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Abstract. So called λ-symmetries were introduced by Muriel and Romero, and geometri-
cally characterized by Pucci and Saccomandi [8, 12], in the ODE case. We extend them to
the PDE framework. In this context the central object is a horizontal one-form µ, and we
speak of µ-prolongations of vector fields and µ-symmetries of PDEs. The latter are as good
as standard symmetries in providing symmetry reduction of PDEs (or systems thereof) and
explicit invariant solutions.
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Introduction

It was recently pointed out by Muriel and Romero [8] that, beside standard
symmetries, another class of transformations is equally useful in providing sym-
metry reduction for scalar ordinary differential equations (ODEs); these were
christened C∞ symmetries, or even λ-symmetries, as they depend on a smooth
scalar function λ (see also [5, 9] for applications of λ-symmetries). Soon after-
wards, Pucci and Saccomandi identified the most general class of transforma-
tions sharing the “useful” properties of standard symmetries for what concerns
reduction of a scalar ODE [12].

In the present note we extend the concept of λ-symmetries to the case of par-
tial differential equations (PDEs) or systems of PDEs for ua = ua(x1, . . . , xp),
with a = 1, . . . , q; see also [2, 4]. In this case the transformations of interest
depend on a semibasic matrix-valued one form µ = Λidx

i, the matrix functions
Λi take value in G, the Lie algebra of the group GL(q), and are such to sat-
isfy the compatibility condition DiΛj −DjΛi + [Λi,Λj ] = 0 (this amounts to µ
being the pullback of the canonical Maurer-Cartan form on GL(q) up to con-
tact forms, or equivalently the pullback of the horizontal Maurer-Cartan form,
see [2]). The transformations of this class leaving invariant the solution manifold
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for an equation ∆ will be said to be µ-symmetries, or Λ1-symmetries, of ∆.

In order to obtain such an extension, we found it convenient to characterize
λ-prolongations in J (n)M , where (M,π,B) is the space of dependent and inde-
pendent variables seen as a bundle over the space B of independent variables,
in a geometrical way; once this characterization is obtained, it is promptly ex-
tended from the ODEs case of B = R to the PDEs case B = Rp, and then to
the case of systems of PDEs.

We will thus be able to obtain a sound definition of µ-prolongations and
µ-symmetries of a PDE. We will also show that, in analogy with the ODE
case, µ-symmetries are as useful as standard symmetries in what concerns the
symmetry reduction, and the determination of invariant solutions, of PDEs. Our
approach will suffer from the same limitations as the standard PDE symmetry
reduction method.

In this note we deal first with the case of scalar PDEs, i.e. one equation
for one dependent variable u = u(x1, . . . , xp), in analogy with the theory of
λ-symmetries for ODEs; in this case Λi reduce to scalar functions λi and the
compatibility condition reduces to Diλj = Djλi. In a second time, we also deal
with the case of several dependent variables.
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1 Prolongations

In this section we fix our notation (mainly following the usual one in the
field, see e.g. [10]) and recall some basic definition [3, 10,13,15].

Let us consider a space M = B × U with coordinates x ∈ B ' Rp and
u ∈ U ' Rq; when setting a differential equation in this space, we will think
of the x as independent variables, and the u as dependent ones. Thus, more
precisely, M will be the total space of a (trivial) linear bundle (M,π,B) over
the base space B, with fiber π−1(x) = U .

Given a bundle P , we will denote Γ[P ] the set of sections of this bundle, and
by X [P ] the set of vector fields in P .
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1.1 Jet spaces and contact structure

The bundle M can be prolonged to the k-th jet bundle (J (k)M,πk, B),
with J (0)M ≡ M ; the total space of the jet bundle is also called the jet space,
for short. This can be thought as the space Rd(k) (d(k) a suitable integer) of
the (x, u) and the x-derivatives of the u up to order k. The jet bundle has a
multifibered structure, as each J (k)M is a bundle over J (k−1)M , and therefore
over each jet space of lower degree.

We can consider the x-derivatives of u as coordinates in J (k)M on the same
footing as the (x, u), provided we introduce in the jet space J (k)M a canonical
contact structure, i.e. the module generated by the set of canonical contact
one-forms ϑaJ := duaJ − uaJ,mdxm.

The contact structure in J (k)M defines a field of (p+ q)-dimensional linear
spaces in J (k)M ⊂ T((J (k−1)M), the contact distribution, corresponding to the
tangent subspace spanned by vector fields Y ∈ X [J (k)M ] annihilated by the
contact forms, i.e. such that Y θ = 0 for any contact form θ.

The general form of such vector fields is, as well known,

Y =
∑

ξiD
(k)
i + V.

Here Di is the total derivative [3,10,13,15] with respect to xi, Di := (∂/∂xi) +

uai (∂/∂u
a) + uaij(∂/∂u

a
j ) + · · · , and D

(k)
i its truncation to the k-th jet space;

and V is a generic vector field in X [J (k)M ], vertical for the fibration πk,k−1 :
J (k)M → J (k−1)M (the latter will not appear if we work with infinite-order
prolongations; it will however disappear when we deal with a given differential

equations and symmetry vector fields for it). The operator D
(k)
i reads

D
(k)
i := (∂/∂xi) +

q∑

a=1

k−1∑

|J |=1

uaJ,i(∂/∂u
a
J).

In the following we will write, for ease of notation, simply Di instead of D
(k)
i .

1.2 Functions, sections, prolongations

The function u = f(x) corresponds to a section γf ∈ Γ[M ], i.e.

γf = {(x, u) : u = f(x) }.
Knowledge of the function u = f(x) implies, of course, knowledge of all of its

x-derivatives. Thus, the corresponding section γf ∈ Γ[M ] is uniquely prolonged

to a section γ
(k)
f ∈ Γ[J (k)M ]: e.g.,

γ
(2)
f = {(x, u, p, q) : ua = fa(x) , paj = ∂jf

a(x) , qaij = ∂ijf
a(x)}.
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This can be described in geometrical terms by means of the contact distri-

bution introduced above: γ
(k)
f is the unique lift of the curve γf in M to a curve

in J (k)M which (i) projects down to γf in M , and (ii) is everywhere tangent to
the field of contact linear spaces.

1.3 Vector fields and their prolongations

Consider a vector field X ∈ X [M ]; this can be written, in the (x, u) coordi-
nates, as

X = ξi(x, u)
∂

∂xi
+ ϕa(x, u)

∂

∂ua
.

This can be uniquely prolonged to a vector field X (k) in J (k)M by requiring
it preserves the contact structure (the precise meaning of this will be defined
in a moment). The prolongation formula [3, 10, 13, 15] is indeed expressing this
condition.

The analytical meaning of the prolongation operation is, as well known, the
following: if we consider the transformation of the x and u generated by the
vector field, the transformation induced on the x-derivatives of the u will be the
one generated by X(k) [3, 10, 13,15].

When we act with a vector field X as above on M , we induce a local group of
transformation acting in Γ[M ]; at the infinitesimal level, under the map exp[εX]
the section γf = {(x, u) : u = f(x)} is mapped into γ bf with

f̂a(x) = fa(x) + ε[ϕa(x, u) − ξi(x, u)∂if
a(x)]u=f(x) + o(ε).

(We also say for ease of writing that X acts on the space of functions u = f(x)
by X : f → f̂). The transformations undergone by the x-derivatives of the u can
be read off by this formula, and define – for generic u = f(x) – the prolonged
vector field.

We write a vector field in J (k)M as

Y = X +
k∑

|J |=1

Φa
J

∂

∂uaJ

where X is as above, J = j1, . . . , jp is a multiindex, and the sum is over all
multiindices of modulus |J | = j1 + · · ·+ jp up to the order of the jet space. We

also writeDJ for the total derivativeDj1
x1 · · ·Djp

xp , and uaJ forDJu
a; moreover uJ,i

will denote DiuJ . Then Y is the prolongation of X if and only if the coefficients
Φa
J satisfy the prolongation formula

Φa
J = DJϕ

a − DJ(ξ
iuai ) + ξiDJu

a
i . (1)
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It is well known, and of use for our discussion later on, that the prolongation
formula is also easily recast in recursive form. We denote by Ĵ = J + ek the
multiindex with entries ĵi = ji+δik, and for short uJ,k := uJ+ek

, Φa
J,k := Φa

J+ek
.

Then (1) is equivalent to the recursive formula

Φa
J,k = DkΦ

a
J − uaJ,mDkξ

m (2)

with Φa
0 = ϕa (see e.g. sect. 2.3 of [10]).

2 Prolongations and contact structure

In this section we discuss the geometrical aspects of the prolongation op-
eration in terms of contact structures. This is by no means original (see e.g.
the discussion in [13]), but we go into some detail as we need these for our
subsequent generalization.

We equip J (k)M with a standard contact structure E , i.e. the module over
C∞(W ) generated by the set of standard contact one-forms

ϑaJ := duaJ − uaJ,mdxm

with a = 1, . . . , q, |J | = 0, . . . , k− 1. For any function f : J (k−1)M → R we can
write

df = (Dif)dxi + ϑ̂[f ] (3)

where ϑ̂[f ] ∈ E is some contact form whose explicit expression (easy to compute)
is irrelevant here.

1 Definition. Let Y be a vector field on J (k)M . We say that Y preserves
the contact structure if LY : E → E .

2 Proposition. The vector field Y ∈ X [J (k)M ], projecting to a vector field
X ∈ X [M ] on M , is the prolongation of a vector field X ∈ X [M ] if and only if
it preserves the contact structure in J (k)M .

Proof. This is a classical result, see e.g. [13]. We give however a proof,
both to fix notation and as the proof of theorems 1 and 2 below will be quite
similar. We write a general vector field on J (k)M as Y = ξi∂xi + Φa

J∂ua
J

(with
|J | = 0, . . . , k and Φa

0 ≡ ϕa). By standard computations,

LY (ϑaJ) = −Φa
J,mdxm + dΦa

J − uaJ,mdξm.

Hence, using (3), we have LY (ϑaJ) = [−Φa
J,i + DiΦ

a
J − uaJ,m(Diξ

m)]dxi + Θ
with Θ ∈ E ; we conclude that Y preserves the contact structure if and only
if the coefficient of all the dxi in the above vanish, i.e. if and only if Φa

J,i =
DiΦ

a
J − uaJ,m(Diξ

m). This, however, is just (2) above. QED
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3 Lemma. The vector field Y preserves the contact structure E if and only
if, for any ϑ ∈ E and any i = 1, . . . p, ([Di, Y ]) ϑ = 0.

Proof. We write ϑaJ and Y as above, and note that Di = ∂i+uaJ,i(∂/∂u
a
J),

where of course ∂i = ∂/∂xi. With this notation and standard computations, we
get

[Di, Y ] = (Diξ
m)∂m + (DiΦ

a
J − Φa

J,i)(∂/∂u
a
J) ; (4)

hence we get

[Di, Y ] ϑaJ = −Φa
J,i +

(
DiΦ

a
J − uaJ,m(Diξ

m)
)
,

which vanishes if and only if the Φa
J satisfy (2). QED

4 Corollary. The vector field Y preserves the contact structure E if and
only if [Di, Y ] = hmi Dm + V for some hmi ∈ Λ0(J (k)M) and V a vertical vector
field for the fibration πk,k−1 : J (k)M → J (k−1)M .

