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Abstract: Technological advancements have led to an increased use of the internet of things (IoT) to
enhance the resource use efficiency, productivity, and cost-effectiveness of agricultural production sys-
tems, particularly under the current scenario of climate change. Increasing world population, climate
variations, and propelling demand for the food are the hot discussions these days. Keeping in view
the importance of the abovementioned issues, this manuscript summarizes the modern approaches
of IoT and smart techniques to aid sustainable crop production. The study also demonstrates the
benefits of using modern IoT approaches and smart techniques in the establishment of smart- and
resource-use-efficient farming systems. Modern technology not only aids in sustaining productivity
under limited resources, but also can help in observing climatic variations, monitoring soil nutrients,
water dynamics, supporting data management in farming systems, and assisting in insect, pest, and
disease management. Various type of sensors and computer tools can be utilized in data recording
and management of cropping systems, which ensure an opportunity for timely decisions. Digital
tools and camera-assisted cropping systems can aid producers to monitor their crops remotely. IoT
and smart farming techniques can help to simulate and predict the yield production under forecasted
climatic conditions, and thus assist in decision making for various crop management practices, in-
cluding irrigation, fertilizer, insecticide, and weedicide applications. We found that various neural
networks and simulation models could aid in yield prediction for better decision support with an
average simulation accuracy of up to 92%. Different numerical models and smart irrigation tools
help to save energy use by reducing it up to 8%, whereas advanced irrigation helped in reducing
the cost by 25.34% as compared to soil-moisture-based irrigation system. Several leaf diseases on
various crops can be managed by using image processing techniques using a genetic algorithm with
90% precision accuracy. Establishment of indoor vertical farming systems worldwide, especially
in the countries either lacking the supply of sufficient water for the crops or suffering an intense
urbanization, is ultimately helping to increase yield as well as enhancing the metabolite profile of the
plants. Hence, employing the advanced tools, a modern and smart agricultural farming system could
be used to stabilize and enhance crop productivity by improving resource use efficiency of applied
resources i.e., irrigation water and fertilizers.

Keywords: smart farming; sensors; precision farming; yield prediction; IoT; vertical farming

1. Introduction

Technological advancements have revolutionized almost all sectors, particularly agri-
culture, in the modern world. Likewise, the agricultural sector, which is a very risk-
averse [1], has also been transforming over time, and is aiming at producing more yield and
better quality food by establishing and maintaining better crops. In order to diversify and
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improve the natural population of crops and to enhance the genetic variability, techniques
such as mutagenesis, traditional breeding, gene editing, and marker-assisted breeding has
been under practice for years [2]. However, climate change has impacted the agriculture
sector [3], whereas adaptations to climate change and advances in agricultural-related as-
pects, such as optimal natural resources usage and limiting the deteriorating environmental
impacts altogether, have given the farming sector a new face and dimension. Efficiency of
the agriculture sector is threatened due to world population pressure on global production
systems, changing climate [4], and crops or food losses due to mishandling [5]. According
to the United Nations prediction about the increase in population, a world population
of 9.8 billion is expected by the year 2050, and this number may hit 11.2 billion after
70–80 years [6]. Keeping these stats in mind, food production must be increased up to 50%
to meet the food demand of this increasing population and ensure food security.

Smart farming, often known as smart agriculture, is a farming practice that uses sus-
tainable methods to meet the population’s growing food needs while minimizing negative
effects. The global community has embraced it and is supporting it. The fundamental
tenet of this strategy is to effectively utilize the resources at hand for sustainable output
while lowering the expenses of all activities associated with the agricultural industry [7].
Smart agriculture represents the use of technologies such as sensors; the internet of things
(IoT) [8], which is a network of computing devices; artificial intelligence; and robotics [9] to
assist traditional agriculture and convert it into a smart and sustainable agriculture [10]. In
fact, the IoT is the combination of modern technologies that has the potential to provide
modern solutions to agricultural problems [8]. Additionally, with the help of data mining
technologies [11], a large number of datasets, either agronomical [12], genomics [13], or
meteorological [14], are partitioned into useful information to make easy and efficient deci-
sion making [15] in order to make farming activities more precise and efficient. Climatic-
or soil-related data in smart agriculture and farming is obtained using sensors [16], and
then automatic processing of this big data is carried out with the help of modern methods
and analysis tools, such as machine learning [17], spike and slab regression analysis, and
time-series analysis [18]. This process gives the obtained data an easy, understandable,
and knowledgeable form, which then warns the farmers about any upcoming climatic
events, i.e., droughts or heavy rains, chances of insect or pest infestation, and the spread of
infectious disease (i.e., fungal diseases) [19]. Following the warning alerts, this IoT based
agriculture system blended with ecological sensing and assisted with image processing
techniques [20] helps farmers in adopting precautionary measures and in customizing
the planning of crop management practices, i.e., irrigation, fertilization, and pest manage-
ment, with the help of modern digital and internet-assisted tools and smart applications as
presented in the Figure 1.

