Table of contents

Supplementary Figures

Figure S1. Reactions catalyzed by γ-glutamyl transferase from Bacillus subtilis (BsGGT)	1
Figure S2. HPLC chromatogram of the enzymatic synthesis of L-Th at pH 11.6: t0 and 6 h endpoints	2
Figure S3. ¹ H NMR spectrum of L-Th (D ₂ O) synthesized at pH 10.0	3
Figure S4. Silver nitrate precipitation assay on L-Th synthesized at pH 10 (A) and at pH 11.6 (B)	4
Figure S5. ¹ H NMR (A) and ¹³ C NMR (B) spectra of L-Th (D ₂ O) synthesized at pH 11.6	5
Figure S6. HPLC purity (%) determination of L-Th synthesized at pH 11.6	6
Figure S7. ESI-MS spectrum of ∟-Th synthesized at pH 11.6	7
Figure S8. Radial pentagon representation for the syntheses of L-Th discussed in the text (#1-4)	8
Figure S9. HPLC calibration curve of ∟-GIn	9
Figure S10. HPLC calibration curve of ∟-Th	10

Supplementary Tables

Table S1. Chemometric parameters for the preparative synthesis of L-Th reported in this work	11
Table S2. Chemometric parameters for the intensified synthesis of L-Th reported in this work	11
Table S3. Chemometric parameters for the enzymatic synthesis of L-Th by Xu et al. ^[26]	11
Table S4. Chemometric parameters for the chemical synthesis of L-Th by Zhang et al. ^[16] before recrystallization	11
Table S5. Chemometric parameters for chemical synthesis of L-Th by Zhang et al.[16] after recrystallization	11

Green metrics calculations

C-factor calculations

Figure S1. Reactions catalyzed by γ -glutamyl transferase from *Bacillus subtilis* (*Bs*GGT). γ -E-R= γ -glutamyl-compounds formed during the reaction.

Figure S2. HPLC chromatogram of the enzymatic synthesis of L-Th at pH 11.6: t0 (blue line) and 6 h endpoint (red line). 1= L-Gln; 2 =L-Ser (internal standard); 3= L-Th; 4= Sanger's reagent; 5= ammonia; 6= derivatization artifact; 7= ethylamine.

Figure S3. ¹H NMR spectrum of \bot -Th (D₂O) synthesized at pH 10.0. Ethyl signals from ethyl ammonium chloride are highlighted in red.

Figure S4. Silver nitrate precipitation test on L-Th synthesized at pH 10 (A) and at pH 11.6 (B).

Figure S5. ¹H NMR (A) and ¹³C NMR (B) spectra of L-Th (D₂O) synthesized at pH 11.6.

Figure S6. HPLC purity (%) determination of L-Th synthesized at pH 11.6. 1= L-Gln; 2 =L-Ser (internal standard); 3= L-Th; 4= Sanger's reagent; 5= derivatization artifact; 6= ethylamine.

Figure S7. ESI-MS of ∟-Th synthesized at pH 11.6.

Figure S8. Radial pentagon representation for the syntheses of L-Th discussed in the text (#1-4).

Figure S9. HPLC calibration curve of L-GIn.

Figure S10. HPLC calibration curve of L-Th.

Partial No Ideal **Parameter** Complete Reclaiming Reclaiming Reclaiming AE 0.911 0.911 0.911 1 Rxn Yield 0.950 0.950 0.950 1 1/SF 0.368 0.368 0.368 1 MRP 0.036 0.036 1 1 RME 0.319 0.012 0.012 1

Table S1. Chemometric parameters for the preparative synthesis of L-Th reported in this work (Synth. #3).

Table S2. Chemometric parameters for the intensified synthesis of L-Th reported in this work (Synth. #4).

Parameter	Complete	Partial	No	Ideal
	Reclaiming	Reclaiming	Reclaiming	
AE	0.911	0.911	0.911	1
Rxn Yield	0.929	0.929	0.929	1
1/SF	0.575	0.575	0.575	1
MRP	1	0.045	0.045	1
RME	0.487	0.022	0.022	1

Table S3. Chemometric parameters for the enzymatic synthesis by Xu et al.^[26] (Synth. #2).

Parameter	Complete	Partial	No	Ideal
	Reclaiming	Reclaiming	Reclaiming	
AE	0.911	0,.11	0.911	1
Rxn Yield	0.885	0.885	0.885	1
1/SF	0.586	0.586	0.586	1
MRP	1	0.003	0.003	1
RME	0.472	0.001	0.001	1

Table S4. Chemometric parameters for the chemical synthesis by Zhang et al.^[16] before recrystallization (Synth. #1).

Parameter	Complete Reclaiming	Partial Reclaiming	No Reclaiming	Ideal
AE	1.000	1.000	1.000	1
Rxn Yield	0.784	0.784	0.784	1
1/SF	0.752	0.752	0.752	1
MRP	1	0.305	0.305	1
RME	0.589	0.180	0.180	1

Table S5. Chemometric parameters for the chemical synthesis by Zhang et al.^[16] after recrystallization (Synth. #1).

