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In this paper, we improve the robustness of Machine Learning (ML) classifiers against training-

time attacks by linking the risk of training data being tampered with to the redundancy in the ML 
model’s design needed to prevent it. Our defense mechanism is directly applicable to classifiers’ 
training data, without any knowledge of the specific ML model to be hardened. First, we compute 
the training data proximity to class separation surfaces, identified via a reference linear model. 
Each data point is associated with a risk index, which is used to partition the training set by an 
unsupervised technique. Then, we train a learner for each partition and combine the learners’ 
output in an ensemble. Our method treats the protected ML classifier as a black box and is 
inherently robust to transfer attacks. Experiments show that, for data poisoning rates between 
6 and 25 percent of the training set, our method is more robust compared to benchmarks and to a 
monolithic version of the model trained on the whole training set. Our results make a convincing 
case for adopting training set partitioning and ensemble generation as a stage of ML models’ 
development and deployment lifecycle.

1. Introduction

Machine Learning (ML) models have been successfully applied across a wide range of domains, especially after the advent of 
Deep Learning [1]. However, adversaries can attack ML models by interfering with the training phase or at the inference phase, 
after the model has been deployed. Data poisoning attacks occur when adversaries interfere with the learning process of a model 
by maliciously modifying a portion of the samples used to train it. A survey by Kumar et al. [2] found that industry practitioners 
consider training data poisoning as a major threat, claiming that they are not adequately equipped to defend, detect and react to 
data poisoning attacks.

Most defense techniques used against data poisoning attacks focus on protecting specific learning algorithms. They work in 
ideal scenarios, where defenders are well aware of which malicious actions will be taken against their training data and can react 
accordingly. In practice, defenders hardly ever know which type of attack will be launched, and even less the exact data points that 
will be targeted (excluding trivial cases such as outliers). In this paper, we help defenders to estimate which training data points 
should be considered at risk. To this end, we use the training set to generate a linear classifier and compute the hyper-planes it uses 
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as decision boundaries between classes. Then, we assign a risk index to training data points by using an iterative procedure that takes 
into account their distance from such hyper-planes. The result is a risk map of the training set that defenders can use to adapt their 
defense strategy.

Based on this map, we describe a defense strategy against poisoning attacks based on ensemble methods. The purpose of classical 
ensemble learning is to improve generalization capabilities in non-adversarial settings [3]. We deploy an ensemble system composed 
of multiple learners to improve the robustness of ML models. Our approach is based on partitioning the training data set using an 
unsupervised technique (anti-clustering) that takes into account our risk map. The main advantage of our approach is that it is generic 
enough to be used in different settings. It does not require the defended model to be linear, and supports protection of all types of 
learners.

Our work is also relevant to attack modeling, where existing work mainly focuses on how to attack ML algorithms by injecting 
small fractions of well-crafted adversarial samples [4] into the training data set. These attack strategies rely on worst-case analysis 
where the modifications introduced into the training set are designed to maximize the damage on the targeted learning algorithm. 
However, they are strongly tied to the attacker being aware of the exact training algorithm used for the model under attack and able 
to exploit feedback from the attacked ML model to compute optimal attack instances [5].

We make a much more restrictive assumption on the adversary’s knowledge: we assume the attacker is not aware of the model 
she will be attacking, although she has access to the training set that will be used to train it. Obviously, lacking the information to 
maximize a model-specific objective function, the attacker will have to devise an alternative strategy to decide which data points to 
attack. We assume that, as in the case of the defender, the attacker uses a reference linear model and preferentially attacks the points 
of the training set on the basis of their proximity to the separation surface. While this strategy may not be optimal with respect to a 
specific target model, it is optimal with respect to the information available to the attacker.

To the best of our knowledge, this is the first paper explicitly linking the risk of ML training data being tampered with to the 
redundancy in the ML model’s design needed to prevent it.

The main advantage of our defense mechanism is that it is directly applicable to training data, without any knowledge of the 
underlying ML model. We rely on a linear reference model to represent the attacker’s (and the defender’s) knowledge about the 
ML-based system we intend to harden. Thus, our technique treats the protected model as a black box, which makes it inherently 
more robust to transfer attacks.

The rest of the paper is organized as follows. In Section 2, we survey related work in the area of adversarial attacks to ML. In 
Section 3, we present the first component of our defence framework, i.e. a method for assessing the risk associated with ML training 
data. The problem definition and the adversarial threat model are outlined in Sections 4 and 5, respectively. In Section 6, we detail 
our anti-clustering partition strategy for improving the robustness of ML models via ensemble composition. In Section 7, we show 
our experimental results. Finally, in Section 8, we draw our conclusions and discuss further research avenues.

2. Related work

Previous work has investigated strategies for mitigating data poisoning attacks at different stages of the ML pipeline. Many of 
the proposed techniques have limitations in terms of applicability, the type of attack they protect against, their effect on accuracy; 
also, they increase the training’s complexity. In this section, we provide a synthetic overview of some approaches proposed in the 
literature. A complete survey can be found in [6].

A popular defence strategy against data poisoning attacks is training data pre-filtering, which identifies the directions along which 
poisoned data points deviate from their non-corrupted counterparts, and then sanitizes the training set by excluding the outliers 
along these directions [7]. Pre-filtering draws on robust statistics, which has been studying the fundamental problem of learning in 
the presence of outliers since the 1960s [8]. Recently, this problem has gathered renewed attention due to the pressing need to design 
robust ML models for high-dimensional data sets [9]. Paudice et al. [7] proposed a data sanitization mechanism to identify and re-

label suspect training points. Their approach detects samples having a negative impact on the performance of ML classifiers and makes 
use of a k-Nearest-Neighbors (k-NN) model to assign to each of these samples the most common label among its 𝑘 nearest neighbors. 
Unfortunately, outlier-based defences have been proven to be vulnerable to adaptive attacks that explicitly attempt to evade anomaly 
detection [10]. Another important family of defense techniques relies on model enhancement to augment the training set and/or 
harden the ML model to counter the effect of poisoning. Borgnia et al. [11] investigated the effects of data augmentation schemes on 
data poisoning and demonstrated that some data augmentation techniques such as mix-up and cutout can desensitize ML models to 
hostile perturbations of training data. These strategies can be viewed as the defense counterpart of adversarial poisoning [12], because 
they use adversarial training (which is commonly used as a defence against inference-time adversarial attacks) to defend ML models 
against training-time attacks. Albeit promising, this line of research is still in its infancy. At present, these techniques lack formal 
guarantees on their convergence and on the robustness properties they provide.

A line of work closer to ours tries to reduce the influence of poisoned samples via partitioning the training set and using each 
partition to train a different learner. The problem here is how to aggregate the learners’ outputs to minimize the poisoning effects. 
Early studies focused on the standard Bootstrap aggregation (or bagging) framework [13], arguing that, in addition to accuracy, bag-

ging can also improve robustness in adversarial settings. Biggio et al. [14] described an empirical defence based on such framework. 
They experimentally investigated whether bagging ensembles can be exploited to build robust classifiers against poisoning attacks, 
assessing the effectiveness of the approach on a spam filter and on a web-based intrusion detection system. The same authors in-
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vestigated the use of bagging and random subspace methods [15] for constructing robust systems of multiple classifiers, extending 
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the preliminary results presented in [16]. This early work provided neither a formal definition of robustness neither a proof that the 
application of bagging would achieve it.

More recently, research has focused on designing ad-hoc intelligent data partitioning schemes [17] leading to provably robust defences

against data poisoning [18]. Some works focused on distributional robustness guarantees [19], while others focused on point-wise 
certified robustness [20].

Jia et al. [21] leveraged the intrinsic majority vote mechanism of k-NN and r-NN (radius Nearest Neighbors) and showed that they 
provide deterministic certified accuracy against both data poisoning and backdoor attacks.

