1	Title: Impact of photobioreactor design on microalgae-bacteria communities
2	grown on wastewater: differences between thin-layer cascade and thin-layer
3	raceway ponds.
4	
5	Authors: Elisa Clagnan ^a , Marta Dell'Orto ^a , Karolína Štěrbová ^b , Tomáš Grivalsk ^b , João
6	Artur Câmara Manoel ^b , Jiří Masojídek ^{b,c} , Giuliana D'Imporzano ^a *, Francisco Gabriel
7	Acién-Fernández ^d , Fabrizio Adani ^a .
8	
9	Affiliations:
10	^a Gruppo Ricicla labs., Dipartimento di Scienze Agrarie e Ambientali - Produzione,
11	Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2,
12	20133, Italy
13	^b Centre Algatech, Laboratory of Algal Biotechnology, Institute of Microbiology CAS,
14	Novohradská 237, 37901 Třeboň, Czech Republic
15	^c Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České
16	Budějovice, Czech Republic
17	^d Department of Chemical Engineering, CIESOL Solar Energy Research Centre,
18	University of Almeria, Cañada San Urbano, s/n, 04120 Almeria, Spain
19	
20	*Corresponding Author: Giuliana.DImporzano@guest.unimi.it

21 Abstract

22	Thin-layer (TL) photobioreactors (PBRs) are characterised by high productivity
23	however their use is limited to lab/pilot-scale and a deeper level of characterisation is
24	needed to reach industrial scale and test the resistance of multiple microalgae. Here, the
25	performance and composition of eight microalgal communities cultivated in the two
26	main TLs design (thin-layer cascade (TLC) and thin-layer raceway pond (RW)) were
27	investigated through Illumina sequencing. Chlorella showed robustness in both designs
28	and often acted as an "invasive" species. Inoculum and rector type brought variability.
29	Eukaryotic microalgae inocula led to a more robust and stable community (higher
30	similarity) however, RWs were characterised by a higher variability and did not favour
31	the eukaryotic microalgae when compared to TLCs. The only cyanobacterial inoculum,
32	Nostoc, was maintained however the community was variable between designs. The
33	reactor design had an effect on the N cycle with the TLC and RW configuration
34	enhancing nitrification and denitrification respectively.
35	

Keywords: Microalgae, Thin-Layer Cascade, Photobioreactor, Next Generation
Sequencing, Raceway pond, Wastewater, Bacterial Community.

38 Introduction

39	Recently, microalgae have obtained considerable interest worldwide due to their
40	extensive bio-industry application for biomass production, bioremediation, CO2 capture
41	and the extraction of various added-value products (Dagnaisser et al., 2022).
42	Microalgae mass cultivations are mostly carried out outdoors in constructed, large-
43	scale bioreactors with partial control of some physiological conditions (e.g. pH,
44	biomass density, dissolved oxygen concentration, nutrition, mixing) (Zittelli et al.,
45	2013). Open and closed bioreactors can be used for cultivation, but only in open large-
46	scale systems construction, production and maintenance cost might be significantly
47	reduced (Morales-Amaral et al. 2015). Recently, mostly two types of open systems
48	have been employed for mass production, raceway ponds and thin-layers. In these two
49	systems, different circulation devices, paddle wheels or pumps, are usually used which
50	can partly determine the selection of strains (Grivalský et al., 2019). Therefore, the
51	suitability of the particular cultivation system has to be validated for each selected
52	strain before application to large-scale cultivation plants.
53	Commercial demand has pushed microalgal production towards the use of synthetic
54	growth media to increase yields. The use of wastewater however has emerged as a low-
55	cost alternative further reducing wastewater (WW) related quality problems
56	(Suparmaniam et al., 2019). Numerous microalgae, such as Scenedesmus, Chlorella and
57	Nostoc, have been grown efficiently in WW showing their importance for
58	bioremediation of nutrients (Lopez-Sanchez et al., 2022). Chlorella and Scenedesmus
59	cultivation is especially economically favourable since their biomass can be used as
60	biofertilisers enriched by biostimulants and biopesticides produced by the microalgae
61	themselves (Ronga et al., 2019). However, when using WW in open cultivation
62	systems, microalgae cultures are inevitably invaded or co-cultured, to a certain degree,
63	with other microorganisms.

64	The co-culturing of microalgae-bacteria consortia might improve yield and robustness
65	of cultivations as in some cases microalgae monocultures are not required for the
66	production of target compounds. Recently, co-culturing has been the growing field in
67	microalgal biotechnology and may be an alternative to the more difficult 'monoculture'
68	approach which faces problems with contaminations as well as low biomass
69	productivity (Ramanan et al., 2016). In co-cultures, microalgae release dissolved
70	organic matter and oxygen, which are used by bacteria, and these in turn release other
71	important metabolites that can be used by their partners such as CO ₂ , micronutrients,
72	growth stimulants, etc.
73	The investigation of the role of bacteria and other microorganisms in microalgae
74	cultures ranging from laboratory flasks to outdoor units is problematic as these systems
75	are rather variable and unstable. Uncovering the correlations between microalgae and
76	associated microorganisms, mostly bacteria, is considered necessary to find out the
77	functional relationship. Therefore, studies of microbial communities in bioreactors are
78	of interest to identify the invading species and their effect, positive or negative, on
79	microalgae (Lian et al., 2018).
80	In this context, the amount of available information on TLs remains limited when
81	compared to other PBRs, with only one study partially dealing with community
82	characterisation (Villarò et al., 2022). Here, different growth media were tested and
83	Tetradesmus (i.e. Scenedesmus obliquus) was grown alternatively on freshwater, WW
84	and diluted pig slurry. Tetradesmus growth was reduced on WW, with other
85	spontaneous microalgae dominating possibly due to the presence of algal predators and
86	grazers. More information on the characterisation of TLs is therefore needed to reach
87	full-scale dimensions at an industrial level, test the resistance of multiple microalgae
88	and the understand the positive interaction within the consortium (both between
89	different microalgae or between microalgae and bacteria).

Within this study, 16S and 18S rRNA genes amplicon next generation sequencing
(NGS) analyses were performed to investigate the difference that two different PBRs
configuration, 1) thin-layer cascade (TLC) and 2) thin-layer raceway pond (RW), might
introduce on 1) composition and development of the bacterial-microalgal consortia and
2) N-cycle metabolism of cultures inoculated with three different microalgae species
characterised by high adaptation to the local environment and economic relevancy.

