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Abstract

In the general machine learning domain, solutions based on the integra-

tion of deep learning models with knowledge-based approaches are emerging.

Indeed, such hybrid systems have the advantage of improving the recognition

rate and the model’s interpretability. At the same time, they require a signif-

icantly reduced amount of labeled data to reliably train the model. However,

these techniques have been poorly explored in the sensor-based Human Activ-

ity Recognition (HAR) domain. The common-sense knowledge about activity

execution can potentially improve purely data-driven approaches. While a few

knowledge infusion approaches have been proposed for HAR, they rely on rigid

logic formalisms that do not take into account uncertainty. In this paper, we

propose P-NIMBUS, a novel knowledge infusion approach for sensor-based HAR

that relies on probabilistic reasoning. A probabilistic ontology is in charge of

computing symbolic features that are combined with the features automatically

extracted by a CNN model from raw sensor data and high-level context data.

In particular, the symbolic features encode probabilistic common-sense knowl-

edge about the activities consistent with the user’s surrounding context. These

features are infused within the model before the classification layer. We experi-

mentally evaluated P-NIMBUS on a HAR dataset of mobile devices sensor data

that includes 14 different activities performed by 25 users. Our results show

∗Corresponding author
Email addresses: luca.arrotta@unimi.it (Luca Arrotta),

gabriele.civitarese@unimi.it (Gabriele Civitarese), claudio.bettini@unimi.it
(Claudio Bettini)

Preprint submitted to Pervasive and Mobile Computing March 20, 2023



that P-NIMBUS outperforms state-of-the-art neuro-symbolic approaches, with

the advantage of requiring a limited amount of training data to reach satisfying

recognition rates (i.e., more than 80% of F1-score with only 20% of labeled

data).

Keywords: human activity recognition, neuro-symbolic, context-awareness

1. Introduction

Sensor-based Human Activity Recognition (HAR) is a research area that

has been investigated in the last decade by many research groups due to its

many applications, ranging from service personalization to healthcare and well-

being [1]. Most of the existing approaches are based on supervised deep learning

solutions [2, 3].

However, several open issues still limit the deployment of HAR methods

in real-world scenarios. A major issue is the need for large labeled training

data sets to build reliable recognition models. Moreover, the decisions of deep

learning models are poorly interpretable. The integration of common-sense

knowledge in sensor-based HAR approaches has the potential of mitigating

the above-mentioned issues [4]. Indeed, the human knowledge about the rela-

tionships between human activities and the users’ context (e.g., running is an

activity that is usually performed outdoors but less likely on rainy days) has the

potential to significantly improve standard approaches only based on machine

learning.

Recently, Neuro-Symbolic AI (NeSy) methods are emerging. NeSy ap-

proaches enhance the capabilities of deep learning models with traditional sym-

bolic AI approaches [5]. In these approaches, a symbolic module (often designed

by domain experts through human knowledge) is embedded in data-driven clas-

sification to reduce the amount of necessary labeled data. Since NeSy deep

models also rely on symbolic representations of the application domain, their

decisions become inherently more transparent for humans.

Among the NeSy approaches proposed in the literature, knowledge infusion
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is particularly promising. Specifically, this technique consists of infusing exter-

nal knowledge (e.g., from knowledge graphs) into the data-driven component

of a system [6]. Knowledge infusion has mainly been experimented for NLP

applications with promising results [7, 8].

In this work, we propose NIMBUS: a novel framework based on knowledge

infusion for sensor-based HAR. NIMBUS combines, before the classification

layer, the features automatically extracted from raw sensor data and high-level

context data with the ones inferred by a context-aware symbolic reasoner. Such

symbolic features encode common-sense knowledge about the consistency of ac-

tivities with the user’s surrounding context. For the sake of this work, we ap-

ply NIMBUS to sensor-based HAR based on mobile devices (e.g., smartphones,

smartwatches).

In previous work, we presented a method to generate symbolic features

based on ontological reasoning [9]. Even though our previous work exhibited

promising results, it relies on a rigid formalism that does not take into account

uncertainty.

As a novel technical contribution, we propose a new symbolic reasoning

strategy of NIMBUS that is called P-NIMBUS: a Probabilistic method for

kNowledge InfuSion through syMBolic featUreS. Differently from our previous

work, P-NIMBUS is based on an ontology encoding probabilistic relationships

between contexts and activities.

Our experiments on a dataset of 25 users performing 14 different activities

show that P-NIMBUS outperforms other approaches based on deterministic

ontologies and a state-of-the-art HAR probabilistic neuro-symbolic solution.

Besides, we experimentally show that NIMBUS is significantly effective in la-

beled data scarcity scenarios.

The contributions of this paper are three-fold:

• We propose NIMBUS, a framework based on knowledge infusion for sensor-

based HAR.