Levine and Feizi [22] proposed a certifiable ensemble-based method where the partitioning of the training set into disjoint subsets 
is deterministically performed via locality-sensitive hashing (LSH), i.e. by computing a function that maps the 𝑛-dimensional training 
𝑇 into another 𝑛-dimensional set 𝑇 ′, without preserving the distance between samples that were close to each other in 𝑇 .

The diversity of the above defense techniques makes it difficult to compare them based on their original validation experiments, 
which use different data sets and parameters. Also, there is still no consensus in the literature on the robustness metrics to be used, 
although some quantitative metrics of model robustness in face of label-flipping attacks have been proposed [23]. In Section 7 we 
will rely on LSH to generate a benchmark and define a common metric based on certified accuracy.

3. Risk analysis of ML data assets

3.1. Risk estimation techniques

Assessing the risk of an attack to a given asset requires two estimations: the one of the attack’s severity, based on the affected 
assets’ value, and the one of the attack’s likelihood, based on the known threats and vulnerabilities. The product of severity and 
likelihood is often used as the reference equation for risk quantification [24], 𝑅 = 𝑆 ×𝐿, where 𝐿 is a measure of likelihood and 𝑆
is a severity value expressed in monetary units. Recent studies [25] introduced the notion of risk index as a joint quantification of 
severity and likelihood that can be quantized into discrete levels, e.g., high risk, medium risk, low risk, or computed as a continuous risk 
score. In terms of the data tampering risk, computing the risk score of individual data points can be modeled as learning a function 
on the data space, and is itself suitable for the application of ML models. A wide range of methods has been proposed to learn risk 
from examples, most of them assuming a linear regression model [25] where the risk score varies linearly with the distance in the 
data space. However, research has shown that for many types of data a linear approach to risk scoring is not appropriate [26], as 
close data points may have different severity or likelihood of attacks.

3.2. A risk score for ML training data

In our case, the ML data asset under attack is the training set.1 We compute the 𝑅 = 𝑆 ×𝐿 risk equation linking the data tampering 
attack’s severity to the model’s performance degradation after attack. This requires consensus on the performance degradation metrics 
to use. Research is ongoing on extracting “gold standard” data sets from input data spaces, providing held-out benchmarks suitable 
for measuring ML performance degradation [29]. However, such held-out data sets are forcibly problem-dependent. In terms of 
likelihood estimation, some work has been done on heuristics for estimating the likelihood of attacks to ML assets (including data 
tampering) on the basis of available information on the model deployment architecture [30]. This type of likelihood estimate applies 
to an entire data asset rather than to individual data items, and is not yet suitable for assessing the poisoning risk concerning 
individual data points.

In order to escape the well-known pitfalls of linear risk models [26], we compute our risk index as a non-linear function of the 
training set’s data points. Low-degree polynomials with decreasing coefficients (in the form 𝑎 + 𝑏𝑥 + 𝑐𝑥2) have been used since long 
in risk modeling, as they capture additional information through coefficients. The details of the computation of our risk index and of 
its role in our procedure are given in the next Section.

3.3. Computing a risk index on training data

A key notion of ML is that not all points in a training set have the same relevance. Our risk index computation is grounded in 
the concept of sentry points [31], the (usually few) points in a training set that are needed for learning a Boolean function with no 
tolerance on errors. For a linear model, the number of sentry points is less or equal to the number of dimensions of the data points 
plus 1.

In practice, we compute the risk index of each point in the training dataset based on its belonging or not to the set of the support 
vectors of a SVM trained on the entire dataset. We consider more “relevant” the points not far from the SVM separating hyper-

planes, with a proper discrete graduation corresponding to the colors of the map shown in Fig. 1). We apply an iterative process to 
identify the support vectors of the hyperplanes separating classes according to a progressive pruning of the points supporting the 
separator in a previous iteration (see the pseudo-code in Algorithm 1). We define a distance scale separator through a succession of 
SVM classifications. In the first iteration, the support vectors are assigned the maximal suitability. Then, we obtain a second set of 

1 A complete asset model identifying ML data assets that can be subject to threats has been released by the European Network and Information Security Agency 
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(ENISA) [27,28].
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Fig. 1. A simplified 2D representation of risk-related color assignment according to Algorithm 1.

Fig. 2. Assigning different gradations of risk-related colors based on proximity to separator hyperplanes.

risky points (whose risk index has a lower value than the previous one) by iterating the SVM over the remaining set of points after 
removing the previously identified support vectors, and so on. Fig. 2 shows the operation of our algorithm in a two-dimensional 
space.

Algorithm 1 Generating color graduation.

Input: Original training data set 𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1 , linear separator , color set 𝒄
Output: Color map 𝒙𝒄
1: 𝐷′ ←𝐷

2: 𝑗 ← 1
3: 𝒙𝒄 ← ∅
4: 𝑡𝑚𝑎𝑥 ← |𝒄| − 1
5: while 𝑗 < 𝑡𝑚𝑎𝑥 do

6: Identify support vectors 𝑠𝑣𝑗 of 𝑗 separating data points in 𝐷′

7: Associate color 𝑐𝑗 to 𝑠𝑣𝑗
8: Add {𝑠𝑣𝑗 , 𝑐𝑗} to 𝒙𝒄
9: Remove 𝑠𝑣𝑗 from 𝐷′

10: 𝑗 ← 𝑗 + 1
11: end while

12: ∀𝑥 ∈𝐷′ :

13: Associate color 𝑐0 to 𝑥
14: Add {𝑥, 𝑐0} to 𝒙𝒄
15: return 𝒙𝒄

In this way, we characterize points which are close to the joint boundary of the classes. Mislabeling such points may induce severe 
errors in any learning procedure. Points more internal to the classes are less relevant per se; their addition has the role of increasing 
the number of points considered.

As described in Section 4, our risk index can be computed by both the defender and the attacker, although the use they will 
make of it is different. First of all, the attacker does not know the separator that will be exactly used by the defender and vice versa. 
Secondly, when two sets are not linearly separable, many more points than just the support vectors must be considered to determine 
125

the separation hyperplane.
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The bordering condition depends on the function we adopt to separate the classes. For instance, a point that is far from a bordering 
hyperplane may result in being close to another bordering surface.

4. Problem formalization

We can now formalize poisoning as a binary linear classification problem. We assume the attacker to be able to manipulate the 
labels of some training data, i.e., she can perform label-flipping poisoning attacks. We can formalize the problem as a game between 
the defender looking for a classification setting that is robust against label flips and the attacker looking for a flipping strategy 
that degrades the performance of the classifier. The game can be represented as a bi-level optimization problem constrained by the 
attacker’s budget

max
𝒛

∑
(𝒙,𝑦)∈𝑇

𝑉 (𝑦,𝑓𝑆′ (𝒙), (1)

s.t.𝑓𝑆′ ∈ argmin
𝑓

𝑛∑
𝑖=1

𝑉 (𝑦,𝑓𝑆′ (𝒙𝒊)) + 𝛾‖𝑓‖2, (2)

𝑛∑
𝑖=1

𝑐𝑖𝑧𝑖 ≤ 𝐶, 𝑧𝑖 ∈ {0,1}, (3)

where 𝑓 is the classifier and 𝑉 is the related loss function which depends on the difference between a target value 𝑦 and the classifier 
output 𝑓 (𝒙). 𝑓 is trained on a training set 𝑆 = {𝒙𝑖, 𝑦𝑖}𝑛𝑖=1, which is corrupted by the attacker into 𝑆 = {𝒙𝑖, 𝑦′𝑖}

𝑛
𝑖=1. The variable 𝑧

denotes whether a label has been flipped (→ 𝑧𝑖 = 1) or not (→ 𝑧𝑖 = 0); each flip has a cost 𝑐𝑖, and the total flipping cost threshold is 𝐶 . 
The attacker aims to maximize 𝑉 with a proper setting of 𝒛, as in (1), under the constraint (3); the defender aims to learn a function 
𝑓𝑆 which minimizes 𝑉 , as in (2). However, this optimization problem proves very difficult to solve in general [32], depending on the 
complexity of 𝑓 and on the discreteness of 𝑦. Indeed, the approaches we surveyed in Section 2 can be described as ways to address 
this issue, e.g. by reverting 𝑓 to a linear function, identifying the points to be poisoned one at a time, performing label smoothing 
or by adjusting the probabilities with which 𝑦 takes on its values. We propose an alternative attack-defense framework where the 
strategies of the attacker and the defender are the following:

• The attacker’s strategy leverages point classification through a SVM classifier, using support vectors as candidate points to be 
flipped.