The internet of things provides efficient ways to assist the farmers and researchers in
the agricultural crop production sector. Moreover, it assists the decision making by making
various information readily available when it comes to soil [16], water [21], pesticides [22],
fertilizers [23], and manures [24]. Climate change and global warming are the burning
issues of the world, with a lot of studies and resources being spent to ensure a better future
for the coming generations. With the IoT availability [13], increased benefits [25,26] can
be made available for this cause by concentrating on the sustainability of the resources
and by protecting the earth with wise decision making [20]. Additionally, the IoT can
help agriculturists and farmers to not only grow the crops smartly, but to effectively deal
the post-harvesting and the end consumer’s deals on the agricultural products [27]. In
addition to this, IoT effectively contributes to precision farming with technologies including
drones for agriculture [28], remote sensing [29], smart greenhouses [30], smart livestock
management [31], computer imaging [32], and efficient climate monitoring [33] as indicated
in the Figure 2. Data mining and simulation modeling of various crops [12], environmental
situations, and their management [34] are receiving a lot of attention. Researchers are
developing new algorithms to ensure more vigorous and detailed information [35] for
better and improved decision making. These techniques have also been used in fertilizer
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application suggestions [36], i.e., timing and rate of applications, disease, yield predic-
tions [37,38], soil moisture detection, and in scheduling irrigation [39]. Keeping in view
the importance of smart techniques, the objectives of the study were to summarize the
latest applications of smart techniques, including (i) yield estimation, (ii) irrigation and
fertilizer management, and (iv) insect, pest, and disease monitoring and management in
crop production, particularly under changing climate. Schematic diagrams and figures
created and used in this review were prepared using the Canva software, Canva Pro version
4.49.0, Perth, Australia (https://www.canva.com/en_gb/, accessed on 24 June 2022).
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2. Climate Change and Its Effects on Various Crops: A Need of Smart Crop Production

Climate change has severely impacted agriculture worldwide [40]. Rising temperature,
fluctuations during day and night temperature, and seasonal variability in the rainfalls has
increased the intensity of extreme weather events, i.e., droughts, flash floods [40–43], and
incidence of disease occurrence have increased [44]. Efficiency of production systems has
been affected, and the impact of climate change has triggered the need for and the adoption
of climate-smart adaptation options to sustain productivity and availability throughout
the year. Such adaptation options and technologies need to be adopted in almost all
aspects related to agricultural crop production, such as soil–water dynamics, nutrients,
and fertilizers [41,45] management, improvements in crop types and evaluations [46],
applications of beneficial elements [47], organic amendments in soil [48], fisheries, livestock,
and poultry, and farm mechanization, as indicated in Figure 3. Temperature is one of the
critical factors in crop production.
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Numerous studies have been carried out regarding temperature and its effect on
various vegetative and reproductive phases in crops [49,50]. A productivity decline has
been observed in various crops, such as peaches and plums, which refers to a change in
the temperature pattern of a low chilling zone [51]. Moreover, a shift has been observed
due to an increase in temperature in the choices of different varieties in bananas, grapes,
and other horticultural crops, which ultimately yield a better product to this changing
climate. A periodic change in climate is inducing a significant impact on the production
of certain spices such as cardamom and black pepper [52]. Biomass production and total
yield of potato has been affected by the elevated temperature, and an effective decrease in
gross photosynthesis has been noticed [53]. Despite increased biomass production, a 14%
decrease in seed yield has been observed by Ruiz-Vera et al. [54] while growing maize at an
elevated temperature of 25.4 ± 1.6 ◦C. Tip burn and leaf desiccation have been noticed in
San Joaquin, Imperial, and Salinas Valley in the United States due to higher temperatures
in lettuce, which eventually affected its growth and maturation [55]. Specific ranges of
temperature are finalized for the effect of temperature on crop growth and productivity.
However, an increase in temperature results bolting in cole crops, which is not a desirable
attribute while growing it for vegetable purpose [56]. The temperature range 25–35 ◦C
is considered as the moderate range for most crops, where they show the best thriving
and productive attributes [41,57]. However, the temperature below the moderate range
is the temperature where the growth is slow and unsteady. According to Ounlert and
Sadoode [58] and Ounlert et al. [59], the temperature of 38–40 ◦C is quite high for most
crops and their optimum production. Likewise, temperatures below 5 ◦C is where there is
no production of fruit at all for different agronomic and horticultural crops, i.e., mangosteen.
If the temperature exceeds 42 ◦C and 45 ◦C, it causes the suppression in the germination of
cucumber and melon seeds, respectively, while the same trend has been observed at 42 ◦C
in watermelon, summer squash, winter squash, and pumpkin seeds [60].

Dry periods are very important for fruit trees such as mangosteen to stimulate flow-
ering, and various studies have observed the same trend. It is reported that a dry period
of 15–20 days is required to induce the flowering in the mangosteen [61]. Moreover, it
has been observed that, in case of mangosteen, flowering increased as the drought period
before the flowering increased. Delayed curd initiation has been recorded in cauliflower
when the daily temperature exceeded 30 ◦C [62]. Uneven head in broccoli and reduced
tomato sizes were reported when the temperature increased above 25 ◦C for certain period,
the traits of which are not very much liked by the end consumers. Rai et al. [63] reported
that insufficient chilling is responsible for lowering fruit texture and taste, while high
temperature and moisture stress bring cracking in fruit trees such as apple and apricot.
Summarizing the various symptoms such as bud drop, abnormal flower development, poor
pollen production, dehiscence, and, ultimately, yield losses has been reported by Hazra
et al. [64] due to an increase in the temperature for tomato.