• We present different symbolic reasoning strategies that can be used by
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NIMBUS. In particular, the novel contribution of this paper is P-NIMBUS

which is based on probabilistic reasoning.

• We experimentally show the superiority of P-NIMBUS compared to al-

ternative approaches.

2. Related work

2.1. Neuro-symbolic AI and knowledge infusion

The goal of Neuro-Symbolic AI (NeSy) is to combine the benefits of data-

driven and knowledge-based AI approaches [5]. In recent years, data-driven

deep learning models have been applied to several domain applications due

to their ability to automatically extract meaningful features from raw data.

Another benefit of data-driven approaches is their robustness with respect to

data uncertainty. However, huge amounts of labeled training data are required

to reliable train such models. Moreover, humans struggle to understand the

rationale behind the models’ outputs due to their lack of transparency.

On the other hand, knowledge-based approaches (e.g., reasoning methods

based on formal logic) do not require training data since they are typically

developed through an explicit symbolic representation of the human domain

knowledge [10]. This makes such approaches also inherently more transparent

for humans. However, complex domains like HAR would require very com-

plicated rule-based models to cover all the possible scenarios that should be

handled in real-world applications. Hence, this rigidity significantly limits the

scalability of symbolic approaches.

The combination of data-driven and knowledge-based approaches through

NeSy leads to different potential benefits [5, 11, 12] such as making the deci-

sions of the model more interpretable for humans and reducing the amounts of

training data required during the learning process.

Knowledge Infusion is a promising NeSy technique that directly incorporates

external domain knowledge into a deep learning model. With this approach, the

model automatically acquires human domain knowledge during training. For
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instance, knowledge-based constraints can be used to guide the training process

of a generative model [13]. In [14], a specifically designed Knowledge Infusion

Layer is used to combine the latent features extracted by an LSTM with exter-

nal knowledge provided by knowledge graphs. Overall, knowledge infusion has

been mainly consider in the Natural Language Processing (NLP) [7, 8] and the

computer vision [15] domains. Solutions based on reinforcement learning can

also benefit from knowledge infusion. For instance, a set of knowledge-based

functions is used in [12] to initially guide the decisions of an agent that has

little experience with its surrounding environment.

2.2. Neuro-symbolic AI methods for HAR

Recently, the sensor-based recognition of human activities has been mainly

tackled through purely data-driven deep learning solutions [2, 3]. Most of the

existing NeSy approaches for HAR have been proposed for environmental sen-

sors in smart-home environments without considering the inertial measurements

provided by the user’s mobile devices, which is the focus of this work. More-

over, such methods take advantage of domain knowledge only before or after the

training process of their data-driven component [16, 17], without considering

any infusion technique. For instance, in [18], frequent patterns extracted from

an unlabeled dataset through data mining techniques are associated with the

corresponding user’s activity based on domain knowledge. On the other hand,

knowledge-driven reasoning is used in [19] to derive an initial activity model

that is then adapted to the user’s habits in a data-driven fashion.

Considering mobile devices’ data, information about the context surround-

ing the user (e.g., her semantic location, local weather conditions) can be used

to expand the set of activities that can be detected. Moreover, context data

would be helpful to distinguish those activities that present similar motion pat-

terns but that typically take place in different context conditions (e.g., standing

and standing on a bus) [4]. However, the acquisition of training data in all the

possible context conditions in which an activity could occur makes the use of

data-driven solutions for context-aware HAR even more challenging. Hence,

5



NeSy approaches that rely on formal knowledge-based models representing the

relationships between context situations and activities could be a promising

way to mitigate this issue.

Among the different approaches proposed in the literature [20], ontologies

are the most common solution used to formally represent context data because

of their automatic reasoning capabilities [21, 22, 23]. In this paper, we consider

the ontologies originally proposed in previous works [4, 24].

The combination of data-driven approaches with ontological context reason-

ing has already been investigated in the literature. A machine learning model

that detects low-level activities is integrated in [25] with an ontological reason-

ing process in charge of deriving higher-level activities based on the detected

activities and other context information (e.g., semantic location and mood).

Other NeSy approaches rely on context reasoning to refine the predictions of

a data-driven activity classifier [16, 4]. However, these approaches rely on a

rigid ontological formalism that cannot handle the probabilistic nature of the

relationships between the user’s context and activities.

In the HAR domain, few works focused on logic formalisms that support

uncertainty reasoning. For instance, Markov Logic Networks (MLNs) [26] com-

bine logic with probability theory to model knowledge-based hard and soft

constraints. In order to handle uncertainty reasoning, different weights can

be associated with such constraints. Unfortunately, MLNs methods have been

proposed only for activity recognition in smart-home environments, based on

environmental sensors data [27, 28, 10].