Proof. The vector fields Dm span the set of non-vertical vector fields (for
the fibration πk,k−1) in the annihilator of the contact forms. Alternatively, this
follows at once from (3), with hmi = Diξ

m. QED

3 Scalar ODEs: λ-prolongations and λ-symmetries

In this section we will restrict to the case of scalar ODEs, i.e. to the case
where the bundle (M,π,B) has B = R as base space, and a one-dimensional
fiber, π−1(x) = R. We will characterize in geometrical terms the λ-prolongations
introduced by Muriel and Romero [8] (see also [9] and [5]), and further studied by
Pucci and Saccomandi [12]. These were defined only in the scalar case (a single
equation for a single dependent variable u), and we also restrict to this setting.
In section 4 we extend this to scalar PDEs, deferring treatment of systems to
sections 6 and 7.

We simply write un for Dn
xu, and similarly for Ψn. The standard contact

forms in J (k)M will be ϑn = dun − un+1dx, with n = 0, . . . , k − 1.

3.1 Basic definitions

Let us start by recalling the definition of λ-prolongations and λ-symmetries
as given by Muriel and Romero, using an obvious notation for x-derivatives of
the u.

5 Definition. Let X = ξ(∂/∂x) + ϕ(∂/∂u) be a vector field on M , and
Y = X +

∑k
n=1 Ψn(∂/∂un) a vector field on J (k)M . Let λ : J (1)M → R be a
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smooth function. We say that Y is the λ-prolongation of X if its coefficients
satisfy the λ-prolongation formula

Ψn+1 = [(Dx + λ)Ψn] − un+1[(Dx + λ)ξ] (5)

for all n = 0, . . . , k − 1.

6 Definition. Let ∆ be a k-th order ODE for u = u(x), u ∈ U = R, and
let (M = U × B, π,B) be the corresponding variables bundle. Let the vector
field Y in J (k)M be the λ-prolongation of the Lie-point vector field X in M .
Then we say that X is a λ-symmetry of ∆ if and only if Y is tangent to the
solution manifold S∆, i.e. iff there is a smooth function Φ on J (k)M such that
Y (∆) = Φ∆.

7 Remark. We stress that in this note we take λ : J (1)M → R, which
guarantees that the λ prolongation of a Lie-point vector field in M is a proper
vector field in each J (n)M . One could also consider λ : J (r)M → R, obtaining
obvious generalizations of the results given here. In this case the λ-prolongations
of X would be generalized vector fields in each J (n)M with n > 0 even if X is a
Lie-point vector field. The same applies to the µ-prolongations to be considered
in later sections.

We will not discuss here the relevance of λ-symmetries, referring to [8, 12];
we just recall that they are as useful as standard ones in that one can perform
symmetry reduction to the same extent as for standard symmetries [8].

The basic property of λ-prolongations behind this feature was clearly pointed
out by Pucci and Saccomandi [12], and can be expressed in terms of the char-
acteristics of the vector fields Y which are λ-prolongations of X.

3.2 A geometrical characterization of λ-prolongations

Let us now equip J (1)M , seen as the bundle (J (1)M,π,B) (B = R in the
ODE case), with a distinguished smooth real function λ(x, u, ux). We note for
later discussion that to this is associated a semi-basic one-form µ ∈ Λ1(J (1)M),
i.e. the one-form µ = λ(x, u, ux)dx

8 Definition. Let Y be a vector field on the contact manifold (J (k)M, E),
and λ ∈ Λ0(J (1)M) a smooth function on M . We say that Y λ-preserves the
contact structure if, for any contact one-form θ ∈ E ,

LY (θ) + (Y θ)λdx = θ̂ (6)

for some contact one-form θ̂ ∈ E .

9 Theorem. Let (M,π,B) be a bundle over the real line B = R with fiber
π−1(x) = R, and let E be the standard contact structure in J (k)M . Let Y be a
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vector field on the jet space J (k)M , which projects to a vector field X on M .
Then Y is the λ-prolongation of X if and only if it λ-preserves the contact
structure.

Proof. We write a general vector field on J (k)M as

Y = ξ∂x +
k∑

m=0

Ψm(∂/∂um);

as the contact forms are ϑn = dun − un+1dx (n = 0, . . . , k − 1), we have by
explicit computation

LY (ϑn) + (Y ϑn)λdx = [−Ψn+1 +DxΨn − un+1Dxξ + λ(Ψn − un+1ξ)] dx+ θ̂

with θ̂ a contact form. Thus (6) is satisfied if and only if the Ψn satisfy the
λ-prolongation formula (5). QED

We can also provide an alternative characterization of λ-prolonged vector
fields in terms of their commutation properties with the total derivative operator
Dx, similarly to what we did for standard prolongations in lemma 1.

Let Y be a vector field on the jet space J (k)M , with (M,π,B) a vector
bundle over the real line B = R, and let E be the standard contact structure in
J (k)M . Then Y is the λ-prolongation of a vector field X on M , if and only if
for any ϑ ∈ E

[Dx, Y ] ϑ = λ(Y ϑ). (7)

Proof. Looking back at the proof of lemma 1, [Dx, Y ] ϑ is given by (4)
specialized to the case with p = 1: with the obvious notation un := Dn

xu (and
similarly for Ψn) we have [Dx, Y ] = −Ψn+1 + (DxΨn − un+1Dxξ); on the other
hand, it is easy to check that Y ϑn = Ψn− un+1ξ. Thus eq. (7) is equivalent
to Ψn+1 = [(Dx + λ)Ψn] − un+1[(Dx + λ)ξ], i.e. to the λ-prolongation formula
(5). QED

10 Corollary. In the hypotheses of lemma 2, Y is the λ-prolongation of a
vector field X on M , if and only if [Dx, Y ] = λY +hDx+V with λ, h scalar func-
tions on J (1)M and V a vertical vector field for the fibration πk,k−1 : J (k)M →
J (k−1)M .

11 Remark. Theorem 1 shows that our geometrical formulation, i.e. def-
inition 4, is equivalent to the standard (analytical) one, i.e. definition 2. The
advantage of our formulation is twofold: on the one hand, we have a better ge-
ometrical understanding of λ-prolongations (λ-symmetries), further clarifying
in which sense they generalize standard ones. On the other hand, our geomet-
rical formulation is readily extended from the ODEs to the PDEs case. As we
discuss later on, we can moreover generalize the standard symmetry reduction
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method for PDEs to an analogous λ-symmetry reduction. We will also show
later on (sections 6 and 7) that this definition extends, suitably generalized, to
the vector case; the same holds for the reduction procedure.

4 Scalar PDEs: µ-prolongations and µ-symmetries

As mentioned in the previous section, our approach to λ-prolongations and
λ-symmetries is readily generalized to the PDEs case, i.e. to the case where
B = Rq is not restricted to be one-dimensional.

The role of the scalar function λ will now be played by an array of p smooth
functions λi : J (1)M → R (remark 1 holds also in this context), which will be
the components of a semibasic form µ ∈ Λ1(J (1)M). The only additional ingre-
dient required in the scalar PDE case is a compatibility condition between the
semibasic form µ and the contact structure – this is eq. (10) below – automati-
cally satisfied in the ODE case.

Actually, our formulation of λ-prolongations in the ODE case was such that
the results, and even their proofs, are the same also in the PDE case – except of
course for the appearance of new indices related to the independent variables.

In view of our geometric approach, however, it is convenient to focus on the
form µ rather than on the q-ple of smooth functions λi. We will thus call the ana-
logue of λ-prolongations and λ-symmetries in the PDE frame, µ-prolongations
and µ-symmetries.

4.1 µ-prolongations

We equip (J (1)M,π,B) with a distinguished semi-basic one-form µ,

µ = λi dx
i. (8)

We require that µ is compatible with the contact structure defined in J (k)M ,
for k ≥ 2, in the sense that

dµ ∈ J (E) , (9)

where J (E) is the Cartan ideal generated by E (we recall that a two-form α is
in J (E) if and only if α = ρJ ∧ ϑJ for some one-forms ρJ).

It should be noted that this condition does not appear when we deal with
first order equations, i.e. with first order µ-prolongations.

We note also that for p = 1 eq. (9) is automatically satisfied: indeed, dµ =
(∂λ/∂u)du ∧ dx+ (∂λ/∂ux)dux ∧ dx = (∂λ/∂u)ϑ0 ∧ dx+ (∂λ/∂ux)ϑ1 ∧ dx.

12 Lemma. Condition (9) is equivalent to

Diλj −Djλi = 0. (10)
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Proof. As λi is a function on J (1)M , we have dµ = (∂λj/∂x
i)dxi ∧ dxj +

(∂λj/∂u)du ∧ dxj + (∂λj/∂ui)dui ∧ dxj , i.e.

dµ = [(∂λj/∂x
i) + ui(∂λj/∂u) + uik(∂λj/∂uk)]dx

i ∧ dxj +
+ (∂λj/∂u)ϑ0 ∧ dxj + (∂λj/∂ui)ϑi ∧ dxj .

The two latter terms are of course in J (E), while no form dxi ∧ dxj belongs
to J (E); thus, (9) is satisfied if and only if the coefficients of all these terms
vanish. This condition is precisely (10). (Note this extends to the case where µ
is semibasic for (J (n), πn, B), see remark 1.) QED

13 Definition. Let Y be a vector field on the contact manifold (J (k)M, E),
and µ a semibasic form on M compatible with E . We say that Y µ-preserves
the contact structure if, for any θ ∈ E , there is a form θ̂ ∈ E such that

LY (θ) + (Y θ)µ = θ̂. (11)

14 Definition. A vector field Y in J (k)M which projects to X in M and
which µ-preserves the contact structure is said to be the µ-prolongation of order
k, or the k-th µ-prolongation, of X.

15 Theorem. Let Y be a vector field on the jet space J (k)M , with (M,π,B)
a vector bundle over B = Rp, written in coordinates as

Y = X +
k∑

|J |=1

ΨJ
∂

∂uJ
,

with X = ξi(∂/∂xi)+ϕ(∂/∂u) a vector field on M . Let E be the standard contact
structure in J (k)M , and µ = λidx

i a semibasic one-form on (J (1)M,π,B), com-
patible with E. Then Y is the µ-prolongation of X if and only if its coefficients
(with Ψ0 = ϕ) satisfy the scalar µ-prolongation formula

ΨJ,i = (Di + λi)ΨJ − uJ,m (Di + λi)ξ
m. (12)

Proof. The standard contact forms in J (k)M are ϑJ = duJ −uJ,idxi, with
|J | = 0, . . . , k − 1. Thus, as already computed in the proof of proposition (1),
LY (ϑJ) = (−ΨJ,i +DiΨJ − uJ,mDiξ

m)dxi + Θ with Θ a contact form. On the
other hand, it is easy to compute that Y ϑJ = ΨJ − uJ,mξ

m. Therefore,

LY (ϑJ) + (Y ϑJ)µ =
= [(−ΨJ,i +DiΨJ − uJ,mDiξ

m) + λi(ΨJ − uJ,mξ
m)] dxi + Θ.

This is a contact form if and only if the coefficients of all the dxi vanish, i.e. if
and only if (12) is satisfied. QED
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As for standard and λ-prolongations, µ-prolongations have a specific be-
haviour for what concerns their commutation with the total derivatives Di.

16 Lemma. If Y is the µ-prolongation of a Lie-point vector field X, with
µ = λidx

i, then for any contact form ϑ,

[Di, Y ] ϑ = λi (Y ϑ). (13)

Proof. In the proof of lemma 1 we have computed [Di, Y ] ϑJ = −ΨJ,i +
DiΨJ − uJ,mDiξ

m; needless to say, Y ϑJ = ΨJ − uJ,mξ
m and thus (13) is

equivalent to the µ-prolongation formula (12). QED

17 Corollary. In the hypotheses of lemma 4, Y is the µ-prolongation of a
vector field X on M , if and only if [Di, Y ] = λiY + hmi Dm + V with λi, h

m
i

scalar functions on J (1)M and V a vertical vector field for the fibration of J (k)M
over J (k−1)M .