Climate change, variability, and its impact have some serious impacts on all the
agricultural commodities. There is a change in phenology of crops and horticultural fruit
trees with the observed changes in the rainfall pattern. Changes in rainfall and temperature
affects the flowering dates of fruit trees [59]. Research had been carried out to investigate
the minimum and maximum rainfall and its impact on crop production. If the rainfall
received by the mangosteen is >2500 mm, then there is no need to irrigate it manually,
while the range of 1270–2500 mm needs a checked irrigation to keep mangosteen hydrated
and fit for growth and flowering [65]. Rainfall below the 1270 mm ultimately limits the
growth and overall fruit and flower production. Humidity, like rainfall, plays a vital role in
ensuring the best thriving fruit in mangosteen production, and it has been suggested that
the humidity level of 75–80% is optimum for the mangosteen [65]. Optimum soil moisture
levels should be maintained to keep the enough water available for the roots to absorb and
transport it to the whole tree. Various management levels are required to meet the effective
requirements of the crops, even within an irrigated area.
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Soil moisture, irrigation, and rainfall are the pivotal entities to fulfill the net water
requirements of a crop [66]. Based on water deficit analysis, Li et al. [66] suggested that
rainfall, coupled with irrigation, proved an increased yield of sorghum, corn, and soybean
in the Jilin region of China. In addition, rainfall is an indicator of the crop water requirement
as well as an indicator of the irrigation requirement for all these crops. To measure the
glucosinolates contents in variety of vegetables, such as cauliflower, cabbage, kale, reddish,
turnips, and brussels sprouts, it has been found that climatic factors, including the varying
rainfall, influence the accumulation of these secondary metabolites in vegetables. However,
AZM et al. [67] reported that both soil and environmental factors are going to impact the
production of winter vegetables. The rainfall patterns of 2000–2001 and 2002–2003 was the
deciding factor for the reduction in the fresh pod weight of okra in the inland valley, and
it played a significant role in pest development, disease onset, and in soil chemistry [68].
There is always a negative reaction of crops towards climate change, but vegetables are
generally more prone to its adverse conditions [69]. Furthermore, climate change is also
responsible for bringing strong winds, storms, hurricanes, and tornadoes to various parts
of the world that are the foregrounds of agricultural productivities. When faced by these
strong winds, the branches of trees and crops are prone to damage. Leaf tearing of broad
leaves has also been observed in various crops, while difficulty in carrying out agricultural
operations demands increased investment in agriculture. Keeping in view the climate
change aspects, it becomes important to adopt modern techniques and methodologies to
sustain the efficiency of farming systems, which ultimately leads to stable crop productivity
under diverse environmental conditions and contributes to food security.

3. Yield Prediction in Smart Agriculture

Crop yield is an important entity, and yield prediction is a salient and challenging task
in agriculture. Soil properties, meteorological data and seasonal fluctuations, seed quality,
harvesting methods, monitoring of pests and diseases, managing nutrient deficiencies, and
maintaining water requirements for the crops are all contributing factors for predicting
the overall yield of a plant or crop. Precision agriculture has been used for years and now
researchers are considering the use of variable rate technologies [70], sensor monitoring [16],
and management systems to ensure better crop health [27], improved productivity [28],
and better quality [71] of the produce. Sensor- and drone-assisted quality monitoring of
horticultural crops [21], yield predicting sensors [72] on harvesters of various agronomic
crops [73] (Figure 4), and use of the internet and real time data simulators [74] are receiving
attention day by day, particularly for their use in large scale crop production.

Simulation models have been introduced for yield simulations which are assisting in
understanding the behaviors of varying yield in relation to fluctuating environment, nutri-
ent, water, pest, diseases, and other field conditions [38,75,76]. The CROPGRO model [77]
was especially designed for simulating different grain legume crops such as soybean,
groundnut, and common dry bean crops. In an experiment for predicting the yield of
tomatoes in glasshouse, Qaddoum et al. [78] used an EFuNN (Evolving Fuzzy Neural Net-
work) model which predicted fluctuations in the weekly yield of tomato with an average
accuracy of 90%. Cropping system models, such as APSIM and ARMOSA, consider the
soil physical and chemical conditions (i.e., water dynamics, nutrient cycling) and perform
accurate predictions of products such as grain, biomass, or sugar yield in response to
climate and management conditions [79,80]. These insights make the model a pivotal
choice for the farmer’s adaptation to the external changes, and allow simulations to under-
stand the farmer’s response to varying seasons and climate changes [81,82]. The Erosion
Policy Integrated Climate (EPIC), currently known as Environmental Policy Inte-Climate,
model is another comprehensive model which is under continuous improvements and has
the capacity to simulate crop growth, heat and water balance, wind and water erosion,
and nutrient cycling [83]. This model helps in understanding the soil dynamics and their
relationship to crop management while keeping the soil erosion details in consideration.
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Various environmental components are considered, and their impact on crop produc-
tion have been evaluated using modern techniques. For example, soybean productivity
was observed, and the influence of relative humidity, evapotranspiration, temperature, and
precipitation over it was predicted by Veenadhari et al. [84]. Using ID3 algorithm, Veenad-
hari et al. [84] reported that humidity has the most prominent effect on yield, followed
by temperature and precipitation. In another study, temperature and humidity sensors
were used to suggest the appropriate crop and to carry out an effective irrigation control.
Moreover, climatic parameters such as soil temperature, air temperature, and humidity
were also considered. Varman et al. [85] discussed, in their research work, various ma-
chine learning models, such as Feed Forward Neural Network, Long Short-Term Memory
(LSTM), and GRU, and concluded that LSTM was the most fit model for his research, in
which they calibrated and proposed the best suitable crop for the next rotation. Sugarcane
yield was forecasted by Suresh and Krishna Priya [86] after developing a statistical method
for predicting the considerable amount of yield. Data in this research, which included tem-
perature, relative humidity, and rainfall, was collected from weather stations. Conclusions
of the model were entirely dependent on the condition of how precisely the input data
was incorporated into model. Interestingly, the sugarcane yield was estimated successfully
prior to the harvest. Soil moisture prediction in Cojocna was carried out by Matei et al. [39],
using nine algorithms, namely: KNN, SVM, Logistic Regression, Neural Networks, Rule
Induction, Decision Tree, Fast Large Margin, Random Forest, and Linear Regression. The
accuracy of the results was high, and the findings assisted the farmers to decide and opt for
the appropriate steps, which helped them to avoid future crop damage. Machine learning
methods (RF, SVM, NN) and the regression method LASSO (Least Absolute Shrinkage
and Selection Operator) were used to predict wheat yield based on the data obtained from
satellite and climatic data by Cai et al. [87] in their research work. Additionally, data mining
provides a way to analyze nonlinear relationships and capture complicated biological
processes that underlie plant responses to stimuli, both of which are difficult to perform
using simple statistics such as ANOVA and linear regression. Exploratory data analysis
was performed before using the abovementioned machine learning methods, and it was
concluded that the best performance was shown by integrating climate and satellite data.
Blagojevic et al. [88] studied apricot in a research work where PDCA (Plan, Do, Check, Act)
method was employed for predicting the yield. An Artificial Neural Network, as a machine
learning method, was used for the abovementioned predictions that took as input: shoot