The only application of probabilistic context reasoning for context-aware

HAR based on mobile devices is ProCAVIAR [24]. ProCAVIAR refines the

probability distribution generated by the activity classifier using probabilistic

reasoning. However, ProCAVIAR does not infuse the domain knowledge into

the activity classifier to guide its learning process, thus limiting the potential

benefits of NeSy approaches.

For this reason, we recently proposed DUSTIN [9] that uses ontological
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reasoning to derive domain-based symbolic features that are directly infused

into a deep neural network. One of the problems of DUSTIN is that it relies

on a too-rigid formalism rather than on probabilistic reasoning.

To the best of our knowledge, P-NIMBUS is the first knowledge infusion

strategy for context-aware HAR that infuses domain knowledge into a deep

neural network by relying on probabilistic context reasoning.

3. Knowledge infusion through symbolic features

In this section, we present NIMBUS: a framework for kNowledge Infusion

through syMBolic featUreS specifically designed for context-aware sensor-based

HAR on mobile devices. In this paper, with context, we mainly indicate the

information about the environment which surrounds the user (e.g., current se-

mantic location, the fact that she is indoors or outdoors, proximity to trans-

portation routes, the current weather).

The rationale behind NIMBUS is that domain knowledge about HAR (e.g.,

cycling is more likely performed outdoors) can be exploited to drive the learning

process of a purely data-driven activity classifier. In this work, we consider

a knowledge model expressing relationships between high-level context data

obtained by mobile devices (e.g., semantic location, weather) and the possible

activities.

Given the current context C of the user, NIMBUS uses a symbolic reasoner

to determine the set of activities that are consistent with C and, if possible,

their degree of consistency. The information derived by the symbolic reasoner

is then translated into a vector of symbolic features. Then, symbolic features

are infused into the deep learning HAR model.

Besides improving the recognition rate, the infusion of domain knowledge

can potentially reduce the amount of training data and epochs that would be

necessary to learn such domain constraints in a purely data-driven fashion. At

the same time, the knowledge used to train the activity classifier can also be

used to partially understand the rationale behind its predictions, thus increasing
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the interpretability of the deep learning model.

Figure 1 depicts the overall architecture of NIMBUS. The user’s mobile

Figure 1: Overall architecture of NIMBUS: a knowledge infusion method for HAR based on

symbolic features

devices (e.g., smartphone, smartwatch) generate two streams of raw sensor data:

context and inertial sensor data. Raw context data (e.g., GPS) are provided to

the Context Aggregation module. This module is in charge of generating

high-level context data that better describe the user’s surrounding context. For

instance, given GPS data, this module interacts with a dedicated web service

to obtain the semantic position of the user (e.g., park). High-level context data

and raw inertial sensors data are provided as input to the Deep Learning

Classifier. At the same time, high-level context data are also processed by

the Symbolic Reasoning module. This module is in charge of inferring, for

each activity, its degree of consistency considering the context that surrounds

the user, according to common-sense knowledge about the HAR domain. For

instance, the walking activity is consistent only when the user has a positive

speed. The output of the Symbolic Reasoning module is encoded through a
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vector of symbolic features. Section 4 will present three alternative strategies

to realize the Symbolic Reasoning module and to generate symbolic features

vectors.

Finally, symbolic features are infused inside the Deep Learning Clas-

sifier. Note that raw inertial sensors data and high-level context data are

first processed by Automatic Feature Extraction layers to automatically ex-

tract meaningful features. Then, automatically extracted features and symbolic

features are provided to the Knowledge Infusion layers. These layers firstly

combine, in the latent space, the features automatically extracted by the Au-

tomatic Feature Extraction layers with the ones inferred through the

Symbolic Reasoning module. Then, the combined features are provided to

a sequence of fully-connected layers in charge of learning correlations between

input data and context-consistent activities. Finally, the Activity Classifi-

cation layers output the activity currently performed by the user.

4. Symbolic reasoning approaches

In this section, we present three alternative symbolic reasoning methodolo-

gies that we designed to infer the symbolic features that are infused in the ac-

tivity classifier, as explained in Section 3. Overall, the Symbolic Reasoning

module (running locally on one of the user’s mobile devices) analyzes the user’s

surrounding context to compute symbolic features encoding information about

context-consistent activities. This module relies on ontological reasoning based

on domain relationships between high-level context data and activities. In this

work, we considered ontologies proposed in previous works [4, 24]. Specifically,

each ontology models relationships between activities and high-level context

data. We consider different context categories: the semantic place of the user,

her presence in indoor or outdoor locations, her speed, her proximity to public

transportation routes, her height variations, as well as weather conditions, en-

vironmental noise and light levels, and temporal context (e.g., the day of the

week, the month, the season).
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Periodically, the information related to the current context surrounding the

user is automatically translated into ontological facts and included in the on-

tology. Most of the context data we considered present a one-to-one map-

ping with ontological facts. For instance, information about current weather

conditions (e.g., it is sunny) provided by a public web service is automati-

cally mapped to the corresponding ontological concept Sunny(weather). On

the other hand, scalar values about raw context data must be discretized by

the Context Aggregation module before being mapped to the correspond-

ing ontological facts. For instance, height variation measurements provided by

the smartphone’s barometer can be mapped to the following ontological con-

cepts: NegativeHeightVariation, NullHeightVariation, and PositiveHeightVari-

ation. Based on domain knowledge, the ontology explicitly states the context

conditions where activities most likely occur. For instance, the activity going

downstairs should take place while the height variation of the user is negative

and her speed is positive. Given the current context conditions, the Symbolic

Reasoning module uses the ontology to infer, for each activity, a confidence

value about its consistency with respect to the context.

