
Information Sciences 633 (2023) 122–140

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Robust ML model ensembles via risk-driven anti-clustering

of training data

Lara Mauri a,∗, Bruno Apolloni a, Ernesto Damiani a,b

a Department of Computer Science, Università degli Studi di Milano, Milan, Italy
b Center for Secure Cyber-Physical Systems, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates

A R T I C L E I N F O A B S T R A C T

Keywords:

Adversarial machine learning

Machine learning security

Robust ensemble models

Poisoning attack

Training set partitioning

Risk modeling

In this paper, we improve the robustness of Machine Learning (ML) classifiers against training-

time attacks by linking the risk of training data being tampered with to the redundancy in the ML
model’s design needed to prevent it. Our defense mechanism is directly applicable to classifiers’
training data, without any knowledge of the specific ML model to be hardened. First, we compute
the training data proximity to class separation surfaces, identified via a reference linear model.
Each data point is associated with a risk index, which is used to partition the training set by an
unsupervised technique. Then, we train a learner for each partition and combine the learners’
output in an ensemble. Our method treats the protected ML classifier as a black box and is
inherently robust to transfer attacks. Experiments show that, for data poisoning rates between
6 and 25 percent of the training set, our method is more robust compared to benchmarks and to a
monolithic version of the model trained on the whole training set. Our results make a convincing
case for adopting training set partitioning and ensemble generation as a stage of ML models’
development and deployment lifecycle.

1. Introduction

Machine Learning (ML) models have been successfully applied across a wide range of domains, especially after the advent of
Deep Learning [1]. However, adversaries can attack ML models by interfering with the training phase or at the inference phase,
after the model has been deployed. Data poisoning attacks occur when adversaries interfere with the learning process of a model
by maliciously modifying a portion of the samples used to train it. A survey by Kumar et al. [2] found that industry practitioners
consider training data poisoning as a major threat, claiming that they are not adequately equipped to defend, detect and react to
data poisoning attacks.

Most defense techniques used against data poisoning attacks focus on protecting specific learning algorithms. They work in
ideal scenarios, where defenders are well aware of which malicious actions will be taken against their training data and can react
accordingly. In practice, defenders hardly ever know which type of attack will be launched, and even less the exact data points that
will be targeted (excluding trivial cases such as outliers). In this paper, we help defenders to estimate which training data points
should be considered at risk. To this end, we use the training set to generate a linear classifier and compute the hyper-planes it uses

* Corresponding author.
Available online 13 March 2023
0020-0255/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

E-mail address: lara.mauri@unimi.it (L. Mauri).

https://doi.org/10.1016/j.ins.2023.03.085

Received 12 October 2022; Received in revised form 5 March 2023; Accepted 7 March 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ins
mailto:lara.mauri@unimi.it
https://doi.org/10.1016/j.ins.2023.03.085
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2023.03.085&domain=pdf
https://doi.org/10.1016/j.ins.2023.03.085
http://creativecommons.org/licenses/by-nc-nd/4.0/

Information Sciences 633 (2023) 122–140L. Mauri, B. Apolloni and E. Damiani

as decision boundaries between classes. Then, we assign a risk index to training data points by using an iterative procedure that takes
into account their distance from such hyper-planes. The result is a risk map of the training set that defenders can use to adapt their
defense strategy.

Based on this map, we describe a defense strategy against poisoning attacks based on ensemble methods. The purpose of classical
ensemble learning is to improve generalization capabilities in non-adversarial settings [3]. We deploy an ensemble system composed
of multiple learners to improve the robustness of ML models. Our approach is based on partitioning the training data set using an
unsupervised technique (anti-clustering) that takes into account our risk map. The main advantage of our approach is that it is generic
enough to be used in different settings. It does not require the defended model to be linear, and supports protection of all types of
learners.

Our work is also relevant to attack modeling, where existing work mainly focuses on how to attack ML algorithms by injecting
small fractions of well-crafted adversarial samples [4] into the training data set. These attack strategies rely on worst-case analysis
where the modifications introduced into the training set are designed to maximize the damage on the targeted learning algorithm.
However, they are strongly tied to the attacker being aware of the exact training algorithm used for the model under attack and able
to exploit feedback from the attacked ML model to compute optimal attack instances [5].

We make a much more restrictive assumption on the adversary’s knowledge: we assume the attacker is not aware of the model
she will be attacking, although she has access to the training set that will be used to train it. Obviously, lacking the information to
maximize a model-specific objective function, the attacker will have to devise an alternative strategy to decide which data points to
attack. We assume that, as in the case of the defender, the attacker uses a reference linear model and preferentially attacks the points
of the training set on the basis of their proximity to the separation surface. While this strategy may not be optimal with respect to a
specific target model, it is optimal with respect to the information available to the attacker.

To the best of our knowledge, this is the first paper explicitly linking the risk of ML training data being tampered with to the
redundancy in the ML model’s design needed to prevent it.

The main advantage of our defense mechanism is that it is directly applicable to training data, without any knowledge of the
underlying ML model. We rely on a linear reference model to represent the attacker’s (and the defender’s) knowledge about the
ML-based system we intend to harden. Thus, our technique treats the protected model as a black box, which makes it inherently
more robust to transfer attacks.

The rest of the paper is organized as follows. In Section 2, we survey related work in the area of adversarial attacks to ML. In
Section 3, we present the first component of our defence framework, i.e. a method for assessing the risk associated with ML training
data. The problem definition and the adversarial threat model are outlined in Sections 4 and 5, respectively. In Section 6, we detail
our anti-clustering partition strategy for improving the robustness of ML models via ensemble composition. In Section 7, we show
our experimental results. Finally, in Section 8, we draw our conclusions and discuss further research avenues.

2. Related work

Previous work has investigated strategies for mitigating data poisoning attacks at different stages of the ML pipeline. Many of
the proposed techniques have limitations in terms of applicability, the type of attack they protect against, their effect on accuracy;
also, they increase the training’s complexity. In this section, we provide a synthetic overview of some approaches proposed in the
literature. A complete survey can be found in [6].

A popular defence strategy against data poisoning attacks is training data pre-filtering, which identifies the directions along which
poisoned data points deviate from their non-corrupted counterparts, and then sanitizes the training set by excluding the outliers
along these directions [7]. Pre-filtering draws on robust statistics, which has been studying the fundamental problem of learning in
the presence of outliers since the 1960s [8]. Recently, this problem has gathered renewed attention due to the pressing need to design
robust ML models for high-dimensional data sets [9]. Paudice et al. [7] proposed a data sanitization mechanism to identify and re-

label suspect training points. Their approach detects samples having a negative impact on the performance of ML classifiers and makes
use of a k-Nearest-Neighbors (k-NN) model to assign to each of these samples the most common label among its 𝑘 nearest neighbors.
Unfortunately, outlier-based defences have been proven to be vulnerable to adaptive attacks that explicitly attempt to evade anomaly
detection [10]. Another important family of defense techniques relies on model enhancement to augment the training set and/or
harden the ML model to counter the effect of poisoning. Borgnia et al. [11] investigated the effects of data augmentation schemes on
data poisoning and demonstrated that some data augmentation techniques such as mix-up and cutout can desensitize ML models to
hostile perturbations of training data. These strategies can be viewed as the defense counterpart of adversarial poisoning [12], because
they use adversarial training (which is commonly used as a defence against inference-time adversarial attacks) to defend ML models
against training-time attacks. Albeit promising, this line of research is still in its infancy. At present, these techniques lack formal
guarantees on their convergence and on the robustness properties they provide.

A line of work closer to ours tries to reduce the influence of poisoned samples via partitioning the training set and using each
partition to train a different learner. The problem here is how to aggregate the learners’ outputs to minimize the poisoning effects.
Early studies focused on the standard Bootstrap aggregation (or bagging) framework [13], arguing that, in addition to accuracy, bag-

ging can also improve robustness in adversarial settings. Biggio et al. [14] described an empirical defence based on such framework.
They experimentally investigated whether bagging ensembles can be exploited to build robust classifiers against poisoning attacks,
assessing the effectiveness of the approach on a spam filter and on a web-based intrusion detection system. The same authors in-
123

vestigated the use of bagging and random subspace methods [15] for constructing robust systems of multiple classifiers, extending

Information Sciences 633 (2023) 122–140L. Mauri, B. Apolloni and E. Damiani

the preliminary results presented in [16]. This early work provided neither a formal definition of robustness neither a proof that the
application of bagging would achieve it.

More recently, research has focused on designing ad-hoc intelligent data partitioning schemes [17] leading to provably robust defences

against data poisoning [18]. Some works focused on distributional robustness guarantees [19], while others focused on point-wise
certified robustness [20].

Jia et al. [21] leveraged the intrinsic majority vote mechanism of k-NN and r-NN (radius Nearest Neighbors) and showed that they
provide deterministic certified accuracy against both data poisoning and backdoor attacks.

Levine and Feizi [22] proposed a certifiable ensemble-based method where the partitioning of the training set into disjoint subsets
is deterministically performed via locality-sensitive hashing (LSH), i.e. by computing a function that maps the 𝑛-dimensional training
𝑇 into another 𝑛-dimensional set 𝑇 ′, without preserving the distance between samples that were close to each other in 𝑇 .

The diversity of the above defense techniques makes it difficult to compare them based on their original validation experiments,
which use different data sets and parameters. Also, there is still no consensus in the literature on the robustness metrics to be used,
although some quantitative metrics of model robustness in face of label-flipping attacks have been proposed [23]. In Section 7 we
will rely on LSH to generate a benchmark and define a common metric based on certified accuracy.

3. Risk analysis of ML data assets

3.1. Risk estimation techniques

Assessing the risk of an attack to a given asset requires two estimations: the one of the attack’s severity, based on the affected
assets’ value, and the one of the attack’s likelihood, based on the known threats and vulnerabilities. The product of severity and
likelihood is often used as the reference equation for risk quantification [24], 𝑅 = 𝑆 ×𝐿, where 𝐿 is a measure of likelihood and 𝑆
is a severity value expressed in monetary units. Recent studies [25] introduced the notion of risk index as a joint quantification of
severity and likelihood that can be quantized into discrete levels, e.g., high risk, medium risk, low risk, or computed as a continuous risk
score. In terms of the data tampering risk, computing the risk score of individual data points can be modeled as learning a function
on the data space, and is itself suitable for the application of ML models. A wide range of methods has been proposed to learn risk
from examples, most of them assuming a linear regression model [25] where the risk score varies linearly with the distance in the
data space. However, research has shown that for many types of data a linear approach to risk scoring is not appropriate [26], as
close data points may have different severity or likelihood of attacks.