Rationale: As support vectors determine the position of the hyperplane separating a pair of classes, either in the original space 
or in a kernel space, a simple live-out of one of them changes the position of the separator, resulting in a misclassification of the 
training set or, at least, in a decrease in the margin of one of its sides. Points close to the boundary may fly under the defender’s 
radar. Thus, the attacker is interested in flipping the labels of these points.

• The defender’s strategy takes advantage of ensemble composition, training different learners on disjoint subsets of the entire 
training set and merging their outputs according to a consensus algorithm [33]. The defender tries to tune partitioning to make 
the individual models diverse enough to be robust to poisoning while preserving accuracy.

Rationale: If the attacker flips the label of a point with high risk index, this will degrade the performance of only one learner. Any 
point close to the high-risk one gets assigned to another partition, thus affecting a different learner. We can expect two benefits: 
(𝑖) the classification of the latter point is not degraded by the flip of the former point’s label, since it is fed to a different learner, 
(𝑖𝑖) the other learner will correctly classify the former point, contributing to a correct result in the majority voting mechanism.

5. Threat model

We can now state our assumptions about the attacker capabilities and her level of knowledge of the targeted ML model. Then, we 
provide a detailed description of the strategy and of the type of poisoning attack she can perform.

5.1. Attacker’s power

The attacker’s knowledge 𝜅 can be defined as a tuple 𝜃 = (𝐷, 𝑋, 𝑓, 𝑤), where 𝐷 is the training set, 𝑋 is the feature set, 𝑓 is 
the learning algorithm, and 𝑤 are the parameters learned after training the ML model. We consider a realistic scenario where the 
attacker launches her attack on the training data points having limited information about the target ML model. In particular, we 
assume that the adversary knows the input feature representation 𝑋 and the training data 𝐷, but not the learning algorithm 𝑓 . The 
adversary builds her own surrogate model 𝑓 (a linear SVM model) that she uses to estimate which points to attack. Therefore, the 
black-box attack with limited knowledge can be denoted with 𝜅̂ = (𝐷, 𝑋, 𝑓, 𝑤̂). We assume that the attacker has some control over a 
fraction of the training data used by the learning algorithm, and is restricted to changing the training labels, i.e., she can perform a 
label-flipping attack. Furthermore, the attacker aims to produce specific types of error, which means that she can decide the direction
126

of the flip (e.g., causing only a certain label of her interest to flip). We denote the altered training set with 𝐷′ = {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1.
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5.2. Attack algorithm

Obviously, a rational attacker’s intention would be to manipulate the most risky points. However, the attacker knows little about 
the target ML model. To select the samples that, if modified, would cause the maximum decrease in the accuracy of the target model, 
she uses a reference linear model to approximate the target discriminating function and to generate the probability distribution used 
for selecting the points to attack. In other words, before performing any flip, the attacker applies Algorithm 1 (see Section 3.3). A 
natural way of implementing this strategy is to employ a probability weighting function (𝑝𝓁). We model the attacker’s rational behavior

with a nonlinear function which modifies the weights different probabilities have according to the risk level associated to the data 
points and to the number of risky points belonging to each risk level:

𝑝𝑟𝓁𝑖
=

𝑛𝑟𝓁𝑖
𝑟𝓁𝑖∑|𝑐|−1

𝑗=1 𝑛𝑟𝓁𝑗
𝑟𝓁𝑗

(4)

where 𝑛𝑟𝓁 is the number of data points having risk index 𝑟𝓁 and |𝑐| is the desired number of risk levels identified after applying 
Algorithm 1. In Eq. (4) we assume that the attacker flips only the labels of the points corresponding to the identified support vectors, 
thus excluding the remaining points having risk index 0 (see line 12 of Algorithm 1). As a result, for each data point the probability of 
flipping depends on the level of risk associated with it (as defined by the SVM model) and on the total number of risky points having 
the same level of risk as it. The percentage of flipped points belonging to a given risk level grows as the level of risk increases; the 
higher the risk (and the corresponding number of risky points identified), the greater the probability a given data point gets flipped.

Algorithm 2 Risk-driven weighted probabilistic flipping attack.

Input: Original training set 𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1 , flip direction 𝑑, flipping budget 𝜖
Output: Contaminated training set 𝐷′

1: 𝐷′ ←𝐷

2: 𝑗 ← 0
3: 𝑓𝑙𝑎𝑔𝑖 ← 0
4: while 𝑗 < 𝜖 do

5: Extract a data point (𝑥′
𝑖
, 𝑦′

𝑖
) from 𝐷′ with probability 𝑝𝑟𝓁𝑖

6: if 𝑓𝑙𝑎𝑔𝑖 = 0 then

7: if 𝑦′
𝑖
= 𝑑 then

8: 𝑦′
𝑖
← −𝑦′

𝑖

9: 𝑓𝑙𝑎𝑔𝑖 ← 1
10: Add (𝑥′

𝑖
, 𝑦′

𝑖
) to 𝐷′

11: end if

12: else Repeat from line 4
13: end if

14: 𝑗 ← 𝑗 + 1
15: end while

16: return 𝐷′

Algorithm 2 describes the flipping attack strategy we used. This algorithm is fully operational if the percentage of flipped points 
is relatively small. If the attacker can flip many labels, the result will be that all the labels of the risky points will be flipped, and the 
labels of other points not identified as support vectors in any of the iterations of the risk index computation algorithm will also be 
flipped randomly.

A second aspect concerns the direction of the label-flipping, which can be either mono- or bi-directional. A check must be in place 
to avoid multiple flips of the same label that could bring back the original value of the label. The first option (bi-directional flip) is less 
effective from the attacker’s point of view, since the flips can offset their effect, leaving the separating hyperplane almost unchanged. 
The second option circumvents this drawback (in Algorithm 2, the check at line 7 indicates the use of mono-directional flips).

6. A closer view of our defence framework

Our defence strategy consists of three main components: (𝑖) computation and polynomial transform of the risk indices associ-

ated with training data, (𝑖𝑖) risk-aware training set partitioning via anti-clustering, and (𝑖𝑖𝑖) ensemble composition for increasing 
robustness. The flowchart in Fig. 3 shows the different components of the proposed framework. The rest of this Section defines the 
characteristics of each component and how they relate to each other.

6.1. Feature space extension

The first component of our framework is the risk index defined in Section 3 as an explicit polynomial function of the color, which 
in turn is a quantization of point’s distance from a separation hyperplane of our reference SVM model. We use the risk index to assign 
the data points to the training sets of different learners, in order to minimize the learners’ exposure to poisoned data.2

2 Should attack data be available in the form of reports on previously attacked data points, some alternative risk index could be learnt from them. In case of rational 
127

attackers the learnt risk index landscape will be close to the graph of our function over the color map.
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Fig. 3. Flowchart of the proposed defence framework.

We achieve this by performing a (temporary) feature space extension, adding the risk index to the data points’ features, and then 
using an unsupervised technique (Section 6.3) on the extended data space to group data points into partitions that are highly diverse 
in terms of both risk and position. Each partition, stripped of the risk feature, is then used for training a separate learner, minimizing 
its exposure to potentially poisoned data. For the sake of flexibility, in addition to computing the risk index as a polynomial function 
of the color, we use this additional feature for rescaling the distance in the expanded feature space at (anti-)clustering time.

