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A brief introductory review is provided of the theory of tilings of 3-periodic nets

and related periodic surfaces. Tilings have a transitivity [p q r s] indicating the

vertex, edge, face and tile transitivity. Proper, natural and minimal-transitivity

tilings of nets are described. Essential rings are used for finding the minimal-

transitivity tiling for a given net. Tiling theory is used to find all edge- and face-

transitive tilings (q = r = 1) and to find seven, one, one and 12 examples of tilings

with transitivity [1 1 1 1], [1 1 1 2], [2 1 1 1] and [2 1 1 2], respectively. These are

all minimal-transitivity tilings. This work identifies the 3-periodic surfaces

defined by the nets of the tiling and its dual and indicates how 3-periodic nets

arise from tilings of those surfaces.

1. Introduction

We are concerned with tilings of 3-periodic nets important in

crystal chemistry and the surfaces defined by the nets of dual

tilings. Periodic tilings of 3D Euclidean space play an impor-

tant part in developing the theory of nets (Delgado-Friedrichs

et al., 1999). It has been argued that edge-transitive nets –

those with only one type of edge (or bond) between vertices

(or atoms) – are the most important for the designed synthesis

of materials with targeted frameworks (Delgado-Friedrichs et

al., 2007).

Identifying tilings associated with periodic nets is particu-

larly useful for developing the systematics of zeolite frame-

works (Anurova et al., 2010, and references therein). Periodic

foams are particular kinds of tiling. In foams, the tiles

(bubbles) are simple polyhedra – all vertices are 3-coordi-

nated. In a foam, also called simple tiling, two tiles meet at

each face, three at each edge, and four at each vertex. The

theory of foams is relevant to many research areas, such as

biophysics and materials science (Prud’homme & Kahn, 1996;

Cantat et al., 2013).

Three-periodic surfaces are also important in chemistry,

biology, materials science and physics (Andersson et al., 1988;

Kresge & Roth, 2013; Han & Che, 2018, Al-Ketan & Abu Al-

Rub, 2019). Tilings of periodic surfaces also generate 3-peri-

odic nets systematically (Hyde et al., 2006). A significant

development was the recognition of new 3-periodic surfaces as

defined by a pair of interpenetrating nets (Schoen, 1970).

Fischer & Koch (1987, 1989) gave a comprehensive

enumeration of such balance surfaces (defined by an inter-

penetrating pair of identical nets). The nets (labyrinth graphs)

of balance surfaces have self-dual tilings; identifying these is a

major concern of this article.
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2. Nets, cycles and rings

Nets are considered to be periodic, simple (no loops or

multiple edges), connected, finite coordination graphs. In the

present context, we consider only graphs that have embed-

dings in 3D space with linear non-intersecting edges and

vertex coordination�3. Crystallographic and tiling data for all

the nets in this paper can be found in the Reticular Chemistry

Structure Resource (RCSR), available at http://rcsr.net/

(O’Keeffe et al., 2008). Embeddings of nets with linear, non-

intersecting edges are given symbols such as xyz or xyz-w. We

are particularly concerned with the cycles of nets – a cycle is a

set of edges that begin and end at the same vertex and where

each edge occurs only once. To specify vertex symbols, a ring is

defined as a cycle that is not the sum (defined below) of two

smaller cycles (O’Keeffe & Hyde, 1997; Blatov et al., 2010). A

strong ring has been defined as a cycle that is not the sum of

any smaller cycles (Goetzke & Klein, 1991).

The sum of two cycles is defined as the set of edges that only

occur once (edges common to the two cycles are deleted).

More generally, the sum of several cycles is the set of edges

that occur an odd number of times. The later discussion shows

that a face cycle on a cage is the sum of all the other face

cycles. In Fig. 1(a), we illustrate some sums in a cube that may

be considered a tile of the primitive cubic lattice net (pcu). The

blue 6-cycle (6 edges) is the sum of two 4-cycles, and hence is

not a ring. The red 6-cycle is different: it is not the sum of two

4-cycles but the sum of three 4-cycles, so it is a ring but not a

strong ring. The shortest cycle is necessarily a strong ring. Still,

it is worth noting that in a periodic structure with infinitely

many cycles, the shortest ring can always be expressed as the

sum of two larger rings. For example, isolating the cube as a

fragment of the net of the pcu net, the black 4-cycle in Fig. 1(a)

is the sum of the red and blue 6-cycles.

The genus of a periodic net is the number of holes in the net

in a repeat unit. The genus of a net is defined as the cyclomatic

number of a repeat unit (quotient graph) of the net. The

cyclomatic number of a finite graph is 1þ e� v, where v is the

number of vertices and e is the number of edges. It is the

minimum number of cycles needed to obtain all the cycles in

the graph by cycle sums. A spanning tree of a graph is a

subgraph without cycles that includes all vertices. The black

lines in Fig. 1(b) delineate a spanning tree of the cube graph.

Five edges need to be added to complete the graph; thus, the

cyclomatic number of the cube is 1þ 12� 8 ¼ 5. This is the

genus of the surface defined by the cube graph – Fig. 1(c). To

see that the number of independent holes in the surface is five,

in the topological sense, imagine starting with a complete

cube. Drill a hole from one face to an opposite face – that is

one hole. Now drill through a second, orthogonal, pair of

opposite faces, intersecting the first hole; that generates an

additional two disconnected holes. Finally, drill through the

third pair of opposing faces, intersecting the previous two

drillings; that, too, creates two more holes for a total of five. In

general, the genus of a polyhedron graph is one less than the

number of faces.

