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Abstract: Sacubitril/Valsartan, used for the treatment of heart failure (HF), is a combination of two
drugs, an angiotensin receptor inhibitor, and a neprilysin inhibitor, which activates vasoactive pep-
tides. Even though its beneficial effects on cardiac functions have been demonstrated, the mechanisms
underpinning these effects remain poorly understood. To achieve more mechanistic insights, we
analyzed the profiles of circulating miRNAs in plasma from patients with stable HF with reduced
ejection function (HFrEF) and treated with Sacubitril/Valsartan for six months. miRNAs are short
(22–24 nt) non-coding RNAs, which are not only emerging as sensitive and stable biomarkers for
various diseases but also participate in the regulation of several biological processes. We found that
in patients with high levels of miRNAs, specifically miR-29b-3p, miR-221-3p, and miR-503-5p, Sacu-
bitril/Valsartan significantly reduced their levels at follow-up. We also found a significant negative
correlation of miR-29b-3p, miR-221-3p, and miR-503-5p with VO2 at peak exercise, whose levels
decrease with HF severity. Furthermore, from a functional point of view, miR-29b-3p, miR-221-3p,
and miR-503-5p all target Phosphoinositide-3-Kinase Regulatory Subunit 1, which encodes regulatory
subunit 1 of phosphoinositide-3-kinase. Our findings support that an additional mechanism through
which Sacubitril/Valsartan exerts its functions is the modulation of miRNAs with potentially relevant
roles in HFrEF pathophysiology.

Keywords: Sacubitril/Valsartan; heart failure; miRNA

1. Introduction

The prevalence of heart failure (HF) with reduced ejection function (HFrEF) is contin-
uously increasing in the general population, and still has a poor prognosis in the medium
term. Indeed, in developed countries, notwithstanding the better management of cardio-
vascular disease, the overall incidence is increasing [1].

In patients with HFrEF, pharmacotherapy involves modulating renin-angiotensin-
aldosterone (RAAS) and sympathetic nervous systems with angiotensin-converting enzyme
inhibitors (ACE-I), beta-blockers, and mineralocorticoid receptor antagonists (MRA), which
have beneficial effects on survival, hospitalization risk, and symptoms [1]. Recently, a
few new drugs have been introduced in HFrEF therapy, showing an additional prognostic
benefit on top of standard medical treatment. Among those, Sacubitril/Valsartan combines
an angiotensin receptor blocker with a neprilysin inhibitor (angiotensin receptor–neprilysin
inhibitors, ARNIs). In spite of its favorable effects on cardiac remodeling, functional
capacity, and natriuretic peptides, its mechanisms of action are unclear [2,3]. Indeed, it has
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been suggested both hemodynamic and non-hemodynamic mechanisms may contribute
to these effects. In this regard, we recently reported that Sacubitril/Valsartan affects lung
diffusion capacity for carbon monoxide (DLCO) and lung mechanics; affects the release
of the immature form of surfactant protein type B (proSP-B) from the alveolar-capillary
membrane; and reduces the HF biomarkers, amino terminal pro-B-type natriuretic peptide
(NT-proBNP) and soluble interleukin 1 receptor-like 1 (ST-2), suggesting the combined
presence of hemodynamic and pleiotropic effects of the drug [4]. It is of note that proSP-
B has emerged as a novel potential biomarker not only of alveolar-capillary membrane
function but also of the overall HFrEF status [5–7]. Indeed, NT-proBNP, DLCO, and
proSP-B circulating levels, which ameliorate with Sacubitril/Valsartan, all have a potential
prognostic role in chronic HF [8], and are modulated by specific HFrEF treatments, such
as levosimendan [9]. Furthermore, NT-proBNP reflects the hemodynamic status of the
patients, while ST-2 mirrors the inflammatory and pro-fibrotic status of the disease [4,10].