Parameter	Complete Reclaiming	Partial Reclaiming	No Reclaiming	Ideal
AE	1.000	1.000	1.000	1
Rxn Yield	0.240	0.240	0.240	1
1/SF	0.752	0.752	0.752	1
MRP	1	0.305	0.305	1
RME	0.181	0.055	0.055	1

RME= reaction AE= atom economy; Rxn yield= reaction yield (between 0 and 1); 1/SF= 1/stoichiometric factor (SF= 1 for stoichiometric reactions; SF >1 when excess of reagents is used); MRP= material recovery parameter; mass efficiency.

$$\begin{bmatrix} \mathbf{E}^{+} = \mathbf{E} + \frac{\mathbf{W} \times \mathbf{CI}}{\text{mass of}} \\ \text{desired product (kg)} \end{bmatrix} \begin{bmatrix} \mathbf{W} = \text{electrical power used (kWh)} \\ \mathbf{CI} = \text{carbon intensity } \frac{\text{kg (CO_2)}}{\text{kWh}} \end{bmatrix}$$

(C)limate Factor = $\frac{\text{total mass of CO}_2 \text{ emitted}}{\text{mass of product formed}}$ (kg CO₂/ kg product)

Case 1. This paper (Synth. #3)

Reaction is carried out by stirring at **25** °C (which can be considered room temperature) for **6** h

The estimated consumption for stirring at r.t. is 10 W (from different commercial stirrers) Then:

 $10 \text{ W} \ge 6 \text{ h} = 60 \text{ W} \cdot \text{h} = 0.060 \text{ KW} \cdot \text{h}$

According to OECD average (2015) the equivalency is 404 g CO₂/KW·h.^[60] Therefore 0.060 KW·h x 404 g CO₂/KW·h = **24.24 g CO₂ C-Factor** = 24.24 g CO₂ / (0.248 g) =97.742 \approx **98**

Case 2. This paper (Synth. #4)

Reaction is carried out by stirring at 25 °C (which can be considered room temperature) for 6 h

The estimated consumption for stirring at r.t. is 10 W (from different commercial stirrers) Then:

10 W x 6 h = 60 W·h = 0.060 KW·h According to OECD average (2015) the equivalency is 404 g CO₂/KW·h.^[60] Therefore 0.060 KW·h x 404 g CO₂/KW·h = **24.24 g CO₂ C-Factor** = 24.24 g CO₂ / (0.485 g) =49.979 \approx **50**

Case 3. Enzymatic synthesis (Synth. #2)[26]

Reaction is carried out by ultrasound power **100 Wat** for **16 h** Then: 100 W x 16 h = 1600 W·h = 1.6 KW·h According to OECD average (2015) the equivalency is 404 g CO₂/KW·h.^[60] Therefore 1.6 KW·h x 404 g CO₂/KW·h = **646.4 g CO₂ C-Factor** = 646.4 g CO₂ / (18.61 g) =34.734 \approx **35**

Case 4. Chemical synthesis (Synth. #1)[16]

a) Before recrystallization

Reaction is carried out by heating at **35** °C for **10 days** The estimated consumption for heaters is 300 W (from different commercial stirrers) Then: 300 W x 240 h = 72000 W·h = 72 KW·h According to OECD average (2015) the equivalency is 404 g CO₂/KW·h.^[60] Therefore 72 KW·h x 404 g CO₂/KW·h = 29088 g CO₂ ≈ **29 kg CO₂ C-Factor** = 29088 g CO₂ / (37.01 g) =785.94 ≈ **786**

b) After recrystallization

For recrystallization: the residual mixture was dissolved in warm (45 °C) water and allowed to crystallize in 84% ethanol at 4 °C for 5-7 days

- No indication of warming time. Assumption: 1 h
- The estimated consumption for heaters is 300 W (from different commercial stirrers)
- Then:
- 300 W x 1 h = 300 W · h = 0.3 KW · h
- According to OECD average (2015) the equivalency is 404 g CO₂/KW·h.^[60]
- Therefore 0.3 KW·h x 404 g CO₂/KW·h = **121.2 g CO**₂
- Cooling at 4 °C, time 6 days (between 5 and 7) = 144 h
- The estimated consumption for heaters/coolers is 300 W (from different commercial stirrers)
- Then:
- 300 W x 144 h = 43200 W · h = 43.2 KW · h
- According to OECD average (2015) the equivalency is 404 g CO₂/KW·h.^[60]
- Therefore 43.2 KW·h x 404 g CO₂/KW·h = 17452.8 g CO₂ = **17.45 kg CO**₂

OVERALL upon RECRYSTALLIZATION: 17.57 kg CO₂ (0.121 kg +17.45 kg)

TOTAL PROCESS (Reaction plus recrystallization) = 29 kg + 17.57 kg \approx **46.6 kg CO**₂ **C-Factor** = 46600 g CO₂ / (37.01 g) =1256.1 \approx **1256**