Taking any five of the six 4-rings of the cube as a basis (there

are six combinations possible), all cycles can be obtained as

sums of one or more of the chosen basis. The total number of

cycles is obtained as follows. Each 4-ring in these sets of five

can either be included or omitted, giving 25 ¼ 32 cases. Four

cases do not produce a new cycle: there is one case where all

rings are omitted; three combinations correspond to pairs of

disjoint 4-cycles (opposite faces). This leaves a total of 28 valid

cycles.

The cyclomatic number is used in naming cyclic molecules:

thus, cubane, the hydrocarbon C8H8 with the cube graph, has

the formal name pentacyclooctane.

Relevant to later discussion is that the genus of a non-

intersecting periodic surface is the same as the genus of its

labyrinth graphs. It is the number of holes in the surface in the

basic repeat unit of the surface.

3. Tiles in two and three dimensions

In graph theory, a graph is k-connected if at least k vertices

have to be deleted to decompose the graph into disjoint parts.

(To clarify, it is worth reminding the reader that the terms

connected and coordinated describe different graph proper-

ties.) A cage with 2-valent (2-coordinated) vertices is 2-

connected, as a 2-valent vertex can be separated by deleting its

two neighbors. A famous result (Steinitz’s theorem) is that a

finite planar 3-connected graph is the 1-skeleton of a poly-

hedron sensu stricto (which has an embedding with planar

convex faces). An extension to planar 3-connected 2-periodic

graphs says that they have embeddings with convex tiles
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Figure 1
(a) Cycles and sums in a cube: the blue cycle is the sum of two 4-cycles
(the top and front squares), so is not a ring. The red cycle is the sum of
three 4-cycles (the top, front and left squares; or, equivalently, the
bottom, back and right squares), so is a ring, but not a strong ring. The
sum of the two 6-cyles is the black 4-cycle. (b) A spanning tree (black) on
the cube graph. (c) The cube graph as a surface. (d) Cycles in the body-
centered cubic net bcu: the black 4-cycle is the sum of the red and blue 4-
cycles. All 4-cycles in bcu are strong rings.
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(Delgado-Friedrichs, 2005), and 2-valent vertices are generally

not allowed in 2D tilings. However, an important development

in the theory of 3-periodic tilings was to allow tiles to be cages,

generalized polyhedra with 2-valent vertices (Delgado-Frie-

drichs et al., 1999; Delgado-Friedrichs & Huson, 2000).1 Fig. 2

shows some simple examples of space-filling cages, the tilings

of the quartz net (qtz) and cds nets, and a drawing of the graph

of these tiles on a sphere. It should be clear that a face of a tile

cannot be catenated to other rings or be knotted. The face

symbol of a cage ½pm:qn . . .� indicates that there are m faces

with p edges, n faces with q edges etc. The qtz and cds tiles are

½62:82�.

4. Tilings of nets and periodic surfaces

In a systematic description of the tilings of high-symmetry

nets, Delgado-Friedrichs & O’Keeffe (2003) argued that

tilings should be composed of strong rings but not all of the

strong rings could be included. Thus, in the tiling of the net

bcu, of the body-centered cubic lattice, only one of the two

different strong rings could be used to construct a full-

symmetry (Im�33m) tiling. In Fig. 1(d), we show a group of edges

defining a tile of bcu. The faces are non-planar 4-cycles (4A).

As shown in the figure, the sum of two of these (red and blue)

produces a planar 4-ring (4B black). The tile is [4A4] and the

4B cycles (strong rings) are not essential (not necessary to

forming a tiling). One can construct a tiling of bcu with tiles

[4B.4A2] if the symmetry is lowered to C2=m.
In the Dress–Delgado–Huson description of tilings

(Delgado-Friedrichs et al., 1999), the tiling is described by an

extended Schläfli symbol, which we call a D-symbol. Each tile

is divided into tetrahedral chambers, each with four vertices:

one at the center of the tile, one at a tile vertex, one at a tile

edge center, and one at a tile face center. The complexity of

the tiling (also known as the flag transitivity) is just the

chamber transitivity (the number of different types of cham-

bers). Its importance is that, in enumerations of possible tiles

of a particular sort, e.g., face-transitive, one proceeds from

complexity 1 up to a certain maximum. There is only one 3-

periodic tiling of Euclidean space with flag transitivity 1

(regular to mathematicians) – the tiling by cubes. Coxeter

(1973) refers to this lack of riches, compared with tilings of the

plane or the sphere or in higher dimensions, as an ‘unfortunate

accident’. However, we find richness in tilings of greater

complexity, as illustrated herein. It should be stated that the

tilings we describe are always face-to-face – that is, all the

edges of shared faces are common to both faces.

A tiling has transitivity defined by four integers ½p q r s�
(Delgado-Friedrichs & Huson, 2000). This indicates that there

are p kinds (i.e. related by symmetry) of vertices, q kinds of

edges, r kinds of faces and s kinds of tiles.

A tiling has a dual tiling constructed as follows. A new

vertex is placed inside every tile of the original, and these are

connected to the new vertices in neighboring tiles by an edge

that passes through the common face. The faces of the new

tiling have separate vertices from the original vertices and

have an edge from the original tiling passing through. The

symmetry and complexities of a tiling and its dual are the

same. The dual of a tiling with transitivity ½p q r s� has transi-
tivity ½s r q p�.

There are two ways to associate a surface with a net. Many

nets of interest in crystal chemistry can be considered tilings of

a surface (Hyde et al., 2006). In a recent paper (Smolkov et al.,

2022), this approach was applied to zeolite nets. Thus, the net

sod (zeolite framework type SOD) was shown to be a [64]

tiling of the P minimal surface (see Fig. 3). However, a

different approach is to consider a net as a surface – think of

the edges as thin inflatable tubes. When two nets of dual tilings

interpenetrate, the edge tubes can be inflated uniformly until
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Figure 2
Top row ½62:82� tiles: (a) for cds, (b) for qtz. (c) The ½62:82� cage, as for qtz,
drawn with vertices and edges, and (d) embedded on the surface of a
sphere. The bottom panel (e) presents a selection of space-filling tiles of
some basic tiling-transitive nets.

