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A CALABI–YAU THREEFOLD COMING FROM TWO BLACK HOLES

DINO FESTI, BERT VAN GEEMEN

Abstract. In this paper, we show that a set of six square roots of homogeneous polynomials
in four variables, related to a binary system of black holes studied by Stefan Weinzierl, is not
rationalizable. We prove it by showing that the variety X associated to the product of four of
the six square roots is not unirational. In particular, we show that the smooth model of X is a
Calabi–Yau threefold.

1. Introduction

Experiments in high energy physics often require predictions based on the computation of Feyn-
man integrals, see for example [16]. Unfortunately, an exact evaluation of these integrals is often
unfeasible and so practitioners resort to numerical integration. In order to achieve results of high
enough precision in a reasonable time, it is useful to “solve” the square root of polynomials appearing
in the arguments of these integrals. Motivated by this problem, Marco Besier and the first author
introduced the concept of rationalizability of a square root, cf. [2].

Definition 1.1. Let f ∈ C[x1, . . . , xn] be a squarefree polynomial. We say that
√
f is rationalizable

if there is a morphism of fields φ : C(x1, . . . , xn) → C(x1, . . . , xn) such that φ(z) = z for every z ∈ C

and φ(f) = h2, for some h ∈ C(x1, . . . , xn).

In the same article, they show that the rationalizability of a square root is equivalent to the
unirationality of a certain algebraic variety associated to it, [2, Theorem 1]. This equivalence is
then used to give some criteria to decide rationalizability of given square roots. The notion of
rationalizability can be extended to sets of square roots of polynomials, also called alphabets.

Definition 1.2. Let A := {f1, . . . , fr} be a set of squarefree polynomials in C[x1, . . . , xn]. We say
that A is rationalizable if there is a morphism of fields φ : C(x1, . . . , xn) → C(x1, . . . , xn) such that
φ(z) = z for every z ∈ C and for i = 1, . . . , r we have φ(fi) = h2

i , for some hi ∈ C(x1, . . . , xn).

The notion of rationalizability is further generalised to algebraic field extensions in [6] by Andreas
Hochenegger and the first author, allowing for more results to decide rationalizability of given (sets
of) polynomials.

Discussing these new developments, Stefan Weinzierl asked us about the rationalizability of an
alphabet of six square roots of homogeneous polynomials in four variables related to the production
of gravitational waves from a binary system of two black holes [10]. After some straightforward
changes of variables and reordering of the roots, we write Weinzierl’s alphabet as the set A of the
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square roots of the following six homogeneous polynomials in R := C[x, y, z, t]:

f1 := 4x− z,

f2 := 4y − z,

f3 := 4x2y − z(y − t)2,

f4 := 4xy2 − z(x− t)2,

f5 := (x − y)2 − 2(x+ y)t+ t2,

f6 := (x − y)2 − 2(x+ y)(z + t) + (z + t)2.

Unfortunately, this set seems too complicated for the methods presented in the previous papers,
and requires an ad-hoc study that we present in this paper. As by-product, we also developed a
strategy to guess (but not prove/disprove) the rationalizability of square roots in certain cases.

The rationalizability of A would imply the rationalizability of the square root of every product
of the polynomials fi. Conversely, if one can prove that the square root of one of the products is
not rationalizable, then A is not rationalizable. Weinzierl has studied several products of two and
three polynomials (see Proposition 2.1), proving the rationalizability of all of them but leaving the
rationalizability of the whole alphabet open. In these notes we are going to show that the set is not
rationalizable.

Theorem 1.3. The square root
√
f1f2f3f4 is not rationalizable and hence neither is the set A.

The proof of Theorem 1.3 is presented in §3. In §4 we propose a method to guess the ratio-
nalizability of square roots in certain cases. This method provided a decisive hint towards the
non-rationalizability of

√
f1f2f3f4, see §4.6.
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2. The double octic

As stated above, Stefan Weinzierl studied the rationalizability of several products of two and
three polynomials, obtaining the result below.