6.2. Ensemble structuring and composition

The second component of our defence framework is ensemble learning. Ensemble learning is a well-established method that has 
been proven to yield improved generalization capabilities. The central idea is to employ multiple learners (usually called base learners) 
and combine their predictions based on a consensus algorithm.

When individual predictions from different base learners are combined appropriately, the collective decision has on average 
better accuracy than that of any individual learner. We argue that, by properly partitioning data and combining output predictions, 
weak learners can become strong learners not only in terms of accuracy, but also in terms of robustness to poisoning attacks. Our 
approach relies on two key assumptions:

1. Individual models are sufficiently diverse to maintain high accuracy and be resistant to training-time attacks;

2. Enough intact models always remain in the ensemble so that the consensus output is not corrupted.

Assumption (1) hinges on the way base learners are trained, and comes as a direct result of our approach. Assumption (2) depends 
on several factors. The most significant ones are the adversary’s budget and the strategy used for partitioning the training data.

6.2.1. Ensemble member generation and combination rule

When designing an ensemble-based system, three aspects need to be considered: (𝑖) the partitioning method used to select the 
training data for each base learner, (𝑖𝑖) the specific procedure used for generating the ensemble members, and (𝑖𝑖𝑖) the combination 
rule for obtaining the ensemble decision. Our technique for training data partitioning is described in Section 6.3, while details on 
our choices regarding the other two aspects are provided below.

Ensemble-based systems can be seen as algorithm-free-algorithms, independent of the type of base learner used to create the 
ensemble. Model independence allows complete discretion in using the type of learner most suitable for a given application. The 
pool of base learners in the ensemble can be trained either from the same family or from different families of learning models. Here, 
we use the same base learner multiple times to generate the ensemble. We do not introduce diversity at model level, but at the level 
of the training data used by each model. Once the base models have been trained, it is necessary to aggregate their individual outputs 
to obtain a single final outcome. There are many approaches to model combination, including linear combiners, product combiners, and 
voting combiners. We adopt the third type of combination as it is amenable when models output class labels. Voting-based combination 
is known to be the optimal approach for combining independent classifiers [34].3 The most popular variant of voting combination 
(known as hard voting or majority voting) requires every individual learner to vote for a single class. The class that received the most 
votes is chosen as the ensemble’s output. Denoting by 𝑁 the number of learners in the ensemble and 𝐿 the number of classes, the 
decision of the 𝑡𝑡ℎ learner (𝐶𝑡) is denoted by 𝑑𝐶𝑡,𝑗 ∈ {0, 1}, where 𝑗 = 1, .., 𝐿. If 𝐶𝑡 decides for class 𝜔𝑗 , then 𝑑𝐶𝑡,𝑗 = 1, and 0 otherwise. 
The ensemble output for the majority voting combiner is computed as

3 In fact, under minor assumptions 1) 𝑁 is odd, and 2) each classifier has probability 𝑝 of correctly classifying a given instance, the ensemble predicts the correct 
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(not corrupted) label if at least ⌊𝑁∕2⌋ + 1 base classifiers output the correct label.
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𝑚𝑎𝑥1≤𝑗≤𝐿

𝑁∑
𝑡=1

𝑑𝐶𝑡,𝑗
(5)

6.2.2. Accuracy-diversity breakdown

The term accuracy-diversity breakdown of an ensemble of learners is due to two distinct elements, namely the accuracy of the 
individual learners and their combination. The ensemble succeeds in achieving better accuracy than any of its members if and only 
if its individual learners are accurate and diverse. However, the exact relationship between diversity and accuracy is difficult to 
pinpoint. On the one hand, if each base learner makes the same errors, there is no utility in combining their outputs. On the other 
hand, if base learners are maximally accurate, they provide the same correct predictions, but there is no distinction between them.

The breakdown of the ensemble error depends on both the type of error function and the combination rule. The case of a 
classification problem with a majority vote combiner is a challenging one, and no accepted theoretical framework capturing the 
accuracy-diversity breakdown currently exists for it [35]. Regarding robustness, Levine and Feizi [22] introduced a deterministic 
lower bound on the efficacy of majority voting which is stated as follows. Let us denote by 𝑓𝑖(𝑥) the 𝑥 classification by the 𝑖-th base 
learner, and by 𝑛𝑐(𝑥) the number of base learners classifying 𝑥 as 𝑐, where the final result of their ensemble 𝑔(𝑥) is the index of the 
maximum 𝑛𝑐 . Then, let:

𝑡(𝑥) = ⌊ 𝑛𝑔(𝑥) − max𝑐≠(𝑥)(𝑐𝑐(𝑥))
2

⌋ (6)

Any flipping of less than 𝑡(𝑥) labels does not change 𝑔(𝑥).
The threshold 𝑡(𝑥) represents a lower bound on the number of poisoning flips a defender may withstand with no damage. As a 

matter of fact, this number is definitely higher in all the protocols we experimented with. Equation (6) highlights a crucial trade-

off between robustness and accuracy rooted on the number 𝑘 of partitions. The gap 𝑛𝑔(𝑥) − max𝑐≠(𝑥)(𝑐𝑐(𝑥)) grows with the number 
of partitions 𝑘, whereas the accuracy of the single learner decreases with 𝑘 increasing, because the size of the local training set 
decreases as well. Levine and Feizi used very large values of 𝑘, on the order of thousands of partitions for the MNIST benchmark 
dataset [36], to exhibit the robustness of their strategy. We will employ a dozen partitions for the same dataset to provide a proper 
balance between robustness and accuracy (Section 7).

6.3. Anti-clustering for training set partitioning

Diversity plays an important role in ML. Specifically, diversity of the training data ensures they can provide more discriminatory 
information, resulting in improved performance of the learned model [37]. As we will see, data diversification can also be used for 
defensive purposes.

6.3.1. Data diversification

By simply reversing the logic behind the popular k-means clustering method, Späth [38] and Valev [39] independently coined 
the term anti-clustering to denote a type of data partitioning that ensures similarity between partitions by enforcing dissimilarity 
within each partition. In other words, the objective is to provide high intra-group dissimilarity and low inter-group dissimilarity. 
Formally, given the set of elements 𝑇 = {𝑡1, ..., 𝑡𝑛} and the number of subsets 𝑘 into which 𝑇 has to be partitioned, the anti-clustering 
partitioning defines a set of disjoint partitions (anti-clusters) 𝑃1, ..., 𝑃𝑘 satisfying the following conditions:

𝑘⋃
𝑖=1

𝑃𝑖 = 𝑇 (7)

𝑃𝑖 ∩ 𝑃𝑘 = ∅,∀𝑖, 𝑘 ∈ {1, ..., 𝑘}, 𝑖 ≠ 𝑘 (8)

Condition (7) ensures that every element in 𝑇 is assigned to at least one of the anti-clusters. On the other hand, condition (8) requires 
pairwise disjoint anti-clusters. This means that no pair of two anti-clusters can contain the same element. Having partitions of equal 
size is not mandatory for anti-clustering methods [40]. However, obtaining comparable sized partitions is a desirable property that 
avoids trivial micro-partitions.

The performance and statistical validity of ML models are affected by both the size of the input data partitions and the distribution 
of samples across the different partitions [41]. For these reasons, we impose the following additional restriction:

∣ 𝑃𝑖 ∣=∣ 𝑃𝑘 ∣,∀𝑖, 𝑘 ∈ {1, ...𝑘} (9)

From condition (9) it follows that if the number of elements in 𝑇 , denoted by 𝑁 , is a multiple of the number of desired partitions 𝑘, 
then each anti-cluster consists of 𝑁

𝑘
elements. By contrast, in the case where 𝑁 is not divisible by 𝑘, the anti-clusters will differ by 

one in their size.