Figure 3
Left: the sod framework represented as a ½64� tiling of the P minimal
surface. Center: the sod-t tiling of the sod surface. Right: another tiling of
the sod surface.

1 It might be noted that tilings by ‘saddle polyhedra’, such as the tiling of the
diamond net by adamantane cages, were clearly shown earlier (Pearce, 1980,
Fig. 90).
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all tube surfaces are in complete contact, deformed from the

initial tubular profile, with no empty spaces between them. If

the two nets are the same (related by symmetry), the surface is

a balance surface (Fischer & Koch, 1987).

A procedure for visualizing a tiling of that resulting surface,

the -t net, found from chambers of the tiling of the net, has

been described (de Campo et al., 2013). Thus, all the chambers’

edges and vertices define a periodic graph formed by face-

sharing tetrahedra. The -t tilings are the dual of the tiling by

those tetrahedra, so they are simple tilings (tilings by poly-

hedra in which four meet at a vertex, three at an edge and two

at a face). Hence, they are good sources of potential zeolite

structures (Delgado-Friedrichs et al., 2020). In Fig. 3, we show

the sod-t net, a tiling of the sod surface. A notable example of

a zeolite-like framework which is a tiling of the sod surface is

afforded by the zeolitic imidazolate frameworks (ZIFs) with

the ucb net (Yang et al., 2017), also shown in Fig. 3.

Perhaps the most important 3-periodic surface of all is the

gyroid, or G surface, first described by Schoen (1970) and

relevant to chemistry, materials science (liquid crystals etc.)

and biology (e.g. bone structure) (Hyde et al., 2008). This is the

balance surface separating two srs nets. The srs net is the only

3-coordinated net that is vertex- and edge-transitive and has

the minimal genus (3) for a 3-periodic net. Fig. 4 shows frag-

ments of the srs net and the corresponding -t tiling. The tiling

has two kinds of tile (a tile-transitivity of 2): a vertex tile

surrounding a vertex of the parent net and a collar tile linking

two vertex tiles through which an edge of the parent net

passes. The collar tile is topologically a prism – in this case,

½420:202�. Every vertex of the -t tiling is on the G surface.

The same surface can be associated with more than one net.

We illustrate this with the (3,4)-coordinated net tfc, with

symmetry Cmmm. As discussed by de Campo et al. (2013), the

surface associated with this net is the P surface separating two

primitive cubic (pcu) nets. For tfc, we show in Fig. 5 first the

tiling with full symmetry; this has just one kind of tile ½86�. The
dual tiling is a lower-symmetry tiling of the pcu net (symmetry

Pm�33m) with the cubes split into three parts, as shown in the

figure. The tfc-t tiling contains two vertex and two collar tiles,

as shown in Fig. 5(b). But, as also shown in the figure, three

vertex tiles and two collar tiles can be merged into one vertex

tile that can, in turn, be linked by six collars to form a slightly

distorted version of the P surface, although the symmetry of

the embedding remains Cmmm.

We say that a tiling carries a net as the 1-skeleton (vertices

and edges), which is unambiguous. Modern tiling theory can

systematically enumerate tilings. However, the converse

problem of finding a tiling that carries a given net, is not

straightforward. If a net admits a tiling, there can be infinitely

many. This problem was addressed by Blatov et al. (2007), who

pointed out that a proper tiling should have the symmetry of
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Figure 4
The srs and srs-t nets. Left: a fragment of the srs net. Center: one tile of
the srs tiling. Right: the corresponding -t tiling. Vertex tiles are yellow and
green, collar tiles blue.

Figure 5
(a) The tfc net, its tiling and dual tiling. (b) Part of the tfc-t tiling; vertex
tiles are yellow and orange, and collar tiles are red and green. (c) The pcu
net and its -t tiling (sod) and the tfc-t tiling illustrating the P surface.

Figure 6
Tilings of the svn net. The four-digit numbers are the vertex–edge–face–
tile transitivity, ½p q r s�.
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the net. For many of the nets of greatest interest in crystal

chemistry, this tiling is unique but by no means for all. The

problem arises because, although the vertices and edges of a

net are uniquely defined, there may be many choices of cycles

of the net that can form the faces of tiles, and hence alternative

proper tilings are possible. It was argued that the faces should

be strong rings (Blatov et al., 2007). A natural tiling was

defined as comprising the smallest tiles (with the fewest

vertices) obeying that constraint. For many of the nets

encountered in crystal chemistry, this provides a unique tiling,

and a procedure was described for treating the exceptions.

To illustrate the possible kinds of proper tiling, we examine

the 7-coordinated net svn with symmetry Pa�33. The net has two
strong 4-rings, 4A and 4B, and a 6-ring that can be used to

construct a proper tiling. In Fig. 6, we show that there are four

possible proper tilings, including a self-dual (two tiles), a

natural (two tiles), and one with minimum transitivity (one

tile).

In this article, we introduce a modified version of the proper

tiling by establishing the idea of an essential ring so that a

unique minimal-transitivity tiling can be

identified. To recall, a proper tiling is

one that has the same symmetry as the

net it carries. A natural tiling (a) is

proper, (b) all faces are strong rings, (c)

has the smallest possible tiles subject to

conditions (a) and (b). A minimal-

transitivity tiling again (a) is proper, (b)

has faces that are strong rings, but now

(c) has the minimal number of rings to

make a tile. As shown by Blatov et al.