Proposition 2.1 (Weinzierl, private communication). The square roots of the following products
are rationalizable:

f1f5, f2f5, f1f2f3,
f1f2f4, f1f2f5, f1f4f3,
f1f3f5, f2f3f5, f2f4f5.

The proof of the proposition above is made easier by the relations between the polynomials,
stated below.

Lemma 2.2. The involution of R defined by switching x and y, exchanges f1 with f2 and f3 with
f4; it fixes f5 and f6.

The automorphism of R defined by t 7→ z + t sends f5 to f6 and fixes f1 and f2.

Proof. Immediate by direct computations. �

The next natural step in the study of A is then to consider the product of four polynomials.
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2.1. A product of four polynomials. We define the polynomial f of degree 8 as the product

(1) f := f1f2f3f4.

Let P denote the weighted projective space P(1, 1, 1, 1, 4) with coordinates x, y, z, t, w of weights
1, 1, 1, 1, 4, respectively. We define the variety X ⊂ P as

(2) X : w2 = f .

Then the rationalizabilty of
√
f is equivalent to the unirationality of X (cf. [2, Theorem 1.1]).

Notice that X is a threefold given as a double cover of P3 branched along the octic surface V ⊂ P3

defined by

(3) V : f = 0 .

If V were smooth, then X would also be smooth. Moreover, a smooth double cover of P3 branched
above an octic surface (a double octic threefold or octic double solid) is a Calabi–Yau threefold
(cf. Definition 4.1), hence it is not unirational. This would already answer the question about the
rationalizabilty of A. Unfortunately, V is (very) singular, making hard to see whether there is a
desingularization of X that is a Calabi–Yau or not. This is why we look for a more convenient
birationally equivalent model.

2.2. A more convenient model. Consider the Cremona-like transformation of P3 given by

σ : P3
99K P3 , (x : y : z : y) 7→ (xz : yz : 4xy : tz).

Let X ⊂ P be the threefold defined by

(4) X : w2 = xy(x− z)(y − z)(yz − (x − t)2)(xz − (y − t)2) .

Notice that X is again a double cover of P3 ramified above an octic surface, namely the surface

B : xy(x− z)(y − z)(yz − (x− t)2)(xz − (y − t)2) = 0 ⊂ P3 .

Lemma 2.3. The following statements hold.
(1) σ is a rational involution; in particular it is a birational map.
(2) σ induces a birational morphism between X and X .

Proof. It easy to see that σ ◦ σ is the identity, proving the first statement.
The map σ sends the surface V to the surface B′ ⊂ P3 defined by

B′ : x3y3z4(x− z)(y − z)(yz − (x− t)2)(xz − (y − t)2) = 0.

Let X ′ ⊂ P(1, 1, 1, 1, 8) be the double cover of P3 branched above B′ and let w′ be the coordinate of
weight 8. As B′ is birationally equivalent to V (via σ), we have that X ′ is birationally equivalent to
X ; on the other hand, the change of variable w′ = xyz2w shows that X and X ′ are also birationally
equivalent, concluding the proof of the second statement. �

Corollary 2.4. X is unirational if and only if X is.

Proof. By Lemma 2.3, X and X are birationally equivalent. As unirationality is preserved by
birational morphisms, the statement follows. �

As X is a double cover of P3, its singularities can only come from the singularities of the branch
locus B.
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Lemma 2.5. The surface B has six irreducible components, named B1, . . . , B6, defined as follows:

B1 : x = 0 ,

B2 : y = 0 ,

B3 : x− z = 0 ,

B4 : y − z = 0 ,

B5 : yz − (x − t)2 = 0 ,

B6 : xz − (y − t)2 = 0 .

The components B1, B2, B3, B4 are planes. The components B5, B6 are singular quadrics, with a
single node in (1 : 0 : 0 : 1) and (0 : 1 : 0 : 1), respectively.