The confidence value inferred for each activity is used by NIMBUS to gen-

erate the vector of symbolic features that will be infused into the deep learning

model. Each position of the vector encodes one of the activities that NIMBUS

is able to detect. The specific values encoded in this vector depend on the

adopted ontological reasoning approach.

Example 1. Alice is using a system based on NIMBUS. In the beginning, Per-

son(Alice) is added as a fact into the ontology.1 The Context Aggregation

module of NIMBUS derives that Alice is currently in a public park and that her

speed is 2 km/h according to GPS data obtained from her smartphone. Such

1Note that the ontology needs this axiom to associate contexts and activities to an instance

of a person. It is important to note that the reasoning process does not depend on the specific

user. Here we report Person(Alice) for the sake of clarity, but the actual symbolic reasoning

module does not take into account the user’s identity.
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context data are automatically added to the ontology through two individuals:

Park(place) and LowSpeed(speed). Then, NIMBUS adds facts about the rela-

tionships between Alice and the available context data: hasCurrentSymbolicLoca-

tion(Alice, place) and hasCurrentSpeed(Alice, speed). Finally, in order to infer

the degree of context-consistency of the activity walking, the Symbolic Rea-

soning module adds two other axioms to the ontology: Walking(currentActivity)

and isPerforming(Alice, currentActivity). The context-consistency confidence of

walking will be hence determined by the set of facts and the domain knowledge.

This last step is repeated for each activity to generate symbolic feature vectors

that will be infused into the data-driven classifier.

In the following, we present and compare three different ontological rea-

soning strategies we designed: (1) S-NIMBUS: a solution that performs simple

symbolical reasoning based on strict constraints, (2) O-NIMBUS: the one used

in our previous work [9], and (3) P-NIMBUS: the novel technical contribution

of this paper, a probabilistic version of O-NIMBUS. We specifically designed

S-NIMBUS and P-NIMBUS for this work.

4.1. S-NIMBUS: ontology reasoning based on strict constraints

In the following, we present Strict-NIMBUS (S-NIMBUS for short): an

approach based on a deterministic ontology that defines strict constraints im-

posing that activities may only occur in common context scenarios. Indeed,

S-NIMBUS aims to increase the recognition rate by considering context con-

straints that are likely satisfied in the majority of the situations.

In particular, S-NIMBUS is based on the ontology presented in [4]. The

knowledge model of S-NIMBUS only considers the most common context sit-

uations, while unusual context conditions are automatically excluded. For in-

stance, S-NIMBUS models the running activity by imposing that it can take

place only when the user is outdoors with a positive speed. Hence, running is

context-consistent only when performed on these specific context conditions. In

less common scenarios (e.g., the subject is running inside a gym), this method

would fail, considering running as context-inconsistent.
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S-NIMBUS generates the symbolic features vector by associating the value

1 with the context-consistent activities, 0 otherwise.

4.2. O-NIMBUS: ontology reasoning based on open constraints

In order to mitigate the limitations of S-NIMBUS, we propose Open-NIMBUS

(O-NIMBUS for short): an approach based on a deterministic ontology with

weaker constraints on the contexts that should be verified when an activity is

performed. The use of weaker constraints allows the ontology to consider as

consistent both common and uncommon context situations.

For instance, consider the running activity. In S-NIMBUS, this activity can

only be performed outdoors with a positive speed. In O-NIMBUS, instead, this

activity is consistent even when performed indoors (e.g., in the gym). Nonethe-

less, O-NIMBUS imposes that the user should not be still since this constraint

should generally be true for running. Hence, to be consistent according to

O-NIMBUS, running has only to be performed with positive speed.

Note that, despite considering only the most common contexts as possible

for an activity, S-NIMBUSmay reach overall better performances based on the

dataset being considered. Indeed, O-NIMBUS considers as consistent also those

contexts that can rarely occur. This could have a negative impact on helping

the classifier to recognize activities in the majority of the situations.

Similarly to S-NIMBUS, O-NIMBUS generates the symbolic features vector

as follows: the value of a symbolic feature is 1 if the corresponding activity is

context-consistent, 0 otherwise. Note that this strategy is exactly the one we

previously presented (named DUSTIN) in [9].