6.3.2. Dissimilarity measure and objective function

Anti-clustering partitioning ensures that points close to each other end up in different partitions. To take advantage of this 
characteristic for our purposes, we choose a specific criterion for anti-clustering based on information in a dissimilarity matrix that 
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accounts for the relevance of the points.
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Fig. 4. k-Means objectives. In (𝑎) we see that k-means clustering minimizes the variance within partitions. The logic is reversed in (𝑏), where anti-clustering k-means 
maximizes the variance within partitions.

Fig. 5. Cluster editing objectives. (𝑎) Cluster editing minimizes the diversity objective (sum of pairwise distances within each cluster), whereas (𝑏) anti-cluster editing 
maximizes it.

Assuming 𝜋 = {𝑃1, ..., 𝑃𝑘} is a partitioning of the set 𝑇 , where the 𝑖-th partition 𝑃𝑖 contains a subset of all given elements in 𝑇 , 
and assuming Π is the set of all possible partitions, the objective function 𝑓 ∶ Π →ℝ+ associates a positive real number 𝑓 ({𝑃1, ..., 𝑃𝑘})
with each partition. The generic anti-clustering problem may be formulated as follows: find a feasible partitioning 𝜋∗ such that

𝑓 (𝜋∗) =𝑚𝑎𝑥{𝑓 (𝜋) ∣ ∀𝜋 ∈Π} (10)

As for classical clustering methods, there is a wide range of criteria for anti-clustering as well [42]. The most intuitive criterion 
is the direct reversal of the k-means clustering logic. The goal of k-means anti-clustering is to maximize the within-group variance, 
where within-cluster heterogeneity is measured as the sum of the squared Euclidean distances between individual data points and 
cluster centers. Fig. 4 shows in a two-dimensional space how the point assignments to three different equal-sized partitions may vary 
depending on whether the objective function minimizes (k-means clustering) or maximizes (k-means anti-clustering) the variance.

For our scheme, we adopt another type of criterion: anti-cluster editing, which is the reverse of the cluster editing clustering 
paradigm. This criterion measures within-cluster heterogeneity as the sum of pairwise dissimilarity between elements within the 
same group. The corresponding objective function, which the anti-clustering should maximize, is:

𝐷𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 = Σ1≤𝑖≤𝑗≤𝑛𝑑𝑖𝑗𝑥𝑖𝑗 (11)

where the variable 𝑥𝑖𝑗 is used to identify whether two elements belong to the same anti-cluster or not:

𝑥𝑖𝑗 =

{
1, if 𝑥𝑖 ∈ 𝑃𝑘 ∧ 𝑥𝑗 ∈ 𝑃𝑘

0, otherwise
(12)

Fig. 5 shows different assignment of points according to whether the objective function minimizes (cluster editing) or maximizes 
(anti-cluster editing) diversity. Differently from Fig. 4, where the dashed lines (i.e., the input values of the objective function) are 
drawn to connect each point with the centroid of the cluster to which the point is assigned. In Fig. 5 the lines are drawn between 
pairs of points within the same cluster. In Eq. (11) the dissimilarity measure 𝑑𝑖𝑗 usually corresponds to the Euclidean distance (or 
squared Euclidean distance), though, in principle, any distance metrics can be used. We employ Euclidean distance in our approach 
as well, but introducing a distortion in its calculation that takes into account the risk index (Section 6.1) associated with each point. 
We scale the Euclidean distance to take into account the closeness of the points to the separator hyperplane. The general criterion 
is that two data points will be closer the higher is their risk index. Thus, a simple distortion is induced via Eq. (13). We use 𝑁 ×𝑁

non-negative symmetric matrix 𝐷 = [𝑑𝑖𝑗 ] to represent pairwise dissimilarity measurements, whose entries are computed as follows:

𝑑𝑖𝑗 =
∥ 𝑖− 𝑗 ∥
𝑚𝑎𝑥(𝑟𝑖, 𝑟𝑗 )

(13)

∥ 𝑖 − 𝑗 ∥ is the Euclidean distance between two points 𝑖 and 𝑗 in the 𝑀 -dimensional space, and the distortion defined at the fraction 
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denominator is given by the maximum between the risks 𝑟𝑖 and 𝑟𝑗 of the points under consideration.
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7. Experimental evaluation

We evaluated experimentally the impact of our technique on model robustness [43], and compared it to a benchmark derived 
from the literature. Our experimentation is carried out on two data sets: MNIST, the well-known general benchmark on handwritten 
digits classification, and MRT, a security dataset of images representing executable program behavior. The MRT dataset has been 
proposed for competitive training [44] of binary malware classifiers that classify pictorial representations of the activity of ordinary 
and hostile software (malware). While the MNIST data set is suitable to model a general disruption scenario where the attacker 
aims to decrease the binary classifier’s overall performance, the MRT data-set supports a targeted disruption scenario where label 
flipping is aimed at fooling a malware detector, injecting in its training set images that represent a specific malware’s behavior but 
are mislabeled as the behavior of ordinary software.

In terms of the evaluation metrics, we focus on certified accuracy as a measurement of certified robustness against any poisoning 
attacks under certain conditions. There is no single definition of certified accuracy, and different certifiably robust approaches have 
been proposed in the literature [45]. We rely on the definition we provided in Section 7.2.2.

7.1. Heuristic

Finding a partitioning that maximizes diversity is computationally challenging for 𝑘 ≥ 2 and an arbitrary 𝑀 -dimensional Euclidean 
space problem. Especially when the number of elements is large, obtaining the optimal anti-clustering partitioning in an acceptable 
running time is extremely difficult with an exact algorithm. To alleviate these issues, in our implementation we opted for a heuristic 
algorithm. In particular, we used the exchange method proposed by Papenberg and Klau [40].

The procedure is based on exchanging elements between different anti-clusters such that each swap improves the objective value 
by the largest possible margin. The following steps are repeated for each element. First, samples are randomly assigned to different 
anti-clusters. Then, the algorithm simulates each possible exchange with elements in other anti-clusters on the basis of the initial 
assignment – for a total of (𝑁 − 𝑁

𝑘
) swaps. The swap that maximally improves the objective function is performed.

7.2. Experimental design

We are now ready to present in detail the design of our experimentation.

7.2.1. Target model

As mentioned earlier, our defense technique is not tied to a specific ML model. Still, to assess its benefit, we need a target to 
apply it to. We opted for a simple Convolutional Neural Network (CNN) both as the target model and as the base learner for the 
ensemble. We used our reference SVM model for identifying the risk levels (playing the part of the defender) and the data points 
to attack (playing the part of the adversary). The SVM has been implemented via the CRANE library of Python. The training of all 
learners has been carried out in TensorFlow-Keras.

7.2.2. Metrics

Our evaluation metric has three components. We use clean accuracy computed on test data to evaluate how models perform 
on pristine data. The second metric, after poisoning accuracy, describes how ML models perform on label-flipped data with varying 
poisoning rate. This allows us to investigate how our algorithm performs against different poisoning ratios. In addition, we use third

metrics, certified accuracy, again evaluated on the test set and defined as follows. For a given flipping percentage it is the ratio 
between: (𝑖) the number of items that have a different label when classified by the function learned from the original training set 
and the one learned from the poisoned version of the training set, and (𝑖𝑖) the test set size. Additionally, we consider the ensemble 
gap, a measure that applies to the ensemble methods. On each element of the test set, it reckons the difference between the number 
of base learners whose output coincides with the majority vote result and the number referring to the second highest voted. A large 
gap denotes high robustness of the result to further perturbations of the training set.

7.2.3. Risk levels

We use 10 colors i.e., ten different values for the risk index calculated using Algorithm 1 (see Section 3.3), plus a 0-level collecting 
images which do not correspond to any support vector identified during the 10 iterations of the algorithm.