96

97 2. Materials and methods

98 The microalgae within this study were all selected due to their biopesticide and bio-99 stimulant activity (Carneiro et al., 2021; Ranglova et al., 2021). The same culture of 100 starting inoculum for each microalga strain was grown on the same WW medium in 101 parallel within TLC and RW set up under non-limiting conditions in terms of nutrients 102 and conditions.

103 Microalgae production was established at the Algatech centre (48°59'15" N;

104 14°46'40.630" E), Institute of Microbiology of the Czech Academy of Science (Trebon,

105 Czech Republic). The TLC and RW outdoor cultivation units (5m²) differing in the

106 circulation device (i.e. paddle wheel or centrifugal pump) were placed side by side in a

107 greenhouse following an east-west orientation. Cultivation occurred between June and

108 September 2019. RWs (volume: 100 L, water level: 18 mm, speed: 0.2 ms⁻¹, CO₂ supply

based on pH set point, pH: 7.8-8.2) were operated continuously (25% dilution rate).

110 TLCs (volume: 70 L, water level: 10 mm, speed: 0.5 ms^{-1} , CO₂ supply, pH: 7.8-8.2) was

111 operated only during day-time and the culture stored in a retention tank during the

112 night-time (mixed via air bubbling, light:dark ~12:12 h). Evaporation was compensated

113 by adding tap water (Carneiro et al., 2021; Ranglova et al., 2021).

114 Microalgae were grown on wastewater taken after secondary aerobic digestion from the

115 municipal wastewater treatment plant in Trebon (Czech Republic) with a total nitrogen

- 116 (TN) content similar to the synthetic medium (i.e. BG-11) and a total phosphorous (TP)
- 117 content >20x higher than BG-11 (Carneiro et al., 2021; Ranglova et al., 2021); in detail
- the wastewater features were: biochemical oxygen demand (BOD): 180 mg L^{-1} ;
- 119 chemical oxygen demand (COD): 1000-1100 mg L⁻¹; total organic carbon (TOC): 310-
- 120 560 mg L^{-1} ; TN: 230-260 mg L^{-1} ; TP: 150-170 mg L^{-1} ; TN:TP: 1.5).
- 121 Selected strains (obtained from prof. Vince Ördög, from the Algal Culture Collection of
- 122 the Szechenyi Istvan University, Mosonmagyarovar, Hungary) were: 1. Chlorella
- 123 vulgaris MACC-1 (CV), 2. Scenedesmus acutus (Tetradesmus obliquus) MACC-677
- 124 (SA) and 3. The cyanobacteria Nostoc piscinale MACC-612 (NP). All these strains
- 125 were inoculated as pure cultures plus a mix of *C. vulgaris*. and *S. acutus* (CV.SA).
- 126 Cultures were initially grown in BG-11 medium in 10 L Pyrex bottles (28–30 °C, 200
- 127 μ mol photons m⁻²s⁻¹, air-bubbling 1% CO₂ (v/v)). PBRs were inoculated at the biomass
- density of 0.7 g of dry weight (DW) L^{-1} and were grown with a batch regime for seven
- days to reach the steady state then semi-continuously for another five days by
- harvesting 25% of the culture and replacing it with centrate (Carneiro et al., 2021;
- 131 Ranglova et al., 2021).
- 132 Culture temperature and irradiance were recorded using a meteorological station
- 133 (modular control system ADiS-AMiT) with a solar radiation sensor located by the PBRs
- and temperature sensors in the cultures. Across the experimentation period,
- temperatures within the cultures ranged between 12 and 37 degrees while solar
- irradiation reached peaks of 1800 μ mol photons m⁻²s⁻¹ (Carneiro et al., 2021; Ranglova
- 137 et al., 2021).
- 138 Biomass samples of about 250 mg were used to detect the N concentration (% m/m),

139 using an elementary analyser (Elementar Rapid max N exceed) based on the analytical

- 140 method of combustion by Dumas and equipped with a thermal conductivity detector
- 141 (TCD).

2.3 NGS, bioinformatics and statistics 143 Microalgal biomasses were collected between June and September 2019, at the end of 144 145 the experimental period. Samples (~20 mg) of freeze-dried biomass of the assayed microalgae strains were processed as per Clagnan et al. (2022). Briefly, DNA 146 147 extractions were performed using the Biosprint 96 One-For-All Vet Kit (Qiagen) together with the semiautomatic extractor BioSprint 96 (Qiagen) and MagAttract 148 technology in three technical replicates. DNA yield was quantified using Qubit 149 (Invitrogen, Italy), purity through Nanodrop (Invitrogen, Italy) and possible 150 151 fragmentation with gel electrophoresis 1% (w/v) 1×TAE agarose gels. DNA was then stored at -80 °C. Library for 16S and 18S marker gene were prepared following 152 153 Illumina Protocol. For the 16S, 341F and 805R primers were used (Herlemann et al., 2011) while for 18S, 1389F and 1510R primers (Piredda et al., 2017). Nucleotide 154 sequences generated and analysed are available at the NCBI SRA repository (BioProject 155 156 accession number: PRJNA913110). 157 Amplicons were processed as per Dumbrell et al., 2016 for 16S rRNA while a slightly modified protocol has been used for the 18S rRNA (Bani et al., 2021). 158 159 All statistical analyses were performed on R studio (version 4.1.2) mainly with the 160 package vegan (Oksanen et al., 2020) while taxonomic summaries were performed using the phyloseq package (McMurdie and Holmes, 2013). Observed and Chao1 161 162 richness, Simpson and Shannon diversity index and Pielou's evenness were calculated, 163 following a Shapiro-Wilk test to test normality, differences among samples of normally 164 distributed data were tested by one-way analysis of variance (ANOVA), followed by a 165 Tukey's post hoc test, while non-normal data were analysed through a non-parametric 166 Kruskal-Wallis test followed by Dunn's Test for multiple comparisons. For pairwise 167 comparison, T-test and Wilcoxon signed-rank test was used for normal and non-normal

- data respectively. Multivariate analyses were performed on Operational Taxonomic
- 169 Unit (OTUs) relative abundances. To test the effect of reactor design and inoculum on
- 170 beta diversity, first, a nonmetric multidimensional scaling (NMDS) based on Bray-
- 171 Curtis distances was applied and then results were confirmed through a PERMANOVA
- test. Furthermore, pairwise comparisons were carried out with the package
- 173 'pairwiseAdonis' (Martinez, 2020). The betadisper function was further used to
- understand variance followed by the simper function to understand the main differences
- in composition. Co-occurrences were Investigated through the package cooccur
- 176 (Griffith et al., 2016) to reveal intra- and inter-kingdom interaction.
- 177 The prokaryotic pathway of the enzyme profile for N metabolism was investigated
- through iVikodak (Nagpal et al., 2019).
- 179

180 **3. Results and discussion**

181 **3.1 Nitrogen analysis in biomass**

182 The microalgae strains in this study were selected as being biotechnologically

promising in terms of bioremediation, biostimulants, biomass and agricultural

184 biofertilizer production. Samples of microalgae biomass from microalgae cultures

were collected at the end of the 4-day semi-continuous growth phase (a dilution rate of 0.25 d⁻¹).