(2007), for some larger-transitivity nets,

there can be more than one possible

natural tiling, and additional conditions

have to be applied to get a unique tiling.

The same problem arises with minimal-

transitivity tilings. However, the nets we

consider have a unique minimal-transi-

tivity tiling, and we argue below that

different tilings of the same net may be

appropriate for different purposes.

We extend the concept of an essential

ring by stating that if a tile has exactly

one face that is different from all the

others, that face ring is not essential and can be removed from

the tiling by merging tiles. This means that sometimes proper

tiles must be merged to create a minimal-transitivity tiling. For

example, the net ctn has two strong 8-rings, 8A and 8B, and the

proper tiling includes the tile [8A.8B2], as shown in Fig. 7.

However, as depicted in the figure, these can be merged into

one tile [8B4]. As another example, the net lcy has strong 3-

and 5-rings, but the 3-rings are the sum of three 5-rings, and, as

shown in Fig. 7, two [3.53] tiles can be merged into one [56] tile.

A more striking example (Fig. 8) is afforded by the net cys,

which has strong 4-rings and 10-rings. The proper tiling

contains tiles [43], [103] and [4.102]. Using just essential rings,

one [43] and three [4.102] tiles can be merged into one [106]

tile.

Sometimes, tilings of large-transitivity nets have proper

tilings with tiles that have two or more faces that are each

different from all the other faces of the tiles, and one or more

of these two is essential to avoid infinite tiles, or even to

construct a tiling. A complicated example is provided by the

tilings of the net of the zeolite BEA. A natural tiling has

transitivity [9 18 15 8] and 12 of the 18 different rings occur just

196 Olaf Delgado-Friedrichs et al. � Three-periodic nets, tilings and surfaces Acta Cryst. (2023). A79, 192–202
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Figure 7
Illustration of the elimination of non-essential strong rings in two
minimum-transitivity tilings.

Figure 8
Left: the proper tiling of the net cys. Center: the six ½103� tiles (blue)
combine to produce a single ½106� tile (yellow). Right: the 1-skeleton of
the ½106� tile contains a ½43� cage of non-essential rings. Red and green
vertices are 4- and 6-coordinated in the net.

Table 1
Edge- and-face-transitive tilings and associated surfaces.

‘Trans.’ is transitivity and ‘coord.’ is coordination. A * after a net symbol indicates that the tiling is not a
natural tiling, ‡ indicates that the tiling is not proper. For self-dual tilings, the symmetry is first the
symmetry of the tiling and then the symmetry of the balance surface. For surfaces, see Fischer & Koch
(1989) and Schoen (1970). For genera, see Koch & Fischer (1993).

Trans. Net Symmetry Coord. Dual Tiles Genus Surface

[1 1 1 1] srs I4132–Ia�33d 3 Self [103] 3 Y** = G
[1 1 1 1] dia Fd�33m–Pn�33m 4 Self [64] 3 D
[1 1 1 1] pcu Pm�33m–Im�33m 6 Self [46] 3 P
[1 1 1 1] nbo Im�33m 4 bcu [68] 4 I-WP
[1 1 1 1] bcu Im�33m 8 nbo [44] 4 I-WP
[1 1 1 1] lcy* P4132–I4132 6 Self [56] 9 Y
[1 1 1 1] fcu‡ Pa�33–Ia�33 12 Self [312] 21 F
[1 1 1 2] fcu h 12 flu 2[34] + [38] 6 F-RD
[2 1 1 1] flu Fm�33m 4 + 8 fcu [412] 6 F-RD
[2 1 1 2] ctn* I �443d–Ia�33d 3 + 4 Self 4[83] + 3[84] 11 S
[2 1 1 2] pyr Pa�33–Ia�33 3 + 6 Self 2[63] + [66] 13 C(�Y)
[2 1 1 2] cys* P4132–Ia�33 3 + 6 Self 2[103] + [106] 13 C(Y)
[2 1 1 2] pth* P6222–P6422

c0 = c/2
4 + 4 Self [44] + [44] 7 –

[2 1 1 2] ftw Pm�33m–Im�33m 4 + 12 Self 3[44] + [412] 9 C(P) Neovius
[2 1 1 2] mgc* Fd�33m–Pn�33m 6 + 12 Self 2[46] + [412] 19 C(D)
[2 1 1 2] twf* Im�33m 4 + 24 ocu 4[46] + 3[48] 18 –
[2 1 1 2] ocu* Im�33m 6 + 8 twf 6[44] + [424] 18 –
[2 1 1 2] ibd* Ia�33d 4 + 6 iac 3[64] + 2[66] 29 –
[2 1 1 2] iac* Ia�33d 4 + 6 ibd 3[64] + 2[66] 29 –
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once in a tile, and one tile has seven faces with all different

rings. Clearly, not all of these rings can be eliminated to make

a minimal-transitivity tiling. But we emphasize the reason for

examining tilings of such high-transitivity nets is to identify the

structure-building units, rather than to clarify the taxonomy of

symmetrical nets, tilings and surfaces.

5. Minimal-transitivity tilings of vertex-1- and -2-
transitive nets and associated surfaces

We have re-examined the earlier list of face-transitive tilings

used to generate edge-transitive nets by dualization (Delgado-

Friedrichs et al., 2007). This contained all tilings up to a

complexity of 32 (recall, ‘complexity’ is the number of distinct

tetrahedral chambers into which the tile can be subdivided).

