh et al., 2021) and neurodegenerative disorders 
(Gabery et  al., 2015; Unti et  al., 2018), mostly in the form of 
reduced endogenous oxytocin levels. In this case, the 
downregulation of the oxytocinergic transmission might 
be associated with anomalies in attention, evaluation, and response 
to external socio-emotional stimuli (Crockford et al., 2014; Gulliver 
et al., 2019). This could affect the cognitive and socio-emotional 
components necessary for expressing effective social decisions and 
behaviors regarding others (Marsh et  al., 2021). Therefore, the 
assessment of endogenous oxytocin levels becomes crucial for the 
evaluation of the real effects of oxytocin-based treatments in the 
clinical setting (Marsh et al., 2021; Tabak et al., 2022).

Targeting oxytocinergic signaling has been considered to 
be an effective strategy to contrast social deficits in clinical 
populations. Intranasal application has been perhaps the 
principal route of oxytocin administration when compared 
with others, such as oral or intravenous, in the clinical and 
non-clinical setting (Quintana et al., 2021), due to the direct 
link with the central nervous system and the neglectable side-
effects reported (Born et al., 2002; MacDonald et al., 2011; 
Bakermans-Kranenburg and van IJzendoorn, 2013). A good 
body of evidence revealed that the administration of 
intranasal oxytocin (IN-OXT) has beneficial properties on 
empathy and prosocial behaviors both in human (MacDonald 
and MacDonald, 2010; Geng et  al., 2018; Leng and Leng, 
2021) and nonhuman animals (Neumann et al., 2013; Huang 
et al., 2014; Chang et al., 2015; Pisansky et al., 2017; Zoratto 
et  al., 2018). Specifically, studies on healthy human 
participants performing behavioral tasks readapted from the 
economic field (Sanfey, 2007) revealed that IN-OXT promotes 
and likely enhances relevant prosocial manifestations such as 
trust (Kosfeld et al., 2005), generosity (Domes et al., 2007), 
cooperation (De Dreu, 2012), altruism (Marsh et al., 2015), 
and social bonding (Lim and Young, 2006). However, 
subsequent efforts for replicating these initial results have 
failed, forcing researchers to downsize or review the claims 
around IN-OXT and its social properties (Nave et al., 2015; 
Declerck et al., 2020; Macchia et al., 2022).

Clinical studies reported beneficial effects on social 
dysfunctions following IN-OXT, including social decision-making 
deficits. Andari and colleagues reported increased trust and social 
preference within a virtual social interaction game involving 13 
adult subjects with autistic spectrum disorder (ASD; Andari et al., 
2010). More recently, clinical trials involving ASD participants 
revealed that long-term oxytocin-based treatments rescued neural 
activity or led to functional readaptations of areas such as the 
amygdala and the PFC, which are considered essential for 
establishing social interactions and making social decisions (Alaerts 
et al., 2020; Bernaerts et al., 2020). Nonetheless, Sikich et al. recently 
reported no effects after IN-OXT in measures of social functioning 
in a large-scale placebo-controlled study involving children and 
adolescents affected by ASD (Sikich et al., 2021). This was in line 

with a previous meta-analysis of 12 randomized clinical trials 
regarding the use of IN-OXT in ASD (Ooi et al., 2017).

In a meta-analysis by Bürkner and colleagues evaluating 12 
randomized controlled trials in patients with schizophrenia, small 
but considerable effects of IN-OXT treatment on high-level social 
cognition were reported, including metallization and social inference 
abilities regarding others’ intentions and actions (Bürkner et al., 
2017). Further, Wigton and colleagues observed a higher prosocial 
tendency after a single-dose oxytocin inhalation in 20 adult patients 
with schizophrenia during a rewarded decision-making task, likely 
due to better emotional and metallization capacities driving their 
decisions (Wigton et al., 2022). This improvement was linked to 
significant changes in the level of neural activity in key regions 
within the social decision-making system such as the amygdala, the 
ACC, and the insula (Wigton et al., 2022). The literature reports 
contrasting results, showing no significant benefits for social 
functioning in patients with schizophrenia following IN-OXT when 
compared with other treatments (Williams and Bürkner, 2017).

Administration of IN-OXT has also been applied in patients 
with neurodegenerative disorders that are characterized by social 
dysfunction, including social decision-making deficits (Manuel 
et al., 2020; Mason et al., 2021). Patients with frontotemporal 
dementia (FTD) who were administered a single dose of IN-OXT 
improved their abilities to recognize facial expressions (Jesso et al., 
2011). Particularly, the authors indicated a reduced emotional 
response from FTD patients to negative faces. They also found a 
trend for better recognition of positive faces, which might lead to 
augmented trust and cooperative behavior within the social 
context (Jesso et al., 2011). Accordingly, Finger et al. used IN-OXT 
in a randomized clinical trial including 23 FTD patients and 
reported, indirectly, increased levels of empathy and social 
exchange in their relationships with their caregivers (Finger et al., 
2015). Further, an ongoing trial is considering the long-term 
beneficial effects of IN-OXT for FTD patients (Finger et al., 2018). 
Finally, Labuschagne and colleagues described a significant 
recovery in Huntington’s disease patients’ ability to discriminate 
between emotions after oxytocin inhalation, a skill associated with 
restored neural activity in the areas involving emotion processing 
(Labuschagne et al., 2018). Despite this evidence, negative results 
have been reported on the effects of IN-OXT in neurodegenerative 
disorders. For instance, a recent meta-analysis did not find any 
improvement in emotion recognition or expression for the FTD 
population after IN-OXT treatment (Leppanen et al., 2017).