3.2. A risk score for ML training data

In our case, the ML data asset under attack is the training set.1 We compute the 𝑅 = 𝑆 ×𝐿 risk equation linking the data tampering
attack’s severity to the model’s performance degradation after attack. This requires consensus on the performance degradation metrics
to use. Research is ongoing on extracting “gold standard” data sets from input data spaces, providing held-out benchmarks suitable
for measuring ML performance degradation [29]. However, such held-out data sets are forcibly problem-dependent. In terms of
likelihood estimation, some work has been done on heuristics for estimating the likelihood of attacks to ML assets (including data
tampering) on the basis of available information on the model deployment architecture [30]. This type of likelihood estimate applies
to an entire data asset rather than to individual data items, and is not yet suitable for assessing the poisoning risk concerning
individual data points.

In order to escape the well-known pitfalls of linear risk models [26], we compute our risk index as a non-linear function of the
training set’s data points. Low-degree polynomials with decreasing coefficients (in the form 𝑎 + 𝑏𝑥 + 𝑐𝑥2) have been used since long
in risk modeling, as they capture additional information through coefficients. The details of the computation of our risk index and of
its role in our procedure are given in the next Section.

3.3. Computing a risk index on training data

A key notion of ML is that not all points in a training set have the same relevance. Our risk index computation is grounded in
the concept of sentry points [31], the (usually few) points in a training set that are needed for learning a Boolean function with no
tolerance on errors. For a linear model, the number of sentry points is less or equal to the number of dimensions of the data points
plus 1.

In practice, we compute the risk index of each point in the training dataset based on its belonging or not to the set of the support
vectors of a SVM trained on the entire dataset. We consider more “relevant” the points not far from the SVM separating hyper-

planes, with a proper discrete graduation corresponding to the colors of the map shown in Fig. 1). We apply an iterative process to
identify the support vectors of the hyperplanes separating classes according to a progressive pruning of the points supporting the
separator in a previous iteration (see the pseudo-code in Algorithm 1). We define a distance scale separator through a succession of
SVM classifications. In the first iteration, the support vectors are assigned the maximal suitability. Then, we obtain a second set of

1 A complete asset model identifying ML data assets that can be subject to threats has been released by the European Network and Information Security Agency
124

(ENISA) [27,28].

Information Sciences 633 (2023) 122–140L. Mauri, B. Apolloni and E. Damiani

Fig. 1. A simplified 2D representation of risk-related color assignment according to Algorithm 1.

Fig. 2. Assigning different gradations of risk-related colors based on proximity to separator hyperplanes.

risky points (whose risk index has a lower value than the previous one) by iterating the SVM over the remaining set of points after
removing the previously identified support vectors, and so on. Fig. 2 shows the operation of our algorithm in a two-dimensional
space.

Algorithm 1 Generating color graduation.

Input: Original training data set 𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1 , linear separator , color set 𝒄
Output: Color map 𝒙𝒄
1: 𝐷′ ←𝐷

2: 𝑗 ← 1
3: 𝒙𝒄 ← ∅
4: 𝑡𝑚𝑎𝑥 ← |𝒄| − 1
5: while 𝑗 < 𝑡𝑚𝑎𝑥 do

6: Identify support vectors 𝑠𝑣𝑗 of 𝑗 separating data points in 𝐷′

7: Associate color 𝑐𝑗 to 𝑠𝑣𝑗
8: Add {𝑠𝑣𝑗 , 𝑐𝑗} to 𝒙𝒄
9: Remove 𝑠𝑣𝑗 from 𝐷′

10: 𝑗 ← 𝑗 + 1
11: end while

12: ∀𝑥 ∈𝐷′ :

13: Associate color 𝑐0 to 𝑥
14: Add {𝑥, 𝑐0} to 𝒙𝒄
15: return 𝒙𝒄

In this way, we characterize points which are close to the joint boundary of the classes. Mislabeling such points may induce severe
errors in any learning procedure. Points more internal to the classes are less relevant per se; their addition has the role of increasing
the number of points considered.

As described in Section 4, our risk index can be computed by both the defender and the attacker, although the use they will
make of it is different. First of all, the attacker does not know the separator that will be exactly used by the defender and vice versa.
Secondly, when two sets are not linearly separable, many more points than just the support vectors must be considered to determine
125

the separation hyperplane.

Information Sciences 633 (2023) 122–140L. Mauri, B. Apolloni and E. Damiani

The bordering condition depends on the function we adopt to separate the classes. For instance, a point that is far from a bordering
hyperplane may result in being close to another bordering surface.

4. Problem formalization

We can now formalize poisoning as a binary linear classification problem. We assume the attacker to be able to manipulate the
labels of some training data, i.e., she can perform label-flipping poisoning attacks. We can formalize the problem as a game between
the defender looking for a classification setting that is robust against label flips and the attacker looking for a flipping strategy
that degrades the performance of the classifier. The game can be represented as a bi-level optimization problem constrained by the
attacker’s budget

max
𝒛

∑
(𝒙,𝑦)∈𝑇

𝑉 (𝑦,𝑓𝑆′ (𝒙), (1)

s.t.𝑓𝑆′ ∈ argmin
𝑓

𝑛∑
𝑖=1

𝑉 (𝑦,𝑓𝑆′ (𝒙𝒊)) + 𝛾‖𝑓‖2, (2)

𝑛∑
𝑖=1

𝑐𝑖𝑧𝑖 ≤ 𝐶, 𝑧𝑖 ∈ {0,1}, (3)

where 𝑓 is the classifier and 𝑉 is the related loss function which depends on the difference between a target value 𝑦 and the classifier
output 𝑓 (𝒙). 𝑓 is trained on a training set 𝑆 = {𝒙𝑖, 𝑦𝑖}𝑛𝑖=1, which is corrupted by the attacker into 𝑆 = {𝒙𝑖, 𝑦′𝑖}

𝑛
𝑖=1. The variable 𝑧

denotes whether a label has been flipped (→ 𝑧𝑖 = 1) or not (→ 𝑧𝑖 = 0); each flip has a cost 𝑐𝑖, and the total flipping cost threshold is 𝐶 .
The attacker aims to maximize 𝑉 with a proper setting of 𝒛, as in (1), under the constraint (3); the defender aims to learn a function
𝑓𝑆 which minimizes 𝑉 , as in (2). However, this optimization problem proves very difficult to solve in general [32], depending on the
complexity of 𝑓 and on the discreteness of 𝑦. Indeed, the approaches we surveyed in Section 2 can be described as ways to address
this issue, e.g. by reverting 𝑓 to a linear function, identifying the points to be poisoned one at a time, performing label smoothing
or by adjusting the probabilities with which 𝑦 takes on its values. We propose an alternative attack-defense framework where the
strategies of the attacker and the defender are the following:

• The attacker’s strategy leverages point classification through a SVM classifier, using support vectors as candidate points to be
flipped.

Rationale: As support vectors determine the position of the hyperplane separating a pair of classes, either in the original space
or in a kernel space, a simple live-out of one of them changes the position of the separator, resulting in a misclassification of the
training set or, at least, in a decrease in the margin of one of its sides. Points close to the boundary may fly under the defender’s
radar. Thus, the attacker is interested in flipping the labels of these points.

• The defender’s strategy takes advantage of ensemble composition, training different learners on disjoint subsets of the entire
training set and merging their outputs according to a consensus algorithm [33]. The defender tries to tune partitioning to make
the individual models diverse enough to be robust to poisoning while preserving accuracy.

Rationale: If the attacker flips the label of a point with high risk index, this will degrade the performance of only one learner. Any
point close to the high-risk one gets assigned to another partition, thus affecting a different learner. We can expect two benefits:
(𝑖) the classification of the latter point is not degraded by the flip of the former point’s label, since it is fed to a different learner,
(𝑖𝑖) the other learner will correctly classify the former point, contributing to a correct result in the majority voting mechanism.

5. Threat model

We can now state our assumptions about the attacker capabilities and her level of knowledge of the targeted ML model. Then, we
provide a detailed description of the strategy and of the type of poisoning attack she can perform.

5.1. Attacker’s power

The attacker’s knowledge 𝜅 can be defined as a tuple 𝜃 = (𝐷, 𝑋, 𝑓, 𝑤), where 𝐷 is the training set, 𝑋 is the feature set, 𝑓 is
the learning algorithm, and 𝑤 are the parameters learned after training the ML model. We consider a realistic scenario where the
attacker launches her attack on the training data points having limited information about the target ML model. In particular, we
assume that the adversary knows the input feature representation 𝑋 and the training data 𝐷, but not the learning algorithm 𝑓 . The
adversary builds her own surrogate model 𝑓 (a linear SVM model) that she uses to estimate which points to attack. Therefore, the
black-box attack with limited knowledge can be denoted with 𝜅̂ = (𝐷, 𝑋, 𝑓, 𝑤̂). We assume that the attacker has some control over a
fraction of the training data used by the learning algorithm, and is restricted to changing the training labels, i.e., she can perform a
label-flipping attack. Furthermore, the attacker aims to produce specific types of error, which means that she can decide the direction
126

of the flip (e.g., causing only a certain label of her interest to flip). We denote the altered training set with 𝐷′ = {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1.