Proof. By direct computations. �

2.3. The singular locus. In this section we study the singular locus of the branch locus B.
From Lemma 2.5 we know that B has six irreducible components: four planes and two quadrics;
each quadric has a single node. The singular locus of B is given by the intersection of the irreducible
components (the two nodes lying in these intersections).

Definition 2.6. For i, j ∈ {1, . . . , 6}, i < j, we define Bi,j := Bi ∩Bj .

Lemma 2.7. The singular locus of B is the union of 18 rational curves. It is non-reduced. More
specifically, the following statements hold:

• the intersections B1,2, B1,3, B1,4, B2,3, B2,4, B3,4 are lines;
• the intersections B1,6, resp. B2,5, is a double line, that is, B1 and B6, resp. B2 and B5,

are tangent in their intersection;
• B1,5, B2,6, B3,5, B4,6 are smooth conics;
• B3,6 and B4,5 are the union of two incident lines, we write

– B3,6 = B1
3,6 ∪B2

3,6, with the two lines meeting in (0 : 1 : 0 : 1),

– B4,5 = B1
4,5 ∪B2

4,5, with the two lines meeting in (1 : 0 : 0 : 1);
• B5,6 is the union of two smooth conics meeting in (1 : 1 : 0 : 1), (1 : 1 : 4 : 3), we write

B5,6 = B1
5,6 ∪B2

5,6.

Proof. By direct computations. �

Remark 2.8. Notice that the equations defining the irreducible components of B3,6, B4,5, and B5,6

can be retrieved from Table 1.

Definition 2.9. Let B denote the set of the irreducible components of the singular locus of B, that
is, B is the set of the 18 rational curves defined in Lemma 2.7.

Lemma 2.10. The curves in B intersect in 16 points.
In Table 1, for each intersection point we indicate its multiplicity in B, the components on which

it lies, and the singular curves on which it lies.

Proof. By direct computations. �
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(1 : 0 : 0 : 1) 4 B2, B4, B5 B2,4, B2,5, B
1
4,5, B

2
4,5

(0 : 1 : 0 : 1) 4 B1, B3, B6 B1,3, B1,6, B
1
3,6, B

2
3,6

(0 : −1 : −1 : 1) 3 B1, B4, B5 B1,4, B1,5, B
2
4,5

(−1 : 0 : −1 : 1) 3 B2, B3, B6 B2,3, B2,6, B
2
3,6

(1 : 0 : 0 : 0) 3 B2, B4, B6 B2,4, B2,6, B4,6

(0 : 1 : 0 : 0) 3 B1, B3, B5 B1,3, B1,5, B3,5

(0 : 0 : 1 : 0) 4 B1, B2, B5, B6 B1,2, B1,5, B1,6, B2,5, B2,6, B
2
5,6

(0 : 0 : 0 : 1) 4 B1, B2, B3, B4 B1,2, B1,3, B1,4, B2,3, B2,4, B3,4

(0 : 1 : 1 : 1) 4 B1, B4, B5, B6 B1,4, B1,5, B1,6, B
1
4,5, B4,6, B

1
5,6

(1 : 0 : 1 : 1) 4 B2, B3, B5, B6 B2,3, B2,5, B2,6, B3,5, B
1
3,6, B

1
5,6

(1 : 1 : 0 : 1) 2 B5, B6 B1
5,6, B

2
5,6

(1 : 1 : 1 : 0) 4 B3, B4, B5, B6 B3,4, B3,5, B
2
3,6, B

2
4,5, B4,6, B

2
5,6

(1 : 1 : 1 : 2) 4 B3, B4, B5, B6 B3,4, B3,5, B
1
3,6, B

1
4,5, B4,6, B

2
5,6

(1 : 1 : 4 : 3) 2 B5, B6 B1
5,6, B

2
5,6

(1 : 4 : 1 : 3) 3 B3, B5, B6 B3,5, B
2
3,6, B

1
5,6

(4 : 1 : 1 : 3) 3 B4, B5, B6 B2
4,5, B4,6, B

1
5,6

Table 1. For each point, we indicate its multiplicity on B, the irreducible compo-
nents of B on which it lies, and the singular curves on which it lies.