Agriculture 2023, 13, 397 8 of 22

length, fruit weight, shoot thickness, amount of fertilizer, and beginning of the harvest.
A web application was developed considering the ease of displaying the predictions for
the yield as a result output. Ravichandran and Koteeshwari [89] proposed a prediction
system constructed on the ANN (Artificial Neural Network). Various parameters were
determined by using this approach, namely pH, phosphate, potassium, nitrogen, depth,
temperature, and precipitation, and the output was the adapted culture. This system
appeared to be helpful in determining the productivity status for the crop. It assisted the
farmers to select the best and most suitable crop for their land and gave options for the
selection of mandatory fertilizers. The system manifested 92% accuracy in achieving the
forementioned objectives. In another study carried out by Cillis et al. [90], several inter-
actions were discussed (Table 1). The research work considered the interaction between
soil–genotype, genotype–climate, climate, and management practices. The findings of the
study comprehended the organic carbon storage of the soil and specifically monitored
greenhouse gases emissions. Moreover, in order to determine the nutritional requirement
of strawberries species, MARS (Multivariate Adaptive Regression Splines) has been suc-
cessfully employed, which has aided in predicting the shoot quality as well as determining
the leaf color responses of strawberries towards tissue culture nutrients [91]. In a similar
study, minor nutrient requirements were assessed by using regression trees, and it was
found that CART (Classification and Regression Tree) analysis was the better indicator of
the nutrient requirements, such as B, Mo, Zn, and CU levels, for a better growth response in
hazelnut [92]. The regression tree approach is exceptional at handling missing values and
outliers. Additionally, crop yields were observed by noticing the management approaches
and their long-term effects. Using the regression analysis approach, it confirmed the dimin-
ishing of soil organic carbon losses by practicing conservation tillage systems under actual
climatic conditions.

Table 1. Yield prediction and climatic impression on overall yields of crops using smart agricultural
data mining techniques.

Techniques Used Data Used Objectives References

DT (Decision Tree) Rainfall, temperature,
and humidity

To study the influence of climatic
factors on soybean yield Veenadhari et al. [84]

NN (Neural Network) Temperature and
humidity data

Soil and air temperature
prediction, humidity Varman et al. [85]

Regression Model Weather data Sugarcane yield prediction Suresh and
Krishna Priya [86]

NN (Neural Network),
SVM (Support Vector

Machine), RF (Random Forest)
and Linear Regression

Weather data Soil moisture prediction Matei et al. [39]

RF (Random Forest), SVM
(Support Vector Machine), NN

(Neural Network)
Climate data, satellite data Wheat yield prediction Cai et al. [87]

Artificial Neural Network
Shoot thickness and length,
fruit size and fruit weight,

harvest time
Apricot yield prediction Blagojevic et al. [88]

ANN (Artificial Neural
Network)

pH, phosphorus, and
potassium along with

weather data
Sowing time prediction Ravichandran and

Koteeshwari [89]

Regression Analysis Weather data (Historical)
and yield maps

Soil organic carbon storage,
greenhouse gases emission, effect
of long-term soil management on

crop yield

Cillis et al. [90]
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4. Smart Irrigation Techniques