Information Sciences 633 (2023) 122–140L. Mauri, B. Apolloni and E. Damiani

5.2. Attack algorithm

Obviously, a rational attacker’s intention would be to manipulate the most risky points. However, the attacker knows little about
the target ML model. To select the samples that, if modified, would cause the maximum decrease in the accuracy of the target model,
she uses a reference linear model to approximate the target discriminating function and to generate the probability distribution used
for selecting the points to attack. In other words, before performing any flip, the attacker applies Algorithm 1 (see Section 3.3). A
natural way of implementing this strategy is to employ a probability weighting function (𝑝𝓁). We model the attacker’s rational behavior

with a nonlinear function which modifies the weights different probabilities have according to the risk level associated to the data
points and to the number of risky points belonging to each risk level:

𝑝𝑟𝓁𝑖
=

𝑛𝑟𝓁𝑖
𝑟𝓁𝑖∑|𝑐|−1

𝑗=1 𝑛𝑟𝓁𝑗
𝑟𝓁𝑗

(4)

where 𝑛𝑟𝓁 is the number of data points having risk index 𝑟𝓁 and |𝑐| is the desired number of risk levels identified after applying
Algorithm 1. In Eq. (4) we assume that the attacker flips only the labels of the points corresponding to the identified support vectors,
thus excluding the remaining points having risk index 0 (see line 12 of Algorithm 1). As a result, for each data point the probability of
flipping depends on the level of risk associated with it (as defined by the SVM model) and on the total number of risky points having
the same level of risk as it. The percentage of flipped points belonging to a given risk level grows as the level of risk increases; the
higher the risk (and the corresponding number of risky points identified), the greater the probability a given data point gets flipped.

Algorithm 2 Risk-driven weighted probabilistic flipping attack.

Input: Original training set 𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1 , flip direction 𝑑, flipping budget 𝜖
Output: Contaminated training set 𝐷′

1: 𝐷′ ←𝐷

2: 𝑗 ← 0
3: 𝑓𝑙𝑎𝑔𝑖 ← 0
4: while 𝑗 < 𝜖 do

5: Extract a data point (𝑥′
𝑖
, 𝑦′

𝑖
) from 𝐷′ with probability 𝑝𝑟𝓁𝑖

6: if 𝑓𝑙𝑎𝑔𝑖 = 0 then

7: if 𝑦′
𝑖
= 𝑑 then

8: 𝑦′
𝑖
← −𝑦′

𝑖

9: 𝑓𝑙𝑎𝑔𝑖 ← 1
10: Add (𝑥′

𝑖
, 𝑦′

𝑖
) to 𝐷′

11: end if

12: else Repeat from line 4
13: end if

14: 𝑗 ← 𝑗 + 1
15: end while

16: return 𝐷′

Algorithm 2 describes the flipping attack strategy we used. This algorithm is fully operational if the percentage of flipped points
is relatively small. If the attacker can flip many labels, the result will be that all the labels of the risky points will be flipped, and the
labels of other points not identified as support vectors in any of the iterations of the risk index computation algorithm will also be
flipped randomly.

A second aspect concerns the direction of the label-flipping, which can be either mono- or bi-directional. A check must be in place
to avoid multiple flips of the same label that could bring back the original value of the label. The first option (bi-directional flip) is less
effective from the attacker’s point of view, since the flips can offset their effect, leaving the separating hyperplane almost unchanged.
The second option circumvents this drawback (in Algorithm 2, the check at line 7 indicates the use of mono-directional flips).

6. A closer view of our defence framework

Our defence strategy consists of three main components: (𝑖) computation and polynomial transform of the risk indices associ-

ated with training data, (𝑖𝑖) risk-aware training set partitioning via anti-clustering, and (𝑖𝑖𝑖) ensemble composition for increasing
robustness. The flowchart in Fig. 3 shows the different components of the proposed framework. The rest of this Section defines the
characteristics of each component and how they relate to each other.

6.1. Feature space extension

The first component of our framework is the risk index defined in Section 3 as an explicit polynomial function of the color, which
in turn is a quantization of point’s distance from a separation hyperplane of our reference SVM model. We use the risk index to assign
the data points to the training sets of different learners, in order to minimize the learners’ exposure to poisoned data.2

2 Should attack data be available in the form of reports on previously attacked data points, some alternative risk index could be learnt from them. In case of rational
127

attackers the learnt risk index landscape will be close to the graph of our function over the color map.

Information Sciences 633 (2023) 122–140L. Mauri, B. Apolloni and E. Damiani

Fig. 3. Flowchart of the proposed defence framework.

We achieve this by performing a (temporary) feature space extension, adding the risk index to the data points’ features, and then
using an unsupervised technique (Section 6.3) on the extended data space to group data points into partitions that are highly diverse
in terms of both risk and position. Each partition, stripped of the risk feature, is then used for training a separate learner, minimizing
its exposure to potentially poisoned data. For the sake of flexibility, in addition to computing the risk index as a polynomial function
of the color, we use this additional feature for rescaling the distance in the expanded feature space at (anti-)clustering time.

6.2. Ensemble structuring and composition

The second component of our defence framework is ensemble learning. Ensemble learning is a well-established method that has
been proven to yield improved generalization capabilities. The central idea is to employ multiple learners (usually called base learners)
and combine their predictions based on a consensus algorithm.

When individual predictions from different base learners are combined appropriately, the collective decision has on average
better accuracy than that of any individual learner. We argue that, by properly partitioning data and combining output predictions,
weak learners can become strong learners not only in terms of accuracy, but also in terms of robustness to poisoning attacks. Our
approach relies on two key assumptions:

1. Individual models are sufficiently diverse to maintain high accuracy and be resistant to training-time attacks;

2. Enough intact models always remain in the ensemble so that the consensus output is not corrupted.

Assumption (1) hinges on the way base learners are trained, and comes as a direct result of our approach. Assumption (2) depends
on several factors. The most significant ones are the adversary’s budget and the strategy used for partitioning the training data.

6.2.1. Ensemble member generation and combination rule

When designing an ensemble-based system, three aspects need to be considered: (𝑖) the partitioning method used to select the
training data for each base learner, (𝑖𝑖) the specific procedure used for generating the ensemble members, and (𝑖𝑖𝑖) the combination
rule for obtaining the ensemble decision. Our technique for training data partitioning is described in Section 6.3, while details on
our choices regarding the other two aspects are provided below.

Ensemble-based systems can be seen as algorithm-free-algorithms, independent of the type of base learner used to create the
ensemble. Model independence allows complete discretion in using the type of learner most suitable for a given application. The
pool of base learners in the ensemble can be trained either from the same family or from different families of learning models. Here,
we use the same base learner multiple times to generate the ensemble. We do not introduce diversity at model level, but at the level
of the training data used by each model. Once the base models have been trained, it is necessary to aggregate their individual outputs
to obtain a single final outcome. There are many approaches to model combination, including linear combiners, product combiners, and
voting combiners. We adopt the third type of combination as it is amenable when models output class labels. Voting-based combination
is known to be the optimal approach for combining independent classifiers [34].3 The most popular variant of voting combination
(known as hard voting or majority voting) requires every individual learner to vote for a single class. The class that received the most
votes is chosen as the ensemble’s output. Denoting by 𝑁 the number of learners in the ensemble and 𝐿 the number of classes, the
decision of the 𝑡𝑡ℎ learner (𝐶𝑡) is denoted by 𝑑𝐶𝑡,𝑗 ∈ {0, 1}, where 𝑗 = 1, .., 𝐿. If 𝐶𝑡 decides for class 𝜔𝑗 , then 𝑑𝐶𝑡,𝑗 = 1, and 0 otherwise.
The ensemble output for the majority voting combiner is computed as

3 In fact, under minor assumptions 1) 𝑁 is odd, and 2) each classifier has probability 𝑝 of correctly classifying a given instance, the ensemble predicts the correct
128

(not corrupted) label if at least ⌊𝑁∕2⌋ + 1 base classifiers output the correct label.

Information Sciences 633 (2023) 122–140L. Mauri, B. Apolloni and E. Damiani

𝑚𝑎𝑥1≤𝑗≤𝐿

𝑁∑
𝑡=1

𝑑𝐶𝑡,𝑗
(5)

6.2.2. Accuracy-diversity breakdown

The term accuracy-diversity breakdown of an ensemble of learners is due to two distinct elements, namely the accuracy of the
individual learners and their combination. The ensemble succeeds in achieving better accuracy than any of its members if and only
if its individual learners are accurate and diverse. However, the exact relationship between diversity and accuracy is difficult to
pinpoint. On the one hand, if each base learner makes the same errors, there is no utility in combining their outputs. On the other
hand, if base learners are maximally accurate, they provide the same correct predictions, but there is no distinction between them.

The breakdown of the ensemble error depends on both the type of error function and the combination rule. The case of a
classification problem with a majority vote combiner is a challenging one, and no accepted theoretical framework capturing the
accuracy-diversity breakdown currently exists for it [35]. Regarding robustness, Levine and Feizi [22] introduced a deterministic
lower bound on the efficacy of majority voting which is stated as follows. Let us denote by 𝑓𝑖(𝑥) the 𝑥 classification by the 𝑖-th base
learner, and by 𝑛𝑐(𝑥) the number of base learners classifying 𝑥 as 𝑐, where the final result of their ensemble 𝑔(𝑥) is the index of the
maximum 𝑛𝑐 . Then, let:

𝑡(𝑥) = ⌊ 𝑛𝑔(𝑥) − max𝑐≠(𝑥)(𝑐𝑐(𝑥))
2

⌋ (6)

Any flipping of less than 𝑡(𝑥) labels does not change 𝑔(𝑥).
The threshold 𝑡(𝑥) represents a lower bound on the number of poisoning flips a defender may withstand with no damage. As a

matter of fact, this number is definitely higher in all the protocols we experimented with. Equation (6) highlights a crucial trade-

off between robustness and accuracy rooted on the number 𝑘 of partitions. The gap 𝑛𝑔(𝑥) − max𝑐≠(𝑥)(𝑐𝑐(𝑥)) grows with the number
of partitions 𝑘, whereas the accuracy of the single learner decreases with 𝑘 increasing, because the size of the local training set
decreases as well. Levine and Feizi used very large values of 𝑘, on the order of thousands of partitions for the MNIST benchmark
dataset [36], to exhibit the robustness of their strategy. We will employ a dozen partitions for the same dataset to provide a proper
balance between robustness and accuracy (Section 7).

6.3. Anti-clustering for training set partitioning

Diversity plays an important role in ML. Specifically, diversity of the training data ensures they can provide more discriminatory
information, resulting in improved performance of the learned model [37]. As we will see, data diversification can also be used for
defensive purposes.