To achieve a more mechanistic insight into the effects exerted by the therapy we
analyzed the profiles of circulating microRNAs (miRNAs) in plasma from patients with
HFrEF treated with Sacubitril/Valsartan for six months. miRNAs are short (22–24 nt)
non-coding RNAs that pair accurately with their targets and promote the endonucleolytic
cleavage of a single specific mRNA [11]. Circulating miRNAs, which are present in almost
all biological fluids associated with microvesicles, high-density lipoproteins (HDL), or
as parts of apoptotic bodies, are emerging as sensitive and stable biomarkers for various
diseases, including cardiovascular diseases, neurodegenerative pathologies, and cancer [12].
Like intercellular miRNAs, circulating miRNAs participate in the regulations of several
biological processes. Although the biological functions of extracellular miRNAs remain
unclear, strong evidence suggests they are more than cellular waste products. Extracellular
miRNA species may be involved in cell–cell signaling during various physiological and
pathological processes [13]. Furthermore, miRNAs are showing promise as a diagnostic
tool for a wide range of diseases prior to symptoms arising, and as a way to assess the
response of a patient to therapy to aid in correcting and personalizing treatment [12].

2. Materials and Methods
2.1. Study Design

HFrEF outpatients referred to the Heart Failure Unit of Centro Cardiologico Monzino
(CCM), eligible to start Sacubitril/Valsartan according to 2016 ESC Guidelines [14], were
prospectively enrolled between December 2018 and December 2019. The present research
protocol complied with World Medical Association Declaration of Helsinki, and it was
approved by the Centro Cardiologico Monzino Ethical Committee (CCM 898). Each subject
provided written consent to the study. Inclusion criteria were as follows: aged 18–80 years,
males and females, New York Heart Association Class (NYHA) II-III in stable clinical
condition, and left ventricular ejection fraction (LVEF) of ≤35%. Severe chronic obstructive
pulmonary disease or the need for oxygen supplementation were considered exclusion
criteria. Each patient underwent all study procedures at baseline while taking guideline-
directed therapy for HF. After 36 h from the interruption of angiotensin-converting enzyme
inhibitors or angiotensin receptor blockers, they started Sacubitril/Valsartan therapy with a
24/26 mg b.i.d. as the starting dose for all patients, progressively up titrated to 97/103 mg
b.i.d. or the maximum tolerated dose, in a standard monthly-based fashion. All study
procedures were also performed 6 months after the maximum tolerated dose was reached
(T1). Specifically, patients underwent clinical assessment, lung function tests (standard
spirometry and DLCO), venous blood sample collection, transthoracic echocardiography,
a cardiopulmonary exercise test (CPET), and nocturnal cardiorespiratory monitoring, as
previously described [4], and reported in Figure S1. Additional plasma samples from
healthy subjects (HC) were selected from a cohort enrolled at Centro Cardiologico Monzino
(CCM470). Each subject provided written consent to the study.
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2.2. Plasma Preparation

Blood was drawn into Vacutainer tubes containing citrate 0.129 mol/L as an antico-
agulant and was immediately prepared via centrifugation at 1500× g for 15 min at 4 ◦C.
Plasma samples were then stored at −80 ◦C until use.

2.3. Total RNA Purification

Total RNA was extracted from plasma using the Total Rna Purification Plus Kit
(Norgen, Thorold, ON, Canada), according to the manufacturer’s instructions.

2.4. MicroRNA Screening

Microarray analysis was performed by ThermoFisher with the GeneChip miRNA
4.0 Array (Life Technologies, Carlsbad, CA, USA), which contains 2578 human mature
miRNA probe sets annotated in the miRBase 20 database. Data were analyzed using
ExpressionSuite v1.1 software (Life Technologies, Carlsbad, CA, USA), using the global
normalization method and considering as not expressed all miRNAs presenting Ct values
of >35 in more than 50% of patients.

2.5. Single miRNA Assays

microRNA retro-transcription was conducted using a TaqMan Advanced miRNA
cDNA Synthesis Kit (Life Technologies, Carlsbad, CA, USA), starting from 2 µL of total
RNA extract. Selected miRNAs were evaluated using single TaqMan Advanced miRNA
assays (Life Technologies, Carlsbad, CA, USA), following the manufacturer’s protocol.
Data were calculated with the delta-delta Ct method, using miR-16-5p as the housekeeping
gene.

2.6. Statistical Analysis

Statistical analysis was performed using SPSS 25.0 software (SPSS Inc., Chicago, IL,
USA). Continuous variables were expressed as mean ± standard deviation (SD), mean ±
standard error (SEM) where indicated, or median and [interquartile range] as appropriate,
while discrete variables are shown as absolute numbers and percentages. Normality
was evaluated using the Kolmogorov–Smirnov test and Shapiro–Wilk test. Comparisons
between basal variables and end study variables were performed using paired t-tests
for normally distributed variables, and the Wilcoxon signed rank test for non-normally
distributed variables. All tests were 2-sided. A p of ≤0.05 was considered statistically
significant.