7.2.4. Attacker’s budget

In the literature on poisoning attacks the budget of the attacker, in terms of the number of points she is able to modify, almost 
never exceeds 20 −25% of the size of the training set [46]. We use the label-flipping strategy described in Algorithm 2 (see Section 5.2), 
with a mono-directional flipping. We assess the efficacy of our strategy for multiple flipping rates 𝜌 ranging from 0.08% to 25%. With 
𝜌 ∈ (0.08, 8) Algorithm 2 fully exploits the riskiness difference, where the risk level 𝑟𝓁 translates to the drawing probability via the 
formula (4). Outside of this range, the sole difference that matters is the one between support vectors and non support vectors (see 
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Fig. 6. A sample image from MNIST dataset.

Table 1

Comparison of accuracy and ensemble gap (which applies only to anticl and classic methods) 
when no attack is performed, and 𝑘 = 15 partitions.

Method 𝑚𝑜𝑛_𝑐𝑙𝑒𝑎𝑛 𝑐𝑙𝑎𝑠𝑠𝑖𝑐_𝑐𝑙𝑒𝑎𝑛 𝑎𝑛𝑡𝑖𝑐𝑙_𝑐𝑙𝑒𝑎𝑛

Accuracy 0.99594 ± 0.00130 0.99371 ± 0.00075 0.98917 ± 0.00065
Mean gap - 14.8714 14.907

7.3. Benchmark

To understand the rationale underlying our benchmark design, we consider a generic training set 𝐷, two data points 𝑝, 𝑞 ∈ 𝐷, 
and a mapping ℎ ∶𝐷→ 𝑈 , where 𝑈 ⊆ 2𝐷 is a set of partitions over 𝐷. We denote the distance between 𝑝 and 𝑞 as |𝑝 - 𝑞| and the 
probability that ℎ(𝑝) = ℎ(𝑞) as 𝑃𝑟(ℎ(𝑝) = ℎ(𝑞)). Given a suitable probability threshold 𝑃1 and a predefined radius 𝑅, to behave as a 
Locality Sensitive Hashing (LSH) ℎ must satisfy the following equation [47]:

∣ 𝑝− 𝑞 ∣<𝑅→ 𝑃𝑟(ℎ(𝑝) = ℎ(𝑞)) ≥ 𝑃1 (14)

Hash techniques [22] partition the training set into disjoint subsets via a hash function, shuffling data among partitions based on 
their hash.

Rather than choosing a specific hash function ℎ as a benchmark, we derive our benchmarks partitioning the training set randomly 
without repetition [48], regardless of the risk levels identified by means of Algorithm 1. The partition is then verified to have hash-

like data shuffling property for suitable 𝑅 and 𝑃 − 1 via Eq. (14) before using it as a benchmark. The details of this verification are 
reported in Section 7.5.1. In our experiments, we compare this classic benchmark to the performance of our partitioning, performed 
according to the anti-clustering technique (anticl). We also report (denoting it by mon, short for “monolithic”) on the performance of 
the target ML model trained on the whole training set with the traditional ensemble-less architecture.

7.4. MNIST experiment

Our first experiment was carried out on the classic MNIST benchmark, which contains a collection of 70000 images of hand-

written digits from 0 to 9, where the training set and the test set include 60000 and 10000 samples, respectively. This dataset is a 
typical benchmark for classification algorithms because of the high variability of representations for the same digit. Each sample 
is represented as a feature vector consisting of a 28 × 28 grid of 256-valued gray shades. We normalized the pixel values by scaling 
them to the range [0, 1]. In line with the literature, we defined a binary classification task on a portion of the MNIST dataset, i.e. 
distinguishing between digits 1 and 7. A sample data item is shown in Fig. 6. The result is a total of 15170 images of dimension 784, 
with 13007 images in the training set and 2163 in the test set. For this experiment, flipping changes the 1 labels to 7.

7.4.1. MNIST: experimental results and analysis

In a preliminary experiment, we randomly selected a subset of 3000 points from the training set and performed the label-flipping 
attack with different poisoning rates to decide how many partitions 𝑘 to use for our ensemble trained on all of the data (13007 points). 
We tested three different values for 𝑘, namely 3, 15, and 30. Obviously, the number of partitions 𝑘 is a parameter that controls the 
trade-off between robustness and accuracy. By analyzing the curves shown in Fig. 7, we decided to focus on 𝑘 = 15 partitions as 
a good compromise between robustness and accuracy. The smaller slope of the curve as the percentage of poisoning increases is 
a property that denotes robustness, albeit at the cost of poor accuracy when few points are poisoned. For each of the experiments 
we have performed 10 repetitions, thus Table 2, which summarizes our results in terms of accuracy for the three methods, presents 
average values derived from 10 different runs performed on the whole training set considered.

No attack scenario. First of all, Table 1 shows that in the absence of attacks (denoted by the suffix _𝑐𝑙𝑒𝑎𝑛), the order of accuracy is 
as follows: 𝑚𝑜𝑛_𝑐𝑙𝑒𝑎𝑛 > 𝑐𝑙𝑎𝑠𝑠𝑖𝑐_𝑐𝑙𝑒𝑎𝑛 > 𝑎𝑛𝑡𝑖𝑐𝑙_𝑐𝑙𝑒𝑎𝑛. The first inequality seems trivial, since, in the absence of local minima, learning 
based on the whole dataset is more efficient than composing multiple learners on partial training sets. The second inequality confirms 
that on clean data the partitioning underlying 𝑐𝑙𝑎𝑠𝑠𝑖𝑐_𝑐𝑙𝑒𝑎𝑛, defeats our “smarter” partitioning strategy. However, as Table 1 shows, 
the difference in accuracy is quite shallow. Although the classic benchmark exhibits slightly higher accuracy than the anticl one, and 
thus closer to that of mon, our method resulted in only a slight degradation in accuracy when no attack is performed.

Under attack. To evaluate our method’s behavior under attack, we started the experiment by checking which would be the most 
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efficient strategy on the part of the attacker.
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Fig. 7. Accuracy curves for percentage of label-flipping ranging from 10% to 40% and 𝑘 ∈ {3,15,30} partitions.

Fig. 8. Accuracy trend of the MNIST dataset with increased number of flips for both bordering (risk levels 1 − 10) and inner data points (risk level 0).

Fig. 8 shows a natural order for the experiments where:

a) We flip the labels of 270 images belonging to risk levels 1 − 10, with probabilities calculated according to (4);

b) Then, we flip the labels of 215 images belonging to the risk level 0 (lying far from the linear separator);

c) Again, we perform a mono-directional label flip on 485 images, but this time all belonging to risk levels 1 −10, with probabilities 
calculated according to (4).

We observe that, with respect to effectiveness, we obtain: a ≃ b < c. Regarding the ordering of methods in case of attack (denoted 
by the suffix _𝑝𝑜𝑖𝑠), for low flipping rates we have 𝑐𝑙𝑎𝑠𝑠𝑖𝑐_𝑝𝑜𝑖𝑠 > 𝑚𝑜𝑛_𝑝𝑜𝑖𝑠 > 𝑎𝑛𝑡𝑖𝑐𝑙_𝑝𝑜𝑖𝑠 whereas for higher rates of poisoning, anticl

turns out to be far superior to the others: 𝑎𝑛𝑡𝑖𝑐𝑙_𝑝𝑜𝑖𝑠 > 𝑐𝑙𝑎𝑠𝑠𝑖𝑐_𝑝𝑜𝑖𝑠 >𝑚𝑜𝑛_𝑝𝑜𝑖𝑠.

Adding 215 non-support vector images leaves the accuracy almost unchanged, with a very small increase due to the random 
shaking effect of the non-support vector (inner) images. Conversely, choosing additional images close to the boundaries (i.e., from 
the support vectors) changes performance in a way that will be discussed later. This confirms our strategy for high percentages of 
poisoning, which consists of first flipping all support vector images and then saturating the desired percentage of poisoned points 
with inner images.