6.3.1. Data diversification

By simply reversing the logic behind the popular k-means clustering method, Späth [38] and Valev [39] independently coined
the term anti-clustering to denote a type of data partitioning that ensures similarity between partitions by enforcing dissimilarity
within each partition. In other words, the objective is to provide high intra-group dissimilarity and low inter-group dissimilarity.
Formally, given the set of elements 𝑇 = {𝑡1, ..., 𝑡𝑛} and the number of subsets 𝑘 into which 𝑇 has to be partitioned, the anti-clustering
partitioning defines a set of disjoint partitions (anti-clusters) 𝑃1, ..., 𝑃𝑘 satisfying the following conditions:

𝑘⋃
𝑖=1

𝑃𝑖 = 𝑇 (7)

𝑃𝑖 ∩ 𝑃𝑘 = ∅,∀𝑖, 𝑘 ∈ {1, ..., 𝑘}, 𝑖 ≠ 𝑘 (8)

Condition (7) ensures that every element in 𝑇 is assigned to at least one of the anti-clusters. On the other hand, condition (8) requires
pairwise disjoint anti-clusters. This means that no pair of two anti-clusters can contain the same element. Having partitions of equal
size is not mandatory for anti-clustering methods [40]. However, obtaining comparable sized partitions is a desirable property that
avoids trivial micro-partitions.

The performance and statistical validity of ML models are affected by both the size of the input data partitions and the distribution
of samples across the different partitions [41]. For these reasons, we impose the following additional restriction:

∣ 𝑃𝑖 ∣=∣ 𝑃𝑘 ∣,∀𝑖, 𝑘 ∈ {1, ...𝑘} (9)

From condition (9) it follows that if the number of elements in 𝑇 , denoted by 𝑁 , is a multiple of the number of desired partitions 𝑘,
then each anti-cluster consists of 𝑁

𝑘
elements. By contrast, in the case where 𝑁 is not divisible by 𝑘, the anti-clusters will differ by

one in their size.

6.3.2. Dissimilarity measure and objective function

Anti-clustering partitioning ensures that points close to each other end up in different partitions. To take advantage of this
characteristic for our purposes, we choose a specific criterion for anti-clustering based on information in a dissimilarity matrix that
129

accounts for the relevance of the points.

Information Sciences 633 (2023) 122–140L. Mauri, B. Apolloni and E. Damiani

Fig. 4. k-Means objectives. In (𝑎) we see that k-means clustering minimizes the variance within partitions. The logic is reversed in (𝑏), where anti-clustering k-means
maximizes the variance within partitions.

Fig. 5. Cluster editing objectives. (𝑎) Cluster editing minimizes the diversity objective (sum of pairwise distances within each cluster), whereas (𝑏) anti-cluster editing
maximizes it.

Assuming 𝜋 = {𝑃1, ..., 𝑃𝑘} is a partitioning of the set 𝑇 , where the 𝑖-th partition 𝑃𝑖 contains a subset of all given elements in 𝑇 ,
and assuming Π is the set of all possible partitions, the objective function 𝑓 ∶ Π →ℝ+ associates a positive real number 𝑓 ({𝑃1, ..., 𝑃𝑘})
with each partition. The generic anti-clustering problem may be formulated as follows: find a feasible partitioning 𝜋∗ such that

𝑓 (𝜋∗) =𝑚𝑎𝑥{𝑓 (𝜋) ∣ ∀𝜋 ∈Π} (10)

As for classical clustering methods, there is a wide range of criteria for anti-clustering as well [42]. The most intuitive criterion
is the direct reversal of the k-means clustering logic. The goal of k-means anti-clustering is to maximize the within-group variance,
where within-cluster heterogeneity is measured as the sum of the squared Euclidean distances between individual data points and
cluster centers. Fig. 4 shows in a two-dimensional space how the point assignments to three different equal-sized partitions may vary
depending on whether the objective function minimizes (k-means clustering) or maximizes (k-means anti-clustering) the variance.

For our scheme, we adopt another type of criterion: anti-cluster editing, which is the reverse of the cluster editing clustering
paradigm. This criterion measures within-cluster heterogeneity as the sum of pairwise dissimilarity between elements within the
same group. The corresponding objective function, which the anti-clustering should maximize, is:

𝐷𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 = Σ1≤𝑖≤𝑗≤𝑛𝑑𝑖𝑗𝑥𝑖𝑗 (11)

where the variable 𝑥𝑖𝑗 is used to identify whether two elements belong to the same anti-cluster or not:

𝑥𝑖𝑗 =

{
1, if 𝑥𝑖 ∈ 𝑃𝑘 ∧ 𝑥𝑗 ∈ 𝑃𝑘

0, otherwise
(12)

Fig. 5 shows different assignment of points according to whether the objective function minimizes (cluster editing) or maximizes
(anti-cluster editing) diversity. Differently from Fig. 4, where the dashed lines (i.e., the input values of the objective function) are
drawn to connect each point with the centroid of the cluster to which the point is assigned. In Fig. 5 the lines are drawn between
pairs of points within the same cluster. In Eq. (11) the dissimilarity measure 𝑑𝑖𝑗 usually corresponds to the Euclidean distance (or
squared Euclidean distance), though, in principle, any distance metrics can be used. We employ Euclidean distance in our approach
as well, but introducing a distortion in its calculation that takes into account the risk index (Section 6.1) associated with each point.
We scale the Euclidean distance to take into account the closeness of the points to the separator hyperplane. The general criterion
is that two data points will be closer the higher is their risk index. Thus, a simple distortion is induced via Eq. (13). We use 𝑁 ×𝑁

non-negative symmetric matrix 𝐷 = [𝑑𝑖𝑗] to represent pairwise dissimilarity measurements, whose entries are computed as follows:

𝑑𝑖𝑗 =
∥ 𝑖− 𝑗 ∥
𝑚𝑎𝑥(𝑟𝑖, 𝑟𝑗)

(13)

∥ 𝑖 − 𝑗 ∥ is the Euclidean distance between two points 𝑖 and 𝑗 in the 𝑀 -dimensional space, and the distortion defined at the fraction
130

denominator is given by the maximum between the risks 𝑟𝑖 and 𝑟𝑗 of the points under consideration.

Information Sciences 633 (2023) 122–140L. Mauri, B. Apolloni and E. Damiani

7. Experimental evaluation

We evaluated experimentally the impact of our technique on model robustness [43], and compared it to a benchmark derived
from the literature. Our experimentation is carried out on two data sets: MNIST, the well-known general benchmark on handwritten
digits classification, and MRT, a security dataset of images representing executable program behavior. The MRT dataset has been
proposed for competitive training [44] of binary malware classifiers that classify pictorial representations of the activity of ordinary
and hostile software (malware). While the MNIST data set is suitable to model a general disruption scenario where the attacker
aims to decrease the binary classifier’s overall performance, the MRT data-set supports a targeted disruption scenario where label
flipping is aimed at fooling a malware detector, injecting in its training set images that represent a specific malware’s behavior but
are mislabeled as the behavior of ordinary software.

In terms of the evaluation metrics, we focus on certified accuracy as a measurement of certified robustness against any poisoning
attacks under certain conditions. There is no single definition of certified accuracy, and different certifiably robust approaches have
been proposed in the literature [45]. We rely on the definition we provided in Section 7.2.2.

7.1. Heuristic

Finding a partitioning that maximizes diversity is computationally challenging for 𝑘 ≥ 2 and an arbitrary 𝑀 -dimensional Euclidean
space problem. Especially when the number of elements is large, obtaining the optimal anti-clustering partitioning in an acceptable
running time is extremely difficult with an exact algorithm. To alleviate these issues, in our implementation we opted for a heuristic
algorithm. In particular, we used the exchange method proposed by Papenberg and Klau [40].

The procedure is based on exchanging elements between different anti-clusters such that each swap improves the objective value
by the largest possible margin. The following steps are repeated for each element. First, samples are randomly assigned to different
anti-clusters. Then, the algorithm simulates each possible exchange with elements in other anti-clusters on the basis of the initial
assignment – for a total of (𝑁 − 𝑁

𝑘
) swaps. The swap that maximally improves the objective function is performed.

7.2. Experimental design

We are now ready to present in detail the design of our experimentation.

7.2.1. Target model

As mentioned earlier, our defense technique is not tied to a specific ML model. Still, to assess its benefit, we need a target to
apply it to. We opted for a simple Convolutional Neural Network (CNN) both as the target model and as the base learner for the
ensemble. We used our reference SVM model for identifying the risk levels (playing the part of the defender) and the data points
to attack (playing the part of the adversary). The SVM has been implemented via the CRANE library of Python. The training of all
learners has been carried out in TensorFlow-Keras.

7.2.2. Metrics

Our evaluation metric has three components. We use clean accuracy computed on test data to evaluate how models perform
on pristine data. The second metric, after poisoning accuracy, describes how ML models perform on label-flipped data with varying
poisoning rate. This allows us to investigate how our algorithm performs against different poisoning ratios. In addition, we use third

metrics, certified accuracy, again evaluated on the test set and defined as follows. For a given flipping percentage it is the ratio
between: (𝑖) the number of items that have a different label when classified by the function learned from the original training set
and the one learned from the poisoned version of the training set, and (𝑖𝑖) the test set size. Additionally, we consider the ensemble
gap, a measure that applies to the ensemble methods. On each element of the test set, it reckons the difference between the number
of base learners whose output coincides with the majority vote result and the number referring to the second highest voted. A large
gap denotes high robustness of the result to further perturbations of the training set.

7.2.3. Risk levels

We use 10 colors i.e., ten different values for the risk index calculated using Algorithm 1 (see Section 3.3), plus a 0-level collecting
images which do not correspond to any support vector identified during the 10 iterations of the algorithm.

7.2.4. Attacker’s budget

In the literature on poisoning attacks the budget of the attacker, in terms of the number of points she is able to modify, almost
never exceeds 20 −25% of the size of the training set [46]. We use the label-flipping strategy described in Algorithm 2 (see Section 5.2),
with a mono-directional flipping. We assess the efficacy of our strategy for multiple flipping rates 𝜌 ranging from 0.08% to 25%. With
𝜌 ∈ (0.08, 8) Algorithm 2 fully exploits the riskiness difference, where the risk level 𝑟𝓁 translates to the drawing probability via the
formula (4). Outside of this range, the sole difference that matters is the one between support vectors and non support vectors (see
131

Section 5.2).