Relationships between parameters of HF severity were evaluated using Spearman’s
coefficient of rank correlation. Furthermore, relationships between HF severity variables
and miRNA expression values adjusted for age were assessed via multivariable analysis
(general linear model). An adjusted p of <0.05 was deemed statistically significant.

3. Results
3.1. Characteristics of the Study Population

The study was performed on a population of 69 patients enrolled to start Sacubi-
tril/Valsartan therapy. The clinical variables have been previously described [4], and are
briefly summarized in Table 1 and Table S1. Patients underwent all study procedures at
baseline (T0), and 6 months (T1) after reaching the maximal dose. Total follow-up was
8.7 ± 1.4 months. For comparison, a small cohort of 10 healthy subjects (HC) was selected
from a cohort enrolled at CCM (Table S2).
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Table 1. Characteristics of the study population at baseline.

Characteristic Values at Baseline

Age (y) 64.8 ± 9.4
Male (n, %) 59 (85.5%)

BMI (kg/m2) 26.9 ± 4.4
Heart rate (bpm) 67.6 ± 11.1

Hemoglobin (g/dl) 14.3 ± 1.6
Risk factors

Hypertension (n, %) 39 (56.5%)
Stroke (n, %) 4 (5.8%)

Smoker (n, %) 9 (13%)
Diabetes (n, %) 12 (17.4%)
COPD (n, %) 7 (10.1%)

Atrial fibrillation (n, %) 18 (26.1%)
Therapy

ACE-I (n, %) 52 (75.4%)
ARBs (n, %) 15 (21.7%)

Beta blockers (n, %) 68 (98.6 %)
MRA (n, %) 48 (69.6%)

Diuretic (n, %) 55 (79.7%)
Ivabradine (n, %) 9 (13%)

BMI, body mass index; bpm, beats per minute; COPD, chronic obstructive pulmonary disease; ACE-I, angiotensin-
converting enzyme inhibitors; ARBs, angiotensin receptor blockers; MRA, mineralocorticoid receptor antagonists.
Data are expressed as mean ± SD.

3.2. Profiling of Circulating miRNA Expression

To profile the circulating miRNAs differentially modulated by drug treatment, we
screened 2578 miRNAs using TaqMan microRNA arrays in plasma samples from five HC
and five HF patients (NYHA class II-III) at baseline and follow-up, selected from the global
population based on the observed reduction in NT-proBNP and proSP-B (−75.1% ± 19.6%
and −26.6% ± 10.1% reduction after treatment, respectively).

This screening revealed 443 detectable miRNAs in all conditions, among which only 5
were found to be putatively modulated by the disease and 10 modulated by treatment with
Sacubitril/Valsartan (Table S3). According to the results of the screening, the availability of
primers, and their detectability, we selected a total of five miRNAs, with two modulated by
treatment (miR181a-1, and miR28-3p), two altered in HF patients with respect to control
samples (miR320e, and miR503-5p), and miR450a-5p, which is modulated neither by the
treatment nor by the disease.

3.3. Analysis of Selected Circulating miRNAs

We then validated them in the entire population, together with two miRNAs identified
as potential HF biomarkers in a previous paper by D’Alessandra et al. [15] (miR221-3p and
miR423-5p), and miRNA 29b-3p, described in the literature as a promoter of the pathologic
hypertrophy of cardiac myocytes and overall cardiac dysfunction in HF [16].

Validation was performed via single plex assays on 10 HC and 69 HF subjects at
baseline and after 6 months from the maximal dose. Results showed that only miR-29b-3p
was upregulated in HF patients with respect to HC, and none of the validated miRNAs
was modulated by Sacubitril/Valsartan treatment, when considering the entire population
(Table 2).

As we observed a broad distribution of the plasma levels of these miRNAs, we tested
the association between them and the functional parameters normally evaluated in HF to
follow the progression of the disease. As reported in Table 3, we observed a significant
negative correlation of miR-29b-3p, miR-221-3p, and miR-503-5p with oxygen uptake at
CPET (peak VO2), whose level decreases with HF severity (Figure 1). However, since
miR-29b-3p and miR-221-3p were significantly correlated with age, we performed a multi-



Biomedicines 2023, 11, 1037 5 of 14

variable analysis and we found that adjusting for age, both miRNAs are still significantly
associated with peak VO2 (p = 0.004 and p = 0.024 for miR29 and miR221, respectively).