Perspectives on future directions 
in clinical research

Although in many studies and clinical trials IN-OXT reduced 
social impairments, there is debate within the field about its 
effectiveness. As described, negative evidence exists for studies on 
neuropsychiatric (Dagani et al., 2016; Ooi et al., 2017; Williams 
and Bürkner, 2017; Sikich et al., 2021) and neurodegenerative 
(Leppanen et al., 2017) populations. Therefore, why is oxytocin 
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in its current form not helpful for many patients? Preclinical 
studies should reduce the drift between basic and clinical research 
and translate knowledge into human applications. This process 
should not exist exclusively to create novel treatments, but also to 
adjust procedures of drug administration in patients. For 
instance, it has been shown that oxytocin increases the salience 
of social stimuli (Jurek and Meyer, 2020). This could suggest a 
pairing of oxytocin treatment with some type of behavioral 
training. Another crucial aspect of oxytocin administration is that 
it is still not clear how much of the dose is getting to the brain. A 
recent study developed a fluorescent sensor for real-time 
measurement of extracellular oxytocin. This could aid in the 
understanding of oxytocin destination administered by the 
intranasal route (Ino et al., 2022).

An important aspect to consider is that some of the 
oxytocinergic actions might also be mediated by vasopressin, 
which is structurally similar to oxytocin and comes from the 
same ancestral gene (Gwee et al., 2009; Theofanopoulou, 2021), 
with relevant effects on a large cluster of social behaviors and 
physiological functions (for review, see Song and Albers, 2018). 
Although oxytocin and vasopressin receptors are distributed 
differently across the brain, their interaction has several 
consequences (Xiao et al., 2017). Oxytocin can also bind to 
vasopressin receptors (V1aR), with antagonist effects on OTR 
(Anacker et al., 2016; Tan et al., 2019).

Finally, possible reasons for oxytocin failure could involve 
the way we  measure its effects as well as problems in study 
design. The most relevant limitations include sample size 
(Gulliver et al., 2019; Marsh et al., 2021), individual (Declerck 
et al., 2020; Macchia et al., 2022) and contextual differences 
(Bartz et  al., 2011), statistical inference and power (Calin-
Jageman and Cumming, 2019; Mierop et al., 2020), and dosage 
characteristics (Kosaka et al., 2016). Furthermore, many studies 
lack the use of effective control groups or the comparison 
between oxytocin and other drug treatments (Erdozain and 
Penagarikano, 2020; Mierop et  al., 2020). Likewise, the 
development of standardized procedures for measuring social 
abilities, including the components involved in social decision-
making processes, might benefit oxytocin research in the 
clinical setting (Marsh et al., 2021; Tabak et al., 2022).

Thus, a more holistic and interactive approach regarding 
IN-OXT use in the clinical and nonclinical setting appears 
necessary (Audunsdottir and Quintana, 2022; Putnam and Chang, 
2022). This would require an acknowledgment of the relationship 
between the exogenous ways of administration and the 
endogenous oxytocin (Mierop et al., 2020; Quintana and Guastella, 
2020; Tabak et al., 2022). This expanded perspective also highlights 
the opportunity for an evaluation of the joint action between 
endogenous oxytocin and other neuropeptides like vasopressin 
(Rilling et  al., 2012) or other neurotransmitters (Dölen et  al., 
2013). In addition, combinatorial treatments with other drugs 
(Fan et  al., 2020) or additional behavioral and psychological 
techniques, which can exploit individual-contextual information 
(Marsh et al., 2021; Wei et al., 2022), should be considered.

Concluding remarks

In recent years, considerable advances have been made in 
our ability to assess social decision-making processes in 
animal models. These advances had an impact on our 
understanding of the neurobiology underlying social 
decision-making processes, including when they take the 
form of prosocial behaviors that benefit others. Although not 
comprehensive, we  reported increasing evidence of the 
modulatory role of oxytocin across the major elements in the 
process of making decisions in a social environment, from the 
perception of social stimuli to motor output. We highlighted 
a selection of studies and clinical trials that have reported the 
beneficial effects of oxytocin administration in 
neuropsychiatric conditions associated with dysfunctional 
social decision-making. However, given the heterogeneity of 
the responses to oxytocin-based treatments, we must address 
how we can best exploit our understanding of the oxytocin 
system through preclinical studies to target specific 
interventions for social dysfunctions in the clinical setting.
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