4.2 µ-prolongations versus ordinary ones

It is quite remarkable that a simple relation exists between the µ-prolongation
of a vector field and its ordinary prolongation. In this section, in order to dis-
cuss such relation, we write X = ξi(∂/∂xi) + ϕ(∂/∂u) for the vector field in
M , and denote its ordinary prolongations as X (k) = X + ΦJ(∂/∂uJ), while its
µ-prolongations are denoted as Y = X + ΨJ(∂/∂uJ). The form µ is written, as
usual, µ = λidx

i, and of course ΨJ = ΦJ when all the λi (or at least all those
for i such that ji 6= 0) vanish.

The vector field X can be cast in evolutionary form [3,10,13,15] as

X = Q
∂

∂u
, Q := ϕ− uiξ

i.

The equations DJQ = 0, with |J | = 0, . . . , k − 1 identify the X-invariant
space IX ⊂ J (k)M . We denote by F the module over C∞(J (k)M) generated by
the DJQ, i.e. the set of functions F which can be written as F = cJDJQ for
some smooth functions cJ : J (k)M → R, and by F (m) ⊆ F ≡ F (k) those which
depend only on variables (x, u(m)), m ≤ k. Needless to say, Di : F (m−1) → F (m).

18 Theorem. Let X,Y, µ be as above. Write the coefficients ΨJ as

ΨJ = ΦJ + FJ .

Then the functions FJ satisfy the recursion relation (with F0 = 0)

FJ,i = (Di + λi)FJ + λiDJQ. (14)
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Proof. In order to show that the statement of the theorem holds at all
orders, we proceed recursively: we suppose (14) holds for all |J | < h, and wish
to prove that it holds also for |J | = h. Any Ĵ of order h can be written as J + ei
for some i and some J of order h− 1; formula (14) holds for ΨJ . Thus, by the
µ-prolongation formula,

ΨJ,i = (Di + λi)ΦJ − uJ,m(Di + λi)ξ
m + (Di + λi)FJ

= [DiΦJ − uJ,mDiξ
m] + λi[ΦJ − uJ,mξ

m] + (Di + λi)FJ .

The first term is just ΦJ,i, and the last is already in the form appearing in (14);
so we have to look only at the second one.

Take an s such that js 6= 0 in the multiindex J , and write K = J−es. Then,
using the standard prolongation formula,

ΦJ − uJ,mξ
m = [DsΦK − uK,mDsξ

m] − (DsuK,m)ξm = Ds (ΦK − uK,mξ
m) .

We can then repeat the procedure on any index q such that K = J − es has a
nonzero q entry, and so on. In the end, recalling that Ψ0 = ϕ, we have

ΦJ − uJ,mξ
m = DJ (ϕ− umξ

m) = DJQ ;

this also follows from the formula for prolongation of the evolutionary represen-
tative of X.

Going back to our computation, we have thus shown that

ΨJ,i = ΦJ,i + λiDJQ + (Di + λi)FJ .

This shows that if (14) is satisfied at order h− 1, it is also satisfied at order h.
It is easy to check that (14) holds at order one, i.e. for |J | = 0: indeed, by

the µ-prolongation formula (12) and the ordinary prolongation formula (1),

Ψi = (Di + λi)ϕ− um(Di + λi)ξ
m

= (Diϕ− umDiξ
m) + λi (ϕ− umξ

m)
= Φi + λiQ.

We conclude that (14) holds at all orders. QED

This theorem provides an economic way of computing µ-prolongations of
X if we already know its ordinary prolongations. Theorem 3 also has a rather
obvious consequence, which will be relevant in the following.

19 Lemma. Let X be a vector field on M , E the standard contact struc-
ture on J (k)M , and µ any semibasic form on M compatible with E. Then: (i)
the µ-prolongation Y of X coincides with the ordinary prolongation X (k) on
the invariant space IX ; (ii) the space IX ⊂ J (k)M is invariant under the µ-
prolongations of X, for any semibasic form µ compatible with E.
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Proof. By definitions, any function F ∈ F vanishes identically on IX .
Thus (14) guarantees that ΨJ = ΦJ on IX , i.e. proves point (i).

As for (ii), this is a known property of standard prolongations, easily checked
by using the evolutionary representative of X, XQ := Q(∂/∂u). Its prolongation

is X
(k)
Q = (DJQ)(∂/∂uJ), where the sum is over all multiindices with |J | ≤ k,

and X(k) = X
(k)
Q + ξiDi. Thus, X(k) reduces to W = ξiDi on IX ; and W is

obviously tangent to IX . QED

4.3 µ-symmetries

One can define µ-symmetries of a partial differential equation as Lie-point
vector fields whose µ-prolongation is a symmetry of the equation.

20 Definition. LetX be a vector field onM , let µ = λidx
i satisfy condition

(10), and let Y ∈ X [J (k)M ] be the µ-prolongation of order k of X. Let ∆ be a
differential equation of order k in M , ∆ := F (x, u(k)) = 0, and S ⊂ J (k)M be
the solution manifold for ∆. If Y : S → TS, we say that X is a µ-symmetry
for ∆. If Y leaves invariant each level manifold for F , we say that X is a strong
µ-symmetry for ∆.

The relevant point is that µ-symmetries can be used to obtain group-
invariant solutions, i.e. one can introduce µ-symmetry reductions of PDEs
and obtain invariant solutions to the original PDE from these, by the same
method as for standard symmetries.

Note that in this way we parallel again the ODE case, where it was proven
by Muriel and Romero and by Pucci and Saccomandi that λ-symmetries are as
good as standard ones for reduction of the equation.

5 The µ-symmetry reduction method for scalar PDEs

As well known, symmetry reduction for PDEs is conceptually different from
symmetry reduction for ODEs: while in the latter case it yields a reduced equa-
tion whose solutions provide, together with an integration, the most general
solution to the original ODE, in the PDE case the reduced equation provides
only the symmetry-invariant solutions to the original PDE.

5.1 The PDE reduction method

In this subsection we briefly recall (using the notation introduced so far)
symmetry reduction for scalar PDEs in the case of standard symmetries; this
is discussed in detail in a number of textbooks and research papers, see e.g.
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[3, 10, 13, 15]. We will just discuss reduction under a single vector field, rather
than a general (i.e. higher dimensional) Lie algebra.

Consider a PDE ∆ of order k, which we may think in the form F (x, u(k)) = 0
with F : J (k)M → R a smooth scalar function. Let the Lie-point vector field X
in M , with prolongation X(k) in J (k)M , be a (standard) symmetry for ∆. Then
we proceed as follows, following Olver. (For more details, see e.g. the discussion
in chapter 3 of [10]).

First of all we pass to symmetry-adapted coordinates in M . In practice,
we have to determine a set of p independent invariants for X in M , which we
will denote as (y1, . . . , yp−1, v): these will be our X-invariant coordinates, and
essentially identify the G-orbits, while the remaining coordinate σ will be acted
upon by G.

In other words, G-orbits will correspond to fixed value of (y, v) coordinates
and to σ taking values in a certain subset of the real line (thus (y, v) are coor-
dinates on the orbit space Ω = M/G, see [10])

The invariants will be given by some functions yi = ηi(x, u) (i = 1, . . . , p−1)
and v = ζ(x, u) of x1, . . . , xp and u. If X acts transversally, we can invert these
for x and u as functions of (y, v;σ), i.e. write xi = χi(y, v;σ) (i = 1, . . . , p) and
u = β(y, v;σ).

If now we decide to see the (y;σ) as independent variables and the v as the
dependent one, we can use the chain rule to express x-derivatives of u as σ and
y-derivatives of v. Using these, we can finally write ∆ in terms of the (y, v;σ)
coordinates and derivatives of v in the y and σ; this will turn out to be an
equation which, when subject to the side condition ∂v/∂σ = 0, is independent
of σ.

The condition ∂v/∂σ = 0 expresses the fact that the solutions are required
to be invariant under X, i.e. the equation obtained in this way represents the re-
striction of ∆ to the space of G-invariant functions, and therefore it is sometimes
also denoted as ∆/G.

Suppose we are able to determine some solution v = Φ(y) to the reduced
equation; we can write this in terms of the (x, u) coordinates as ζ(x, u) =
Φ[η(x, u)], which yields implicitly u = f(x): this is the correspondingX-invariant
solution to the original equation ∆ in the original coordinates.

21 Remark. The symmetry reduction method for PDEs can also be seen
in a slightly different way: if we look for X-invariant solution u = f(x) to
∆, we determine the characteristic Q = ϕ − uiξ

i of the vector field X, and
supplement ∆ with the equations EJ := DJQ = 0 with |J | = 0, . . . , k − 1.
The equation E0 requires that the evolutionary representative XQ = Q(∂/∂u)
vanish on γf , i.e. that u is X-invariant, and all the equations with |J | > 0 are
just differential consequences of this. The X-invariant solutions to ∆ are in one
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to one correspondence with the solutions to the system ∆(X) := {∆;EJ}. See
e.g. [15] for details, and for how this approach is used in a more general context.

5.2 On the justification of the method

The method described above is rigorously justified in chapter 3 of [10], to
which we refer for details. In this subsection we just recall what is the key
step in the proof, as we will have to prove a similar property also holds for µ-
prolongations in order to justify the extension of this method to µ-symmetries.

As discussed in sect.1, a function u = f(x) is invariant under the action
of the vector field X in M if and only if Q̂(x) := Q[x, f(x)] = 0 (with Q the
characteristic of X).

We consider the equation E0 := Q = 0 and all of its differential consequences
EJ := DJQ = 0 for |J | < k; this identifies the invariant manifold IX ⊂ J (k)M .
Passing to the evolutionary representative XQ = Q(∂/∂u) of X, it is obvious
that XQ and its prolongations vanish on IX .

The X-invariant solutions to ∆ will be the solutions to the system ∆(X)

made of ∆ and of the invariance condition:

{
F (x, u(k)) = 0,
DJQ = 0 (|J | = 0, . . . , k − 1).

(15)

We denote the solution manifold to this system as SX ⊂ IX ⊂ J (k)M . The
invariance of SX , as discussed by Olver [10], guarantees that the method recalled
above is justified.

Recall now that the prolongations of X and XQ satisfy

X(k) = X
(k)
Q + ξiD

(k)
i . (16)

22 Lemma. The (standard) prolongation X (k) of X reduces to ξiDi on IX ,
and is tangent to SX .

Proof. The field X
(k)
Q vanishes on IX because of the equations EJ , and

the Di are symmetries of any system, as the differential consequences of any
equation of the system are satisfied by solutions to the system. By (16), this
proves the claim. QED

5.3 Reduction of PDEs under µ-symmetries

In the case of µ-symmetries of PDEs, we can proceed exactly in the same
way as for standard symmetries in order to determine G-invariant solutions.
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Note that the step consisting in the introduction of symmetry-adapted co-
ordinates is exactly the same; the difference lies of course in the step connected
to the prolongation structure.

We describe here how the standard symmetry reduction method is formu-
lated to deal with µ-symmetries. We suppose that X is a µ-symmetry of ∆,
acting transversally for the fibration (M,π,B), and denote the µ-prolongation
of X as Y ∈ X [J (k)M ].

First of all we pass to symmetry-adapted coordinates (y, v;σ) in M , as in the
standard case. We retain the notation introduced in subsection 1. We further
proceed as there, i.e. use the chain rule to express x-derivatives of the u as σ
and y-derivatives of the v. Using these, we can finally write ∆ in terms of the
(y, v;σ) coordinates and their derivatives.