To confirm the above observations, we carried out a run of the experiment where all flip percentages are less than 3.5%, and 
all poisoned points are selected from risk levels 1 − 10. In particular, percentages range from 0.8% to 3.3% of the training set. This 
involves from 2% to 81% of the points having risk levels 1 − 10, with an absolute number of flipped points ranging from 11 to 431. In 
a second run of the experiment, we considered higher percentages of poisoning, i.e., between 10% and 25%. Clearly, in this second 
case, we adopted mono-directional flipping of all the points of levels 1 −10 having label 1 (for a total of 527 points) plus other points 
taken from level 0 until saturating the desired percentage. Thus, the total number of flipped points (both levels 1 − 10 and level 0) 
varies from 1301 to 5203. As we can observe from Fig. 9, the results confirm that when the poisoning rate is consistent (say from 6%
to 25%), our method has a higher accuracy compared to both classic and mon methods. In particular, the percentages between 10 and 
20 are the ones for which anticl is more robust.

In a final run of our experiment, we assessed the degree of degradation reached by the different methods with flipping percentages 
of more than 30% of the training set. The results reported in Table 2 (last two lines) show that regardless of the method, accuracy 
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decreases dramatically when the rate is so high as to bring the classification to accuracy values not much different from a mere 
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Fig. 9. Accuracy comparison with MNIST dataset for 𝑘 = 15 partitions and poisoning rate ranging from 0.08% to 25% of the training set size.

Table 2

Results of the experiment on the MNIST dataset using different label-flipping attack strategies. Averaged test accuracy 
plus/minus the standard deviation as a function of the poisoning points. %𝑡𝑟 and %𝑟𝑙1_10

are the percentage of flipped points 
with respect to the total number of training data and the percentage of flipped points with respect to the total number of 
points with risk level 1 −10 with label 1, respectively. #𝑟𝑙1_10

is the numerical equivalent of %𝑟𝑙1_10
, #𝑟𝑙0 is the number of flipped 

points with risk level 0, and #𝑡𝑜𝑡 is the total number of flipped points (levels 0 − 10).

Label flips 𝐴𝑐𝑐∗

%𝑡𝑟 %𝑟𝑙1_10
#𝑟𝑙1_10

#𝑟𝑙0 #𝑡𝑜𝑡 𝑀𝑂𝑁 𝐶𝐿𝐴𝑆𝑆𝐼𝐶 𝐴𝑁𝑇𝐼𝐶𝐿

0.08 2 11 0 11 0.99579±0.00153 0.99366±0.00065 0.98908±0.00049

0.4 10 54 0 54 0.99556±0.00117 0.99329±0.00058 0.98936±0.00068

0.8 20 108 0 108 0.99301±0.00215 0.99278±0.00049 0.98908±0.00082

1.2 31 162 0 162 0.99320±0.00254 0.99241±0.00032 0.98881±0.00091

1.6 41 216 0 216 0.99079±0.00316 0.99223±0.00052 0.98922±0.00061

2 51 270 0 270 0.98950±0.00223 0.99218±0.00059 0.98918±0.00054

2.5 61 323 0 323 0.98404±0.00421 0.99066±0.00153 0.98941±0.00066

3.3 81 431 0 431 0.97831±0.00787 0.98608±0.00273 0.98936±0.00065

3.7 51 270 215 485 0.99024±0.00197 0.99237±0.00049 0.98987±0.00079

4 51 270 270 540 0.98918±0.00579 0.99163±0.00120 0.98987±0.00070

5 39 207 443 650 0.99320±0.00396 0.99241±0.00054 0.98881±0.00078

8 98 520 520 1040 0.97646±0.00465 0.98192±0.00428 0.99042±0.00084

10 100 527 774 1301 0.96417±0.01027 0.97716±0.00454 0.99024±0.00107

15 100 527 1424 1951 0.96675±0.00677 0.96615±0.00947 0.99001±0.00183

20 100 527 2074 2601 0.95214±0.01629 0.94392±0.01272 0.97582±0.00442

25 100 527 2725 3252 0.85654±0.12899 0.84248±0.04135 0.86934±0.05094

30 100 527 3375 3902 0.57318±0.09154 0.59052±0.04075 0.53550±0.04942

40 100 527 4676 5203 0.47531±0.00014 0.47526±1.17027 0.47526±1.17027

coin toss (accuracy close to 50%). The accompanying trend in standard deviations confirms the general behavior: we have moderate 
values for no or low poisoning rates (say less than 25%), which strongly increase beyond this threshold, until reaching equivalent 
values in the case of the two ensemble methods that are definitely lower than the corresponding value for mon. It is worth noting 
that, although in principle an attacker can arbitrarily increase the number of corrupted points in the training set, in real-world 
applications, significantly increasing the poisoning rate inevitably leads to making the attack obvious.

Results on certified accuracy. In Table 3 we report the results up to the poisoning percentage of 40% in terms of the actual number 
of points in the test set that did not change their labels after the label-flipping attack. The corresponding graphs are given in Fig. 10. 
We note a benefit similar to that observed for the accuracy metric: up to 25% anticl prevails over the other two methods, where up 
to 20% the number of certified points is very high. Beyond the 25% threshold, the trend is reversed, and training corruption leads to 
essentially random classifications.

Ensemble gap. The gap between the number of voters of the highest and second highest voted result of an ensemble is a measure 
of the robustness of an ensemble classifier against poisoning attacks, as highlighted by (6). The second row of Table 1 shows a small 
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superiority of anticl over classic in case of a clean training set, which apparently reverses in the case of a poisoned training set.
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Table 3

Certified accuracy against the MNIST dataset, with 𝑘 = 15 partitions for anticl and classic methods. 
𝑐𝑒𝑟𝑡𝑎𝑐𝑐 is the percentage quantifying the output changes in case of label contamination of the training 
set; 𝑐𝑒𝑟𝑡𝑝𝑜𝑖𝑛𝑡𝑠 is the corresponding number of certified points.

Label flips 𝑐𝑒𝑟𝑡𝑝𝑜𝑖𝑛𝑡𝑠 𝑐𝑒𝑟𝑡𝑎𝑐𝑐

%𝑡𝑟 MON CLASSIC ANTICL MON CLASSIC ANTICL

2 2153 2154 2156 0.99565 0.99625 0.99676

5 2106 2118 2153 0.97383 0.97928 0.99565

10 2083 2108 2149 0.96329 0.97484 0.99380

15 2088 2081 2141 0.96574 0.96250 0.98987

20 2056 2034 2104 0.95067 0.94036 0.97286

25 1848 1811 1872 0.85478 0.83767 0.86555

30 1234 1266 1148 0.57068 0.58562 0.53088

40 1023 1017 1016 0.47304 0.47031 0.46985

Fig. 10. Certified accuracy comparison against the MNIST dataset, with 𝑘 = 15 partitions for anticl and classic methods. The figure on the top shows the certified 
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accuracy to label-flipping poisoning attacks. The figure on the bottom shows how the corresponding number of certified points changes as the flip percentage increases.
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Fig. 11. Gap comparison between the anticl and classic ensemble methods with the MNIST dataset.

Fig. 12. A MRT dataset’s data point showing the pictorial representation of the events generated by malware in a 500 msec time window.

A smaller gap with the poisoned training set again denotes a superiority of our method, which raises more contested voters when 
the majority result is wrong. The gap difference of the two methods is so small that it invests exactly the faulty classified points, the 
number of which in turn increases with the poisoning rate. Thus, within the previously mentioned range (6%, 25%) of the poisoning 
rate, we observe this virtuous phenomenon that tends to vanish for higher rates (see Fig. 11).