187 CV.SA and NP biomasses showed a similar N content in TLC and RW while CV

188 showed a higher N in TLC and SA in RW (p < 0.05) (see e-supplementary materials).

In all reactors, N-NH₄ reached concentration below 5 mg L^{-1} while N-NO₃ below 20 mg

- 190 L^{-1} with a noticeable influence of denitrification and ammonium stripping (Carneiro et
- 191 al., 2021; Ranglova et al., 2021).
- 192 Although microalgae can utilise different forms of N (i.e. NO₃⁻, NO₂⁻, NH₄⁺ or organic
- 193 N), NH_4^+ is preferred, as its uptake require less energy and microalgae can furthermore
- inhibit the uptake of other N forms, favouring NH_4^+ (Kumar and Bera, 2020). In terms

195	of N bioremediation, the stripping of ammonia (a fast reaction occurring spontaneously						
196	due to chemical equilibrium) is expected to be between 10-30% of the initial N						
197	considering 1) the initial concentration of N in WW at 230-260 mg L^{-1} , 2) the average						
198	biomass concentration at the time of collection of ~2.2 g DW L^{-1} and 3) the sum of N-						
199	NH ₄ and N-NO ₃ in the outlet medium at 20 mg L ⁻¹ . Additionally, since the total						
200	Kjeldahl nitrogen is at ~200 mg L^{-1} including the N fixed by the biomass, it can be						
201	assumed that microalgae consumed mostly N-NH4 due to the low concentration of NO3-						
202	N, and that therefore the remaining N-NH4 was subjected to stripping while the						
203	remaining NO ₃ -N could be involved in nitrification-denitrification within the reactors.						
204	Most of the N that is lost from the mass balance is therefore stripped as ammonia						
205	however since NO ₃ in these systems (even though at low concentration) is constantly						
206	present, denitrification can occur with the release of N_2O considering the likeliness of						
207	the presence of denitrification genes also thanks to functional redundancy. Usually in						
208	agriculture it is estimated that the N to N ₂ O ratio is about 4:1 (Fagerstone et al., 2011;						
209	14. Ferrón et al., 2012; Bauer et al., 2016).						

211 **3.2 Eukaryotic communities**

The total number of assembled reads for the eukaryotic communities was between 5,262 \pm 658 and 17,495 \pm 3,401 with a number of inputted reads ranging from 10,806 \pm 1,342 to 35,758 \pm 6,961 (see e-supplementary materials).

215 Within the eukaryotic community dominant phyla were *Chlorophyta* (green algae) and

- 216 Ciliophora (aquatic unicellular microorganisms) with Ascomycota especially present in
- 217 the SA cultures in RW (see e-supplementary materials).

218 In terms of eukaryotic genera, *Chlorella* was the most common across all samples (Fig.

- **1**). CV cultivation in TLC showed the presence at high abundance of *Vannella* (9-11%),
- an ameboid protist, followed by *Amoeboaphelidium protococcarum* (6-8%), an algal

parassitoid (Hoeger et al., 2022), and as expected *Chlorella* (5-8%). On the other hand,

222 CV cultures in RW showed a predominant contamination of the ciliate *Sterkiella* that

feeds on microalgae (33-39%) which, together with the absence of *Chlorella*, might

identify a "failed culture" respect to the inoculum introduced.

225 Chlorella was also present in SA cultures in both RW (7-8%) together with the fungus

Eurotium (70-87%) and in TLC (23-32%) together with *Amoeboaphelidium* (42-54%).

227 The presence of Amoeboaphelidium, probably feeding on the cultivated microalgae

228 might point to an unstable system that could be potentially subjected to failure risks

229 (Molina-Grima et al., 2022).

230 Mixed cultures CV.SA showed a high abundance of *Chlorella* (30-37% in RW and 53-

60% in TLC) together with the microalga *Kremastochrysopsis* (18-21%) in RW. Even if

present at the start of the experimental set up, no *Scenedesmaceae* were found in

233 Scenedesmus acutus cultures. However, this is not surprising as 1) cultures are in open

systems and therefore prone to external contamination (Bani et al., 2021) and 2)

235 *Chlorella*, a rapid growing microalga (Galès et al., 2019), might be more resilient to

236 contamination, pollution or variation in environmental fluctuation than *Scenedesmus*

and might overcome the initial mixed inoculum and establish itself as the main

238 microalgae within the community. However, although the primers used have previously

shown to amplify *Scenedesmus sp.*, *Tetradesmus sp.* and other genera commonly used

in PBRs (Su et al., 2022), it is important to note that an accurate characterisation of the

241 composition of microalgal biomass is not straightforward as, although DNA barcoding

enable a rapid and reliable identification of organisms (Hebert and Gregory, 2005), it

has the disadvantage of being a PCR-based approach and as such it is inherently biased

by both DNA extraction and PCR complications.

- 245 The Cyanobacterial NP cultures in RW were dominated by an unknown
- Oligohymenophorea while the same inoculum in TLC showed the main presence of*Chlorella* (41-52%).
- 248 Other microalgae were retrieved at low abundances (<5%), such as *Spumella-like*
- 249 flagellate, Monoraphidium, Chlamydomonas, Pteromonas, Tetraselmis, Chromulina,
- 250 Ochromonas, Coelastrella and Desmodesmus.
- 251 Richness was similar across all samples (see e-supplementary materials). Eukaryotic
- 252 diversity indexes showed in general a higher diversity in CV.SA culture grown in RW
- than in TLC (Shannon: p<0.05) while the opposite occurred for NP (Shannon and
- 254 Simpson: p<0.05).
- 255 NMDS and PERMANOVA analyses on the eukaryotic communities indicate an
- influence of the inoculum, the reactor type and their interaction on the shaping of the
- communities (Permanova: p=0.001) (Fig. 1). When doing a pairwise analyses,
- communities among all cultures resulted different between TLC and RW configuration
- 259 (p=0.001), also communities differed among inocula with only CV and NP culture
- showing similarities (p>0.05). When looking at pairwise analysis for beta-diversity,
- variability in species composition among sampling units, combining both species and
- reactor types, no significant differences were found (most likely due to the small sample
- size). However, when looking at the NMDS plot, the RW reactor design introduced a
- higher variability with a lower abundance of eukaryotic microalgae.
- Further looking at the most influential species that account for >70% differences
- between samples, we can see that between the two CV cultures main difference
- 267 (p<0.005 across groups) is given by the presence of an uncultured *Oligohymenophorea*,
- an uncultured Nucleariidae and Sterkiella multicirrata, for SA by Eurotium sp. and
- 269 Amoeboaphelidium protococcarum, for NP by uncultured Oligohymenophorea,