Again, looking for X-invariant solutions means supplementing the equation
with the side condition ∂v/∂σ = 0, or with the conditions DJQ = 0, see eq. (15)
above, in the original coordinates.

Now the point is that if the equation thus obtained is independent of σ,
we have indeed obtained a symmetry reduction of the original equation. In this
case solutions v = Φ(y) to the reduced equation can be written in terms of
the (x, u) coordinates as ζ(x, u) = Φ[η(x, u)] and yield implicitly u = f(x), the
corresponding X-invariant solution to the original equation.

However, the vector field Y is not the ordinary prolongation of X, and thus
we are not a priori guaranteed it leaves SX or IX invariant. Thus, in order to
justify the method sketched above – i.e. in order to prove that the standard
PDE reduction method still applies in the case of µ-symmetries – we have to
prove the following theorem 4. Note that the only difference with respect to
the standard case will be that it is the vector field Y , and not the ordinary
prolongation X(k) of X, to be tangent to the solution manifold of ∆ in J (k)M .

23 Theorem. Let ∆ be a scalar PDE of order k for u = u(x1, . . . , xp).
Let X = ξi(∂/∂xi) + ϕ(∂/∂u) be a vector field on M , with characteristic Q :=
ϕ−uiξi, and let Y be the µ-prolongation of order k of X. If X is a µ-symmetry
for ∆, then Y : SX → TSX , where SX ⊂ J (k)M is the solution manifold for the
system ∆X made of ∆ and of EJ := DJQ = 0 for all J with |J | = 0, . . . , k− 1.

Proof. Recall that SX is the intersection of the solution manifold S0 to
∆ with the X-invariant set IX (see remark 3 above, or [15]). The former is
Y -invariant by assumption, as X is a µ-symmetry of ∆; the Y -invariance of IX
is guaranteed by lemma 5 above. Therefore the proof for the standard case [10]
extends to the present setting. QED

24 Remark. The property Y : IX → TIX can be shown in a alterna-
tive way without resorting to comparison with the standard case, i.e. using the
geometrical characterization of µ-prolonged vector fields, as follows.
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Denote by I(m)
X ⊂ J (k)M the set of points identified by EJ for |J | ≤ m. We

first show that if I(m)
X is invariant under Y , then I(m+1)

X is also Y -invariant (for

m = 0, . . . , k − 2). Note that Y -invariance of I (m)
X means that for all |J | ≤ m

there are functions βK such that Y (DJQ) =
∑m

|K|=0 β
KDKQ.

We have Y [Di(DJQ)] = [Y,Di](DJQ)−Di(Y (DJQ)); from the corollary to
lemma 4 this reads

λiY (DJQ) + hsiDs(DJQ) −Di(Y (DJQ)) + V (DJQ)

with V =
∑

|K|=k `
K(∂/∂uK). The first term is in I(m)

X by hypothesis, while the

second and third ones are by definition in I(m+1)
X . The last term vanishes since

DJQ does not contain u derivatives of order greater than m+1, and m ≤ k−2.

The proof of Y -invariance of IX is hence reduced to proving Y -invariance

of I(0)
X , i.e. of the manifold identified by Q = 0; as for X a Lie-point vector

field Q depends only on first order derivatives, it suffices to consider the first
µ-prolongation of X, which is just X (1) + λiQ∂ui

. It is well known that Q = 0
is invariant under the ordinary prolongation X (1), and of course the other term
vanishes on Q = 0.

This proves Y -invariance of I(0)
X and hence, by the recursive argument given

above, of all the I(m)
X with m = 0, 1, . . . , k − 1.

The recursive property considered here can be seen as a sort of counterpart
in the PDE case of the recursive property discussed by Pucci and Saccomandi as
characterizing the λ-prolongations as telescopic vector fields in the ODE case [2].

6 µ-prolongations in vector framework

In this section we extend µ-prolongations to the case of q > 1 dependent
variables. We will assume that the independent variables u take value in the
vector space U = Rq. It will be natural in this context to consider differential
forms taking values in G. Thus we will deal with matrix-valued differential forms
(or more generally Lie-algebra valued differential forms), see e.g. [14].

From now on, the form µ will be written in local coordinates as

µ := (Λi)
a
b dxi (17)

where Λi : J (1)M → G are smooth q-dimensional real matrix functions; we recall
that G is the Lie algebra of GL(q).

In the case of vector structures, we generalize condition (1.7) to the following
(19); we will then define µ-prolongation in the same way as in the scalar case.
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Theorem 5 below provides the µ-prolongation formula in the vector case, and
theorem 6 provides the expression of µ-prolongations in terms of ordinary ones.

In the vector case, the contact structure Θ (we use a different symbol than in
the scalar case to emphasize we deal with vector-valued forms) will be spanned
by vector-valued one-forms ϑJ = (ϑ1

J , . . . , ϑ
q
J) ∈ Rq ⊗ Λ1(M), where

ϑaJ = duaJ − uaJ,mdxm. (18)

25 Definition. We say that Y µ-preserves the contact structure Θ, with µ
given by (17), if for any vector-valued contact forms ϑ ∈ Θ, there is a vector-
valued contact forms ϑ̂ ∈ Θ such that

LY (ϑa) +
(
Y

[
(Λi)

a
bϑ

b
])

dxi = ϑ̂a. (19)

26 Definition. A vector field Y in J (k)M which projects to X in M and
which µ-preserves the contact structure is said to be the µ-prolongation of order
k, or the k-th µ-prolongation, of X.

In order to discuss vector fields in J (k)M which are µ-prolongations of vector
fields in M , it will be convenient to agree on a general notation. That is, we
write a general vector field in J (k)M in the form

Y = ξi
∂

∂xi
+ ψaJ

∂

∂uaJ
. (20)

27 Theorem. The vector field Y µ-preserves the standard contact structure
Θ if and only if its coefficients satisfy the vector µ-prolongation formula

Ψa
J,i = [δabDi + (Λi)

a
b ] Ψb

J − ubJ,k [δabDi + (Λi)
a
b ] ξ

k. (21)

Proof. The standard contact structure is generated by the forms ϑaJ (a =
1, . . . , q; |J | = 0, . . . , n − 1), see (18). By trivial computations we have in full
generality, for Y of the form (20),

LY (ϑaJ) = dΨa
J − uaJ,kdξ

k − Ψa
J,idx

i. (22)

The first term on the right hand side is easily computed to be

dΨa
J = (DiΨ

a
J) dxi +

|J |∑

|M |=0

∂Ψa
J

∂ubM
ϑbM .

(It is of course also possible to extend the sum up to |M | = n, since Ψa
J will

not depend on ubM for |M | > |J |.) Note that we have rewritten forms which are
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vertical for the fibration of J (n)M over J (n−1)M in terms of contact forms; thus
we have no vertical forms, but only horizontal and contact ones.

Similarly, for ξ = ξ(x, u) we have

dξk = (Diξ
k) dxi +

∂ξk

∂ub
ϑb0.

Combining these, we have shown that, in full generality,

LY (ϑaJ) = −
[
Ψa
J −

(
DiΨ

a
J − uaJ,kDiξ

k
)]

dxi + ϑ̂ (23)

for some ϑ̂ ∈ Θ.
When the coefficients of Y satisfy (21), we have therefore

LY (ϑaJ)‖mod(Θ) = −
[
(Λi)

a
b

(
Ψb
J − ubJ,kξ

k
)]

dxi

= −
(
Y [(Λi)

a
bϑ

b
J ]
)

dxi ;

in other words, if the coefficients of Y satisfy (21), then Θ is µ-preserved by Y .
Conversely, if we ask that Y µ-preserves the contact structure, we obtain

from (23) that the coefficients Ψa
J of Y necessarily satisfy (21). This completes

the proof. QED

28 Theorem. Let X = ξi(∂/∂xi) + ϕa(∂/∂ua) be a vector field in M .
Let µ = (Λi)

a
bdx

i. Then the coefficients Ψa
J of the µ-prolongation Y of X are

expressed in terms of the coefficients Φa
J of the ordinary prolongation of the

same vector field X as
Ψa
J = Φa

J + F aJ (24)

where the difference terms F aJ satisfy the recursion relation (with F a
0 = 0)

F aJ,i = [δabDi + (Λi)
a
b ] F

b
J + (Λi)

a
b DJQ

b. (25)

Proof. We denote as usual by Qa the characteristic vector of X, i.e. Qa :=
ϕa−uakξ

k. Let us consider a general Ψa
J , which we write in the form (24); again

by (21) and simple algebra, we obtain

Ψa
J,i =

(
DiΦ

a
J − uaJ,kDiξ

k
)

+
[
DiF

a
J + (Λi)

a
b

(
F bJ + Φb

J − ubJ,kξ
k
)]
.

The first term on r.h.s. is just Φa
J,i: if we write Ψa

J,i again in the form (24), this
computation shows that F aJ,i is given by the term in square brackets. We have
thus shown that

F aJ,i = [δabDi + (Λi)
a
b ] F

b
J + (Λi)

a
b

(
Φa
J − ξkubJ,k

)
. (26)
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The term in the last bracket above can be rewritten as

Φa
J − ξkubJ,k = DJQ

b ,

see [4] or proceed directly by using the relation between the prolongations of X
and of its evolutionary representative [3, 10,13].

With this, it is immediate to recognize that (26) coincides with (25). This
completes the proof. QED

Similarly to what happens for the λi in the scalar case, the (matrix) coeffi-
cients Λi of the form µ are not completely arbitrary. Consider the multiindices
J = (j1, . . . , jp) and M = (m1, . . . ,mp) with ms = js+ δi,s+ δk,s; the coefficient
Ψa
M can be obtained from Ψa

J by applying twice formula (21), but we can pro-
ceed in two different ways, i.e. pass first from Ψa

J to Ψa
J,i and then to Ψa

M , or
pass first from Ψa

J to Ψa
J,k and then to Ψa

M . Needless to say, the result must be
the same in the two cases, and this is the compatibility condition for the Λi.

29 Theorem. The compatibility condition for the matrix coefficients Λi of
the matrix valued form µ = (Λi)

a
bdx

i reads

Di Λj − Dj Λi + [Λi , Λj ] = 0 ∀i, j = 1, . . . , p. (27)

Proof. We will use the shorthand notation (∇i)
a
b = [δabDi + (Λi)

a
b ]. With

this, the vector µ-prolongation formula (21) reads

Ψa
J,k = (∇k)

a
bΨ

b
J − ubJ,m(∇k)

a
bξ
m ;

applying this twice, we get

Ψa
J,k,i =

[
(∇i∇k)

a
bΨ

b
J − ubJ,m(∇i∇k)

a
bξ
m
]
−
[
ubJ,i,m(∇k)

a
b + ubJ,k,m(∇i)

a
b

]
ξm ;

note the second square bracket is symmetric in the indices i, k. Thus
(
Ψa
J,k,i − Ψa

J,i,k

)
= [∇i,∇k]

a
bΨ

b
J − ubJ,m[∇i,∇k]

a
bξ
m.