Information Sciences 633 (2023) 122–140L. Mauri, B. Apolloni and E. Damiani

Fig. 6. A sample image from MNIST dataset.

Table 1

Comparison of accuracy and ensemble gap (which applies only to anticl and classic methods)
when no attack is performed, and 𝑘 = 15 partitions.

Method 𝑚𝑜𝑛_𝑐𝑙𝑒𝑎𝑛 𝑐𝑙𝑎𝑠𝑠𝑖𝑐_𝑐𝑙𝑒𝑎𝑛 𝑎𝑛𝑡𝑖𝑐𝑙_𝑐𝑙𝑒𝑎𝑛

Accuracy 0.99594 ± 0.00130 0.99371 ± 0.00075 0.98917 ± 0.00065
Mean gap - 14.8714 14.907

7.3. Benchmark

To understand the rationale underlying our benchmark design, we consider a generic training set 𝐷, two data points 𝑝, 𝑞 ∈ 𝐷,
and a mapping ℎ ∶𝐷→ 𝑈 , where 𝑈 ⊆ 2𝐷 is a set of partitions over 𝐷. We denote the distance between 𝑝 and 𝑞 as |𝑝 - 𝑞| and the
probability that ℎ(𝑝) = ℎ(𝑞) as 𝑃𝑟(ℎ(𝑝) = ℎ(𝑞)). Given a suitable probability threshold 𝑃1 and a predefined radius 𝑅, to behave as a
Locality Sensitive Hashing (LSH) ℎ must satisfy the following equation [47]:

∣ 𝑝− 𝑞 ∣<𝑅→ 𝑃𝑟(ℎ(𝑝) = ℎ(𝑞)) ≥ 𝑃1 (14)

Hash techniques [22] partition the training set into disjoint subsets via a hash function, shuffling data among partitions based on
their hash.

Rather than choosing a specific hash function ℎ as a benchmark, we derive our benchmarks partitioning the training set randomly
without repetition [48], regardless of the risk levels identified by means of Algorithm 1. The partition is then verified to have hash-

like data shuffling property for suitable 𝑅 and 𝑃 − 1 via Eq. (14) before using it as a benchmark. The details of this verification are
reported in Section 7.5.1. In our experiments, we compare this classic benchmark to the performance of our partitioning, performed
according to the anti-clustering technique (anticl). We also report (denoting it by mon, short for “monolithic”) on the performance of
the target ML model trained on the whole training set with the traditional ensemble-less architecture.

7.4. MNIST experiment

Our first experiment was carried out on the classic MNIST benchmark, which contains a collection of 70000 images of hand-

written digits from 0 to 9, where the training set and the test set include 60000 and 10000 samples, respectively. This dataset is a
typical benchmark for classification algorithms because of the high variability of representations for the same digit. Each sample
is represented as a feature vector consisting of a 28 × 28 grid of 256-valued gray shades. We normalized the pixel values by scaling
them to the range [0, 1]. In line with the literature, we defined a binary classification task on a portion of the MNIST dataset, i.e.
distinguishing between digits 1 and 7. A sample data item is shown in Fig. 6. The result is a total of 15170 images of dimension 784,
with 13007 images in the training set and 2163 in the test set. For this experiment, flipping changes the 1 labels to 7.

7.4.1. MNIST: experimental results and analysis

In a preliminary experiment, we randomly selected a subset of 3000 points from the training set and performed the label-flipping
attack with different poisoning rates to decide how many partitions 𝑘 to use for our ensemble trained on all of the data (13007 points).
We tested three different values for 𝑘, namely 3, 15, and 30. Obviously, the number of partitions 𝑘 is a parameter that controls the
trade-off between robustness and accuracy. By analyzing the curves shown in Fig. 7, we decided to focus on 𝑘 = 15 partitions as
a good compromise between robustness and accuracy. The smaller slope of the curve as the percentage of poisoning increases is
a property that denotes robustness, albeit at the cost of poor accuracy when few points are poisoned. For each of the experiments
we have performed 10 repetitions, thus Table 2, which summarizes our results in terms of accuracy for the three methods, presents
average values derived from 10 different runs performed on the whole training set considered.

No attack scenario. First of all, Table 1 shows that in the absence of attacks (denoted by the suffix _𝑐𝑙𝑒𝑎𝑛), the order of accuracy is
as follows: 𝑚𝑜𝑛_𝑐𝑙𝑒𝑎𝑛 > 𝑐𝑙𝑎𝑠𝑠𝑖𝑐_𝑐𝑙𝑒𝑎𝑛 > 𝑎𝑛𝑡𝑖𝑐𝑙_𝑐𝑙𝑒𝑎𝑛. The first inequality seems trivial, since, in the absence of local minima, learning
based on the whole dataset is more efficient than composing multiple learners on partial training sets. The second inequality confirms
that on clean data the partitioning underlying 𝑐𝑙𝑎𝑠𝑠𝑖𝑐_𝑐𝑙𝑒𝑎𝑛, defeats our “smarter” partitioning strategy. However, as Table 1 shows,
the difference in accuracy is quite shallow. Although the classic benchmark exhibits slightly higher accuracy than the anticl one, and
thus closer to that of mon, our method resulted in only a slight degradation in accuracy when no attack is performed.

Under attack. To evaluate our method’s behavior under attack, we started the experiment by checking which would be the most
132

efficient strategy on the part of the attacker.

Information Sciences 633 (2023) 122–140L. Mauri, B. Apolloni and E. Damiani

Fig. 7. Accuracy curves for percentage of label-flipping ranging from 10% to 40% and 𝑘 ∈ {3,15,30} partitions.

Fig. 8. Accuracy trend of the MNIST dataset with increased number of flips for both bordering (risk levels 1 − 10) and inner data points (risk level 0).

Fig. 8 shows a natural order for the experiments where:

a) We flip the labels of 270 images belonging to risk levels 1 − 10, with probabilities calculated according to (4);

b) Then, we flip the labels of 215 images belonging to the risk level 0 (lying far from the linear separator);

c) Again, we perform a mono-directional label flip on 485 images, but this time all belonging to risk levels 1 −10, with probabilities
calculated according to (4).

We observe that, with respect to effectiveness, we obtain: a ≃ b < c. Regarding the ordering of methods in case of attack (denoted
by the suffix _𝑝𝑜𝑖𝑠), for low flipping rates we have 𝑐𝑙𝑎𝑠𝑠𝑖𝑐_𝑝𝑜𝑖𝑠 > 𝑚𝑜𝑛_𝑝𝑜𝑖𝑠 > 𝑎𝑛𝑡𝑖𝑐𝑙_𝑝𝑜𝑖𝑠 whereas for higher rates of poisoning, anticl

turns out to be far superior to the others: 𝑎𝑛𝑡𝑖𝑐𝑙_𝑝𝑜𝑖𝑠 > 𝑐𝑙𝑎𝑠𝑠𝑖𝑐_𝑝𝑜𝑖𝑠 >𝑚𝑜𝑛_𝑝𝑜𝑖𝑠.

Adding 215 non-support vector images leaves the accuracy almost unchanged, with a very small increase due to the random
shaking effect of the non-support vector (inner) images. Conversely, choosing additional images close to the boundaries (i.e., from
the support vectors) changes performance in a way that will be discussed later. This confirms our strategy for high percentages of
poisoning, which consists of first flipping all support vector images and then saturating the desired percentage of poisoned points
with inner images.

To confirm the above observations, we carried out a run of the experiment where all flip percentages are less than 3.5%, and
all poisoned points are selected from risk levels 1 − 10. In particular, percentages range from 0.8% to 3.3% of the training set. This
involves from 2% to 81% of the points having risk levels 1 − 10, with an absolute number of flipped points ranging from 11 to 431. In
a second run of the experiment, we considered higher percentages of poisoning, i.e., between 10% and 25%. Clearly, in this second
case, we adopted mono-directional flipping of all the points of levels 1 −10 having label 1 (for a total of 527 points) plus other points
taken from level 0 until saturating the desired percentage. Thus, the total number of flipped points (both levels 1 − 10 and level 0)
varies from 1301 to 5203. As we can observe from Fig. 9, the results confirm that when the poisoning rate is consistent (say from 6%
to 25%), our method has a higher accuracy compared to both classic and mon methods. In particular, the percentages between 10 and
20 are the ones for which anticl is more robust.

In a final run of our experiment, we assessed the degree of degradation reached by the different methods with flipping percentages
of more than 30% of the training set. The results reported in Table 2 (last two lines) show that regardless of the method, accuracy
133

decreases dramatically when the rate is so high as to bring the classification to accuracy values not much different from a mere

Information Sciences 633 (2023) 122–140L. Mauri, B. Apolloni and E. Damiani

Fig. 9. Accuracy comparison with MNIST dataset for 𝑘 = 15 partitions and poisoning rate ranging from 0.08% to 25% of the training set size.

Table 2

Results of the experiment on the MNIST dataset using different label-flipping attack strategies. Averaged test accuracy
plus/minus the standard deviation as a function of the poisoning points. %𝑡𝑟 and %𝑟𝑙1_10

are the percentage of flipped points
with respect to the total number of training data and the percentage of flipped points with respect to the total number of
points with risk level 1 −10 with label 1, respectively. #𝑟𝑙1_10

is the numerical equivalent of %𝑟𝑙1_10
, #𝑟𝑙0 is the number of flipped

points with risk level 0, and #𝑡𝑜𝑡 is the total number of flipped points (levels 0 − 10).