We retrieved tilings that were proper and which did not have

intersecting or collinear edges. We focused on edge-transitive

structures, more specifically, vertex-transitive nets with tiling

transitivity [1 1 1 1] and [1 1 1 2], and those with vertex-2-

transitive tilings, [2 1 1 1] and [2 1 1 2]. These are, in a sense,

the most regular (smallest transitivity). The results are listed in

Table 1. Also listed is the associated periodic surface. For

structures with transitivity [1 1 1 1], [1 1 1 2] and [2 1 1 1], there

are two additional nets to those recognized in the earlier study

(Friedrichs et al., 2003). One addition is lcy, a minimal-tran-

sitivity tiling described above that defines the periodic surface

Y. The second addition is a non-proper tiling (symmetry Pa�33
instead of Fm�33m) of the net of the face-centered cubic lattice,

fcu. This tiling is long recognized as one of seven face-tran-

sitive tilings by polyhedra (Dress et al., 1993). For the record,

the other six are bcu-x (tetrahedron*), reo-d (octahedron*),

fcu (tetrahedron + octahedron), pcu (cube), crs-d (cube*) and

flu (rhombic dodecahedron). Here, the asterisk indicates that

the polyhedron is not in its maximum symmetry. We discuss

the surface associated with the Pa�33 tiling of fcu below.

Of the ten tilings with transitivity [2 1 1 2], only two were

also natural tilings; for the rest, some rings of the natural tiling

were not essential to forming a tiling. Particularly pleasing was

the recognition of the tiling of the cys net (Fig. 8). This net was

reported as the labyrinth graph of the C(Y) surface (Fischer &

Koch, 1987). The cys net was not recognized earlier (Delgado-

Friedrichs et al., 2007) because it has non-crystallographic

symmetries – that is, there are pairs of vertices (green in the

figure) that have the same neighbors, so interchanging a pair is

an automorphism of the graph but is not a rigid-body

symmetry. However, the tiling and associated surface have

crystallographic symmetry.

It should be recorded that we have omitted one of the

[1 1 1 1] tilings from our list. This is a proper tiling, [512], of the

12-c net, lcz. This net has strong 3- and 4-rings. These cannot

be used to construct a tiling, but a tiling can be built from 5-

rings (which are not strong rings) in the tiles shown in Fig. 9.

The dual structure has coincident edges, and a tiling for the

dual cannot be constructed.

The tiling of the net pth (Fig. 10) is of interest because the

pair of nets, and the associated surface, are the only ones with

non-cubic maximum symmetry on our list. The tiles have small

dihedral angles, but the -t tiling shows a pleasing surface that

we have not seen identified before. The pth-t tiling has high

transitivity [20 32 23 3], so is not, perhaps, a target for

synthesis.

The self-dual tiling of fcu with symmetry Pa�33 is of interest

because the labyrinth graphs (fcu) cannot be drawn with

straight non-intersecting edges (Bonneau & O’Keeffe, 2015a).

However, a well defined balance surface separates the two

nets; this is illustrated as a -t tiling in Fig. 11. The minimal-

transitivity tiling of svn (Fig. 6) has as a dual the ½312� tiling of
fcu shown in the figure. The -t tiling of this structure is a tiling

of the same surface. The tiling is complex (complexity 384)

with two vertex and three collar tiles. One vertex tile and

associated collar tiles give the same pattern as in the -t tiling of

the self-dual pcu; the second set of vertex tiles are linked in

pairs by a collar tile, as shown in the figure, to make a

combined tile attached to 12 collar rings. The labyrinth graphs

of the two halves are fcu and svn. We note that the svn net is

derived from fcu by splitting a 12-coordinated vertex into two

linked 7-coordinated vertices; accordingly, the genus is

unchanged with 1 extra edge and 1 extra vertex.
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Figure 9
The ½512� tile of the lcz net.

Figure 10
Top: the net pth and its symmetric interpenetrating pair. Bottom left: the
tiles of the pth. Bottom right: the tiling pth-t illustrating the balance
surface. The vertex tiles are green ½416:162� and blue ½426:64:164�, the collar
tile is red ½428:82:164�.
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6. Additional low-transitivity tilings

6.1. Genus-3 and -4 structures cds, hms and qtz

Surfaces of low genus are particularly interesting for the

nets carried by tilings of the surface (Hyde et al., 2006). These

authors describe the method for systematically enumerating

tilings of the genus-3 surfaces P, D and G with tilings of

transitivity [1 1 1 1]. It is known (de Campo et al., 2013) that

there are just two more genus-3 3-periodic surfaces. They were

named CLP and H by Schoen (1970). The nets are cds and

hms. Data for the associated tilings are in Table 2.

The RCSR database lists 41 nets of genus 4. Of these, bcu

and nbo are the only pair with mutually dual tilings. They are

listed in Table 1. The only other edge-transitive net of genus 4

is qtz (the net of quartz). The qtz net has a unique proper tiling

with transitivity [1 1 2 1]. The dual tiling carries the net qzd.

The associated periodic surface has been described by

Markande et al. (2018), who gave a full description of the non-

balance surface defined by the qtz–qzd pair. However, two

quartz nets of the same handedness related by translation

(qtz-c in the RCSR) are well known and are frequently found

in crystal structures, so it is interesting to ask if a non-inter-

secting balance surface occurs. To this

end, an embedding of the qtz net with a

doubled c axis and symmetry P6122 was

examined. Five distinct tilings were

found: three were improper duals of

proper tilings, and one was the qtz–qtz

pair, but there was also a self-dual tiling

with transitivity [1 2 2 1]. The surface

associated with this latter surface was

examined by way of the -t tiling, which

has symmetry P6222 and transitivity

[19 28 22 3]. Two tiles are prismatic

collar tiles [412.122] and [416.162]. The

structure is illustrated in Fig. 12 as a tiling and also as the net

of the tiling in an equal-edge, minimal-density embedding

drawn as a surface. The qtz labyrinth nets can be discerned,

and the surface is a balance surface. This is, of course, just a

‘balance’ embedding of the same surface as that defined by the

qtz–qzd pair.