As for the commutator [∇i,∇k], this is easily computed to be

[∇i,∇k] = DiΛk − DkΛi + [Λi,Λk] ,

i.e. the expression given in the statement, see (27). QED

30 Remark. If the Λi are of the form Λi = λi(x, u
(1))L for some constant

matrix L and the λi smooth functions on J (1)M , then the compatibility condi-
tion reduces to Diλj − Djλi = 0; i.e. the same as for the scalar case [4]. The
same holds for Λi = λmi Lm with Lm (m = 1, . . . , r) constant matrices spanning
an abelian Lie algebra, i.e. we have the set of conditions Diλ

m
j −Djλ

m
i = 0 for

all m = 1, . . . , r.
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31 Remark. One could consider cases in which the matrices Λi belong to
a gauged non abelian Lie algebra. By this we mean that

Λi = λki (x, u
(1)) Lk

with λi : J (1)M → R smooth functions and where the Lk (k = 1, . . . , r) are
generators of a (matrix) Lie algebra G, so that [Li, Lj ] = ckijLk. In this case the
compatibility condition reads

[
(Diλ

k
j −Djλ

k
i ) + ckab λ

a
i λ

b
j

]
Lk = 0 ;

needless to say, this means that the term in square brackets must vanish for each
k. For an abelian algebra, we recover the condition mentioned in the previous
remark.

7 µ-symmetries and reduction of PDE systems

We start by a definition of µ-symmetries, analogous to the one given in the
scalar case; this says that X is a µ-symmetry of a given PDEs system if its
µ-prolongation is tangent to the solution manifold of the PDEs.

32 Definition. Let (M,π,B) be a vector fiber bundle over the p-dimensional
manifold B, with fiber π−1(x) = U = Rq. Let ∆ = {∆1, . . . ,∆r} be a system
of PDEs of order n for ua = ua(x), a = 1, . . . , q, x = (x1, . . . , xp) ∈ B, with
solution manifold S∆ ⊂ J (n)M . Let X be a vector field in M , and µ a G-valued
semibasic one-form on M satisfying condition (27). Let Y be the µ-prolongation
of order n of X by this form. If Y : S∆ → TS∆, we say that X is a µ-symmetry
of ∆.

The relevance of µ-symmetries for scalar equations lied in that they can be
used to obtain invariant solutions, exactly like standard symmetries. The same
happens for the vector case.

We will assume without further mention that X satisfy the transversality
condition in the bundle (M,π,B) [10].

33 Remark. We recall that the transversality condition is generically (but
not always) satisfied when q = 1, but a relevant assumption for q > 1. The
standard PDE symmetry reduction method, extended to µ-symmetries for scalar
equations in [4], is valid only under the transversality assumption, and the same
will of course be true here, where we consider the vector case.

When transversality fails, one should in general resort to the more general
approach of Anderson, Fels and Torre [1]; in the case of partial transversality a
simpler approach is also possible, see [6]. We will not discuss µ-symmetries in
these frames.
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In the case of scalar equations, the possibility of using µ-symmetries to
perform symmetry reduction for PDEs relied ultimately on the fact that the
space IX ⊂ J (n)M of X-invariant functions, identified by Q = 0 and its dif-
ferential consequences, is invariant under vector fields Y in J (n)M which are
µ-prolongations of X [4]. Moreover, the standard and the µ-prolongations of a
vector field X coincide in IX ; so the results valid for reduction of an equation
∆ on IX under standard symmetries also hold for µ-symmetries. We want now
to prove that the same holds in the vector case.

34 Definition. Let X = ξi(∂/∂xi) + ϕa(∂/∂ua) be a vector field in M ;
denote by Qa := ϕa − uai ξ

i its characteristic vector. Then the X-invariant
manifold in J (n)M is the subset IX ⊂ J (n)M identified by DJQ

a = 0 for all
a = 1, . . . , q and all multiindices J with 0 ≤ |J | ≤ n− 1.

35 Theorem. Let µ = Λidx
i be a G-valued horizontal form satisfying (27).

Let Y be the µ-prolongation of the vector field X. Then Y coincides with the
standard prolongation of the same vector field X on IX .

Proof. This follows from theorem 6 and the definition of IX . Indeed, write
Ψa
J in the form (24), and suppose that for |J | = k the difference term F a

J is
written as a combination of the DJQ

b, i.e. F aJ = (ΓJ)abDJQ
b. Then from (25)

we have

F aJ,i = δab [Di(Γ
J)bc](DJQ

c) + (Λi)
a
b

[
(ΓJ)bc(DJQ

c) +DJQ
b
]

;

this is again a combination of terms of the form DJQ
b. Thus if the F aJ vanish

on IX for |J | = k, the F aJ with |J | ≥ k also vanish on IX .

Note that F ai = (Λi)
a
bQ

b, so that the condition is satisfied for |J | = 1, and
the proof of the theorem follows by the recursive computation above. QED

8 Examples – Scalar equations

In this section we consider examples of scalar equations (systems are consid-
ered in the next section) having nontrivial µ-symmetries; one easily determines
the corresponding reduced equations. Example 1 will be discussed in full detail,
while for the other ones we just give the relevant results.

We will only consider equations of first or second order in two independent
variables, which we denote as (x, t). That is, we have an equation for u = u(x, t).
A vector field in M will be written as

X = ξ∂x + τ∂t + ϕ∂u ,

and its characteristic will thus be Q = ϕ− uxξ − utτ .
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The µ-prolonged vector field will be

Y = X + Ψx ∂

∂ux
+ Ψt ∂

∂ut
+ Ψxx ∂

∂uxx
+ Ψxt ∂

∂uxt
+ Ψtt ∂

∂utt
. (28)

The symmetry-adapted variables will be (σ, y, v), where (y, v) correspond to
invariants.

We always compute the most general second order equation ∆ which admit
a given vector field X as a strong µ-symmetry for a certain µ = λdx + νdt;
this can be determined from the characteristic equation for the action of Y in
J (2)M . In particular, ∆ will be written as

F [y, v; ζ1, ζ2; η1, η2, η3] = 0

where F is an arbitrary smooth function of invariants y, v of order zero, ζ1, ζ2
of order one, and η1, η2, η3 of order two, for Y in J (2)M .

The reduced equation will simply be obtained by restricting the invariants
to IX ; this is obtained by resolving the equations Q = DxQ = DtQ = 0 for
three of the variables in J (2)M ; needless to say, only four of the seven invariants
will be independent on IX .

Example 1.

As a first example, to be dealt with in detail, we will consider µ-prolongations
of the scaling vector field

X = x∂x + 2t∂t + u∂u. (29)

The invariant coordinates (y, v) and the parametric coordinate σ in M =
{(x, t, u)} can be chosen as

σ = x , y = x2/t , v = u/x ;

the corresponding inverse change of variables is

x = σ , t = σ2/y , u = σv.

It follows easily that in the symmetry-adapted coordinates,

X = σ∂σ ;

hence the function v = v(σ, y) is X-invariant if and only if vσ = 0, as required
by the general method (indeed, by the very definition of symmetry-adapted
coordinates).
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The partial derivatives of u are expressed in terms of the partial derivatives
of v = v(σ, y) by applying the procedure described in sect.5 as

ux = v + 2yvy + σvσ ; ut = −(y2/σ)vy.

The above can be inverted to give vσ = (1/x)[ux + 2(t/x)ut − u/x] = −Q/x2,
vy = −[t2/x3]ut. Similarly, at second order we get

uxx = 2vσ + 6(y/σ)vy + σvσσ + 4yvσy + 4(y2/σ)vyy ,
uxt = −3(y2/σ2)vy − (y2/σ)vσy − 2(y3/σ2)vyy ,
utt = 2(y3/σ3)vy + (y4/σ3)vyy.

Let us now come to the second µ-prolongations (standard prolongations will
be obtained by setting λ = ν = 0); we write these (at order two) in the form
(28). With standard computations, i.e. using either (12) or (14), we get (recall
in this case Q = u− xux − 2tut)

Ψx = λQ
Ψt = −ut + νQ
Ψxx = −uxx + 2λ(DxQ) + [λ2 + (Dxλ)]Q
Ψxt = −2uxt + [λ(DtQ) + ν(DxQ)] + (1/2)[2λν + (Dtλ) + (Dxν)]Q
Ψtt = −3utt + 2ν(DtQ) + [ν2 + (Dtν)]Q.

Note that, as ensured by our general results, these reduce to the coefficients of
ordinary prolongations on the invariant space IX (identified byQ = 0,DxQ = 0,
and DtQ = 0).

We will now consider the simplest nontrivial choice for µ, i.e. µ = λdx, with
λ a real constant. In this case the explicit expression of Y is readily obtained
by our previous general formulae:

Ψx = λ (u− xux − 2tut) ,
Ψt = −ut ,
Ψxx = −uxx − 2λ(xuxx + 2tuxt) + λ2(u− xux − 2tut) ,
Ψxt = −2uxt − λ(xuxt + 2tutt + ut) ,
Ψtt = −3utt.

We want to discuss equations which admit X as a µ-symmetry (with this
choice), and their µ-symmetry reduction. It suffices to consider equations ad-
mitting X as a strong µ-symmetry. We define the following functions:

y := (x2/t) , v := (u/x) ;
ζ1 := xut , ζ2 := (u/x− 2tut/x− ux)e

λx

η1 := xtutt , η2 :=
(
xut + 2xtutt + x2uxt

)
eλx ,

η3 := (1/x)
[
(1 − λx)(u− xux) + 2λxtut + x2uxx + 4xtuxt + 4t2utt

]
e2λx.
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36 Proposition. Consider the equation ∆ := F [y, v, ζ1, ζ2, η1, η2, η3] = 0
with F an arbitrary smooth function of its arguments. Let λ be a real constant.
Then:

(i) The equation ∆ admits the vector field X given in (29) as a µ-symmetry,
with µ = λdx.

(ii) For (∂F/∂ζ2)
2+(∂F/∂η2)

2+(∂F/∂η3)
2 6= 0, X is not an ordinary symmetry

of ∆.

(iii) The µ-symmetry reduced equation, providing X-invariant solutions to ∆,
is given by

H[y, v, ζ1, η1] := F [y, v, ζ1, 0, η1, 0, 0] = 0. (30)

Proof. The equation ∆ : F = 0 admits X as a strong µ-symmetry if and
only if F can be written in terms of the invariants of the µ-prolongation of X,
i.e. of Y given above (invariants for the Y action in J (2)M = R8 are built with
the method of characteristics).

Let us first consider the case of first order equations. Two independent “first
order” invariants (more precisely, invariant functions on J (1)M) for Y are easily
seen to be the ζ1 and ζ2 defined above. Note that ζ1 is also an invariant for
the ordinary prolongation, while ζ2 = −(Q/x)eλx is neither an invariant nor
a relative invariant for it (due to the exponential term). Thus, any first order
equation of the form F [y, v, ζ1, ζ2] = 0 (or equivalent to such an equation [3,10,
13, 15]) admits X as a µ-symmetry (with µ = λdx); if ∂F/∂ζ2 6= 0, then X is
not an ordinary symmetry of the equation.

We can easily check that F (i.e. ζ1 and ζ2) will not depend on σ when
restricted to the invariant space vσ = 0. Indeed, using the above formulas for
ux and ut, it results ζ1 = −y2vy and ζ2 = σvσe

λσ. We recall again that, as clear
from X = σ∂σ (or from Q = −σ2vσ), the invariant space IX is identified by
vσ = 0 and the differential consequences of this.

This discussion extends to second order equations once one checks that the
η1, η2, η3 given above are indeed independent “second order” invariants (more
precisely, invariant functions on J (2)M) for Y , obviously also independent of
the ζ1, ζ2. This also completes the proof of point (i).

Note now that η1 is also a second order differential invariant for the ordinary
prolongation X(2) of X, while η2 and η3 are not. As ζ2, η2, η3 are independent,
the only way in which F of the form considered here can admit X as a standard
symmetry is by not depending on these. This proves point (ii).