Table 2. Levels of validated miRNAs in control subjects and HF patients at baseline (T0) or at
follow-up (T1).

Controls HF T0 HF T1

miRNA
miR-29b-3p 0.895 [0.745–1.4] 1.530 [1.030–2.090] * 1.470 [0.92–1.87]
miR-28-3p 0.645 [0.258–1.118] 0.985 [0.458–1.758] 1.150 [0.552–2.198]
miR-181a-1 0.655 [0.36–0.853] 0.945 [0.550–2.158] 1.197 [0.60–1.87]
miR-221-3p 1.360 [0.664–2.320] 1.045 [0.647–1.744] 1.169 [0.650–1.816]
miR-320e 1.118 [0.8–1.711] 0.889 [0.541–1.640] 0.89 [0.567–1.796]

miR-423-5p 0.860 [0.533–1.168] 0.875 [0.538–1.625] 1.062 [0.635–1.866]
miR-450a-5p 0.775 [0.408–1.320] 1.017 [0.545–1.863] 1.082 [0.575–1.797]
miR-503-5p 1.035 [0.703–1.525] 1.073 [0.524–2.357] 1.132 [0.492–2.292]

* p < 0.001 vs. control subjects by non-parametric Mann–Whitney test.

Table 3. Spearman’s correlation between basal levels of circulating miRNAs and clinical parameters
at baseline.

Age
(years) EF (%) Peak VO2

(mL/min)
Peak VO2

(mL/min/kg)
DLCO

(mL/min/mmHg)
ST-2

(ng/mL)
NT-proBNP

(pg/mL)

miRNA T0
miR-29b-3p R 0.411 ** −0.132 −0.405 ** −0.371 ** −0.089 −0.067 0.119

p values 0.001 0.279 0.001 0.003 0.477 0.673 0.332
miR-28-3p R 0.277 * 0.043 −0.142 −0.178 −0.055 −0.086 −0.150

p values 0.021 0.725 0.258 0.160 0.663 0.587 0.220
mir-181a-1 R 0.189 −0.012 −0.132 −0.170 −0.020 −0.125 −0.141

p values 0.119 0.925 0.294 0.180 0.871 0.432 0.249
miR-221-3p R 0.340 ** −0.026 −0.261 * −0.271 * −0.014 −0.052 −0.064

p values 0.004 0.832 0.036 0.030 0.912 0.745 0.599
miR-320e R 0.027 0.015 −0.068 −0.155 −0.060 −0.036 −0.138

p values 0.823 0.906 0.592 0.221 0.632 0.819 0.260
miR-423-5p R 0.155 −0.016 −0.123 −0.172 0.005 −0.116 −0.220

p values 0.204 0.895 0.327 0.173 0.970 0.466 0.069
miR-450a-5p R −0.036 −0.083 −0.097 0.063 0.030 0.078 0.108

p values 0.771 0.499 0.446 0.621 0.813 0.623 0.379
miR-503-5p R 0.148 −0.061 −0.304 * −0.209 −0.148 0.286 0.165

p values 0.238 0.632 0.017 0.110 0.250 0.074 0.188

EF, ejection fraction; peak VO2, peak oxygen intake; VE/VCO2 slope, minute ventilation/carbon dioxide pro-
duction relationship; DLCO, carbon monoxide lung diffusing capacity corrected for hemoglobin; ST-2, soluble
interleukin 1 receptor-like 1; NT-proBNP, amino terminal pro-B-type natriuretic peptide. * p < 0.05; ** p < 0.01.