6.2. Foams (simple tilings)

The physical chemistry of foams (simple tilings) has been

investigated for many years (e.g. Weaire & Hutzler, 1999;

Cantat et al., 2013). Here, we focus on the geometrical aspects

of periodic foams.

Tilings by tetrahedra were systematically enumerated by

Delgado-Friedrichs & Huson (2000), who found precisely nine

with one kind of tile (isohedral). The dual tilings are simple

tilings by polyhedra (foams). Interestingly, seven of the nine

are also zeolite framework structures: CHA, FAU, KFI, LTA,

RHO, SOD and RLY (sod-a) (the upper-case, bold, three-

letter terminology is that of the Structure Commission of the

International Zeolite Association. The three letters match the

lower-case nomenclature used in the RCSR database). Of the

tetrahedral tilings, just one was also vertex-transitive. The net

is the 14-coordinated net of first- and second-nearest neigh-

bors of the body-centered cubic lattice bcu-x. The dual tiling

has the sod net and is the unique vertex-transitive foam with

one kind of bubble (isohedral). The associated surface is

illustrated in Fig. 3. Data for these two are collected in Table 2.
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Figure 11
(a) Two tilings of fcu; yellow and green are octahedra and tetrahedra,
respectively. (b) Top: a vertex tile (green) and 12 collar tiles (purple).
Bottom: 12 more vertex tiles added to the top group. (c) Top: the dual of
the ½512� tiling of svn (Fig. 5). Bottom: the corresponding -t tiling showing
how two vertex tiles (yellow and green) merge with a red collar net to
form one tile linked with 12 blue collar tiles.

Table 2
Additional tilings as discussed in the text.

‡ indicates it is not a proper tiling.

Trans. Net Symmetry Coord. Dual Tiles Genus Surface

[1 1 2 1] sod Im�33m 4 bcu-x [46.68] 7 –
[1 2 1 1] buc-x Im�33m 14 sod [34] 7 –
[1 1 2 1] qtz P6222 4 qzd [62.82] 4 Q
[1 2 1 1] qzd P6222 4 qtz [74] 4 Q
[1 2 2 1] cds P42=mcm–P42=mcm

a0 ¼ a=
ffiffiffi

2
p 4 Self [62.82] 3 CLP

[1 2 2 1] qtz‡ P6122 4 Self [62.82] + [62.82] 7 Q
[2 2 2 2] hms P�66m2–P63=mmc 3 + 5 Self [63] + [65] 3 H

Figure 12
Aspects of the qtz balance surface. (a) The -t tiling of the self-dual qtz
tiling. Vertex tile red, collar tiles yellow and green. (b) One vertex tile and
four collar tiles. (c) The same with the labyrinth graph (blue). (d) The
dual qtz nets.
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In isohedral simple tilings, tiles must have at least 14 faces.

There are 23, 176 and 710 distinct isohedral tilings, respec-

tively, by tiles with 14, 15 and 16 faces. The sod tiling is the

unique vertex-transitive isohedral simple tiling. There are 11

vertex-2-transitive isohedral simple tilings (Delgado-Frie-

drichs et al., 2005).

Tilings by regular polyhedra are called uniform tilings.

There are 28 of them (Grünbaum, 1994). Of these, four are

simple tilings, and three are the tilings of zeolite frameworks

(SOD, LTA and RHO).

Simple tilings are relevant to the description of intermetallic

structures. Many such structures are space fillings by tetra-

hedra – sometimes called ‘topologically close-packed’. The

dual structures are then simple tilings. Many examples are

given by Bonneau & O’Keeffe (2015b), who provide refer-

ences to the large body of relevant earlier work. The reason

for looking at the dual tiling is that each tile ‘belongs’ to one

kind of atom, and its coordination can be seen readily. Three

simple examples are given in Fig. 13. The first, sod, is the

extended body-centered cubic structure of many metals,

notably iron.

The second example, mep, is the dual of the Cr3Si structure.

The Cr polyhedron [512.62] shares blue and green faces (it is

‘bonded’ to other Cr polyhedra) and yellow faces with Si

polyhedra [512]. The third example is mtn, the dual of the

Mg2Cu structure. The Mg polyhedron [512.64] shares blue faces

with other Mg polyhedra and yellow faces with the Cu [512]

polyhedra, and the Cu polyhedra share red faces with other

Cu polyhedra. Accordingly, it can be seen that the coordina-

tions are Mg(Mg4Cu12) and Cu(Mg6Cu6). We remark that the

MgCu2 structure type is chemistry’s most populated binary

structure type. The mtn and mep structures occur in many

contexts and are known as the type-I and type-II clathrate

structures.

7. Tilings of periodic surfaces

We have already given many examples of tilings of periodic

surfaces (Figs. 3, 4, 5, 9, 10, 11, 13) and noted their importance

in systematically generating 3-periodic nets (Hyde et al., 2006).

Here, we focus on the surface-tiling aspect, but they can be

considered infinite polyhedra (Wells, 1977).

We treat first the case of p3 tilings in which three p-gons

meet at each vertex, a subject treated in detail by Hyde &

Pedersen (2021). It is worth noting at this juncture that pn is a

vertex symbol, not to be confused with the cage symbol, ½pn�,
that we used earlier. A cube has vertex symbol 43 (three 4-

rings at each vertex), but cage symbol ½46� (a cage bounded by

six 4-ring faces). The Euler expression for tiling a 2D surface

of genus g with v vertices, e edges, and f faces (tiles) is

v� eþ f ¼ 2� 2g ¼ �; ð1Þ

where � is the Euler characteristic. For a p3 tiling with n tiles

per repeat unit, v ¼ np=3 (three p-gons at each vertex, n

p-gons per repeat), e ¼ np=2 (e ¼ 3v=2, as every vertex

generates three shared edges) and thus � ¼ nð1� p=6Þ. For
p< 6 and � ¼ 2 (tilings of the sphere, genus 0), the possibi-

lities are p ¼ 3, n ¼ 4 (tetrahedron), p ¼ 4, n ¼ 6 (cube) and

p ¼ 5, n ¼ 12 (dodecahedron).