- 270 *Chlorella sp.* and *Chlorella sorokiniana* (p<0.05) while for the CV.SA culture by
- 271 Chlorella sp., Kremastochrysopsis austriaca and by an uncultured eukaryote.
- 272 **3.3 Bacterial communities**
- 273 Bacterial sequencing resulted in a total number of assembled reads between $9,119 \pm$
- 274 2,945 and 27,088 \pm 6,427 starting from 19,630 \pm 6,017 57,418 \pm 13,858 inputted reads
- 275 (see e-supplementary materials).
- 276 Samples were dominated by the Bacteroidetes (8-47%) and Proteobacteria (9-55%)
- 277 phyla (see e-supplementary materials). As expected, Cyanobacteria were present in all
- 278 NP samples (5-57%) accompanied by Actinobacteria (12-31%) and Firmicutes (28-
- 279 57%) in the RW set up. Actinobacteria (4-9%) were also present in SA samples with the
- addition of Acidobacteria (5-6%) in the TLC set up. No Cyanobacteria were retrieved in
- the PBRs inoculated with an eukaryote.
- 282 CV cultures in RW, showed as dominant genera Flavobacterium (17-18%), Emticicia
- 283 (9-10%), a microalgal growth promoting bacteria (Toyama et al., 2019), Methylibium
- 284 (7-9%), a genus involved in biodegradation of siloxanes (Boada et al., 2020), the human
- pathogen *Plesiomonas* (7.9-8.2) and *Pedobacter* (5-6%), environmental superbugs with
- generally multiple antibiotic resistance mechanisms (Viana et al. 2018) (Fig. 1). The
- same culture in TLC, showed the presence again of *Plesiomonas* (23-24%), *Pedobacter*
- 288 (9-10%) plus *Novosphingobium* (6-7%), a genus known for its metabolic versatility and
- bioremediation potential (Liu et al., 2021).
- In RW SA cultures, the main genera found were *Hydrogenophaga* (8.5-9.0%), a
- bacteria often found in microalgal-bacterial consortia and able to participate in
- sulfamethoxazole degradation (Xie et al., 2020), Niabella (5-6%) and Thermomonas (5-
- 293 7%), often isolated from similar environmental samples, and *Tistrella* (5-6%) which is
- involved in N-fixation and has shown to impair (possibly actively killing) Chlorella due
- to micronutrients limitation or the generation of secondary metabolites (Haberkorn et

- al., 2020). Research on genus is however scarce and its effect on different microalgae
- needs to be explored (Collao et al., 2022). Whereas the same culture grown on TLC
- showed a different bacteria profile with a prevalence of *Fluviicola* (11-12%), often
- present in WW utilising carbohydrates (Rodriguez-Gonzalez et al., 2021), the
- 300 heterotrophic denitrifier *Terrimonas* (8-9%) and *Tannerella* (2-6%).
- 301 Similarly to CV cultures in RW, CV.SA cultures grown on RW showed Flavobacterium
- 302 (6-7%), mostly commensal or pathogenic bacteria, as dominant genera accompanied by
- 303 *Hydrogenophaga* (6-7%), *Sediminibacterium* (5-6%), an ubiquitous taxa of freshwater
- bacterioplankton (Ogata et sl., 2022), and the autotrophic denitrifiers *Solitalea* (8-9%).
- The same mix grown on TLC showed a peculiar composition consisting of
- 306 *Porphyrobacter* (6-7%) which has been shown to be a key player in microalgae culture
- 307 by producing a broad spectrum of B vitamins (Astafyeva et al., 2022), Segetibacter (5-
- 308 6%) and the endohyphal bacterium *Chitinophaga* (5-6%).
- 309 The cyanobacteria *Nostoc piscinale* (labelled as GpI genus) was maintained in both RW
- 310 (5-7%) and TLC (8-14%) designs. The RW set up resulted having high abundances of
- specific genera such as *Sporosarcina* (10-20%), the antibiotic producer and plant
- growth promoter *Streptomyces* (4-17%), the halotolerant and bioflocculant producer
- 313 *Oceanobacillus* (4-17%), *Virgibacillus* (4-12%), a genus able to mediate mineralisation
- processes (Abdel Samad et al., 2020), *Lentibacillus* (3-13%), *Solitalea* (5-7%) and
- 315 *Arthrobacter* (4-6%), a genus often used for useful for bioremediation or commercial
- applications (Busse and Wieser, 2014). The same cultures in TLC bioreactor, showed a
- different composition of *Fluviicola* (8-9%), *Ferruginibacter* (7-9%), known to
- decompose long-chain fatty acids, monomers, and oligomers (Kwon et al., 2019),
- 319 Hydrogenophaga (5-8%), Sediminibacterium (7.0-7.2) and Sutterella (5-6%), a
- 320 common inhabitant of the human gastrointestinal tract (Hiippala et al., 2016).

321	Similarly to eukaryotic community, prokaryotic richness was similar across all samples
322	(see e-supplementary materials). Bacterial diversity indexes showed in general a lower
323	diversity in both CV and NP cultures than in CV.SA and SA (Shannon: p<0.005).
324	Additionally, NP cultures showed a higher diversity when grown in TLC rather than in
325	RW.
326	Again, NMDS and PERMANOVA analyses on the eukaryotic communities indicated
327	an influence of inoculum, reactor type and their interaction in shaping the communities
328	(Permanova: p=0.001) (Fig. 1). When doing a pairwise analyses, communities among
329	all cultures resulted different between TLC and RW configuration and inocula species,
330	similarly to the eukaryotic communities. When looking at the NMDS, CV.SA
331	communities showed higher similarity between reactors similarly to its eukaryotic
332	communities. Similarly, CV prokaryotic communities showed higher similarity between
333	reactors than SA while NP had the highest variability between reactors.
334	Looking at the most influential species that account for >70% differences between
335	samples (and are present at an abundance $>5\%$ in at least one sample), we can see that
336	between the two CV cultures main difference is given by the presence of
337	Flavobacterium, Plesiomonas, Emticicia, Novosphingobium, Methylibium, Pedobacter,
338	Terrimonas, Hydrogenophaga, Sutterella, Porphyrobacter, Sediminibacterium, for NP
339	by Streptomyces, Sporosarcina, Fluviicola, Virgibacillus, Sediminibacterium,
340	Sutterella, GpI, Solitalea, Arthrobacter and Hydrogenophaga; as per CV.SA main
341	differences where related to the presence of Solitalea, Flavobacterium, Chitinophaga,
342	Hydrogenophaga, Porphyrobacter, Plesiomonas, Methylibium, Terrimonas,
343	Sediminibacterium, Tistrella and Fluviicola; while for SA it was due to the presence of
344	Fluviicola, Terrimonas, Hydrogenophaga, Niabella, Tistrella, Tannerella, Solitalea,
345	Thermomonas, Lentibacillus, Emticicia, Fluviicola and Methylibium.