4.3. P-NIMBUS: probabilistic ontology reasoning

The main novelty of this work is the Probabilistic-NIMBUS (P-NIMBUS for

short) strategy that relies on probabilistic reasoning to take into account the

intrinsic uncertainty that characterizes the relationships between the activities

performed by the user and the surrounding context. In this work, we use the

probabilistic ontology originally proposed in [24].
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This approach considers both hard and soft constraints. Hard constraints

capture those conditions that must always be satisfied to consider an activity

as context-consistent. In particular, in P-NIMBUS the hard constraints are

exactly the ones that are enforced in O-NIMBUS.

On the other hand, soft constraints encode probability distributions over

context conditions that may change for each activity. Continuing the running

example, even though this activity is typically performed outdoors, a person

could also run indoors (e.g., in a gym) even if less likely. If outdoors, the

more likely user’s semantic location would be the park. Moreover, if the user is

running outdoors, it is less likely that this will happen during bad weather.

Each soft constraint is associated with a degree of confidence. For exam-

ple, the confidence value of the soft constraint running can be performed in-

doors should be lower than the confidence of the soft constraint running can

be performed outdoors. Note that hard constraints are associated with 1 as a

probability value.

P-NIMBUS generates a symbolic feature vector by associating the value 0

if one or more hard constraints of the corresponding activity are false. Oth-

erwise, P-NIMBUS computes a probability value considering all hard and soft

constraints that are true. Section 5.3 explains the specific strategy we adopted

to generate such probabilities. The symbolic features vector is finally normal-

ized.

5. Experimental evaluation

In this section, we describe the experimental evaluation that we carried

out to evaluate the different symbolic reasoning strategies of NIMBUS that

we presented in Section 4. First, we describe the dataset that we used for

our experiments. Then, we illustrate the details of our experimental setup.

We provide details about the specific pipeline we adopted (e.g., pre-processing,

network architecture) and describe our evaluation methodology.
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5.1. Dataset description

We evaluate NIMBUS on a HAR dataset [4] that includes labeled sensor and

context data obtained from the mobile devices of 25 subjects. Specifically, each

subject wore a smartwatch on the dominant hand’s wrist and a smartphone in

the pants’ front pocket. Both devices collected raw inertial sensor data (i.e.,

accelerometer, gyroscope, and magnetometer). Moreover, this dataset includes

several types of context data. In particular, the environment’s brightness and

noise levels are measured through the luminosity sensor and the microphone,

respectively. The barometer provides measurements of the subjects’ height vari-

ations, while the GPS measures their current speed. The dataset also includes

temporal context data, like the moment of the day (e.g., morning, afternoon),

the day of the week, the month, and the season. Finally, higher-level context

data is obtained by combining public web services and data from the smart-

phone’s built-in sensors. Google’s Places API is used to derive the semantic

places closest to the subjects (e.g., university, restaurants); OpenWeatherMap

for the current local weather conditions (e.g., sunny); Bing’s Traffic API for

information about the nearby traffic situation, and Transitland for the public

transportation routes and stops closest to the subjects.

Overall, the dataset includes 14 context-dependent activities: brushing teeth,

cycling, elevator down, elevator up, lying, moving by car, running, sitting, sit-

ting on transport, stairs down, stairs up, standing, standing on transport, and

walking. The total number of activity instances is ≈ 350, covering almost 9

hours of labeled data.

However, data collection was performed in a scripted fashion, and the va-

riety of context data that was actually collected is limited. For instance, the

running activity was only collected outdoors, even if it could be performed in

indoor locations like a gym. For this reason, based on collected context data

and common-sense knowledge about the HAR domain, for each activity, we

synthetically generated simulated context scenarios that partially replaced the

context data of the original dataset. For instance, in the enhanced version of
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the dataset, running mainly takes place outdoors (90%), while, in a few cases,

also in indoor environments (10%).

5.2. Evaluation methodology

We evaluated the three ontological reasoning strategies presented in Section

4 through the leave-one-subject-out cross-validation technique. At each fold,

the test set consists of the data of a subject of the dataset, while all the other

data are used for the training (90%) and the validation (10%) sets. We con-

sidered a maximum of 200 training epochs with batches containing 32 samples

and adopting the Adam optimizer. We used the early stopping strategy to stop

the learning process when the validation loss did not improve for 5 consecutive

epochs. The results presented in the next section are computed by averaging

the recognition rates obtained on the test set of each fold.

In our experiments, we will consider as Baseline the neural network of NIM-

BUS without symbolic reasoning and knowledge infusion. Hence, Baseline only

considers context data as an input processed by the Automatic Feature Ex-

traction module. Moreover, we also compare NIMBUS with a state-of-the-art

probabilistic context refinement method that is called ProCAVIAR [24]. This

method uses a probabilistic logic to refine the output probability distribution

of the classifier. Hence, while this method also relies on probabilistic semantic

reasoning, the knowledge is not infused directly in the deep learning model.