Finally, note that restriction to IX does not change the form of ζ1 and η1.
From the above explicit expression of the invariants we have that ζ2 = eλxQ/x,
η2 = −xeλx(DtQ), and η3 = (e2λx/x)[(1−λx)Q−2t(DtQ)−x(DxQ)]. Therefore,
ζ2 = η2 = η3 = 0 on IX , and (30) represents indeed the reduced equation for ∆
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in the space of X-invariant functions. This proves point (iii), hence completes
the proof. QED

We would like to note that, as claimed by (30), the reduced equation corre-
sponds to the one which would be obtained by the standard symmetry reduction
(underX) of the equation F [y, v, ζ1, ζ̂2, η1, η̂2, η̂3] = 0 to IX , where ζ̂2 is obtained
from ζ2 by setting λ = 0, and the like for η̂2 and η̂3.

Finally, let us discuss a completely concrete example, albeit the procedure
here is completely analogous to the one to be followed for standard symmetries.
Consider the equation ∆ := η1 − ζ2 = 0. This is written as

xt utt + (ux + (2t/x)ut − u/x) eλx = 0

in the original coordinates; in the adapted ones it reads

y3vyy + 2y2vy + σeλσvσ = 0.

The corresponding reduced equation is

y2 [yvyy + 2vy] = 0 ;

the general solution to this is

v(y) = c1 + c2/y

where ci are real constants. Going back to the original coordinates, the corre-
sponding solutions are

u(x, t) =
c1 x

2 + c2 t

x
.

Example 2.

Consider equations given by F [y, v; ζ1, ζ2; η1, η2, η3] = 0 with F a smooth
function of its arguments, where y, v are as above, and

ζ1 = ux ; ζ2 = ut/x− (u/x− ux)/(2t) ;
η1 = xuxx , η2 = uxt + xuxx/(2t) ,
η3 = (xuxx − 3ux)/(4t

2) + uxt/t+ utt/x− ut/(xt) + 3u/(4xt2).

Then the vector field (29) is a µ-symmetry of the equation F = 0, with µ =
−(1/t)dt.

Indeed, y and v are invariants as before, and the coefficients of the second
µ-prolongation are now

Ψx = 0 , Ψt = ut − u/t+ (x/t)ux
Ψxx = −uxx , Ψxt = (x/t)uxx
Ψtt = utt − (2/t) [(ut − xuxt) − (1/t)(u− xux)] .
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One can check that ζ1, ζ2 and η1, η2, η3 are invariant. Again, ζ1 is also an in-
variant for the ordinary prolongation, while ζ2 is not. Note that in adapted
coordinates, it results ζ1 = v + σvσ + 2yvy and ζ2 = [y/(2σ)]vσ; hence on
IX , given again by vσ = 0 and differential consequences, we have ζ2 = 0 and
ζ1 = v+2yvy. Similarly η1 is invariant also for the ordinary prolongation, while
η2 and η3 are not. We omit expressions for the ηi in adapted coordinates.

Hence, any equation given by F [y, v, ζ1, ζ2, η1, η2, η3] = 0 will admit X as a
(strong) µ-symmetry, and if (∂F/∂ζ2)

2 + (∂F/∂η2)
2 + (∂F/∂η3)

2 6= 0, X is not
an ordinary symmetry.

The invariant subset IX ⊂ J (2)M is in this case identified by

ut = (u− xux)/(2t) , uxt = −xuxx/(2t) , utt = (x2uxx + xux − u)/(4t2).

The restriction of the invariant functions to IX yields ζ1 = ux, ζ2 = 0, and
η1 = xuxx, η2 = η3 = 0; hence the reduced equation will be simply

H[y, v, ζ1, η1] := F [y, v; ζ1, 0; η1, 0, 0] = 0.

Example 3.

Any equation of the form F [y, v, ζ1, ζ2, η1, η2, η3] = 0, where F is a smooth
function of its arguments and we have defined

y =
√
x2 + t2 , v = u ,

ζ1 = ux/x , ζ2 = ut − (t/x)ux ,
η1 = (r2/x3)(xuxx − ux) , η2 = (r/x3)(xtuxx − x2uxt − tux) ,
η3 = utt + (t/x3)(xtuxx − 2x2uxt − tux) ,

admits the vector field

X = x∂t − t∂x

as a µ-symmetry, with µ = −(1/x)dx.
The coefficients defining the µ-prolongation are in this case

Ψx = −(t/x)ux , Ψt = ux ,
Ψxx = (2t/x2)(ux − xuxx) ,
Ψxt = uxx − (1/x)(ux + tuxt) , Ψtt = 2uxt ;

one checks easily that y, v and the functions ζi, ηj given above are independent
invariants for Y .

The functions y, v provide invariants in M , and we can select σ = arctg(t/x);
the inverse change of coordinates is given by x = y cos(σ), t = y sin(σ), u = v.
The vector field X is then expressed as X = ∂σ
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The invariant subset IX is in this case identified by ut = (t/x)ux, uxt =
(xuxx−ux)(t/x2), utt = [xt2uxx+(x2−t2)ux]/x3. The restriction of the invariant
functions to IX yields ζ1 = ux/x, ζ2 = 0, η1 = (r2/x3)(xuxx − ux), η2 = 0,
η3 = ux/x (note η3 = ζ1); hence the reduced equation will be simply

H[y, v, ζ1, η1] := F [y, v; ζ1, 0; η1, 0, ζ1] = 0.

Example 4.

Consider equations of the form F [y, v, ζ1, ζ2, η1, η2, η3] = 0, where F is a
smooth function of its arguments and (with k = x2/(4t))

y = t , v = uek ;

ζ1 = [ux + xu/(2t)] e(k+λx) ;
ζ2 =

[
ut − (k/t)u− (λt)−1[ux + xu/(2t)]

]
ek ;

η1 =
[
(λux + uxx) + (k/t)u+ (2t)−1(u+ λxu+ 2xux)

]
e(k+2λx) ,

η2 = [−uxt + k(2λt2)−1(2 + λx)u+ (2λt)−1(2λux + 2uxx − λxut)+

+(4λt2)−1[x(4 + λx)ux + (2 + 4λx)u]] e(k+λx) ,
η3 = [16λ2t4utt − 32λt3uxt + 8t2(2uxx + 2λux − 2λxut − λ2x2ut)+

+8t
(
x(2 + λx)ux + (1 + 3λx+ λ2x2)u

)
+ x2(2 + λx)2u] (16λ2t4)−1 ek.

These admit as µ-symmetry, with µ = λdx (λ a real constant) the vector field

X = 2t ∂x − xu ∂u. (31)

The functions given above are indeed invariant under Y , the second µ-
prolongation of X; this is identified by the coefficients

Ψx = −u− xux − λxu− 2λtux , Ψt = −xut − 2ux ;
Ψxx = −2ux − xuxx − 2λ(u− xux − 2tuxx) − λ2(xu+ 2tux) ,
Ψxt = −ut − 2uxx − xuxt − λ(2ux + 2tuxt + xut) , Ψtt = −4uxt − xutt.

The invariant subset IX is identified by ux = −xu/(2t), uxt = x(u −
tut)/(2t

2), uxx = (x2 − 2t)u/(4t2). Restriction of the invariant functions to
IX yields ζ1 = 0, ζ2 = ζ0

2 := (ut − ku/t)ek, η1 = 0, η2 = 0, η3 = η0
3 :=

[utt− (x2/(2t2))ut+((x4 +8tx2)/(16t4))u]ek. The reduced equation will be sim-
ply

H[y, v, ζ0
2 , η

0
3] := F [y, v; 0, ζ0

2 ; 0, 0, η0
3] = 0.
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Example 5.

Any equation of the form F (y, v; ζ1, ζ2; η1, η2, η3) = 0 with F a smooth func-
tion of its arguments, which are (with k = x2/(4t))

y = t , v = uek ;
ζ1 = (ux/x)e

k , ζ2 = ut/u+ (1/t) log(u) ;
η1 = (ek/x3) (xuxx − ux) , η2 = ek [uxt/x− xux/(4t

2)] ,
η3 = −(utt/u) + (1/t2) log(u) [2(1 − t[ut/u+ (1/t) log(u)]) + log(u)] ,

admits the same vector field (31) as a (strong) µ-symmetry, with µ = −[(1/x)dx+
(1/t)dt].

In this case the coefficients of the vector field Y are given by

Ψx = (−x+ 2t/x)ux ,
Ψt = −xut + (x/t)u ,
Ψxx = (−x+ 4t/x)uxx − (4t/x2)ux ,
Ψxt = (−x+ 2t/x)uxt + (x/t)ux ,
Ψtt = −xutt + (2x/t)ut − (2x/t2)u.

The invariant set IX is identified by ux = −xu/(2t), uxt = x(u− tut)/(2t
2),

uxx = (x2 − 2t)u/(4t2). Restriction of the invariant functions to IX yields

ζ1 = ζ0
1 := −uek/(2t) , ζ2 = ut/u+ [log(u)]/t ;

η1 = η0
1 := uek/(4t2) , η2 = η0

2 := −[4t2ute
k − (x2 + 4t)uek]/(8t3) ,

η3 = η0
3 := −[t2utt + 2(tut − u) log(u) + u(log(u))2]/(t2u).

Note that these are functionally dependent:

ζ0
1 = g1(y, v) := −v/(2y) ,
η0
1 = g2(y, v) := v/(4y2) ,
η0
2 = g3(y, v, ζ2) := [v/(2y2)] [1 + log(v) − y ζ2].

The reduced equation will be simply

H[y, v, ζ2, η
0
3] := F [y, v; g1(y, v), ζ2; g2(y, v), g3(y, v, ζ2), η3] = 0.

Example 6.

In previous examples the functions λ and ν in µ = λdx + νdt were always
depending only on x and t; in this last example they will depend on first order
derivatives of the u.
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Any equation of the form F (y, v; ζ1, ζ2; η1, η2, η3) = 0 with F a smooth func-
tion of its arguments, which are

y = t , v = u/x ;
ζ1 = u+ log[1 − u/(xux)] , ζ2 = −(uut)/(x

2ux) ;
η1 = −e2u

[
u/(x2u3

x)
] [
u2(u2

x − uxx) + xu3
x − (1 + xux)uu

2
x

]
,

η2 = eu
[
u2/(x3u3

x)
]

[xuxuxt − (ux + xuxx)ut] ,
η3 =

[
u/(x3u3

x)
] [
xu2

xutt − 2xuxutuxt + (2ux + xuxx)u
2
t

]
,

admits the vector field

X = x ∂x + u ∂u

as a (strong) µ-symmetry, with µ = uxdx+ utdt.
In this case the coefficients of the vector field Y are given by

Ψx = uux − xu2
x , Ψt = ut(1 + u− xux) ,

Ψxx = uxx(u− 1 − 3xux) + u2
x(u− xux) ,

Ψxt = uxt(u− 2xux) − xutuxx + utux(1 + u− xux) ,
Ψtt = utt(1 + u− xux) − 2xutuxt + (2 + u− xux)u

2
t .

The invariant set IX is given by ux = u/x, uxt = ut/x, uxx = 0. Restriction
of the invariant functions to IX yields ζ1 = ζ0

1 := u/x = v, ζ2 = ζ0
2 := −ut/x,

η1 = η2 = 0, η3 = η0
3 := utt/x. We stress that this expression for ζ1 is not

obtained by a direct substitution: indeed now Q = 0 means ux = u/x; the
general expression for ζ1 given above becomes singular, but the expression for
Ψx guarantees that ux is constant, and actually equal to u/x = v on Q = 0.