346 **3.4 Co-occurrences**

Interactions between microalgal genera and both the eukaryotic and prokaryotic 347 communities were investigated in terms of co-occurrence (Fig. 2). Among the whole 348 349 eukaryotic communities, the highest number of positive interactions were detected for 350 Nostoc (GpV) and Chlamydomonas, 19 and 17 respectively. Chlorella showed the 351 highest number of negative interactions with Spumella like flagellate (a genus feeding 352 on algae, fungi, and starch grains (Jeong et al., 2021)), the ciliate and microalgal 353 predator Sterkiella (Hue et al., 2018) and uncultured Ciliates, while it showed positive interactions with the mold Hagiwaraea, Myzocytiopsis and an uncultured Eukaryote. 354 355 When looking at the interaction between microalgae and the bacterial community, Chlorella showed again the highest number of interactions, 2 negatives (with 356 357 *Plesiomonas* and *Pedobacter*) and 13 positives including the vitamin B producer Porphyrobacter, Zooglea which growth is known to be promoted by algae organic 358 matter (Wang et al., 2016), the denitrifiers *Caldilinea* and *Methyloversatilis*, and the 359 360 microalgal growth-promotion bacteria Achromonobacter (Zhou et al., 2021). 361 Achromonobacter was the bacterial genus showing the highest number (7) of positive interactions with microalgae together with Sphingopyxis (5), another microalgal growth 362 363 promoter (Haberkorn et al., 2020). On the other hand, Nostoc had 8 positive 364 interactions, one in particular with Exiguobacterium that when found in co-culture with *Chlorella* can stimulate the secretion of N-related enzymes in the photosynthesis 365 pathways of *Chlorella* and increase its enzymatic activities (Wang et al., 2020). 366 367 **3.5** N-cycle pathways 368 A main operational difference between RW and TLC is that RW is always agitated

while the latter stops at night and the culture is stored in a tank overnight where it ismixed via air bubbling. It was therefore hypothesised that at night within the RW there

371 is only a slight drop in the oxygen concentration as, even though microalgae stop O_2

372 production, this drop is limited by the large gas exchange surface. On the other hand,

373 the TLC O₂ concentration could increase more at night than in the RW, as the surface

for the gas exchange within the tank is increased thanks to air bubbling. This could be

supported by the retrieval of a higher $N-NO_3^-$ concentration, as the result of a higher

nitrification and lower denitrification within the TLC (Ranglova et al., 2021), while in

377 the RW the lower O_2 could have supported a higher degree of denitrification and

378 production of nitrous oxide (N₂O). Different metabolic pathways might be therefore

379 selected for the two reactors designs. The prokaryotic enzyme profile for the N-

380 metabolism was therefore investigated through iVikodak and multiple N-pathways of

the N-cycle were retrieved (**Fig. 3**).

382 In accordance with what hypothesised, bacterial communities cultivated in RWs showed

a small but significantly (p<0.05) higher abundance of genes coding for denitrification

enzymes than in TLCs, with the exception of NP cultures were the opposite was

385 achieved.

386 When considering nitrification, NP and SA cultures did not show any differences while

both CV and CV.SA cultures showed a higher abundance of nitrification genes in the

388 TLC configuration, in accordance with Carneiro et al. (2021) where the significant drop

in N-NH₄ concentration accompanied by an increase in N-NO₃ was connected to

nitrification in both CV.SA cultures but at a higher degree within the TLC set up,

391 possibly linked to the higher dissolved oxygen. For assimilatory nitrate reduction, both

392 CV and NP showed a higher abundance in RWs while no differences were reported for

393 CV.SA and SA. Dissimilatory nitrate reduction was similar across all culture except for

394 CV which showed higher abundances in TLC.

396 Conclusions

397	Ch	dorella strain proved to be a robust strain in both designs, often acting as an
398	"in	vasive" species. Inoculum and rector type brought variability. Unfortunately, it was
399	not	possible to quantify the variability introduced by the external environment (open
400	des	ign and WW). More robust and stable community (higher similarity) was seen
401	bet	ween reactors when inoculated with eukaryotic microalgae. RWs, when compared to
402	TL	Cs, did not favour eukaryotic microalgae and seemed to support a higher variability.
403	For	procaryotic community, Nostoc was maintained however the community was
404	var	iable between designs. The reactor design influenced the N cycle, TLC enhanced
405	nitr	ification while RW denitrification.
406		
407	E-s	upplementary data
408	E-s	upplementary data for this work can be found in e-version of this paper online.
409		
410	Fu	nding
411	Thi	s study is part of the European Union's Horizon 2020 Research and Innovation
412	Pro	gram under Grant Agreement No. 727874 (SABANA).
413		
414	Re	ferences
415	1.	Abdel Samad, R., Al Disi, Z., Mohammad Ashfaq, M.Y., Wahib, S.M., Zouari, N.,
416		2020. The use of principle component analysis and MALDI-TOF MS for the
417		differentiation of mineral forming Virgibacillus and Bacillus species isolated from
418		sabkhas. RSC Adv. 10, 14606-14616.
419	2.	Astafyeva, Y., Gurschke, M., Qi, M., Bergmann, L., Indenbirken, D., de Grahl, I.,
420		Katzowitsch, E., Reumann, S., Hanelt, D., Alawi, M., Streit, W.R., Krohn, I., 2022.