For p ¼ 6, we get � ¼ 0, resulting in 63 tilings of a surface of

genus 1. For a tiling of the plane, this is the familiar honey-

comb pattern, net hcb. However, for a tiling of the cylinder,

also genus 1, there are infinitely many tilings, familiar as the

structures of carbon nanotubes. These are all vertex-transitive

graphs, even though the nets can lack a translational peri-

odicity (O’Keeffe & Treacy, 2022).

p3 tilings of surfaces of negative � (g> 1) have been treated

in detail by Hyde & Pedersen (2021). Now, for a given p, there

may be infinitely many topologically distinct tilings with

graphs that are no longer vertex-transitive. We offer a

research papers

Acta Cryst. (2023). A79, 192–202 Olaf Delgado-Friedrichs et al. � Three-periodic nets, tilings and surfaces 199

Figure 14
Three different ½73� tilings of the P surface. kgk is composed of equal parts
of kgl and kgn, colored yellow and green.

Figure 15
Top row: examples of vertex-transitive tilings of the I-WP surface, with
vertex symbols. Considered as surface tilings, fcp is self-dual, and xii and
bva are mutually dual. Bottom row: regular infinite polyhedra with planar
faces.

Figure 13
Examples of simple periodic foams.
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straightforward example (Hyde & O’Keeffe, 2017) that clari-

fies that there are infinitely many topologically distinct 73

tilings. In Fig. 14, we show two distinct 73 tilings (kgl and kgn)

of the P surface. Equal-size segments of these two tilings can

be linked periodically or randomly into different topologies at

will. One example, kgk, of an ordered intergrowth, is shown

with the different segments colored yellow and green. None of

these tilings is vertex-transitive.

Examples of vertex-transitive tilings of the I-WP surface are

shown in Fig. 15. The 55 tiling fcp (symmetry P�443n) is of

interest as a vertex-transitive self-dual tiling. It joins 33

(tetrahedron, tet) and 44 (square lattice, sql), which are tilings

of genus-0 and -1 surfaces, respectively. Note that, as surface

tilings (infinite polyhedra), we do not count rings that are not

on the surface [collar rings (Hyde et al., 2006)], and these three

tilings are also face-transitive. Thus, the transitivity as a peri-

odic tiling, [1 3 4 3], becomes [1 3 1] for a surface tiling.

Also shown in Fig. 15 is a 312 tiling, xii (symmetry Im�33m). As

a 3-periodic tiling, the transitivity is [1 2 3 3], but as a surface

tiling (infinite polyhedron), the transitivity is [1 2 1]. Also

shown is bva, the dual surface tiling 123, which also has tran-

sitivity [1 2 1].

In tilings of a surface, the chambers become triangles

(‘flags’). It is straightforward to show (O’Keeffe, 2008) that the

only tilings with transitivity [1 1 1] are 46, 64 and 66 tilings of

the P, D and G surfaces. Those of P and D are also flag-

transitive. Three of these nine have planar faces and are illu-

strated in Fig. 15. The 46 and 64 tilings are dual surface tilings,

and the 66 surface tilings are self-dual.

8. Methods

We did systematic enumerations of D-symbol tilings.

Computing D-symbols is straightforward in principle but

suffers from a combinatorial explosion. In practice, the

enumeration method must be tailored to the problem. Here,

we follow the method for enumerating face-transitive tilings of

3D space described by Dress et al. (1993), but we allow tile

vertices of coordination 2, whereas they require the coordi-

nation to be at least 3. Consequently, a rigorous upper bound

on the size of D-symbols that can occur is no longer available

to us. Instead, we enumerate up to an arbitrary size that we

hope is large enough to cover all relevant solutions.

Dress et al. (1993) also refer to the non-trivial problem of

determining whether a candidate D-symbol does correspond

to a tiling of 3-periodic Euclidean space, which they solve with

a combination of automated tests and case-by-case inspection.

We use an extended series of computerized tests described by

Delgado-Friedrichs (2005) that significantly reduces the

number of cases requiring human intervention.

The program 3dt can illustrate tilings and their duals and

export tiling and net data. The symmetry, identity and optimal

embeddings of nets are determined by the program Systre.

Tilings of nets can be determined as coordinates of faces from

Systre input to the program ToposPro.

ToposPro (Blatov et al., 2014) is available at https://

topospro.com/. Systre (Delgado-Friedrichs & O’Keeffe, 2003)

and 3dt are available at http://gavrog.org/. 3dt input files for

many of the nets in the RCSR and for zeolite nets are avail-

able at the RCSR website under the Systre link. ToposPro can

also generate 3dt input files.

9. Concluding remarks

Here we briefly discuss some peripheral, but relevant, topics.

9.1. Which nets admit tilings? Tessellate and decussate nets

It is essential to recognize that only some nets admit tilings.

For example, Delgado-Friedrichs & O’Keeffe (2007) found 61

edge-transitive nets in a search of tilings, but the RCSR

contains 85. Accordingly, it is natural to ask, ‘What factors

determine whether an embedding of a net admits a tiling?’. It

should be clear that cycles that contain knots or are linked

with other cycles cannot serve as the faces of a tile. However,

the presence of linked strong rings does not preclude the

admission of a tiling.
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Figure 16
(a) The mok net, symmetry Cccm. (b) A layer normal to the
crystallographic [010] direction in the mok net shows two interpene-
trating hcb nets. (c) Tiling of themok net. (d) [62.102] and (e) [82.102] tiles.
This structure admits a proper tiling, despite the catenation of 6-rings in
the hcb layers.