The reduced equation will be simply

H[y, v, ζ0
2 , η

0
3] := F [y, v; v, ζ0

2 ; 0, 0, η0
3] = 0.

9 Examples – Systems of PDEs

In this final section we present examples illustrating the result discussed in
sections 6 and 7 above, with systems of two second order equations for functions
(u, v) of two independent variables (x, y). In the first two examples (7 and 8)
the matrices Λi are actually constant multiples of the identity; in example 9
this is not the case, but Λi are still constant, and in example 10 the Λi are
neither constant nor multiples of the identity. In example 11 we briefly consider
a ”gauged” µ-symmetry.

It should be noted that here we build examples of systems of equations for
which the considered vector field X is a strong µ-symmetry, i.e. each equation
of the system admits X as a strong µ-symmetry: Y (∆i) = 0 for i = 1, . . . , r.
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Needless to say, one could – starting from the formulas we provide – build
examples of equations admitting the same vector fields X as “ordinary” µ-
symmetries with standard techniques. That is, let A be a r × r matrix smooth
function, A : J (n)M → Mat(r), and consider a system of equations ∆̂i = 0,
i = 1, . . . , r (solution manifold Ŝ) with ∆̂i := Aij∆j . Note that A will in general
depend on the ∆i as well as on the coordinate along the Y characteristic, say
w. We assume ||A|| is nowhere zero, so this has the same set of solutions as the
“old” system ∆i = 0 (solution manifold S). Applying Y to the “new” system,
we have Y (∆̂i) := Y (Aij)∆j +AijY (∆j); the last term vanishes by hypothesis,

and we are left with Y (∆̂i) := Y (Aij)∆j = Y (Aij)A
−1
jk ∆̂k, which vanishes on S,

i.e. – as Ŝ = S – on solutions to the system.

Example 7.

We consider first a very simple example of µ-symmetric PDEs in two in-
dependent and two dependent variables, which we denote as (x, y) and (u, v)
respectively, with matrices Λ which are actually multiples of the identity matrix;
this is quite related to example 1 above.

Let us consider the vector field

X = x
∂

∂x
+ 2y

∂

∂y
+ u

∂

∂u
+ 2v

∂

∂v

and the form

µ =

(
λ 0
0 λ

)
dx

with λ a real constant; this corresponds to matrices Λi given by

Λ(x) = λI , Λ(y) = 0.

By applying the vector µ-prolongation formula (21), or using theorem 6 and
(24), (25), we determine the second µ-prolongation Y of X; with the notation
introduced above, the result is the following:

Ψ1
x = λ (u− ux x− 2uy y)

Ψ1
y = −uy

Ψ1
xx = −uxx + λ (−2uxx x− 4uxy y) + λ2 (u− ux x− 2uy y)

Ψ1
xy = −2uxy + λ (−uy − uxy x− 2uyy y)

Ψ1
yy = −3uyy

Ψ2
x = vx + λ (2 v − vx x− 2 vy y)

Ψ2
y = 0

Ψ2
xx = λ (2 vx − 2 vxx x− 4 vxy y) + λ2 (2 v − vx x− 2 vy y)

Ψ2
xy = −vxy + λ (−(vxy x) − 2 vyy y)

Ψ2
yy = −2 vyy.
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We can then solve the characteristic equation for the flow of Y in J (2)M ,
and determine a basis of Y -invariant functions. Such a basis, obtained in this
way, is provided by the following set of functions:

ρ = x2/y ,
w1 := u/x ,
w2 := v/x2 ;
ζ1 := yuy/x ,
ζ2 := (ux + 2yuy/x− u/x)eλx ,
ζ3 := vy ,
ζ4 := (vx/x− 2v/x2 + 2yvy/x

2)eλx ;
η1 := x2vyy ,
η2 := x3uyy ,
η3 := (xvxy + 2yvyy)e

λx ,
η4 := (x2uxy + xuy + 2xyuyy)e

λx ,
η5 := [vxx + 4v/x2 − 3vx/y + 4yuxy − 4yvy/x

2 + 4yuy/x+
−4y2vyy/x

2 + 8y2uyy/x+ λ(vx − 2v/x+ 2yvy/x)]e
2λx ,

η6 := [−ux + u/x+ xuxx + 4yuxy + 4y2uyy/x+
+λ(−u+ xux + 2yuy)]e

2λx.

(32)

Any (system of) second order equation of the form

F i [y, w1, w2; ζ1, . . . , ζ4; η1, . . . , η6] = 0 (33)

with F i (i = 1, . . . , n) a smooth function of its arguments, admits X as a
(strong) µ-symmetry.

In order to consider the µ-symmetry reduced equation, it suffices to consider
the restriction of the functions ζi, ηj on IX . (Note that on IX the µ-prolongation
and the ordinary prolongation coincide, see theorem 8; hence also the invariant
of these two vector fields in J (n)M coincide when restricted to IX .)

The manifold IX is identified by Q = DxQ = DyQ = 0; in the present case
these read

Q1 := u− xux − 2yuy = 0
Q2 := 2v − xvx − 2yvy = 0
DxQ

1 := −xuxx − 2yuxy = 0
DxQ

2 := vx − xvxx − 2yvxy = 0
DyQ

1 := −uy − xuxy − 2yuyy = 0
DyQ

2 := −xvxy − 2yvyy = 0

and the solution is provided by

uy = (u− xux)/(2y) , uxy = −(xuxx)/(2y) , uyy = −(uy + xuxy)/(2y) ;
vy = (2v − xvx)/(2y) , vxy = (vx − xvxx)/(2y) , vyy = −(xvxy)/(2y).
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Substituting these into (32) above, we obtain the expressions for the reduc-
tion of first and second order Y -invariants restricted to IX ; these are

ζ0
1 = (u− ux x) / (2x) , ζ0

2 = 0 ,
ζ0
3 = (2v − xvx) / (2y) , ζ0

4 = 0 ;
η0
1 =

(
x3 (−vx + xvxx)

)
/
(
4y2
)
,

η0
2 =

(
x3 (−u+ x (ux + xuxx))

)
/
(
4y2
)
,

η0
3 = 0 , η0

4 = 0 , η0
5 = 0 , η0

6 = 0.

Thus, the X-invariant solutions of (33) are obtained as solution of the re-
duced (system of) equations

H i[y, w1, w2; ζ
0
1 , ζ

0
3 , η

0
1, η

0
2] := F i

[
y, w1, w2; ζ

0
1 , 0, ζ

0
3 , 0; η

0
1, η

0
2, 0, 0, 0, 0

]
= 0.

Example 8.

As a second example we consider the vector field

X = −x ∂x + u ∂u (34)

and the form

µ =

(
dx− dy 0

0 dx− dy

)
;

this corresponds to matrices Λi given by

Λ(x) = I , Λ(y) = −I.

The second µ-prolongation Y of X is now identified by:

Ψ1
x = u+ ux − ux (−1 − x) ,

Ψ2
x = −(vx (−1 − x)) ,

Ψ1
y = −u+ uy − ux x ,

Ψ2
y = −(vx x) ,

Ψ1
xx = u+ 3ux − ux (−1 − x) − uxx (−1 − x) + uxx (2 + x) ,

Ψ2
xx = vx − vx (−1 − x) − vxx (−1 − x) + vxx (1 + x) ,

Ψ1
xy = −u− ux + uy + ux (−1 − x) − uxx x+ uxy (2 + x) ,

Ψ2
xy = vx (−1 − x) − vxx x+ vxy (1 + x) ,

Ψ1
yy = u− 2uy + uyy + ux x− 2uxy x ,

Ψ2
yy = vx x− 2 vxy x.
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We can then solve the characteristic equation for the flow of Y in J (2)M ,
and determine a basis of Y -invariant functions. Such a basis is now given by:

ρ = y ,
w1 = xu ,
w2 = v ;
ζ1 = ex (xu+ x2ux) ,
ζ2 = exxvx ,
ζ3 = vy − exxvxEi(−x) ,
ζ4 = xuy − ex(xu+ x2ux)Ei(−x) ;
η1 = ex [−2exxu+ exx3uxx + 3exx(u+ xux) + exx2(u+ xux)] ,
η2 = ex[exxvx + exx2vx + exx2vxx] ,
η3 = −exx{−(uy + xuxy) + ex[u(1 + x) + x(3ux + xux + xuxx)]Ei(−x)} ,
η4 = exx[vxy − ex(vx + xvx + xvxx)Ei(−x)] ,
η5 = xuyy + ex(xu+ x2ux)Ei(−x)+

−ex[−2exxu+ exx3uxx + 3ex(xu+ x2ux) + exx(xu+ x2ux)] (Ei(−x))2 +
+2exxEi(−x){−uy − xuxy + ex[u(1 + x) + x(3ux + xux + xuxx)]Ei(−x)} ,

η6 = xEi(−x) − ex(exxvx + exx2vx + exx2vxx) (Ei(−x))2 +
−2exxEi(−x) [vxy − ex(vx + xvx + xvxx)Ei(−x)].

(35)
Here the function Ei is the gaussian integral

Ei(z) := −
∫ ∞

−z
t−1 e−t dt.

Any (system of) second order equation of the form

F i [y, w1, w2; ζ1, . . . , ζ4; η1, . . . , η6] = 0 (36)

with F i a smooth function of its arguments, admits X as a (strong) µ-symmetry.
Let us consider the restriction of the functions ζi, ηj on IX . In the present

case, in order to identify IX we have to solve

u+ xux = 0 , 2ux + xuxx = 0 , uy + xuxy = 0 ;
xvx = 0 , vx + xvxx = 0 , xvxy = 0 ;

and the manifold IX is hence given by

ux = −u/x , uxy = −uy/x , uxx = 2u/x2 ,
vx = 0 , vxy = 0 , vxx = 0.

Substituting these into (35) above, we obtain the expressions for the reduc-
tion of first and second order Y -invariants to IX ; these are

ζ0
1 = 0 , ζ0

2 = 0 , ζ0
3 = vy , ζ

0
4 = xuy ;

η0
1 = η0

2 = η0
3 = η0

4 = 0 ; η0
5 = xuyy , η

0
6 = vyy.
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Thus, the X-invariant solutions of (36) are obtained as solution of the re-
duced (system of) equations

H i[y, w1, w2; vy, xuy, xuyy, vyy] := F i
[
y, w1, w2; 0, 0, ζ

0
3 , ζ

0
4 ; 0, 0, 0, 0, η0

5, η
0
6

]
= 0.

Example 9

Let us now consider again the vector field (34), but now with the form

µ =

(
λ1dx −λ2dy
λ2dy λ1dx

)
,

with λi real constants; this corresponds to matrices Λi given by

Λ(x) = λ1I , Λ(y) = λ2

(
0 −1
1 0

)
.

The second µ-prolongation Y of X is identified by:

Ψ1
x = 2ux + λ1(u+ xux) ,

Ψ2
x = vx(1 + λ1x) ,

Ψ1
y = uy − λ2xvx ,

Ψ2
y = λ2(u+ xux) ,

Ψ1
xx = 3uxx + 2λ1(xuxx + 2ux) + λ2

1(xux + u) ,
Ψ2
xx = 2vxx + 2λ1(xvxx + vx) + λ2

1xvx ,
Ψ1
xy = 2uxy + λ1(uy + xuxy) − λ2(vx + xvxx) − λ1λ2xvx ,

Ψ2
xy = vxy + λ1xvxy + λ2(2ux + xuxx) + λ1λ2(u+ xux) ,

Ψ1
yy = uyy − 2λ2xvxy − λ2

2(u+ xux) ,

Ψ2
yy = −λ2xvx + 2λ2

2(uy + xuxy).