The water cycle has been substantially altered by climate change, which has also
increased the severity of droughts [93]. Hence, efficient water use in agricultural systems is
a basic concern in the current scenario. The losses of water under limited water availability
have gained a lot of interest in these days, when a major part of the world is suscepti-
ble to drought each year. Traditional and manual irrigation systems fail to accomplish
water-saving goals, and are unable to supply water efficiently [22]. Smart irrigation is a
technique which is countering this problem efficiently by not just providing efficient water
use, but also saving it for the future [94]. Additionally, smart irrigation reduces the input
costs, which provides relief to the farmers [95]. Manual irrigation requires manpower for
daily observations and scheduling irrigations by observing plants or crops in fields, but
a sensor-assisted irrigation system detects soil moisture available in the soil profile and
initiates the irrigation, making irrigation control better than the manual [96], whereas a
decision-support-system-assisted irrigation system integrates soil moisture sensors and
climate sensors to observe water demand and control irrigation application for crops
(Figure 5). The development of accurate and effective irrigation systems has been aided by
the revolution in decision-support-assisted irrigation systems, brought about by advance-
ments in technology [97]. This not only incorporated soil moisture and climate sensors, but
also an internet-assisted cloud system for real-time data observation. Dynamic simulation
models are linked to examine the effects of irrigation on crop growth and productivity
estimation. Moreover, in accordance with data analysis and yield predictions, an irrigation
quantity has been finalized and is supplied through an automatic irrigation control system.
A remote control or mobile application [98] is also linked up with this system for easy
understanding and usage of the modern irrigation hub. A scheme of an advanced irrigation
hub is presented as of Figure 6.
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Smart irrigation consists of various steps and schemes, which are illustrated in Figure 7,
which, in combination, make this technique a revolution in agricultural production systems.
Various techniques were developed and utilized to achieve efficient irrigation goals in smart
agriculture systems. Automatic drip, sprinkler, real-time moisture-sensor-assisted, and
predictive irrigation schemes are commonly being utilized [99]. Various advanced irrigation
techniques haven been developed and improved with time, and some of those are indicated
in Table 2 with their methods of data usage and objectives. Padalalu et al. [37] presented a
control system for an automatic irrigation, aiming to record and control the irrigation needs
of the crop. Several variables, such as humidity, soil temperature, and pH, were observed
by installing sensors. Additionally, a Naive Bayes algorithm was applied to estimate the
exact water demand of the crop. Weather forecasts were observed to monitor the quantity
of applied water to crops and the model of this intelligent irrigation system assured the
intuitive use of water. An irrigation system based on the Support Vector Regression method
was developed and proposed by Xie et al. [100]. The system was composed of an irrigation
demand estimation component to evaluate the energy and time needed for carrying out
the subsequent operations. It was also composed of a solar energy prediction component
for forecasting the solar energy.

Numerical Weather Prediction (NWP) and the Time of Use price model (TOU) were
employed, which exhibited clearly that the water resources and the amount of energy can
be saved was up to 7.97%. Following the forementioned findings, costs declined by an esti-
mated 25.34% when subjected to a comparison with the soil-moisture-based irrigation sys-
tem. To maximize crop yields and to conserve an excess of water, Goumopoulos et al. [101]
devised a decision support system based on a Wireless Sensor/Actuator Network (WSAN).
The system was positioned to observe irrigation in a greenhouse. Real-time monitoring
for precision irrigation was provided by the developed system in it. Various sensors were
considered, such as soil moisture sensors, humidity sensors, and temperature sensors, in
strawberry field. The results from this research depicted a 20% decreased water consump-
tion as compared to a traditional irrigation system. In another study, Zhang et al. [102]
performed experiments in the laboratory and in the greenhouses. A Fuzzy Logic-based
irrigation control system was developed, and information was gathered from soil moisture
sensors to decide the irrigation application time. The system came out to be a successful
one in tackling the uncontrolled lengthy irrigation schedules. Peng et al. [103] developed
an irrigation system using WSN and Fuzzy Logic to save water. The system was composed
of four parts: the cluster of sensor nodes, coordinator nodes, two variables as inputs (soil
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moisture error and the rate of change of the error), which provided watering time as an
output. An irrigation controller was also used for automatic watering and monitoring of
the pipe network, which eventually helped in precise and quick calculation of amount of
water required in irrigation.
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An automatic irrigation system was developed by Anand and Perinbam [104] that
consisted of four different parts. The first part was sensor nodes, which were collecting the
temperature and moisture readings. The coordinator node, as a second part, the irrigation
controller, as a third one, which was based on Fuzzy Logic to monitor the watering and
the time of its application, and the irrigation pipe network, as the last component of their
proposed system. The Fuzzy Logic-based controller was accounting for numerous activities
in the automatic irrigation system. One such use was monitoring the water level in the
tank. Likewise, it was also responsible for examining the amount of rain, the atmospheric
temperature, and the wind speed. All the information which was under investigation,
whether the field condition or the system itself, was collected and made available for
the farmer through the GSM Module [105]. The Fuzzy Inference System, another smart
irrigation system for monitoring the evapotranspiration (ET) and irrigation, was developed
by Mousa et al. [106]. Goals were accomplished by using the specific algorithms such
as the estimation of ET, soil moisture observations, required irrigation’s estimation as
per reference ET (ET0), monitoring irrigation schedule, and the time of irrigation. Drip
and sprinkler irrigation systems can be linked and applied successfully using this system.
Moreover, results indicated the fuzzy model as an intelligent and quick implementation for
recording the evapotranspiration and water needs of the crop field.

Table 2. Techniques to achieve efficient irrigation goals in smart agriculture systems.