Considering all patients, we did not observe any correlation between the variation
in validated circulating miRNAs levels, expressed as delta between follow-up and basal
levels, and the variation in functional parameters expressed as delta between follow-up
and basal levels (Table S4). However, considering the negative correlation with peak VO2,
we focused on patients in the upper tertile for miR-29b-3p, miR-221-3p, or miR-503-5p, and
we demonstrated that they have higher basal levels of miRNA than HC, and that these
miRNAs are significantly reduced by Sacubitril/Valsartan at follow-up (Figure 2). It is of
note that patients in the upper tertile for miR-29b-3p have significantly lower levels of peak
VO2 in respect to those in the lower tertile at baseline (p < 0.001, 1450 [1142–1755] and 998
[826–1207], median [interquartile range] for lower and upper tertile, respectively) and at
follow-up (p = 0.01, 1421 [1276–1904] and 1169 [947–1315], median [interquartile range]
for lower and upper tertile, respectively). Similarly, patients in the upper tertile for miR-
503-5p have significantly lower levels of peak VO2 in respect to those in the lower tertile at
baseline (p = 0.011, 1448 [1109–11635] and 1056 [889–1393], median [interquartile range]
for lower and upper tertile, respectively) and at follow-up (p = 0.011, 1386 [1212–1629] and
1200 [958–1335], median [interquartile range] for lower and upper tertile, respectively). In
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addition, the levels of peak VO2 for patients in the upper tertile for miR-221-3p tended to
be higher than in patients in the lower tertile, even if not statistically significant neither
at baseline (p = 0.190, 1454 [1036–1739] and 1188 [928–1482], median [interquartile range]
for lower and upper tertile, respectively) nor at follow-up (p = 0.055, 1386 [1257–1880] and
1263 [989–1495], median [interquartile range] for lower and upper tertile, respectively).
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Figure 1. Correlation of (A) miR-29b-3p, (B) miR-221-3p, and (C) miR-503-5p with peak VO2 at
baseline (n = 69 HF patients). miRNA levels are expressed as arbitrary units (AU) calculated with the
delta-delta Ct method, using miR-16-5p as a housekeeping gene.

Furthermore, the correlation between follow-up levels of functional or biochemical pa-
rameters and the validated miRNAs measured at follow-up revealed a positive correlation
of interleukin ST-2 with miR-29b-3p, miR221-3p, miR320e, miR423-5p, and miR-450a-5p
(Table 4).
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Figure 2. Effects of Sacubitril/Valsartan treatment on patients in the upper tertile of (A) miR-29b-3p
(n = 24), (B) miR-221-3p (n = 32), and (C) miR-503-5p (n = 21) at baseline (T0) and after 6 months
after the maximum tolerated dose was reached (T1). Data are expressed as mean ± SEM. p-value
from paired t-test for comparison of T0 and T1. p-value from ANOVA for comparisons with control
subjects (controls n = 10).

Table 4. Spearman’s correlation between levels of circulating miRNAs and clinical parameters at the
follow-up.

EF (%) Peak VO2
(mL/min)

Peak VO2
(mL/min/kg)

DLCO (mL/min/
mmHg)

ST-2
(ng/mL)

NT-proBNP
(pg/mL)

miRNA follow-up
miR-29b-3p R 0.003 −0.134 0.030 −0.166 0.357 ** 0.141

p values 0.982 0.291 0.816 0.196 0.009 0.252
miR-28-3p R 0.184 −0.092 0.062 −0.094 0.189 0.000

p values 0.132 0.469 0.625 0.465 0.176 0.998
mir-181a-1 R 0.049 −0.032 0.111 0.016 0.212 −0.029

p values 0.690 0.802 0.381 0.904 0.127 0.815
miR-221-3p R 0.051 −0.212 −0.045 −0.097 0.329 * 0.093

p values 0.680 0.092 0.727 0.452 0.016 0.449
miR-320e R −0.160 −0.133 −0.072 −0.010 0.416 ** 0.263 *

p values 0.191 0.295 0.572 0.936 0.002 0.031
miR-423-5p R 0.010 −0.052 −0.005 0.081 0.285 * 0.033

p values 0.933 0.683 0.966 0.531 0.039 0.786
miR-450a-5p R −0.117 −0.011 0.154 0.067 0.419 ** 0.058

p values 0.343 0.932 0.225 0.608 0.002 0.641
miR-503-5p R 0.189 −0.129 −0.006 −0.070 0.235 0.051

p values 0.135 0.328 0.961 0.603 0.100 0.690

EF, ejection fraction; peak VO2, peak oxygen intake; VE/VCO2 slope, minute ventilation/carbon dioxide pro-
duction relationship; DLCO, carbon monoxide lung diffusing capacity corrected for hemoglobin; ST-2, soluble
interleukin 1 receptor-like 1; NT-proBNP, amino terminal pro-B-type natriuretic peptide. * p < 0.05; ** p < 0.01.
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3.4. Computational Analysis of miRNA Targets