- 421 Microalgae and Bacteria Interaction-Evidence for Division of Diligence in the Alga
- 422 Microbiota. Microbiol. Spectr. 31, 10(4), e0063322.
- 423 3. Bani, A., Fernandez, F. G. A., D'Imporzano, G., Parati, K., Adani, F., 2021.
- 424 Influence of photobioreactor set-up on the survival of microalgae inoculum.
- 425 Bioresour. Technol. 320, 124408.
- 426 4. Bauer, S.K., Grotz, L.S., Connelly, E.B., Colosi, L.M., 2016. Reevaluation of the
- 427 global warming impacts of algae-derived biofuels to account for possible
- 428 contributions of nitrous oxide. Bioresour. Technol. 218, 196-201.
- 429 5. Boada, E., Santos-Clotas, E., Bertran, S., Cabrera-Codony, A., Martín, M.J.,
- 430 Bañeras, L., Gich, F., 2020. Potential use of Methylibium sp. as a biodegradation
- tool in organosilicon and volatile compounds removal for biogas upgrading.
- 432 Chemosphere 240, 124908.
- 433 6. Busse, H.J., Wieser, M., 2014. The Genus Arthrobacter. In: Rosenberg, E.,
- 434 DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes.
- 435 Springer, Berlin, Heidelberg.
- 436 7. Carneiro, M., Ranglová, K., Lakatos, G.E., Câmara-Manoel, J.A., Grivalský, T.,
- 437 Malikuly-Kozhan, D., Toribio, A., Moreno, J., Otero, A., Varela, J., Malcata, F.X.,
- 438 Suárez-Estrella, F., Acién-Fernándéz, F.G., Molnár, Z., Ördög, V., Masojídek, J.,
- 439 2021. Growth and bioactivity of two chlorophyte (Chlorella and Scenedesmus)
- strains co-cultured outdoors in two different thin-layer units using municipal
- 441 wastewater as a nutrient source. Algal Res. 56, 102299.
- 442 8. Clagnan, E., D'Imporzano, G., Dell'Orto, M., Bani, A., Dumbrell, A.J., Parati, K.,
- 443 Acién-Fernández, F.G., Portillo-Hahnefeld, A., Martel-Quintana, A., Gómez-
- 444 Pinchetti, J.L., Adani, F., 2022. Centrate as a sustainable growth medium: impact
- 445 on microalgal inocula and bacterial communities in tubular photobioreactor
- 446 cultivation systems, Bioresour. Technol. 363, 127979.

447	9.	Collao, J., García-Encina, P.A., Blanco, S., Bolado-Rodríguez, S., Fernandez-
448		Gonzalez, N., 2022. Current Concentrations of Zn, Cu, and As in Piggery
449		Wastewater Compromise Nutrient Removals in Microalgae–Bacteria
450		Photobioreactors Due to Altered Microbial Communities. Biology 11(8), 1176.
451	10.	Dagnaisser, L.S., dos Santos, M.G.B., Rita, A.V.S., Cardoso, J.C., de Carvalho,
452		D.F., Medonça, H.V., 2022. Microalgae as Bio-fertilizer: a New Strategy for
453		Advancing Modern Agriculture, Wastewater Bioremediation, and Atmospheric
454		Carbon Mitigation. Water Air Soil Pollut. 233, 477.
455	11.	Dumbrell, A.J., Ferguson, R.M.W., Clark, D.R., 2016. Microbial community
456		analysis by single-amplicon high-throughput next generation sequencing: Data
457		analysis - From raw output to ecology. In: McGenity, T., Timmis, K., Nogales, B.
458		(eds) Hydrocarbon and lipid microbiology protocols. Springer Protocols
459		Handbooks. Springer, Berlin, Heidelberg.
460	12.	Fagerstone, K.D., Quinn, J.C., Bradley, T.H., De Long, S.K., Marchese, A.J., 2011.
461		Quantitative measurement of direct nitrous oxide emissions from microalgae
462		cultivation. Environ. Sci. Technol. 1, 45(21), 9449-56.
463	13.	Ferrón, S., Ho, D.T., Johnson, Z.I., Huntley, M.E., 2012. Air-water fluxes of N2O
464		and CH4 during microalgae (Staurosira sp.) cultivation in an open raceway pond.
465		Environ. Sci. Technol. 2, 46(19), 10842-8.
466	14.	Galès, A., Bonnafous, A., Carré, C., Jauzein,, V., Lanouguère, E., Le Floc'h, E.,
467		Pinoit, J., Poullain, C., Roques, C., Sialve, B., Simier, M., Steyer, JP., Fouilland,

- 468 E., 2019. Importance of ecological interactions during wastewater treatment using
- 469 High Rate Algal Ponds under different temperate climates. Algal Res. 40, 101508.
- 470 15. Griffith, D.M., Veech, J.A., Marsh, C.J., 2016. cooccur: Probabilistic species co-
- 471 occurrence analysis. R. J. Stat. Softw. Code Snippets, 69, 2, 1-17.

- 472 16. Grivalský, T., Ranglová, K., da Câmara Manoel, J.A., Lakatos, G.E., Lhotský, R.,
- 473 Masojídek, J., 2019. Development of thin-layer cascades for microalgae cultivation:
 474 milestones (review). Folia Microbiol. 64, 603-614.
- 475 17. Haberkorn, I., Walser, J.-C., Helisch, H., Böcker, L., Belz, S., Schuppler, M.,
- 476 Fasoulas, S. and Mathys, A., 2020. Characterisation of Chlorella vulgaris
- 477 (Trebouxiophyceae) associated microbial communities. J. Phycol. 56, 1308-1322.
- 18. Hebert, P.D.N., Gregory, T.R., 2005. The promise of DNA barcoding for
- 479 taxonomy. Syst. Biol. 54, 852-859.
- 480 19. Herlemann, D.P., Labrenz, M., Jürgens, K., Bertilsson, S., Waniek, J.J., Andersson,
- 481 A.F., 2011. Transitions in bacterial communities along the 2000 km salinity
- 482 gradient of the Baltic Sea. ISME J. 5, 10, 1571-1579.
- 483 20. Hiippala, K., Kainulainen, V., Kalliomäki, M., Arkkila, P., Satokari, R., 2016.
- 484 Mucosal Prevalence and Interactions with the Epithelium Indicate Commensalism
 485 of Sutterella spp. Front. Microbiol. 7, 1706.
- 486 21. Hoeger, A.L., Jehmlich, N., Kipping, L., Griehl, C., Noll, M., 2022. Associated
- 487 bacterial microbiome responds opportunistic once algal host Scenedesmus
- 488 vacuolatus is attacked by endoparasite Amoeboaphelidium protococcarum. Sci.
- 489 Rep. 12, 13187.
- 490 22. Hue, N.T.K., Deruyck, B., Decaestecker, E., Vandamme, D., Muylaert, K., 2018.
- 491 Natural chemicals produced by marine microalgae as predator deterrents can be
- 492 used to control ciliates contamination in microalgal cultures. Algal Res. 29, 297-493 303.
- 494 23. Jeong, M., Kim, J.I., Nam, S.W., Shin, W., 2021. Molecular phylogeny and
- 495 taxonomy of the genus Spumella (Chrysophyceae) based on morphological and
- 496 molecular evidence. Front. Plant. Sci. 26, 12, 758067.