Techniques Used Data Objectives References

Naive bayes algorithm Soil, temperature, and
humidity sensor data

Precision of water and
fertilizers used Padalalu et al. [37]

Optimization model and
irrigation estimation

algorithm

Soil moisture data, weather
information data and solar

energy data
Irrigation cost management Xie et al. [100]

DM algorithms Sensor’s data (air, soil
temperature, and humidity)

Zone specific irrigation
management Goumopoulos et al. [101]

Fuzzy logic Sensor data (soil) Irrigation management Zhang et al. [102]

Fuzzy logic Sensor data (soil) Irrigation management Peng et al. [103]

Fuzzy logic Meteorological parameters Irrigation management Anand and Perinbam [104]

Fuzzy logic Climatic parameters Irrigation management Mousa et al. [106]
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5. Smart Monitoring of Insects and Pests

In modern agriculture production systems, modern techniques are being utilized
for smart monitoring and control of insects and pests. To spot six parasites in an apple
orchard, Boniecki et al. [107] suggested a neural classifier. The names of the parasites
were apple blossom weevil, apple clearwing, codling moth, apple leaf sucker, apple aphid,
and apple moth. The abovementioned classifier was established on 23 parameters, which
included form and color characteristics. The former was 7 and latter was 16 in number.
Decisive results were obtained by considering the Multi-Layer Perceptron Neural Network
topology in the peach orchard. Rodrigues et al. [108] used an extension of Fuzzy Logic,
named Interval Fuzzy Logic, to predict the appearance of the parasites. Data was captured
using temperature and humidity sensors, and processed by Interval Fuzzy Logic, which
ultimately provided the warning levels. Different hardware components, such as the
Arduino platform and different sensors, were used to develop this system. A demonstration
of a drone-assisted evaluation of insects and pests in enabling the timely implementation of
actions to remove the high-risk infestations is presented in Figure 8. In addition, AgroDSS
for agriculture, a new decision support system, was developed to learn the pest population
by Rupnik et al. [109]. This system relied on data mining approaches, and the implemented
tools used were supervised learning, unsupervised learning, and time series analysis.
The data was gathered by Trap View and allowed an efficient pest observation by using
insect traps in the vineyards and orchard. When it came to deal with the missing data,
linear regression was used by Da Silva et al. [110], who also applied logistic regression
while inspecting the results obtained from the land and the monthly surface temperature.
They calculated “accumulated degree-day” by using a meteorological satellite to reduce
disease risks by mapping the pests. A significant relationship was observed between the
accumulated meteorological stations values and satellite values.

The crops lines algorithm, in association with the Convolutional Neural Network, was
proposed by Bah et al. [111]. The aim was to pin down weeds in various crops, such as
beet, spinach, and bean fields. The research work was also assisted by the drone images,
which were taken about 20 m height. The best accuracy in results were achieved in beet
field. However, the research work also mentioned a few hardships concerning the right
detection of the weeds. This usually happened when the plants were at early growth
stage or when there was a less distance between weeds and crop. Various techniques
for smart pest monitoring and its related goals are described in Table 3. For an early
alert and recommending necessary control measures, Tripathy et al. [112] presented a
real-time Decision Support System. The main objective was observing and predicting the
pest and disease status in the field. Furthermore, numerous DM techniques have been
used in groundnut crops, which were based on some climatic and weather parameters.
The experiment was using the Naive Bayes method with Gaussian distribution. Rapid
Association Rule Mining, in conjunction with the aforementioned technique, was performed
to search out the multiple weather correlations with other related parameters. Doses of
pesticides are an important indicator for the betterment of the crop, and they were predicted
by Viani et al. [113] by using Fuzzy Logic. Weather data (soil temperature and moisture)
were considered, and the risk of infection was counted by examining developmental stages
of the plant and the fluctuating environmental conditions. By combining hydroponics
with IoT, Alipio et al. [114] developed an efficient hydroponic system, which assisted
in providing the right nutrient’s type and amount at the best suitable time. A Bayesian
Network (BN) prediction algorithm was implemented to obtain the maximum of the right
decisions to control the system. The three main components of the developed system were
a data analysis module, a web interface, and sensors. The sensors used were controlling
the electrical conductivity, managing pH, monitoring light intensity, recording humidity,
and water temperature. For displaying the data and to control the system, there were
two operational websites for this purpose. A clear increase in the yield obtained with the
automatic control was observed as compared to the manual control system.
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Table 3. Techniques and goals for monitoring pests and input management in smart agriculture.

Data Used for Analysis Techniques Goals References

Digital image of pests Neural Networks Pest prediction in apple
orchard Boniechki et al. [107]

Temperature data and
humidity data Interval Fuzzy Logic Prediction of pests and

diseases Rodrigues et al. [108]

Pest data Random Forest Pest dynamics and population
prediction Rupnik et al. [109]

Meteorological satellite data
and in situ meteorological

data

Linear and Logistic
Regression

Pest and disease mapping and
detection Da Silva et al. [110]

Vegetable images taken by
drones

Convolutional Neural
Network

Weeds identification in crops
such as spinach and beans Bah et al. [111]

Temperature, humidity, and
soil moisture data

Naive Bayes Method with
Gaussian Distribution Pest predictions Tripathy et al. [112]

Soil moisture, leaf wetness
and soil temperature data Fuzzy Logic Specific dose prediction for

pests Viani et al. [113]

Sensor data (pH level,
electrical conductivity, light

intensity, etc.)
Bayesian Network Crop growth management in

hydroponic farm Alipo et al. [114]
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6. Smart Disease Management