Label flips 𝐴𝑐𝑐∗

%𝑡𝑟 %𝑟𝑙1_10
#𝑟𝑙1_10

#𝑟𝑙0 #𝑡𝑜𝑡 𝑀𝑂𝑁 𝐶𝐿𝐴𝑆𝑆𝐼𝐶 𝐴𝑁𝑇𝐼𝐶𝐿

0.08 2 11 0 11 0.99579±0.00153 0.99366±0.00065 0.98908±0.00049

0.4 10 54 0 54 0.99556±0.00117 0.99329±0.00058 0.98936±0.00068

0.8 20 108 0 108 0.99301±0.00215 0.99278±0.00049 0.98908±0.00082

1.2 31 162 0 162 0.99320±0.00254 0.99241±0.00032 0.98881±0.00091

1.6 41 216 0 216 0.99079±0.00316 0.99223±0.00052 0.98922±0.00061

2 51 270 0 270 0.98950±0.00223 0.99218±0.00059 0.98918±0.00054

2.5 61 323 0 323 0.98404±0.00421 0.99066±0.00153 0.98941±0.00066

3.3 81 431 0 431 0.97831±0.00787 0.98608±0.00273 0.98936±0.00065

3.7 51 270 215 485 0.99024±0.00197 0.99237±0.00049 0.98987±0.00079

4 51 270 270 540 0.98918±0.00579 0.99163±0.00120 0.98987±0.00070

5 39 207 443 650 0.99320±0.00396 0.99241±0.00054 0.98881±0.00078

8 98 520 520 1040 0.97646±0.00465 0.98192±0.00428 0.99042±0.00084

10 100 527 774 1301 0.96417±0.01027 0.97716±0.00454 0.99024±0.00107

15 100 527 1424 1951 0.96675±0.00677 0.96615±0.00947 0.99001±0.00183

20 100 527 2074 2601 0.95214±0.01629 0.94392±0.01272 0.97582±0.00442

25 100 527 2725 3252 0.85654±0.12899 0.84248±0.04135 0.86934±0.05094

30 100 527 3375 3902 0.57318±0.09154 0.59052±0.04075 0.53550±0.04942

40 100 527 4676 5203 0.47531±0.00014 0.47526±1.17027 0.47526±1.17027

coin toss (accuracy close to 50%). The accompanying trend in standard deviations confirms the general behavior: we have moderate
values for no or low poisoning rates (say less than 25%), which strongly increase beyond this threshold, until reaching equivalent
values in the case of the two ensemble methods that are definitely lower than the corresponding value for mon. It is worth noting
that, although in principle an attacker can arbitrarily increase the number of corrupted points in the training set, in real-world
applications, significantly increasing the poisoning rate inevitably leads to making the attack obvious.

Results on certified accuracy. In Table 3 we report the results up to the poisoning percentage of 40% in terms of the actual number
of points in the test set that did not change their labels after the label-flipping attack. The corresponding graphs are given in Fig. 10.
We note a benefit similar to that observed for the accuracy metric: up to 25% anticl prevails over the other two methods, where up
to 20% the number of certified points is very high. Beyond the 25% threshold, the trend is reversed, and training corruption leads to
essentially random classifications.

Ensemble gap. The gap between the number of voters of the highest and second highest voted result of an ensemble is a measure
of the robustness of an ensemble classifier against poisoning attacks, as highlighted by (6). The second row of Table 1 shows a small
134

superiority of anticl over classic in case of a clean training set, which apparently reverses in the case of a poisoned training set.

Information Sciences 633 (2023) 122–140L. Mauri, B. Apolloni and E. Damiani

Table 3

Certified accuracy against the MNIST dataset, with 𝑘 = 15 partitions for anticl and classic methods.
𝑐𝑒𝑟𝑡𝑎𝑐𝑐 is the percentage quantifying the output changes in case of label contamination of the training
set; 𝑐𝑒𝑟𝑡𝑝𝑜𝑖𝑛𝑡𝑠 is the corresponding number of certified points.

Label flips 𝑐𝑒𝑟𝑡𝑝𝑜𝑖𝑛𝑡𝑠 𝑐𝑒𝑟𝑡𝑎𝑐𝑐

%𝑡𝑟 MON CLASSIC ANTICL MON CLASSIC ANTICL

2 2153 2154 2156 0.99565 0.99625 0.99676

5 2106 2118 2153 0.97383 0.97928 0.99565

10 2083 2108 2149 0.96329 0.97484 0.99380

15 2088 2081 2141 0.96574 0.96250 0.98987

20 2056 2034 2104 0.95067 0.94036 0.97286

25 1848 1811 1872 0.85478 0.83767 0.86555

30 1234 1266 1148 0.57068 0.58562 0.53088

40 1023 1017 1016 0.47304 0.47031 0.46985

Fig. 10. Certified accuracy comparison against the MNIST dataset, with 𝑘 = 15 partitions for anticl and classic methods. The figure on the top shows the certified
135

accuracy to label-flipping poisoning attacks. The figure on the bottom shows how the corresponding number of certified points changes as the flip percentage increases.

Information Sciences 633 (2023) 122–140L. Mauri, B. Apolloni and E. Damiani

Fig. 11. Gap comparison between the anticl and classic ensemble methods with the MNIST dataset.

Fig. 12. A MRT dataset’s data point showing the pictorial representation of the events generated by malware in a 500 msec time window.

A smaller gap with the poisoned training set again denotes a superiority of our method, which raises more contested voters when
the majority result is wrong. The gap difference of the two methods is so small that it invests exactly the faulty classified points, the
number of which in turn increases with the poisoning rate. Thus, within the previously mentioned range (6%, 25%) of the poisoning
rate, we observe this virtuous phenomenon that tends to vanish for higher rates (see Fig. 11).

7.5. MRT experiment

The accuracy of behavioral malware detection largely depends on the availability of manually labeled training data. Manipulating
malware data by targeted label flipping can cause dangerous malware mis-classifications in the field [49]. The MRT dataset is a
manually labeled dataset composed of 4465 samples of malware behavior, taken from sand-boxed execution of a set of over 170
malware programs and 200 benign applications. Each data point represents the number of events (out of a vocabulary of 128 event
types) generated by a software program in a sampling interval of 500 msec. The data set is highly unbalanced (3000 benign, 1465
malign samples). The pictorial representation of each data point is computed via direct decimal to binary conversion, obtaining 4465
black and white images composed of 64 * 64 pixels. A sample MRT data item is shown in Fig. 12. This experiment provides an
example of the process to be followed for applying our technique in practice. Malware classifiers are deployed on devices as frozen,
read-only code. To fool the classifiers, attackers can only target training data, by performing mono-directional flipping and changing
the label “malign” into “benign” for some malware.

The malware detector developer who does not fully trust the training data applies our methodology by (i) partitioning according
to our method the training set received from the labeler, (ii) training a ML model for each partition, and (iii) combining the ML
models into an ensemble, which is deployed on the devices. The choice of certified accuracy as the effectiveness metrics is a natural
one on the part of the developer, as it expresses the success rate of the attacker in modifying the malware detector’s performance.

7.5.1. Practical implementation details

We refer to our CNN target model, this time trained on the MRT data set. The classic benchmark for MRT has been validated
as follows. We extracted a sample of 50 elements from the training set. For each pair of points in the training set, we computed
their Euclidean distance, obtaining a total of 1225 values, and computed the average distance 𝑅. We then selected the pairs with
distance falling within the range [𝑅 − 𝜎, 𝑅 + 𝜎], where 𝜎 is the standard deviation. For each of the corresponding data points, we
ascertained to which partitions they were assigned and computed the ratio between the pairs of points for which the target partition
was divergent and the total number of pairs. This verifies the hash-like data shuffling behavior of this partitioning. The benchmark
136

we used has 𝑅 = 2.641484 and 𝑃1 = 56% (see Section 7.3), in line with the literature.

Information Sciences 633 (2023) 122–140L. Mauri, B. Apolloni and E. Damiani

Fig. 13. Accuracy comparison for 𝑘 = 5 partitions and poisoning rate up to 40% of the MRT training set size.

Table 4

Certified accuracy against the MRT dataset, with 𝑘 = 5 partitions for anticl and classic methods. 𝑐𝑒𝑟𝑡𝑎𝑐𝑐
is the percentage quantifying the output changes in case of label contamination of the training set;
𝑐𝑒𝑟𝑡𝑝𝑜𝑖𝑛𝑡𝑠 is the corresponding number of certified points.

Label flips 𝑐𝑒𝑟𝑡𝑝𝑜𝑖𝑛𝑡𝑠 𝑐𝑒𝑟𝑡𝑎𝑐𝑐

%𝑡𝑟 MON CLASSIC ANTICL MON CLASSIC ANTICL

2 1056 1100 1115 0.88058 0.917 0.92991

5 886 1063 1138 0.73875 0.88614 0.94875

10 1034 1043 1089 0.86178 0.86916 0.90797

15 926 970 1119 0.77238 0.80880 0.93285

20 921 985 1075 0.76797 0.82107 0.89654

25 968 970 1006 0.807 0.80875 0.83891

30 913 936 926 0.76125 0.78025 0.77241

40 660 714 756 0.55075 0.59533 0.63033

7.5.2. MRT: experimental results and analysis

We report the results of the MRT experiments. Taking into account the results of the first experiment and the smaller size of the
MRT dataset compared to MNIST, we decided to focus on 𝑘 = 5 partitions as a good compromise between robustness and accuracy.
The next subsections contain the comparative analysis of the performance for this number of partitions.

No attack scenario. The best accuracy of the ML model on MRT achieved by the literature [50] is around 0.95 for a CNN monolithic
model, while the accuracy we obtained with our implementation is around 0.82. This difference may be due to hyper-parameters
tuning, to architectural differences or to other factors like a higher number of training epochs. In the absence of attacks, the order
of accuracy is 𝑚𝑜𝑛_𝑐𝑙𝑒𝑎𝑛 ≥ 𝑐𝑙𝑎𝑠𝑠𝑖𝑐_𝑐𝑙𝑒𝑎𝑛 > 𝑎𝑛𝑡𝑖𝑐𝑙_𝑐𝑙𝑒𝑎𝑛 as in the first experiment. However, all partitioning techniques deliever similar
results in terms of accuracy on clean data.