497	24.	Kwon, G., Kim, H., Song, C., Jahng, D., 2019. Co-culture of microalgae and
498		enriched nitrifying bacteria for energy-efficient nitrification. Biochem. Eng. J. 152,
499		107385.
500	25.	Kumar, A., Bera, S., 2020. Revisiting nitrogen utilisation in algae: A review on the
501		process of regulation and assimilation. Bioresour. Technol. Reports 12, 100584.
502	26.	Lian, J., Wijffels, R.H., Smidt, H., Sipkema, D., 2018. The effect of the algal
503		microbiome on industrial production of microalgae. Microb. Biotechnol. 11, 806-
504		818.
505	27.	Liu, Y., Pei, T., Du, J., Huang, H., Deng, MR., Zhu, H., 2021. Comparative
506		genomic analysis of the genus Novosphingobium and the description of two novel
507		species Novosphingobium aerophilum sp. nov. and Novosphingobium
508		jiangmenense sp. nov. Syst. Appl. Microbiol. 44, 3, 126202.
509	28.	López-Sánchez, A., Silva-Gálvez, A.L., Aguilar-Juárez, O., Senés-Guerrero, C.,
510		Orozco-Nunnelly, D.A., Carrillo-Nieves, D., Gradilla-Hernández, M.S., 2022.
511		Microalgae-based livestock wastewater treatment (MbWT) as a circular
512		bioeconomy approach: Enhancement of biomass productivity, pollutant removal
513		and high-value compound production. J. Environ. Manage. 308, 114612.
514	29.	McMurdie, P.J., Holmes, S., 2013. phyloseq: an R package for reproducible
515		interactive analysis and graphics of microbiome census data. PLoS One. 22, 8(4),
516		e61217.
517	30.	Molina-Grima, E., García-Camacho, F., Acién-Fernández, F.G., Sánchez-Mirón,
518		A., Plouviez, M., Shene, C., Chisti, Y., 2022. Pathogens and predators impacting
519		commercial production of microalgae and cyanobacteria. Biotechnol. Adv. 55,
520		107884.
521	31.	Morales-Amaral, M.M., Gómez-Serrano, C., Acién, F.G., Fernández-Sevilla, J.M.,
522		Molina-Grima, E., 2015. Outdoor production of Scenedesmus sp. in thin-layer and

raceway reactors using centrate from anaerobic digestion as the sole nutrientsource. Algal Res. 12, 99-108.

525	32.	Nagpal, S., Haque, M.M., Singh, R., Mande, S.S., 2019. iVikodak-A Platform and					
526		Standard Workflow for Inferring, Analyzing, Comparing, and Visualizing the					
527		Functional Potential of Microbial Communities. Front. Microbiol. 14, 9, 3336.					
528	33.	Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D.,					
529		Minchin, P.R., O'Hara, R. B., Simpson, G.L., Solymos, P., Stevens, M.H.H.,					
530		Szoecs, E., Wagner, H., 2020. vegan: Community Ecology. Package. R package,					
531		version 2.5-7.					
532	34.	Ogata, Y., Watanabe, K., Takemine, S., Shindo, C., Kurokawa, R., Suda, W., 2022.					
533		Whole-genome sequence of Sediminibacterium sp. strain TEGAF015, isolated from					
534		a shallow eutrophic freshwater lake in Japan. Microbiol. Resour. Announc. 11, 11,					
535		e00882-22.					
536	35.	Piredda, R., Tomasino, M.P., D'Erchia, A.M., Manzari, C., Pesole, G., Montresor,					
537		M., Zingone, A., 2017. Diversity and temporal patterns of planktonic protist					
538		assemblages at a mediterranean long term ecological research site. FEMS					
539		Microbiol. Ecol. 93, 1, fiw200gures.					
540	36.	Ramanan, R., Kim, B.H., Cho, D.H., Oh, H.M., Kim, H.S., 2016. Algae-bacteria					
541		interactions: Evolution, ecology and emerging applications. Biotechnol. Adv. 34(1),					
542		14-29.					
543	37.	Ranglova, K., Lakatos, G.E., Manoel, J.A.C., Grivalský, T., Masojídek, J., 2019.					
544		Rapid screening test to estimate temperature optima for microalgae growth using					

546 38. Ranglova, K., Lakatos, G.E., Manoel, J.A.C., Grivalský, T., Suárez Estrella, F.,

545

photosynthesis activity measurements, Folia Microbiol. 64, 615-625.

547 Acién Fernández, F.G., Molnár, Z., Ördög, V., Masojídek, J., 2021. Growth,

- 548 biostimulant and biopesticide activity of the MACC-1 Chlorella strain cultivated
- outdoors in inorganic medium and wastewater, Algal Res. 53, 102136.
- 550 39. Rodriguez-Gonzalez, C., Ospina-Betancourth, C., Sanabria, J., 2021. High
- resistance of a sludge enriched with nitrogen-fixing bacteria to ammonium salts and
- its potential as a biofertiliser. Bioeng. 8(5), 55.
- 40. Ronga, D., Biazzi, E., Parati, K., Carminati, D., Carminati, E., Tava, A., 2019.
- 554 Microalgal biostimulants and biofertilisers in crop productions. J. Agron. 9, 192.
- 41. Su, M., Dell'Orto, M., D'Imporzano, G., Bani, A., Dumbrell, A.J., Adani, F., 2022.
- 556 The structure and diversity of microalgae-microbial consortia isolated from various
- local organic wastes. Bioresour. Technol. 347, 126416.
- 42. Suparmaniam, U., Lam, M.K., Uemura, Y., Lim, J.W., Lee, K.T., Shuit, S.H., 2019.
- 559 Insights into the microalgae cultivation technology and harvesting process for
- biofuel production: A review. Renew. Sustain. Energy Rev. 115, 109361.
- 43. Toyama, T., Hanaoka, T., Yamada, K., Suzuki, K., Tanaka, Y., Morikawa, M.,
- 562 Mori, K., 2019. Enhanced production of biomass and lipids by Euglena gracilis via
- 563 co-culturing with a microalga growth-promoting bacterium, Emticicia sp. EG3.
- 564 Biotechnol. Biofuels 12, 205.
- 44. Viana, A.T., Caetano, T., Covas, C., Santos, T., Mendo, S., 2018. Environmental
 superbugs: the case study of Pedobacter spp. Environ. Pollut. 241, 1048-55.
- 567 45. Villaró, S., Sánchez-Zurano, A., Ciardi, M., Alarcón, F. J., Clagnan, E., Adani, F.,
- 568 Morillas-España A., Álvarez, C., Lafarga, T., 2022. Production of microalgae using
- 569 pilot-scale thin-layer cascade photobioreactors: Effect of water type on biomass
- composition. Biomass Bioener. 163, 106534.
- 571 46. Wang, Y., Ho, S.H., Cheng, C.L., Guo, W.Q., Nagarajan, D., Ren, N.Q., Lee, D.J.,
- 572 Chang, J.S., 2016. Perspectives on the feasibility of using microalgae for industrial
- 573 wastewater treatment. Bioresour, Technol. 222, 485-497.