We can then solve the characteristic equation for the flow of Y in J (2)M ,
and determine a basis of Y -invariant functions.
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A basis of Y -invariant functions in J (2)M is now given by:

ρ = y ,
w1 = xu ,
w2 = v ;
ζ1 = eλ1 x x (u+ ux x) ,
ζ2 = eλ1 x vx x ,
ζ3 = vy − λ2 (u+ ux x) − eλ1 x λ1 λ2 x (u+ ux x) Ei(−(λ1 x)) ,
ζ4 = (uy + (λ2 vx) / (λ1))x ;
η1 = e2λ1x (ux+ 3ux x

2 + uxx x
3 + λ1 (ux2 + ux x

3)) ,
η2 = e2λ1 x x (vx + λ1 vx x+ vxx x) ,
η3 = eλ1x [(uy + xuxy) + (λ2/λ1)(2vx + xvxx)] ,
η4 = eλ1x[xvxy − λ2(2xux + x2uxx) − λ1λ2(xu+ x2ux)]+

−e2λ1x[λ1λ2(xu+ 3x2ux + x3uxx) + λ2
1λ2(x

2u+ x3ux)][Ei(−λ1x)] ,
η5 = xuyy + 2(λ2/λ1)xvxy − λ2

2[2x(u+ xux) + (2/λ1)(2xux + x2uxx)]+
+eλ1x[λ2

2(xu+ x2ux)]Ei(−λ1x) − e2λ1x[λ2
2(4(xu+ 3x2ux + x3uxx)+

+λ1(x
2u+ x3ux))]Ei(−2λ1x) ,

η6 = −2λ2 vxy + vyy + λ2
2 (2λ1 (u+ ux x) + 2 (2ux + uxx x+ vx x)+

+(2 (2 vx + vxx x)) / (λ1)) +
+ 2 e2λ1 x λ2

2 x (2 (vx + λ1 vx x+ vxx x) Ei(−2λ1 x)+

+λ1
2 (u+ λ1 ux+ x (3ux + λ1 ux x+ uxx x)) Ei(−(λ1 x))

2)+
+eλ1 x λ2 (3λ2 vx x+ 4λ1

2 λ2 x (u+ ux x) + 2λ1 (−(vxy x)+
+λ2 (u+ 5ux x+ 2uxx x

2))) Ei(−(λ1 x)).

(37)

As usual, any (system of) second order equation of the form

F i [y, w1, w2; ζ1, . . . , ζ4; η1, . . . , η6] = 0 (38)

with F i a smooth function of its arguments, admits X as a (strong) µ-symmetry.
Let us consider the restriction of the functions ζi, ηj on IX . In the present

case IX is given by

ux = −u/x , uxy = −uy/x , uxx = 2u/x2 ,
vx = 0 , vxy = 0 , vxx = 0.

Substituting these into (37) above, we obtain the expressions for the reduc-
tion of first and second order Y -invariants restricted to IX ; these are

ζ0
1 = 0 , ζ0

2 = 0 , ζ0
3 = vy , ζ

0
4 = xuy ;

η0
1 = η0

2 = η0
3 = η0

4 = 0 ; η0
5 = xuyy , η

0
6 = vyy.

Thus, the X-invariant solutions of (38) are obtained as solution of the re-
duced (system of) equations

H i[y, w1, w2; vy, xuy, xuyy, vyy] := F i
[
y, w1, w2; 0, 0, ζ

0
3 , ζ

0
4 ; 0, 0, 0, 0, η0

5, η
0
6

]
= 0.
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Example 10

We consider next the elementary vector field generating a scaling in x,

X = x∂x

and the form

µ =

(
−(x/y)dy −ydx+ (x2 − x)dy
−(1/y2)dy (x/y)dy

)
;

this corresponds to matrices

Λx =

(
0 −y
0 0

)
, Λy =

1

y2

(
−xy (x2 − x)y2

1 xy

)
.

The coefficients of the second µ-prolongation Y are given by

Ψ1
x = −ux + xyvx ,

Ψ2
x = −vx ,

Ψ1
y = (x2 − x3)vx + (x2/y)ux ,

Ψ2
y = (x/y2)ux − (x2/y)vx ;

Ψ1
xx = −2uxx + 2yvx + 2xyvxx ,

Ψ2
xx = −2vxx ,

Ψ1
xy = −uxy + xvx + (x− x2)vx + (x2 − x3)vxx + (x2/y)uxx + xyvxy+

+(x/y)(ux − xyvx) ,
Ψ2
xy = −vxy + (x/y2)uxx − (x/y)vx − (x2/y)vxx + (1/y2)(ux − xyvx) ,

Ψ1
yy = 2x(x− x2)vxy − (x− x2)[(x/y2)ux − (x2/y)vx] − (x2/y2)ux+

+2(x2/y)uxy − [(x2/y)(x− x2)vx + (x3/y2)ux] ,
Ψ2
yy = (1/y){−2(x/y3)ux + 2(x/y2)uxy + (x2/y2)vx+

−(1/y2)[x(x− x2)vx + (x2/y)ux] − 2(x2/y)vxy + (x2/ys)ux − (1/(xy))vx}.

A basis for the Y -invariant functions in J (2)M is provided by:

ρ = y , w1 = u , w2 = v ;
ζ1 = xux − x2yvx ,
ζ2 = xvx ,
ζ3 = (1/y)[yuy − x2yvx − x(xux − x2yvx)] ,
ζ4 = vy − (1/y2) (xux − x2yvx) log(x) ;
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η1 = x2uxx − 2x2yvx − 2x3yvxx ,
η2 = x2vxx ,
η3 = x[uxy − x(2vx + xvxx + yvxy)] ,
η4 = −(1/y2){xy(xvx + x2vxx − yvxy)+

+x[ux + x(uxx − 3yvx − 2xyvxx)] log(x)} ,
η5 = (1/y2)[4x2ux + 2x3uxx + y(−2x2uxy − 4x3vx − 2x4vxx+

+yuyy − 2x2yvxy + 2x3yvxy)] ,
η6 = (1/y3){−2x2yvx − 2x3yvxx + y3vyy+

+2x[ux + y(xvx + x2vxx + xyvxy − uxy)] log(x)}.
As usual, any (system of) second order equation of the form

F i [y, w1, w2; ζ1, . . . , ζ4; η1, . . . , η6] = 0 ,

F i a smooth function of its arguments, admits X as a (strong) µ-symmetry.
The system identifying IX is now given by

xux = 0, ux + xuxx = 0, xuxy = 0,
xvx = 0, vx + xvxx = 0, xvxy = 0 ;

thus IX is the linear space on which

ux = uxx = uxy = 0 ; vx = vxx = vxy = 0.

Restriction of the invariant functions given above to this space yields

ζ0
1 = ζ0

2 = 0 , ζ0
3 = uy , ζ

0
4 = vy ;

η0
1 = η0

2 = η0
3 = η0

4 = 0 , η0
5 = uyy , η

0
6 = vyy.

The reduced system is therefore

H i[y, u, v;uy, vy, uyy, vyy] = F i[y, u, v; 0, 0, uy, vy; 0, 0, 0, 0, uyy, vyy] = 0.

Example 11

We consider now a case in the frame mentioned in remark 5 above, i.e. with
Λi belonging to a gauged (abelian) matrix algebra. The simplest occurrence is
provided by G = so(2), with only one generator L, i.e.

L =

(
0 −1
1 0

)
.

We will consider one such example, keeping to first order equations and to a
very simple vector field X, i.e.

X = ∂y.
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Also, to avoid dealing with exceedingly complicate formulas, we will select a
special form for the functions λi (i = 1, 2):

λi = Di[xy + α(x)] ; Λi = λi L.

In this way we get

µ =

(
0 −[(y + α′(x))dx+ xdy]

[(y + α′(x))dx+ xdy] 0

)
.

The coefficients of the first µ-prolongation of X are given by:

Ψ1
x =

(
y2 + yα′(x)

)
vy , Ψ1

y = −uy + xyvy ,

Ψ2
x = −

(
y2 + yα′(x)

)
uy , Ψ2

y = −vy − xyuy.

A basis of invariant functions for this is given by

ρ = x , w1 = u , w2 = v ;
ζ1 = (1/x) [xux − yuy − xyCi(xy) (cos(xy)vy + sin(xy)uy)) α

′(x)
+xy Si(xy) (cos(xy)uy − sin(xy)vy) α

′(x)] ,
ζ2 = (1/x) [xvx − yvy + xyCi(xy) (cos(xy)uy − sin(xy)vy) α

′(x)
+xy Si(xy) (cos(xy)vy + sin(xy)uy) α

′(x)] ,

ζ3 = −y
√

(u2
y + v2

y) ,

ζ4 = xy − arccos
[
−uy/

√
(u2
y + v2

y)
]
.

Here Ci(z) and Si(z) are the integral cosine and sine functions, defined by

Ci(z) := −
∫ ∞

z

cos(t)

t
dt , Si(z) :=

∫ z

0

sin(t)

t
dt.

The invariant manifold IX is obviously identified by uy = vy = 0. On this
the invariant function ζ4 given above is singular, while the other reduce to

ζ1 = ux , ζ2 = vx , ζ3 = 0.

We can still state that any system of equations of the form

F a[x, u, v, ζ1, ζ2, ζ3] = 0

admits X as a (strong) µ-symmetry, and its X-invariant solutions are given by
the system

Ha[x, u, v, ζ1, ζ2, ζ3] := F a[x, u, v, ux, vx, 0] = 0.
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10 Conclusions and outlook

In this paper, we have given a geometrical characterization of the λ-symmetry
introduced by Muriel and Romero [8] and further studied by Pucci and Sacco-
mandi [12]. This geometrical characterization is readily extended to the case
of several independent variables, i.e. of PDEs. The central object in this frame
is a horizontal one-form µ = λi(x, u, ux)dx

i, which must satisfy some compat-
ibility conditions. In the scalar case (one dependent variable) these are simply
Diλj = Djλi, which means µ is locally the total derivative of a function P (x, u),
µ = DP = (DiP )dxi.

With this setting, it is also possible to deal with systems of PDEs (say q de-
pendent variables); in this case the form µ is matrix-valued, µ = Λi(x, u, ux)dx

i

with Λi nonsingular q-dimensional matrices. The compatibility conditions are
now written as DiΛj −DjΛi + [Λi,Λj ] = 0.

In this note we have not fully investigated the geometrical meaning of these;
this will be discussed in a forthcoming paper [2], and is related to the Maurer-
Cartan equation.

It should also be mentioned that in order to consider µ-symmetries of a
given differential equation (or system) ∆, it suffices that µ satisfies the com-
patibility conditions on S∆ ⊂ J (n)M rather than on the full jet space J (n)M .
This corresponds to considering ”internal µ-symmetries” rather than ”external”
ones [7].

We have also shown that µ-symmetries are as useful as standard ones in
finding explicit (invariant) solutions of differential equations.

Let us now mention some direction of further development of our approach
to µ-symmetries.

• We have shown by explicit examples that it is easy to build equations
with nontrivial µ-symmetries; as for the problem of determining the µ-
symmetries of a given equation, we refer to the discussion given in [4].

• In a forthcoming paper [2] we will also extend the concept of µ-symmetries
to conditional and partial symmetries, and show again how µ-partial sym-
metries can lead to determination of explicit solutions to (systems of)
PDEs.

• Finally, we also mention that µ-symmetries are related to nonlocal stan-
dard symmetries of exponential type; we refer again to [2, 4] for this and
for explicit examples.
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