Under attack. This experiment results show that the monolithic model is quite vulnerable to attack, with accuracy falling below
0.7 already with a 15% of flipped samples. This is quite critical for a malware detector. The 𝑐𝑙𝑎𝑠𝑠𝑖𝑐 benchmark handles small attack
budgets quite well but performs badly for budgets above 10%. Our 𝑎𝑛𝑡𝑖𝑐𝑙 technique performs steadily better for budgets larger than
10% (Fig. 13). We also assessed the degree of degradation reached by the different methods with percentages between 30% and 40%
of the MRT training set. The results, reported in Fig. 13 (right-hand side) show that accuracy decreases somewhat less than in the
previous experiment (especially for training corruption of 30%), although the trend is pretty similar.

Results on certified accuracy. In terms of certified accuracy, in this experiment anticl clearly prevails over the other two methods
for all attackers’ budgets, keeping the certified accuracy over 90% even for a flip rate of 20% (Fig. 14). Results are summarized in
Table 4.

7.6. Discussion

Both our experiments support two notions: (i) deploying an ensemble with a risk-driven partitioning of the training set instead
137

of a monolithic ML model can alleviate the impact of targeted label flipping even employing a small number of partitions, and (ii)

Information Sciences 633 (2023) 122–140L. Mauri, B. Apolloni and E. Damiani

Fig. 14. Certified accuracy comparison against the MRT dataset, with 𝑘 = 5 partitions for anticl and classic methods. The figure on the top shows the certified accuracy
to label-flipping poisoning attacks. The figure on the bottom shows how the corresponding number of certified points changes as the flip percentage increases.

risk-driven anti-clustering provides better certified accuracy than hash-style shuffling, at the price of a slightly lower performance
on clean data. We argue the first result is of high practical importance, as the number of learners that can be actually deployed may
depend on in-production resource constraints and should be kept as low as possible. The second result confirms the expectation that
anti-clustering provides a sounder dispersion control than hashing.

8. Conclusions

Developing appropriate defense mechanisms specific for ML assets is of paramount importance. In this paper, we focused on
training data, which is a key asset of any ML system, and investigated how to make ML models more robust w.r.t. training data
poisoning attacks.

A major gap we identified in the literature is that defense techniques are strictly tied to the target ML model’s hyper-parameters.
We argue that from the security standpoint these defense techniques provide an understanding of the vulnerabilities of specific ML
models, but cannot be used as a foundation of a general methodology for securing ML assets [30].

Another important gap we found in the literature is the lack of general approaches to estimate the risk associated with ML data
assets.

In an effort toward filling these two gaps, we described a defense mechanism applicable to a variety of ML models, combining
ensemble composition and security risk analysis. Our technique relies on a SVM as the reference model to represent the attacker’s
(and the defender’s) knowledge about the targets.

In addition to linear classification, SVMs can efficiently perform non-linear classification by mapping their inputs into a higher-

dimensional feature space. In our future work, we plan to investigate how the structure of this mapping can be used by either
138

contender to take advantage of available context information, especially the one regarding the model to be attacked or defended. We

Information Sciences 633 (2023) 122–140L. Mauri, B. Apolloni and E. Damiani

also plan to introduce generic risk landscapes, where the color and the corresponding risk index value of the data points depend on
context information, such as non-uniform cost of the attack for different regions in the input data space.

We believe our work lays the foundation for standardizing automatic support of training set partitioning and ensemble generation
within the ML models’ development and deployment lifecycle.

CRediT authorship contribution statement

Lara Mauri: Conceptualization, Data curation, Investigation, Methodology, Software, Validation, Visualization, Writing – original
draft, Writing – review & editing. Bruno Apolloni: Formal analysis, Supervision. Ernesto Damiani: Conceptualization, Methodology,
Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgement

This work has been partly funded by the Università degli Studi di Milano with the project SOV-EDGE-HUB (n. PSRL621EDAMI_01),
within the Grandi Sfide d’Ateneo program.

References

[1] D.A. Neu, J. Lahann, P. Fettke, A systematic literature review on state-of-the-art deep learning methods for process prediction, Artif. Intell. Rev. 55 (2) (2022)
801–827.

[2] R.S.S. Kumar, M. Nyström, J. Lambert, A. Marshall, M. Goertzel, A. Comissoneru, M. Swann, S. Xia, Adversarial machine learning-industry perspectives, in: 2020
IEEE Security and Privacy Workshops (SPW), IEEE, 2020, pp. 69–75.

[3] O. Sagi, L. Rokach, Ensemble learning: a survey, WIREs Data Min. Knowl. Discov. 8 (4) (2018), https://doi .org /10 .1002 /widm .1249.

[4] R. Schuster, C. Song, E. Tromer, V. Shmatikov, You autocomplete me: poisoning vulnerabilities in neural code completion, in: 30th USENIX Security Symposium
(USENIX Security 21), USENIX Association, 2021, pp. 1559–1575.

[5] S. Mei, X. Zhu, Using machine teaching to identify optimal training-set attacks on machine learners, in: Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, AAAI’15, AAAI Press, 2015, pp. 2871–2877.

[6] M.A. Ramirez, S.-K. Kim, H.A. Hamadi, E. Damiani, Y.-J. Byon, T.-Y. Kim, C.-S. Cho, C.Y. Yeun, Poisoning attacks and defenses on artificial intelligence: a survey,
arXiv preprint, arXiv :2202 .10276, 2022.

[7] A. Paudice, L. Muñoz-González, E.C. Lupu, Label sanitization against label flipping poisoning attacks, in: ECML PKDD 2018 Workshops, Springer International
Publishing, Cham, 2019, pp. 5–15.

[8] F.R. Hampel, Contributions to the Theory of Robust Estimation, University of California, Berkeley, 1968.

[9] A. Prasad, A.S. Suggala, S. Balakrishnan, P. Ravikumar, Robust estimation via robust gradient estimation, J. R. Stat. Soc., Ser. B, Stat. Methodol. 82 (3) (2020)
601–627.

[10] P.W. Koh, J. Steinhardt, P. Liang, Stronger data poisoning attacks break data sanitization defenses, arXiv :1811 .00741, 2021.

[11] E. Borgnia, J. Geiping, V. Cherepanova, L. Fowl, A. Gupta, A. Ghiasi, F. Huang, M. Goldblum, T. Goldstein, Dp-instahide: provably defusing poisoning and
backdoor attacks with differentially private data augmentations, arXiv :2103 .02079, 2021.

[12] J. Geiping, L. Fowl, G. Somepalli, M. Goldblum, M. Moeller, T. Goldstein, What doesn’t kill you makes you robust(er): adversarial training against poisons and
backdoors, arXiv :2102 .13624, 2021.

[13] L. Breiman, Bagging predictors, Mach. Learn. 24 (2) (1996) 123–140.

[14] B. Biggio, I. Corona, G. Fumera, G. Giacinto, F. Roli, Bagging classifiers for fighting poisoning attacks in adversarial classification tasks, in: Proceedings of the
10th International Conference on Multiple Classifier Systems, MCS’11, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 350–359.

[15] T.K. Ho, The random subspace method for constructing decision forests, IEEE Trans. Pattern Anal. Mach. Intell. 20 (8) (1998) 832–844, https://doi .org /10 .
1109 /34 .709601.

[16] B. Biggio, G. Fumera, F. Roli, Multiple classifier systems under attack, in: N. El Gayar, J. Kittler, F. Roli (Eds.), Multiple Classifier Systems, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010, pp. 74–83.

[17] E. Rosenfeld, E. Winston, P. Ravikumar, Z. Kolter, Certified robustness to label-flipping attacks via randomized smoothing, in: H.D. III, A. Singh (Eds.), Proceed-

ings of the 37th International Conference on Machine Learning, in: Proceedings of Machine Learning Research, vol. 119, PMLR, 2020, pp. 8230–8241.

[18] M. Weber, X. Xu, B. Karlaš, C. Zhang, B. Li Rab, Provable robustness against backdoor attacks, arXiv :2003 .08904, 2021.

[19] J. Gao, A. Karbasi, M. Mahmoody, Learning and certification under instance-targeted poisoning, arXiv :2105 .08709, 2021.

[20] J. Jia, X. Cao, N.Z. Gong, Intrinsic certified robustness of bagging against data poisoning attacks, in: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI
2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, the Eleventh Symposium on Educational Advances in Artificial
Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, AAAI Press, 2021, pp. 7961–7969.

[21] J. Jia, X. Cao, N.Z. Gong, Certified robustness of nearest neighbors against data poisoning attacks, CoRR, arXiv :2012 .03765 [abs], 2020.

[22] A. Levine, S. Feizi, Deep partition aggregation: provable defense against general poisoning attacks, arXiv :2006 .14768, 2021.

[23] A. Subbaswamy, R. Adams, S. Saria, Evaluating model robustness and stability to dataset shift, in: International Conference on Artificial Intelligence and
Statistics, PMLR, 2021, pp. 2611–2619.

[24] V. Bellandi, S. Cimato, E. Damiani, G. Gianini, A. Zilli, Toward economic-aware risk assessment on the cloud, IEEE Secur. Priv. 13 (6) (2015) 30–37.
139

[25] Z. Li, W. Xu, H. Shi, Y. Zhang, Y. Yan, Security and privacy risk assessment of energy big data in cloud environment, Comput. Intell. Neurosci. (2021) 2021.