7.5. MRT experiment

The accuracy of behavioral malware detection largely depends on the availability of manually labeled training data. Manipulating 
malware data by targeted label flipping can cause dangerous malware mis-classifications in the field [49]. The MRT dataset is a 
manually labeled dataset composed of 4465 samples of malware behavior, taken from sand-boxed execution of a set of over 170
malware programs and 200 benign applications. Each data point represents the number of events (out of a vocabulary of 128 event 
types) generated by a software program in a sampling interval of 500 msec. The data set is highly unbalanced (3000 benign, 1465
malign samples). The pictorial representation of each data point is computed via direct decimal to binary conversion, obtaining 4465
black and white images composed of 64 * 64 pixels. A sample MRT data item is shown in Fig. 12. This experiment provides an 
example of the process to be followed for applying our technique in practice. Malware classifiers are deployed on devices as frozen, 
read-only code. To fool the classifiers, attackers can only target training data, by performing mono-directional flipping and changing 
the label “malign” into “benign” for some malware.

The malware detector developer who does not fully trust the training data applies our methodology by (i) partitioning according 
to our method the training set received from the labeler, (ii) training a ML model for each partition, and (iii) combining the ML 
models into an ensemble, which is deployed on the devices. The choice of certified accuracy as the effectiveness metrics is a natural 
one on the part of the developer, as it expresses the success rate of the attacker in modifying the malware detector’s performance.

7.5.1. Practical implementation details

We refer to our CNN target model, this time trained on the MRT data set. The classic benchmark for MRT has been validated 
as follows. We extracted a sample of 50 elements from the training set. For each pair of points in the training set, we computed 
their Euclidean distance, obtaining a total of 1225 values, and computed the average distance 𝑅. We then selected the pairs with 
distance falling within the range [𝑅 − 𝜎, 𝑅 + 𝜎], where 𝜎 is the standard deviation. For each of the corresponding data points, we 
ascertained to which partitions they were assigned and computed the ratio between the pairs of points for which the target partition 
was divergent and the total number of pairs. This verifies the hash-like data shuffling behavior of this partitioning. The benchmark 
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we used has 𝑅 = 2.641484 and 𝑃1 = 56% (see Section 7.3), in line with the literature.
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Fig. 13. Accuracy comparison for 𝑘 = 5 partitions and poisoning rate up to 40% of the MRT training set size.

Table 4

Certified accuracy against the MRT dataset, with 𝑘 = 5 partitions for anticl and classic methods. 𝑐𝑒𝑟𝑡𝑎𝑐𝑐
is the percentage quantifying the output changes in case of label contamination of the training set; 
𝑐𝑒𝑟𝑡𝑝𝑜𝑖𝑛𝑡𝑠 is the corresponding number of certified points.

Label flips 𝑐𝑒𝑟𝑡𝑝𝑜𝑖𝑛𝑡𝑠 𝑐𝑒𝑟𝑡𝑎𝑐𝑐

%𝑡𝑟 MON CLASSIC ANTICL MON CLASSIC ANTICL

2 1056 1100 1115 0.88058 0.917 0.92991

5 886 1063 1138 0.73875 0.88614 0.94875

10 1034 1043 1089 0.86178 0.86916 0.90797

15 926 970 1119 0.77238 0.80880 0.93285

20 921 985 1075 0.76797 0.82107 0.89654

25 968 970 1006 0.807 0.80875 0.83891

30 913 936 926 0.76125 0.78025 0.77241

40 660 714 756 0.55075 0.59533 0.63033

7.5.2. MRT: experimental results and analysis

We report the results of the MRT experiments. Taking into account the results of the first experiment and the smaller size of the 
MRT dataset compared to MNIST, we decided to focus on 𝑘 = 5 partitions as a good compromise between robustness and accuracy. 
The next subsections contain the comparative analysis of the performance for this number of partitions.

No attack scenario. The best accuracy of the ML model on MRT achieved by the literature [50] is around 0.95 for a CNN monolithic 
model, while the accuracy we obtained with our implementation is around 0.82. This difference may be due to hyper-parameters 
tuning, to architectural differences or to other factors like a higher number of training epochs. In the absence of attacks, the order 
of accuracy is 𝑚𝑜𝑛_𝑐𝑙𝑒𝑎𝑛 ≥ 𝑐𝑙𝑎𝑠𝑠𝑖𝑐_𝑐𝑙𝑒𝑎𝑛 > 𝑎𝑛𝑡𝑖𝑐𝑙_𝑐𝑙𝑒𝑎𝑛 as in the first experiment. However, all partitioning techniques deliever similar 
results in terms of accuracy on clean data.

Under attack. This experiment results show that the monolithic model is quite vulnerable to attack, with accuracy falling below 
0.7 already with a 15% of flipped samples. This is quite critical for a malware detector. The 𝑐𝑙𝑎𝑠𝑠𝑖𝑐 benchmark handles small attack 
budgets quite well but performs badly for budgets above 10%. Our 𝑎𝑛𝑡𝑖𝑐𝑙 technique performs steadily better for budgets larger than 
10% (Fig. 13). We also assessed the degree of degradation reached by the different methods with percentages between 30% and 40%
of the MRT training set. The results, reported in Fig. 13 (right-hand side) show that accuracy decreases somewhat less than in the 
previous experiment (especially for training corruption of 30%), although the trend is pretty similar.

Results on certified accuracy. In terms of certified accuracy, in this experiment anticl clearly prevails over the other two methods 
for all attackers’ budgets, keeping the certified accuracy over 90% even for a flip rate of 20% (Fig. 14). Results are summarized in 
Table 4.

7.6. Discussion

Both our experiments support two notions: (i) deploying an ensemble with a risk-driven partitioning of the training set instead 
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of a monolithic ML model can alleviate the impact of targeted label flipping even employing a small number of partitions, and (ii) 
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Fig. 14. Certified accuracy comparison against the MRT dataset, with 𝑘 = 5 partitions for anticl and classic methods. The figure on the top shows the certified accuracy 
to label-flipping poisoning attacks. The figure on the bottom shows how the corresponding number of certified points changes as the flip percentage increases.

risk-driven anti-clustering provides better certified accuracy than hash-style shuffling, at the price of a slightly lower performance 
on clean data. We argue the first result is of high practical importance, as the number of learners that can be actually deployed may 
depend on in-production resource constraints and should be kept as low as possible. The second result confirms the expectation that 
anti-clustering provides a sounder dispersion control than hashing.

8. Conclusions

Developing appropriate defense mechanisms specific for ML assets is of paramount importance. In this paper, we focused on 
training data, which is a key asset of any ML system, and investigated how to make ML models more robust w.r.t. training data 
poisoning attacks.

A major gap we identified in the literature is that defense techniques are strictly tied to the target ML model’s hyper-parameters. 
We argue that from the security standpoint these defense techniques provide an understanding of the vulnerabilities of specific ML 
models, but cannot be used as a foundation of a general methodology for securing ML assets [30].

Another important gap we found in the literature is the lack of general approaches to estimate the risk associated with ML data 
assets.

In an effort toward filling these two gaps, we described a defense mechanism applicable to a variety of ML models, combining 
ensemble composition and security risk analysis. Our technique relies on a SVM as the reference model to represent the attacker’s 
(and the defender’s) knowledge about the targets.

In addition to linear classification, SVMs can efficiently perform non-linear classification by mapping their inputs into a higher-

dimensional feature space. In our future work, we plan to investigate how the structure of this mapping can be used by either 
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contender to take advantage of available context information, especially the one regarding the model to be attacked or defended. We 
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also plan to introduce generic risk landscapes, where the color and the corresponding risk index value of the data points depend on 
context information, such as non-uniform cost of the attack for different regions in the input data space.

We believe our work lays the foundation for standardizing automatic support of training set partitioning and ensemble generation 
within the ML models’ development and deployment lifecycle.
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