To identify the potential functions of the three validated miRNAs that correlate with
functional parameters (miR-29b-3p, miR-221-3p and miR-503-5p), we performed a targeted
search using the Mienturnet tool and MiRTarBase “URL 27 March 2023, http://userver.
bio.uniroma1.it/apps/mienturnet/”, searching for strong evidence of interaction between
miRNA and target genes. As shown in Figure 3 reporting the network generated by the
targets and the miRNAs, the three miRNAs share a common target, Phosphoinositide-
3-Kinase Regulatory Subunit 1 (PIK3R1), and seven target genes are modulated by two
miRNAs (Table S5).
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Furthermore, the functional enrichment analysis of the identified miRNA targets,
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focal adhesion (Figure 4).
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4. Discussion

In the present study, we assessed the effect of Sacubitril/Valsartan on circulating miR-
NAs in patients with stable HF. The main finding is that in patients with high baseline levels
of miRNAs, specifically miR-29b-3p, miR-221-3p, and miR-503-5p, Sacubitril/Valsartan
significantly reduced their levels at follow-up. We also found a significant negative cor-
relation of miR-29b-3p, miR-221-3p, and miR-503-5p with peak VO2, whose levels are
known to decrease in parallel with HF severity according to a functional impairment of the
disease. These findings suggest that Sacubitril/Valsartan can affect miRNA levels in the
most severe HFrEF. Furthermore, from a functional point of view, circulating miR-29b-3p,
miR-221-3p, and miR-503-5p all target PIK3R1, which encodes regulatory subunit 1 of
phosphoinositide-3-kinase [17].

The first study regarding the modulation of miRNAs by Sacubitril/Valsartan was
performed in vitro in the plasma of rats [18]. The authors found that the treatment of
cardiomyocytes, derived from the differentiation of induced pluripotent stem cells, with
Sacubitril/Valsartan and Valsartan alone, increased the release of exosomes, which led to
the downregulation of miR-181a. Furthermore, in vivo studies employing a rodent model
of chronic myocardial injury demonstrated that miR-181a antagomir has a beneficial effect
on cardiac functions by reducing myocardial fibrosis and hypertrophy and restoring the
injured heart after myocardial infarction (MI) [18].

Recently, treatment with ARNI has been shown to reduce HF hospitalization and death
in cardiac resynchronization therapy with defibrillator non-responder patients, through
an epigenetic mechanism involving selected miRNAs (miR-181, miR-144, and miR-18)
implicated in metabolic pathways of cardiac dysfunction [19].

Additionally, biochemical, molecular, and histopathological data revealed that Sacubi-
tril/Valsartan exhibited protective effects against cyclophosphamide-induced oxidative
and inflammatory events, which was most likely due to the changes in the levels of miRNA
150-3P and brain natriuretic peptide (BNP) [20].

Concerning the miRNAs modulated by Sacubitril/Valsartan, several findings support
their roles in the pathophysiological mechanisms underlying HF. Indeed, a number of
physiological and pathological processes are influenced by miR-29, including myogenesis,
cardiac fibrosis, and tumorigenesis [21–23]. MiR-29 is also essential for the pathological
remodeling of the cardiac extracellular matrix [24]. Additionally, several studies have
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shown different expression of miRNAs-29 in HF patients [25], likely modulating multiple
genes involved in cell migration, invasion, apoptosis, and proliferation.

Recently, miR-29b-3p was found to inhibit cardiomyocyte proliferation in vitro and
in vivo through the direct targeting of NOTCH2, a key regulator of cardiac develop-
ment [26]. As a matter of fact, the evolutionarily conserved NOTCH signaling leads
to heart malformations, including bicuspid aortic valve disease, calcification of the heart
valves, Alagille syndrome, and ventricular septal defects [27,28].

The finding that the aberrant expression of miR-29b-3p could influence cardiac devel-
opment via NOTCH2 highlights the role of epigenetic factors in the development of heart
disease.

In previous studies, miR-221-3p has been implicated as a therapeutic target in HF by
modulating the p27/CDK2/mTOR axis and cardiac remodeling [29]. Indeed, miR-221-3p
inhibition promotes cardiac angiogenesis, alleviates myocardial hypertrophy, and further
improves cardiac function in transverse aortic constriction-induced HF mice [30].