Figure 17
The net okt. Left: showing all vertices in a unit cell and their neighbors.
Right: two 10-rings catenated in a 4-crossing (Solomon) link.
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An example is the net mok, introduced originally as an

example of a self-entangled net (‘link net’; O’Keeffe, 1991).

This net, symmetry Cccm, has catenated interpenetrating

honeycomb (hcb) layers normal to b, so the hcb 6-rings are all

catenated. However, there remain non-catenated 6-, 8- and 10-

rings which serve as the tile faces, as shown in Fig. 16.

As an example of a net that does not admit a tiling, we

adduce okt, a 4-coordinated vertex- and edge-transitive net

(Fig. 17) not found in the enumeration of tilings. This net

contains 10-, 11-, 12-, 14- and 15-rings, but all these are cate-

nated. We propose the terms tessellate for embeddings of nets

with a tiling, and decussate for embeddings of nets for which all

embeddings have essential crossings (knots and links) that

preclude the construction of a tiling. A given net can have

many topologically distinct embeddings. An open problem is

whether more than one of these distinct embeddings admits a

tiling. We conjecture that a 3-periodic net has, at most, one

tessellate ambient isotopy. A related question is whether the

only tilings of a net of a certain maximum symmetry are of a

lower-symmetry topologically distinct embedding of that net.

9.2. What is the best tiling?

We have reviewed 3-periodic tilings of Euclidean space.

There are two kinds: tilings by 3D cages and tilings of 3-

periodic surfaces by polygons. Both can be used to generate 3-

periodic nets of interest in crystal chemistry systematically.

Periodic surfaces can be systematically generated by separ-

ating the net of a tiling and the net of the dual tiling. We have

shown that when several full-symmetry tilings carry the same

net, the minimal-transitivity version is particularly useful.

We show that minimal-transitivity tilings can be found using

essential rings as the faces. Those with low transitivity are

particularly relevant to identifying the simplest (‘most

regular’) periodic nets, tilings and surfaces. However, when

considering the gamut of nets in crystal chemistry (e.g. Blatov

et al., 2014), the generally smaller natural tilings are more

appropriate. A striking example is afforded by the tiling of the

net cbo (the boron net of the zeolite-like structure of

CaB2O4). The natural tiling (Fig. 18) consists of two tiles, A

[3.76] and B [3.6.73], with a transitivity of [1 2 3 2]. The B tile

has the unusual property of two rings (3- and 6-rings) occur-

ring only once, so each is the sum of the other tile rings. As

shown in the figure, 6-rings can be removed to make a tile B0

[32.76] and produce a tiling of transitivity [1 2 2 2]. A second

option is to eliminate the 3-rings having a single tile [62.712]

and produce a tiling with minimal transitivity [1 2 2 1].

However, a tile of this shape is not likely to be relevant to the

systematics of crystal structures, such as zeolites.

As one goes to higher-transitivity nets it is often found that

there are multiple proper tilings and choices for either natural

tilings or minimal-transitivity tilings. For example, Blatov et al.

(2007) showed that for the net eci there were two candidates

with transitivity [1 3 5 2] for a natural tiling. Further exam-

ination shows that there are four candidates with transitivity

[1 3 3 1] for a minimal-transitivity tiling. However, as we hope

we have shown in this article, in the developing systematics

and taxonomy of nets and tilings, the relevant feature is not

the tilings of nets, but rather the nets of tilings (which are

unique), and if, as herein, we seek face-transitive tilings, each

will carry a different net. The examples given above are:

enumeration of edge-transitive nets, the nets of self-dual and

mutually dual tilings, the nets of periodic foams (real and

potential zeolite structures) etc. On the other hand, in
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Figure 18
Tilings of the cbo net. Three-rings are red, 6-rings dark blue, and 7-rings
green and light blue. (a) A [32.76] tile. (b) Two [3.6.73] tiles join to form a
[32.76] tile. (c) The [62.712] tile of the minimal-transitivity tiling.

Figure 19
Left: fragments of the infinite tiles described in the text. Right: fragments
of the lcs and qtz tilings.
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analyzing the structure-building units of complex frameworks

(cf. the discussion of the tiling of the net of zeolite BEA

above) a natural tiling is probably more appropriate.

9.3. Tilings by 1-periodic tiles

Delgado-Friedrichs et al. (2002) called attention to a tiling

with transitivity ½1 1 1 1� of the net lcs that had infinite 1-

periodic tiles with face symbol [61] packed with axes along the

four h111i directions as shown in Fig. 19. One-periodic tiles

can be constructed by merging tiles of the sort ½p2:qj: . . .� with
opposite p-ring faces, thereby eliminating these faces. A tiling

by such tiles with transitivity ½1 1 2 1� can be converted to a

½1 1 1 1� tiling by infinite tiles by eliminating the two p-rings.

A search of the RCSR yielded four suitable nets: lcs with

tiles ½62A:64B�, lcv with tiles ½32:103�, lvt with tiles ½42:84: . . .� and
qtz with tiles ½62:82: . . .�. The qtz admits two tilings by infinite

tiles ½61� and ½81� as shown in the figure. The lcv ½101� tiles
have the same four-way packing as the lcs tiles and the lvt ½81�
tiles pack with parallel axes and tetragonal symmetry.

It is noteworthy that the lcs tiling by 1-periodic tiles meets

the definition of a simple tiling (foam) given above (Section 6).

We conjecture that it is then the only such structure with

transitivity [1 1 1 1].
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