5.3. Experimental setup

In the following, we describe the specific setup of our experiments.

We segmented inertial and high-level context data into non-overlapping and

fixed-size windows. Based on previous works on this dataset [4], we considered

segmentation windows of 4 seconds to detect both simple (e.g., standing) and

complex (e.g., brushing teeth) activities. The input shape of the Automatic

Feature Extraction modules for inertial sensors data (for both the smartphone

and the smartwatch) is (9, 400)2. On the other hand, high-level context data

2Each row corresponds to one axis of a tri-axial inertial sensor (i.e., accelerometer, gyro-
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are represented in each segment with one-hot encoding. In order to reduce the

intrinsic noise of inertial sensor data, we applied a median filter.

Our network architecture has been determined empirically, by choosing a

simple structure that guaranteed good recognition rates. Even though more

sophisticated deep learning models have been proposed for HAR, we select a

simple solution to focus on the impact of knowledge infusion. In particular, each

Automatic Feature Extraction that processes inertial data consist of two

convolutional layers with 8 3× 3 and 64 2× 2 filters, respectively, separated by

a 2×2 max pooling layer. The second convolutional layer is followed by another

2 × 2 max pooling layer, a flatten layer, and a fully connected layer with 128

neurons. On the other hand, the Automatic Feature Extraction focused

on high-level context data is composed of a single fully connected layer with 8

neurons. The Knowledge Infusion module consists of a concatenation layer

that combines inertial, context, and symbolic features. The combined features

are then provided to a dropout layer with a dropout rate of 0.1 and a fully

connected layer with 256 neurons. Finally, in the Activity Classification

module, a fully connected layer based on the softmax activation function is used

to obtain the final classification.

The symbolic reasoning strategy relied on the ontologies presented in previ-

ous works (i.e., S-NIMBUS on [4], O-NIMBUS on [9], and P-NIMBUS on [24]).

All of these ontologies are defined through the OWL2 ontology language. The

symbolic reasoner used for S-NIMBUS and O-NIMBUS is Pellet [29]. On the

other hand, the symbolic reasoner used for P-NIMBUS is ELOG [30], which is

based on a log-linear probabilistic model. In order to use ELOG, the axioms

of the ontology should be properly annotated to specify a weight for each soft

constraint.

scope, and magnetometer), and includes 400 samples, considering a sampling rate of 100 Hz

and windows of 4 seconds.
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5.4. Results

In the following, we present the results we obtained while evaluating the

effectiveness of NIMBUS on the dataset described in Section 5.1.

5.4.1. Comparing symbolic reasoning strategies

Figure 2 compares the overall F1-score of the Baseline with the three on-

tological reasoning strategies described in Section 4. Overall, the infusion of

Figure 2: Overall results

symbolic features dramatically improves the recognition rates of the activity

classifier. In particular, we observed that P-NIMBUS is the most effective

strategy (≈ +8% compared to the Baseline). Indeed, probabilistic symbolic

features reduce the well-known rigidity of the approaches based on determinis-

tic reasoning.

Consistently, the S-NIMBUS approach is the least effective symbolic rea-

soning strategy (only ≈ +3% compared to the Baseline). This is because this

simple reasoning approach only considers the most likely scenarios, determin-

ing that activities performed in unlikely contexts (e.g., lying outdoors) are not

consistent. While the O-NIMBUS approach slightly mitigates this problem

(≈ +5% compared to the Baseline), it is still less effective than P-NIMBUS

since it does not take into account uncertainty.

Figure 3 compares (in terms of F1-score) P-NIMBUS with ProCAVIAR [24].

These results suggest that P-NIMBUS outperforms ProCAVIAR, indicating
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Figure 3: Comparison between P-NIMBUS and ProCAVIAR

that directly infusing probabilistic domain knowledge into the classifier is a

more promising and effective approach.

Figure 4 depicts the confusion matrices obtained by the Baseline and the

different symbolic reasoning strategies of NIMBUS. The results show that the

methods based on symbolic features (especially P-NIMBUS) outperform the

Baseline on different activities. Indeed, learning constraints directly from high-

level context data is more complex than relying on symbolic features derived

through symbolic reasoning. For instance, the Baseline sometimes confuses

elevator down with brushing teeth even if brushing teeth does not occur with

user’s negative height variations. On the other hand, in these scenarios, the

symbolic features of NIMBUS encodes brushing teeth as context-inconsistent,

thus improving the recognition of elevator down.