http://refhub.elsevier.com/S0020-0255(23)00394-8/bib0E0E65C9DF6174E3DAD5E66C87A1155Bs1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib0E0E65C9DF6174E3DAD5E66C87A1155Bs1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib34C3C247E0D908DE6378696110397E20s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib34C3C247E0D908DE6378696110397E20s1
https://doi.org/10.1002/widm.1249
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib065594310CAACFFF7EB6E6A19109BBB7s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib065594310CAACFFF7EB6E6A19109BBB7s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bibE9FF17BB3563D091F39123ADAA8468A9s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bibE9FF17BB3563D091F39123ADAA8468A9s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib7077A46692D8C4585A7F8ACE46E91281s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib7077A46692D8C4585A7F8ACE46E91281s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib5FB5EBA08EE0AD9CD122CF99EED7EA6Es1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib5FB5EBA08EE0AD9CD122CF99EED7EA6Es1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bibB9A3EA178494C8B291CFED830FFB3042s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bibB8F4714AA707F69E3CB441BDB5A2FCEEs1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bibB8F4714AA707F69E3CB441BDB5A2FCEEs1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib53FA43C5F5F39D6AE9DE4955F1A9ED66s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bibE5836CAB885519AFF0E89FC7ECBC5AC7s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bibE5836CAB885519AFF0E89FC7ECBC5AC7s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib20492A7C4618E2FC9805993E23418A77s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib20492A7C4618E2FC9805993E23418A77s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib34E587E5E908CB69F6BB608FDF706686s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib682297C0361052AE6E01D7F78C104D77s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib682297C0361052AE6E01D7F78C104D77s1
https://doi.org/10.1109/34.709601
https://doi.org/10.1109/34.709601
http://refhub.elsevier.com/S0020-0255(23)00394-8/bibD544E3E002E21D17BC4F94238895F342s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bibD544E3E002E21D17BC4F94238895F342s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib0E030585EDBB9D08459709448FEF62D7s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib0E030585EDBB9D08459709448FEF62D7s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bibA083DB61CDE408C65F267FCB56F9220Fs1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib19F95712F6AD08A598586945B832DA86s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib18E54CF3758AD7703AA82E0A4C47AF33s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib18E54CF3758AD7703AA82E0A4C47AF33s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib18E54CF3758AD7703AA82E0A4C47AF33s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib4B1CE864AC48AA0DFA9F8B57AAF3A60Ds1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib8B3E041556D20E11972222F96BF028DBs1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib0BFF327D861028AF5968295611B9FCDEs1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib0BFF327D861028AF5968295611B9FCDEs1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bibB45767FC901A35870F732781321AB636s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bibCEA780CCF65EB36CB50F3B4C691DBE0Ds1

Information Sciences 633 (2023) 122–140L. Mauri, B. Apolloni and E. Damiani

[26] D.M. Johnson, C. Xiong, J.J. Corso, Semi-supervised nonlinear distance metric learning via forests of max-margin cluster hierarchies, IEEE Trans. Knowl. Data
Eng. 28 (4) (2016) 1035–1046, https://doi .org /10 .1109 /TKDE .2015 .2507130.

[27] ENISA, AI cybersecurity challenges – threat landscape for artificial intelligence, December 2020.

[28] B. Caroline, B. Christian, B. Stephan, B. Luis, D. Giuseppe, E. Damiani, H. Sven, L. Caroline, M. Jochen, D.C. Nguyen, et al., Securing machine learning algorithms,
2021.

[29] L. Mauri, E. Damiani, Estimating degradation of machine learning data assets, ACM J. Data Inf. Qual. (JDIQ) 14 (2) (2021) 1–15.

[30] L. Mauri, E. Damiani, Modeling threats to AI-ML systems using STRIDE, Sensors 22 (17) (2022), https://doi .org /10 .3390 /s22176662, https://www .mdpi .com /
1424 -8220 /22 /17 /6662.

[31] B. Apolloni, S. Bassis, D. Malchiodi, P. Witold, The Puzzle of Granular Computing, Studies in Computational Intelligence, vol. 138, Springer Verlag, 2008.

[32] A.E. Cinà, S. Vascon, A. Demontis, B. Biggio, F. Roli, M. Pelillo, The hammer and the nut: is bilevel optimization really needed to poison linear classifiers?,
CoRR, arXiv :2103 .12399 [abs], 2021.

[33] Z. Yang, L. Li, X. Xu, B. Kailkhura, T. Xie, B. Li, On the certified robustness for ensemble models and beyond, arXiv :2107 .10873, 2021.

[34] C. Zhang, Y. Ma, Ensemble Machine Learning: Methods and Applications, Springer, Boston, MA, 2012.

[35] G. Brown, Ensemble learning, in: C. Sammut, G.I. Webb (Eds.), Encyclopedia of Machine Learning, Springer, 2010, pp. 312–320.

[36] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE 86 (1998) 2278–2324, http://yann .lecun .com /
exdb /mnist/.

[37] Z. Gong, P. Zhong, W. Hu, Diversity in machine learning, IEEE Access 7 (2019) 64323–64350, https://doi .org /10 .1109 /ACCESS .2019 .2917620.

[38] H. Späth, Anticlustering: maximizing the variance criterion, Control Cybern. 15 (1986) 213–218.

[39] V. Valev, Set partition principles, in: J. Kozesnik (Ed.), Transactions of the Ninth Prague Conference on Information Theory, Statistical Decision Functions, and
Random Processes, Prague, 1982, Springer Netherlands, T. Prague, 1983, pp. 251–256.

[40] M. Papenberg, G.W. Klau, Using anticlustering to partition data sets into equivalent parts, Psychol. Methods 26 (2) (2021) 161–174, https://doi .org /10 .1037 /
met0000301.

[41] A. Dagli, N. McCarroll, D. Vasilenko, Data partitioning for ensemble model building, Int. J. Cloud Comput., Serv. Archit. (IJCCSA) 7 (3/4) (2017).

[42] M.J. Brusco, J.D. Cradit, D. Steinley, Combining diversity and dispersion criteria for anticlustering: a bicriterion approach, Br. J. Math. Stat. Psychol. 73 (3)
(2020).

[43] S. Scher, A. Trügler, Robustness of machine learning models beyond adversarial attacks, CoRR, arXiv :2204 .10046 [abs], 2022, https://doi .org /10 .48550 /arXiv .
2204 .10046.

[44] H. Al-Hamadi, M. Morcos, Gan-based training for binary classifier, https://kaggle .com /competitions /gan -based -training -for -binary -classifier, 2022.

[45] L. Li, X. Qi, T. Xie, B. Li, Sok: certified robustness for deep neural networks, CoRR, arXiv :2009 .04131 [abs], 2020.

[46] B. Biggio, F. Roli, Wild patterns: ten years after the rise of adversarial machine learning, Pattern Recognit. 84 (2018) 317–331, https://doi .org /10 .1016 /j .patcog .
2018 .07 .023.

[47] D. Li, W. Zhang, S. Shen, Y. Zhang, Ses-lsh: shuffle-efficient locality sensitive hashing for distributed similarity search, in: 2017 IEEE International Conference
on Web Services (ICWS), 2017, pp. 822–827.

[48] J. Karasek, R. Burget, O. Morskỳ, Towards an automatic design of non-cryptographic hash function, in: 2011 34th International Conference on Telecommunica-

tions and Signal Processing (TSP), IEEE, 2011, pp. 19–23.

[49] F. Maasmi, M. Morcos, H. al Hamadi, E. Damiani, Identifying applications’ state via system calls activity: a pipeline approach, in: 2021 28th IEEE International
Conference on Electronics, Circuits, and Systems (ICECS), 2021, pp. 1–6.
140

[50] F. Wang, H. AlHammadi, E. Damiani, A visualized malware detection framework with CNN and conditional GAN, in: IEEE Bigdata Cup 2022, 2022, pp. 801–817.

https://doi.org/10.1109/TKDE.2015.2507130
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib4C989F1FA382314ADB9D8D336BB840E5s1
https://doi.org/10.3390/s22176662
https://www.mdpi.com/1424-8220/22/17/6662
https://www.mdpi.com/1424-8220/22/17/6662
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib2D8AA42A0347C2D66CC86A0138DC9664s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib95F6CB7D41087B4C1CDFF1F2158933F3s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib95F6CB7D41087B4C1CDFF1F2158933F3s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib2867B61EA84E2B3B2284B1F4E3B1D448s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib71A6ACA4F5FDF935CDE824D81BC9A7E7s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bibAEB7200F8333324CB6BD6F4A706A9DCDs1
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1109/ACCESS.2019.2917620
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib5E94CAB46A483B3692EF6DF731C80CB3s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib791D138F794EC91C999F7054740CC297s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib791D138F794EC91C999F7054740CC297s1
https://doi.org/10.1037/met0000301
https://doi.org/10.1037/met0000301
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib9F6A4017E601149E9506DE9B4998CBF0s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib86A8B198235554F4841EC5876AE2E0E5s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib86A8B198235554F4841EC5876AE2E0E5s1
https://doi.org/10.48550/arXiv.2204.10046
https://doi.org/10.48550/arXiv.2204.10046
https://kaggle.com/competitions/gan-based-training-for-binary-classifier
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib5AE91C47B31D03A3BF053AFACA5641DAs1
https://doi.org/10.1016/j.patcog.2018.07.023
https://doi.org/10.1016/j.patcog.2018.07.023
http://refhub.elsevier.com/S0020-0255(23)00394-8/bibB9C58C74946D59EEA0BE97DCE889D3BDs1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bibB9C58C74946D59EEA0BE97DCE889D3BDs1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib1791C5BA6DC8DBCF159F47187FF8E43Bs1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib1791C5BA6DC8DBCF159F47187FF8E43Bs1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib75DFE68FF3E79DDCD64007E2B0F3A7E3s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib75DFE68FF3E79DDCD64007E2B0F3A7E3s1
http://refhub.elsevier.com/S0020-0255(23)00394-8/bib6A5767F436B2ED568D7AAF5E6E0AB05Cs1

	Robust ML model ensembles via risk-driven anti-clustering of training data
	1 Introduction
	2 Related work
	3 Risk analysis of ML data assets
	3.1 Risk estimation techniques
	3.2 A risk score for ML training data
	3.3 Computing a risk index on training data

	4 Problem formalization
	5 Threat model
	5.1 Attacker’s power
	5.2 Attack algorithm

	6 A closer view of our defence framework
	6.1 Feature space extension
	6.2 Ensemble structuring and composition
	6.2.1 Ensemble member generation and combination rule
	6.2.2 Accuracy-diversity breakdown

	6.3 Anti-clustering for training set partitioning
	6.3.1 Data diversification
	6.3.2 Dissimilarity measure and objective function

	7 Experimental evaluation
	7.1 Heuristic
	7.2 Experimental design
	7.2.1 Target model
	7.2.2 Metrics
	7.2.3 Risk levels
	7.2.4 Attacker’s budget

	7.3 Benchmark
	7.4 MNIST experiment
	7.4.1 MNIST: experimental results and analysis

	7.5 MRT experiment
	7.5.1 Practical implementation details
	7.5.2 MRT: experimental results and analysis

	7.6 Discussion

	8 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgement
	References