Diseases in crops are devastating in terms of yield and deteriorating the quality of the
produce. Numerous solutions are out there in the market and industries [115,116], yet there
is a need to think or perform smarter, to remove the excessive damage to the final product,
and to enhance the outcome in terms of the revenue. In smart agriculture, the focus is on
the classification of the diseases and its detection precisely at any stage [117], so that smart
decision making can be conducted and the excessive failure in the yield and quality can
be avoided. A modified model image of smart disease management using normalized
difference vegetation index (NDVI), drone, and imaging techniques is presented in Figure 9.
Singh et al. [118] opted for the image processing technique using a genetic algorithm. In his
research work, he observed and managed several leaf diseases on various crops, achieving
the precision percentage of 88.99%. Likewise, 89.56% precision was achieved by Warne and
Ganorkar [119] while detecting the leaf diseases in cotton crop. They classified the diseases
as red leaf spot and Alternaria leaf spot of cotton using a neural network algorithm. Similar
research was performed by Revathi and Hemalatha [120] while working on a cotton crop.
Image processing was assisted by the neural network to detect and classify cotton diseases.
In this research work, they classified Fusarium wilt and leaf blight with the high precision of
98.1%. Image processing by employing Support Vector Machine was performed by Bhange
and Hingoliwala [121], Yao et al. [122], Jian and Wei [123], and Dubey and Jalal [124] to
target teyla in pomegranate, rice blast and rice sheath blight in rice, downy mildew and
brown spot in cucumber, and apple rot, scab, and blotch in apple. The results from these
research studies have indicated the precision percentages as high as 82%, 97.2%, 94% and
93%, respectively, as represented in Table 4.

Agriculture 2023, 13, x FOR PEER REVIEW 16 of 24 
 

 

 
Figure 9. Smart disease management by using normalized difference vegetation index (NDVI), 
drone and imaging techniques. Modified figure where the drone mapping image on the top right 
was obtained from: https://www.futurefarming.com/tech-in-focus/pain-points-of-nitrogen-
applications-how-drone-data-helps/, accessed on 14 June 2022. 

Table 4. Methods and precision percentage for detecting and classifying diseases in smart 
agriculture. 

Methods Diseases Precision References 
Image Processing + Genetic 

Algorithm Leaf diseases on different crops 88.99% Singh et al. [118] 

Image Processing + Neural 
Networks 

Cotton leaf diseases, red leaf spot, 
Alternaria leaf spot 89.56% Warne and Ganorkar [119] 

Image Processing + Neural 
Networks 

Cotton leaf spot disease, Fusarium 
wilt and Leaf blight 98.1% Revathi and Hemalatha, [120] 

Image processing + Support 
Vector Machine  Pomegranate disease: teyla 82% Bhange and Hingoliwala [121] 

Image Processing + Support 
Vector Machine Rice blast and rice sheath blight 97.2% Yao et al. [122] 

Image Processing + Support 
Vector Machine 

Cucumber disease, downy mildew 
and brown spot - Jian and Wei [123] 

Image Processing + Support 
Vector Machine 

Apple diseases such as apple rot, 
scab and blotch 

93% Dubey and Jalal [124] 

7. Smart Indoor Farming/Vertical Farming 
The amount of agricultural land has decreased as a result of the persistent trends of 

population growth, urbanization, water supply reduction, and ongoing climate change 
[125]. Numerous variables, including the rise in food prices, social tensions and land 
disputes, the severity of persevering climate change, and increased urbanization, 
contribute to the absence of effective planning for food security and sustainability. 

Figure 9. Smart disease management by using normalized difference vegetation index (NDVI), drone
and imaging techniques. Modified figure where the drone mapping image on the top right was ob-
tained from: https://www.futurefarming.com/tech-in-focus/pain-points-of-nitrogen-applications-
how-drone-data-helps/, accessed on 14 June 2022.

https://www.futurefarming.com/tech-in-focus/pain-points-of-nitrogen-applications-how-drone-data-helps/
https://www.futurefarming.com/tech-in-focus/pain-points-of-nitrogen-applications-how-drone-data-helps/


Agriculture 2023, 13, 397 15 of 22

Table 4. Methods and precision percentage for detecting and classifying diseases in smart agriculture.

Methods Diseases Precision References

Image Processing + Genetic Algorithm Leaf diseases on different crops 88.99% Singh et al. [118]

Image Processing + Neural Networks Cotton leaf diseases, red leaf spot,
Alternaria leaf spot 89.56% Warne and Ganorkar [119]

Image Processing + Neural Networks Cotton leaf spot disease,
Fusarium wilt and Leaf blight 98.1% Revathi and

Hemalatha [120]

Image processing + Support Vector Machine Pomegranate disease: teyla 82% Bhange and
Hingoliwala [121]

Image Processing + Support Vector Machine Rice blast and rice sheath blight 97.2% Yao et al. [122]

Image Processing + Support Vector Machine Cucumber disease, downy
mildew and brown spot - Jian and Wei [123]

Image Processing + Support Vector Machine Apple diseases such as apple rot,
scab and blotch 93% Dubey and Jalal [124]