Another interesting example is the lying activity, which is often miss-classified

by the Baseline. In this case, S-NIMBUS improves the recognition of lying only

slightly since this approach considers such an activity as context-consistent only

when performed indoors. For this reason, the weaker constraints of O-NIMBUS

dramatically improve the recognition rate of lying since it is assumed that this

activity can also take place outdoors. P-NIMBUS further improves the recog-

nition of lying thanks to soft constraints (i.e., this activity is possible outdoors

but with a low probability).
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Figure 4: Confusion matrices comparison

5.4.2. Results with low labeled data availability

Figure 5 compares the different symbolic reasoning strategies of NIMBUS

while varying the percentage of available labeled training data. We observed

that P-NIMBUS significantly outperforms the other approaches with limited

amounts of labeled data. For instance, when only 10% of training data is used,

P-NIMBUS dramatically outperforms the Baseline by ≈ +30%, reaching an

overall F1-score value of ≈ 76%. In this data scarcity scenario, also S-NIMBUS

and O-NIMBUS outperform the Baseline in a similar way. However, only using

hard constraints to derive the symbolic features reduces the benefits produced
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Figure 5: Overall performance while varying the available training data

by domain knowledge infusion on limited data availability.

Figure 6 provides activity-level recognition rates considering only 10% of

training data. These results show how probabilistic reasoning increases the

recognition rate of each considered activity. For instance, considering elevator

up/down and stairs up/down, even if it should be easy to detect such activi-

ties based on the user’s height variations, the Baseline struggles in recognizing

them with a few training samples. This problem also affects S-NIMBUS and

O-NIMBUS since height variations may also occur while performing other ac-

tivities (e.g., walking). Since P-NIMBUS considers probabilistic constraints, it

relies on the fact that height variations are less common when walking compared

to taking the elevator or the stairs, thus significantly improving the recognition

rate. Another example where probabilistic reasoning is particularly effective

is with the standing on transport and sitting on transport activities. Indeed,

even though it is possible to have a positive speed near transportation routes

with several activities (e.g., cycling, moving by car, running), the probability

of these events is lower.
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Figure 6: Activities results with 10% of training data

5.4.3. Impact on the number of epochs

Figure 7 compares the evolution of the F1-score during the learning process

(i.e., at each training epoch) of the four different approaches. As previously

mentioned, the training process is stopped based on the validation loss. Our

Figure 7: F1-score trend during training
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results show that probabilistic reasoning is more complex than the ones of S-

NIMBUS and O-NIMBUS. Thus, the network requires more epochs to converge

(but still less than the Baseline). Nonetheless, P-NIMBUS reaches significantly

high recognition rates even at the first epoch (≈ 90% of F1-score).

In general, compared to the Baseline, the results show that our approaches

based on symbolic features significantly speed up the convergence of the learning

process compared to the Baseline. This is due to the fact that constraints are

quickly learned by the network, thus stabilizing the validation loss more rapidly.

Hence, these results suggest that knowledge infusion can potentially reduce

the training effort of the classifier and, at the same time, reach higher recogni-

tion rates.

5.4.4. Impact of context data

Finally, we investigated the general impact of context data on the recog-

nition rate. For this reason, we only considered the Baseline to exclude the

influence of symbolic features on the recognition rate. Figure 8 compares the

performance of our Baseline with a modified version that only considers in-

ertial sensors (called Inertial Only). This result confirms that context data

Figure 8: Impact of context data on the recognition rates of the activity classifier

dramatically improves the F1 score obtained by the Baseline (≈ +35% com-

pared to inertial only). For instance, the user’s speed and proximity to public

transportation routes are essential to distinguish activities like standing and

standing on transport.

Moreover, we also inspected the impact of each specific context information
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(a) Elevator Down (b) Sitting

Figure 9: Average relevance values obtained by RISE on a subset of the activity classes

included in the considered dataset

on the recognition rate. Specifically, we considered an eXplainable AI (XAI)

method, based on model induction, that generates explanations about the out-

put of the activity classifier. Model induction XAI methods generate perturbed

versions of an input sample to analyze how the different input features impact

the classifier’s output. This approach makes it possible to derive the most im-

portant input features for classification. LIME [31] is one of the most promising

model induction methods. However, the process it uses to generate the input

perturbations is unsuitable for one-hot encoded data (like context data in NIM-

BUS). Hence, we decided to rely on the model induction method RISE [32]. As

explanations, RISE produces a relevance value for each context information,

where the higher the relevance, the more this context information was impor-

tant for the classifier’s decision. We applied RISE on the correct predictions

made by the Baseline model on the test set at each iteration of the cross-

validation process. Then, for each dataset activity, we averaged the relevance

values. Figure 9 shows the average relevance values obtained through RISE on

two activity classes of the considered dataset. Note that, for the sake of visual-

ization, we reshaped the one-hot encoded vectors of high-level context data into

a matrix where each row represents a different type of context information. For

instance, the first row of the matrix encodes information about the presence

of the user in indoor or outdoor environments, while the third row codifies the

speed of the user: the first four pixels of this row respectively represent null,

low, medium, and high speeds.