574	47.	Wang, Y., Wang, S., Sun, L., Sun, Z., Li, D., 2020. Screening of a Chlorella-
575		bacteria consortium and research on piggery wastewater purification. Algal Res. 47,
576		101840.
577	48.	Xie, B., Tang, X., Ng, H.Y., Deng, S., Shi, X., Song, W., Huang, S., Li, G., Liang,
578		H., 2020. Biological sulfamethoxazole degradation along with anaerobically
579		digested centrate treatment by immobilised microalgal-bacterial consortium:
580		Performance, mechanism and shifts in bacterial and microalgal communities. J.
581		Chem. Eng. 388, 124217.
582	49.	Zhou, Z., Li, Q., Song, K., Wang, R., Wen, S., Zhang, D., Cong, W., 2021.
583		Exploration of applying growth-promotion bacteria of Chlorella sorokiniana to
584		open cultivation systems. Bioprocess. Biosyst. Eng. 44(7), 1567-1576.
585	50.	Zittelli, G.C., Biondi, N., Rodolfi, L., Tredici, M.R., 2013. Photobioreactors for
586		mass production of microalgae. In: Richmond, A., Hu, Q., (Eds.). Handb.
587		Microalgal Cult. Appl. Phycol. Biotechnol, Second, Wiley-Blackwell, Oxford, UK,
588		pp. 225-266.

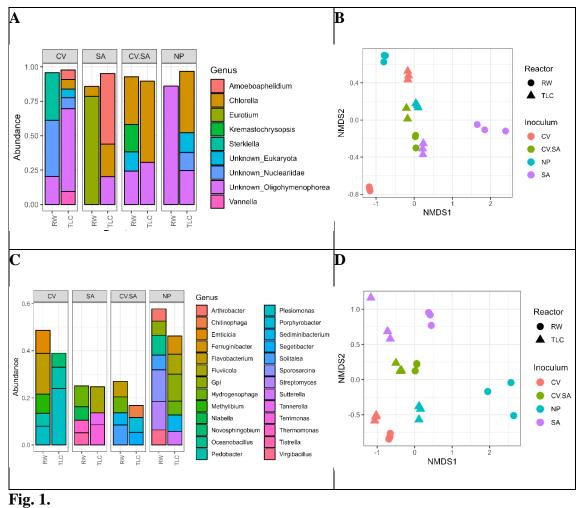
589 **Figure captions**

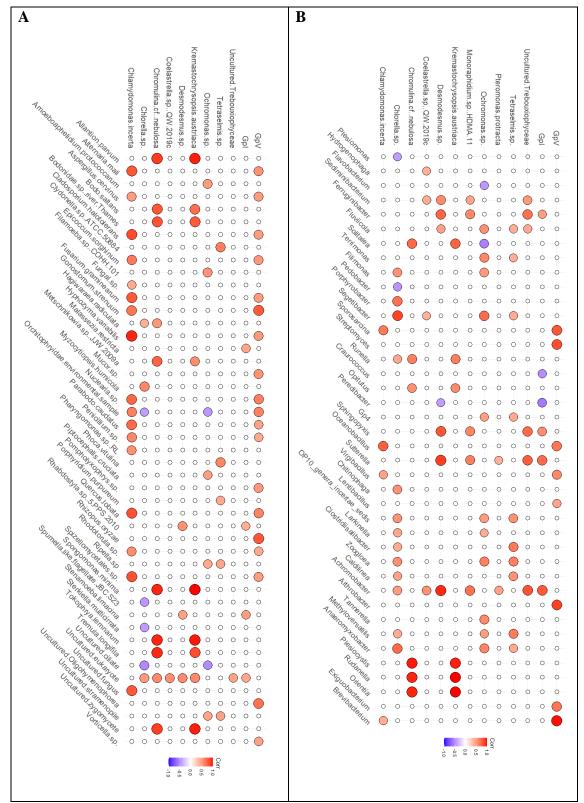
Fig. 1. Taxonomic composition at genus level of eukaryotic (A) and of bacterial (C)
abundances (cut-off >5%) in each photobioreactor configuration. Average values of
three replicates are shown for each bar. NMDS plot for the eukaryotic (B) and bacterial
(D) community.

594

	595	Fig. 2. Co-o	occurrence based	on Spearman	rank correlation	index of mic	roalgal genera
--	-----	--------------	------------------	-------------	------------------	--------------	----------------

against eukaryotic genera for the statistically significant interactions (p value < 0.05) (A)


and of microalgal genera against the most abundant (>2% in at least one sample)


prokaryotic genera for the statistically significant interactions (p value < 0.05) (B)

599

Fig. 3. Enzyme abundance profile inferred by iVikodak for the N metabolism.

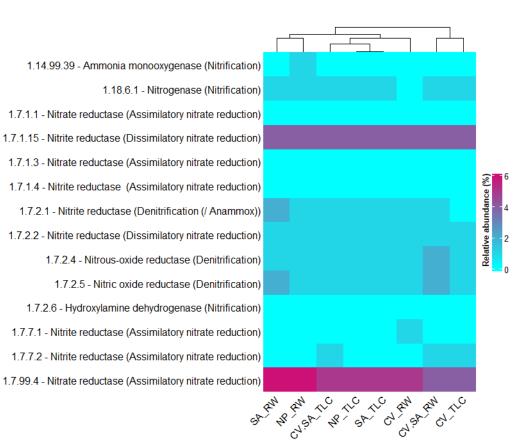


Fig. 2.

Fig. 3.