7. Smart Indoor Farming/Vertical Farming

The amount of agricultural land has decreased as a result of the persistent trends of
population growth, urbanization, water supply reduction, and ongoing climate change [125].
Numerous variables, including the rise in food prices, social tensions and land disputes,
the severity of persevering climate change, and increased urbanization, contribute to the
absence of effective planning for food security and sustainability. Contrary to old farming
systems, a controlled, automated vertical farming model was introduced, which is an
indoor based farm model constituting of an automatic air, temperature, and humidity
control, solar panel lighting and heating, tunable 24 h LED illumination, and creative uses
of recycled water supplemented by rainwater or water from a desalination facility [126].
The impacts of seasonality can be reduced or completely eliminated when performed in
conjunction with temperature and humidity control. Two categories of this farming system
have been used: those where the crop is produced on a vertical surface, and those that
have several tiers of conventional horizontal growth platforms [127]. Leafy vegetables such
as lettuce, peppers, tomatoes, and herbs have all been cultivated extensively in horizon-
tal systems, which are sometimes stacked on top of one another to form vertical farms.
These horizontal and stacked horizontal agricultural technologies make use of numerous
glasshouses and plant factories [128]. Occasionally, for personal production, the use of
balconies as an alternative to indoor horizontal farming has also been proven as an effective
urban horticultural practice. For vertical farming, green walls [129] and cylindrical growth
units [130] have been in practice, the former operated in facades of the buildings, while
in the latter one, plants are connected with a nutrient medium source and are grown one
above another. These farming systems are often assisted by an artificial lighting system
to meet the adequate requirement of photosynthetic active radiation for a better growth
and yield [131]. The carotenoids accumulation has been known to be increased by 15% in
Brassica rapa under a blue and white LED recipe compared to only white LED [132]. Red
LEDs alone are responsible for enhancing biomass accumulation, green LEDs for carbon
assimilation, and blue LEDs are mainly helpful in photosynthetic processes in plants [133].
All these available LEDs not only provide better growth and development, but also cheaper
and more reliable artificial lighting options compared to the high-pressure sodium (HPS),
fluorescent tubes, and metal halides (MH) lights.

8. Major Obstacles for Implementation of IoT and Smart Techniques

Smart farming and IoT are considered as a blessing to the agricultural sector, yet it
brought a series of various challenges to agriculturists, and farmers in particular [134,135].
If not overcome or addressed timely, those hurdles can reduce the feasibility and effectivity
of this technology. Over time, numerous constraints have been reported [103,136] and
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efforts are being made to resolve the limitations [137,138]. Among the major problems to
be remitted, one is the security of the big data [139–141]. IoT devices accumulate huge data
from an agricultural IoT system, which can be viewed by an unauthorized access due to the
paucity of the necessary security protocols by some of the IoT providers [142,143]. Hence,
the data may suffer manipulation or other ownership problems. Another big problem
is the lack of infrastructure for this technology. Infrastructure concerning internet access
and remote field locations are the main issues for farmers who, even after adopting this
technology, cannot achieve the maximum output. High costs of IoT systems are another
hurdle which is being addressed by making available less costly wireless sensors in the
market [144]. Still, a lot is in needed to minimize the costs of the whole system [145], after
which one can expect that farmers will switch to IoT and smart farming.

Moreover, the majority of the farmers in various parts of the world are unedu-
cated [146]. Smart farming and IoT demands a fair amount of knowledge to deal with the
sensors, internet cloud, and end user applications [147]. Additionally, various countries
pose a series of regulations and paperwork for the farmers who are willing to adopt new
technologies. These tiresome regulations are another factor which is keeping farmers
away from it. For example, there are numerous no fly zones for the drones in the agri-
cultural fields near to airports, military zones, and other government properties [148,149].
Hence drone mapping is not feasible for those fields and farmers. Meanwhile, agricultural
digitalization is engulfing a huge employment opportunity for the laborers and other
farming-related professionals. On one hand, it is better for reducing the labor input and
cost for the owner, but on the other hand, is depriving local workers of multiple job oppor-
tunities [150]. Keeping these constraints in mind, there arises an important question: Will
this technology thrive more in the coming years?

9. Conclusions and Future Guidelines

The study provided a summary of the inventive strategies created and applied to
combat the effects of climate change and maintaining a sustainable crop output. The recent
smart strategies for various crop management approaches, as well as the technologies
associated with yield predictions and enhancements, are explained. It has been shown that
implementation of smart techniques and IoT is necessary to boost the productivity of crop
production systems. It was found that various neural networks and simulation models
could aid in yield prediction for better decision support, with an average simulation
accuracy up to 92%. Numerous techniques have been presented for yield forecasting,
pest management, smart irrigation, and disease classification and detection for efficient
monitoring of crop health and water status. Different numerical models and smart irrigation
tools help to save energy use by reducing it up to 8%, whereas advanced irrigation reduced
the cost by 25.34% as compared to soil moisture-based irrigation system. Yield prediction
under different predicted climatic conditions not only help to modify ongoing irrigation
and fertilizer management practices, but ultimately lead to resource use efficiency and
profitable agricultural productivity. Smart and precision disease management is an effective
approach to control diseases and sustain yields. Several leaf diseases on various crops can
be managed by using image processing techniques, such as by using a genetic algorithm
with 90% precision accuracy. While aiding image processing techniques by neural networks,
diseases can be detected and classified, and the research achieved precision up to 98%
in detecting and classifying diseases in different crops. Vertical farming and its various
methods of indoor production has been discussed in order to understand its impact on
global food production, especially as an option to eradicate or minimize the effects of
urbanization over global food productivity. The use of artificial lighting with a purpose of
providing an effective photosynthetic photon flux density has been discussed for better
growth and development of various horticultural produce. Moreover, the current review
discussed the various effective tactics, important techniques, IoT-based smart technologies,
and the application of sensors, in addition to the constraints that exist worldwide as
restrictions to adopting these smart technologies in agriculture. Future work will go on
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to explain the new emerging challenges and constraints, to accept and adopt the modern
advancements for smart farming.
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