Figure 9a depicts, for instance, the average heatmap related to the elevator
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down activity. As expected, the highest relevance value is associated with the

negative height variations of the user. At the same time, also the user’s presence

in indoor environments, a null speed, and the absence of public transportation

routes and stops were relatively important to distinguish this activity from

the others. However, other context data like light variance, audio level, and

temporal context are not useful for classifying this activity.

On the other hand, considering sitting (Figure 9b), the most discriminating

context information is the null speed of the user. Indeed, this information is

crucial, for instance, to distinguish sitting from sitting on transport.

6. Discussion

6.1. Context data collection

In this work, we assume that context data can be continuously collected and

that they are constantly available. However, considering real-world scenarios,

this assumption is not completely realistic.

Indeed, in order to be collected, several high-level context data (e.g., seman-

tic location) require interaction with external web services. Continuous network

communication may negatively impact the device’s resources and latency (i.e.,

context information is not perfect in real-time).

However, it is important to point out that such high-level contexts do not

change so rapidly, while activity recognition is continuously performed every

few seconds (e.g., in our experiments, the segmentation window is 4 seconds).

Hence, it is possible to design a strategy to obtain new information from web

services with a low number of web service calls. For instance, considering

semantic location, it is possible to perform a query only when GPS data exhibit

significant changes. As another example, the weather web service could be

queried with a low periodicity (e.g., every hour).

Thanks to these strategies, it is also possible to run our method when the

mobile devices are not connected to the internet for short periods. However, if

the mobile devices are offline for a long time period, the system would consider
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a limited amount of context information, possibly impacting the recognition

rate.

In future work, we will investigate in detail such practical aspects, also

considering new strategies to adapt the model based on the Quality of Service.

6.2. Alternative knowledge infusion strategies

In this work, we proposed a technique to infuse HAR knowledge through

symbolic features. Our results show that our method outperforms ProCAVIAR

[24], a state-of-the-art approach based on probabilistic context refinement. How-

ever, similarly to ProCAVIAR, our approach requires to execute symbolic rea-

soning also during classification. This setting may not be suitable for real-world

deployments on mobile devices due to the computational complexity of ontolo-

gies.

We are currently investigating alternative knowledge infusion approaches

where the deep learning classifier learns the common-sense knowledge con-

straints without requiring symbolic reasoning during inference. For example,

this could be achieved by designing a semantic loss function in charge of driving

the learning process through knowledge. An alternative solution is to train a

separate neural network that approximates the symbolic reasoner proposed in

this work by mapping high-level context data to symbolic features, thus allevi-

ating the ontological reasoning task.

6.3. Generalizability of the approach

In this work, we used a dataset with rich contextual information and a

significant amount of activity labels. Unfortunately, we could not find other

datasets in the HAR based on mobile devices with these characteristics. In

future work, we are interested in exploring our method also in the context of

complex activity recognition in smart-home environments.

However, we are also interested in understanding if our approach could also

be applied in different domains. In general, it could be applied to domains

where:
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• a portion of input data does not directly reveal high-level context infor-

mation (e.g., inertial sensors in our domain).

• a portion of input data reveals high-level context information (e.g., GPS

in our domain).

• it is possible to use common-sense knowledge to define relationships be-

tween context and the classification task.

For instance, considering the autonomous driving domain, reasoning on high-

level context data may help in improving the decisions made by analyzing the

sensors equipped in the smart car. As another domain example, risk assessment

and/or security applications may benefit from context reasoning to improve

their decisions.

7. Conclusion and future work

In this paper, we presented NIMBUS, our knowledge infusion framework for

sensor-based HAR. This neuro-symbolic approach relies on symbolic reasoning

to compute symbolic features from the user’s context data. Such features are

infused in the latent layers of a deep neural network through their concate-

nation with the features automatically extracted by convolutional layers from

raw inertial sensor and high-level context data. Our results indicate that the

generation of symbolic features by using probabilistic reasoning leads to high

recognition rates even in labeled data scarcity scenarios.

Even though our preliminary results are promising, NIMBUS still has sev-

eral limitations that we will tackle in future work besides the ones discussed in

Section 6. First, there are no comprehensive public ontologies for this domain,

and the ontology design and implementation require significant work by knowl-

edge engineers and domain experts. It is questionable if such a manual approach

can generalize over all the possible context conditions and activities [33]. How-

ever, promising semi-automatic approaches exist to obtain such knowledge from
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external sources (e.g., text, videos, and images on the Web, as well as existing

knowledge graphs).

Our future efforts will also focus on analyzing the interpretability of NIM-

BUS. Since the predictions of NIMBUS rely on common-sense knowledge, they

are inherently more interpretable than fully data-driven approaches. Hence, we

will study how to design user-based experiments to investigate this aspect.
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