A significant upregulation of miR-221 is observed in patients with hypertrophic
cardiomyopathy (HCM), and miR-221-3p expression in serum is negatively correlated with
heart function in patients with HF [30]. The in vitro overexpression of miR-221 alone is
sufficient to increase the size of cardiomyocytes, and the expression levels of the atrial
natriuretic polypeptide (ANP) and BNP [31].

MicroRNA-503 (miR-503), which belongs to the miR-16 family [32], modulates various
biological processes, and the dysregulation of miR-503 is associated with human diseases,
especially cardiovascular disease, and cancer. Studies have shown that miR-503 is expressed
abnormally in diabetes [33], pulmonary arterial hypertension, coronary artery disease [34],
ischemic stroke [35], and cancer. Our results confirm previous observations performed by
Lee Lee Wong, et al. (Abstract, “URL accessed on 27 March 2023 https://doi.org/10.1161/
circ.132.suppl_3.15090”), who analyzed plasma miRNAs levels in 338 well-characterized HF
patients and 208 age-matched controls without HF, and in a rat post-MI model. The authors
found that among the 24 miRNAs highly up- or downregulated in clinical data, the levels
of miR-503 were higher when comparing HF patients with non-HF controls (fold change
= 1.69, p < 0.001). In the rat experimental model, levels of miR-503 (fold change = 2.21,
p = 0.017) increased after post-MI on Day 2 and Day 7, but were not significant on Day
14 compared with a sham, thus indicating that circulating miR-503 is associated with
HF. Nonetheless, these findings need further validation in studies with a larger number
of subjects. Several studies reported that miR-503 was implicated in fibrosis (reviewed
in [36]). Furthermore, in mouse cardiac fibrosis induced by transverse aortic constriction
(TAC), and in mouse neonatal cardiac fibroblasts (CFs) treated with Angiotensin II [37],
miR-503 expression was upregulated, and accompanied by cell proliferation and collagen
production [37]. Conversely, treatment with antagomiR-503 in TAC mice improved cardiac
function and decreased both transforming growth factor (TGF)-β and connective tissue
growth factor (CTGF) expression, indicating that miR-503 has the potential to promote
cardiac fibrosis [37].

Our results also showed a positive correlation, at follow-up, of interleukin ST-2 with
miR-29b-3p, miR221-3p, miR320e, miR423-5p, and miR-450a-5p, which deserves some
comments. ST2 is an interleukin (IL)-1 receptor family member with membrane-bound
(ST2L) and soluble (sST2) isoforms, the latter being the form measured in our study. IL-33,
an IL-1-related protein, once bound to ST2L, activates a signaling cascade that protects the
myocardium against hypertrophy and cardiac fibrosis induced by pressure overload [38,39].
Conversely, sST2 acts as a decoy receptor for IL-33, preventing the IL-33/ST2L interaction,
and the subsequent cardioprotective cascade of events. Furthermore, Van Vark et al. found
that the repeated measurement of sST2 is a strong predictor of outcome in patients with
acute heart failure, independently of NT-proBNP [40].

The positive correlation between ST-2 and miRNAs is in support of recent findings
showing that much of the variation in sST2 production is driven by genetic factors. Indeed,
Wang et al. reported that miR-487b reduces apoptosis, inflammatory responses, and fibrosis

https://doi.org/10.1161/circ.132.suppl_3.15090
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in HF by suppressing IL-33 through the inhibition of the IL-33/ST2 signaling pathway [41].
In the Bio-SHiFT (The Role of Biomarkers and Echocardiography in Prediction of Progno-
sis of Chronic Heart Failure Patients) study of 263 patients with chronic HF, repeatedly
measured miR-22-3p contained important prognostic information and remained statisti-
cally significant after adjustment for temporal patterns of NT-proBNP, Troponin T, and
CRP [42]. Although miR-22 has not directly been associated with the ST2/ IL-33 pathway,
it nonetheless plays a critical role in the regulation of cellular proliferation, differentiation,
and stress-induced hypertrophy [43]. Thus, as suggested by Patanè, combining miRNAs
that influence the ST2/IL-33 pathway and repeatedly measuring ST2 has the potential to
clarify the role of ST2 in patients with HF [44].

The potential mechanism of miR-503 in regulating cardiovascular disease involves the
following targets: fibroblast growth factor (FGF)2, fibroblast growth factor receptor (FGFR)1,
vascular endothelial growth factor (VEGF)A, TGF-β, CTGF, nuclear factor erythroid 2–
related factor 2 (Nrf2), and phosphatidylinositol 3-Kinase (PI3K)/protein kinase B (Akt)
in the pathological processes of cardiovascular diseases. It is also demonstrated that
overexpression of miR-503 increased cell apoptosis and reactive oxygen species (ROS)
production [35].

As anticipated, miR-29b-3p, miR-221-3p, and miR-503-5p all target PIK3R1, known
as p85α, a regulatory subunit of class I PI3Ks [45]. It is of note that PI3Ks play a role in a
variety of cardiovascular diseases and physiology, such as atherosclerosis, hypertension,
angiogenesis, heart disease, and MI. As a result, these enzymes might also prove valu-
able as therapeutic targets [46]. The role of miRNA in the regulation of PI3KR1 was also
described in the study by Zhan H. et al. [47], which showed that the downregulation of
miR-128 restored PIK3R1 mRNA and the protein levels induced by angiotensin II, being
accompanied by upregulation of the levels of phospho-Akt and -mTORC1 in vivo and
in vitro. Moreover, alteration of the PIK3R1/Akt/mTORC1 pathway was negatively corre-
lated with autophagy, while mTORC1 blocker rapamycin abolished miR-128 antagomir’s
inhibition of angiotensin II-induced apoptosis and ROS production. Therefore, miR-128
downregulation alleviated the angiotensin-II-induced elevation of autophagy, likely via the
PIK3R1/Akt/mTORC1 pathway in cardiomyocytes [47].

We recognize some limitations in this study. First, these data derive from subjects
attending the local heart failure clinic and are therefore representative of a limited geograph-
ical area. Second, the cohort of subjects is small in size, indicating that the results should be
addressed as preliminary findings, and, therefore, deserve validation with a larger sample
size. Second, we did not consider sex as a factor that could correlate with the frequency of
different miRNA in circulation, as demonstrated in an analysis of platelet-derived mRNA
and miRNA [48], due to the low number of females among HF patients. Moreover, due
to the limited sample size, we cannot completely exclude the impact of different ongoing
therapies. We are aware that, albeit offering first insights into potential post-transcriptional
functionalities of miRNAs, each of the bioinformatic tools for the prediction of miRNA
targets has serious limitations [49]. However, an advantage of this approach is to reduce
potentially large input lists to likely core interactions of the putative biological network,
mainly in complex diseases, such as heart failure, a multiorgan disease (myocardium,
kidney, lungs, and vascular vessels), which results from maladaptive signaling within
intertwined molecular pathways. Indeed, the exact sources and location of circulating
miRNAs need to be better defined. It should be noted that the majority of miRNAs in
peripheral blood will likely be derived primarily from well-vascularized tissues, e.g., lungs
and kidneys, in addition to blood cells themselves (platelets are a major contributor to
the circulating RNA pool) [50]. Therefore, in vitro experiments with selected cells (i.e.,
cardiac, endothelial, or circulating cells) would not reflect the complexity of the disease
physiopathology. From a technological point of view, several methods have been developed
to quantitatively assess the levels of circulating miRNAs, and the establishment of standard
operating procedures will help to reduce experimental variability and inter-study variabil-
ity [51]. In conclusion, we demonstrated that the modulation of miRNA expression may be
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another mechanism through which Sacubitril/Valsartan exerts its pleiotropic effects. We
found indeed for the first time that Sacubitril/Valsartan impacts the circulating miRNAs,
with potentially important roles in the cardiovascular system.

Finally, miRNA research is now ready to move from laboratories to clinical trials with
the use of high-throughput technologies. As a result, miRNAs may be used in diagnosis,
prognosis, and to predict diseases, as well as being potentially used as therapeutic targets.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines11041037/s1. Figure S1: Workflow of the study;
Table S1: Characteristics of the study population after 6 months of treatment at the maximum dose
of Sacubritil/Valsartan; Table S2: Characteristics of the healthy subjects enrolled at CCM; Table S3:
List of miRNA modulated by treatment or by disease obtained from the miRNA screening; Table S4:
Spearman’s correlation between variation of miRNAs and clinical parameters between follow-up
and baseline; Table S5: miRNA targets identified using Mienturnet Tool.
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