3. Resolution of the singularities

In this section we show that by suitably resolving the singularities of X we obtain a Calabi–Yau
threefold, hence X is not unirational. We follow the procedure to desingularize X described in [4,
§2] and, later, in [12, §4.1]. Some concrete applications can be found in [3, Example 3] and [5,
Example 5.2].

Definition 3.1. Let U be a smooth threefold and S ⊂ U a surface. We call S an arrangement
if locally it looks like an union of planes, that is, S is the union of smooth irreducible surfaces
S1, ..., Sr such that:

(1) for any i 6= j, the surfaces Si, Sj either intersect transversally along a smooth curve Ci,j or
are disjoint;

(2) the curves Ci,j , Ck,l either intersect transversally or coincide.
If U = P3 and the surfaces S1, . . . , Sr are of degree d1, . . . , dr such that d1 + · · · + dr = 8, then

S is called an octic arrangement.
An irreducible curve C ⊂ S is said to be q-fold if it lies on exactly q of the surfaces S1, . . . , Sr;

a point P ∈ S is said to be p-fold if it lies on exactly p of the surfaces S1, . . . , Sr.

Remark 3.2. One sees immediately that B is not an octic arrangement: the two quadric com-
ponents B5 and B6 are not smooth (cf. Lemma 2.5); moreover, they are tangent to B2 and B1,
respectively, and the intersections B3,6, B4,5 and B5,6 are reducible.

As noted in Remark 3.2, the branch locus B of X ⊂ P3 is not an octic arrangement. We want to
show that by blowing up P3 in some of the curves in B we obtain threefold U (5) such that the strict
transform B(5) ⊂ U (5) of B(4) is an arrangement. Then we proceed as in [4] and [12, Chapter 4].

3.1. The first blow up. In this subsection we illustrate the first step of the resolution process,
the blow up of P3 along the line B1,6.
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Definition 3.3. We define

σ(1) : U (1) := Bl1,6 P
3 := BlB1,6 P

3 → P3 =: U (0)

to be the blow up of P3 =: U (0) along the line B1,6.

We denote by B(1) ⊂ U (1) the strict transform of B ⊂ P3 and by B
(1)
i ⊂ B(1) the strict

transform of its components. Also, let K := KP3 and K(1) denote the canonical divisors of P3 and
U (1), respectively.

Lemma 3.4. The divisor B(1) ⊂ U (1) is linearly equivalent to −2K(1) and it inherits all the
singularities of B, cf. Lemma 2.7, except:

• B
(1)
6 is smooth,

• B
(1)
1 and B

(1)
6 intersect transversally in a line,

• B
(1)
3 and B

(1)
6 intersect in two disjoint lines.

Proof. The branch surface B6 is a singular quadric with a node in P := (0 : 1 : 0 : 1) which is
tangent to the branch plane B1 in the line B1,6 : x = y − t = 0. The node P also lies on the
branch surfaces B1 (and hence on the tangency line B1,6) and B3. For convenience, we introduce
the variable u := y − t, so that we can write

B1 : x = 0, B3 : x− z = 0, B6 : xz = u2, B1,6 : x = u = 0, P = (0 : 0 : 0 : 1)

in P3(x, u, z, t).

Identify the subset {t 6= 0} ⊂ P3 with A3(x, u, z) and consider the blow up σ : Ã3 → A3 of A3 in
A3 ∩B1,6:

Ã3 := {((x, u, z), (v0 : v1)) : v0x− v1u} ⊂ A3 × P1.

The exceptional divisor is then

E := {((0 : 0 : z), (v0 : v1))} ∼= A1 × P1.

We denote the standard affine open subsets of Ã3 by

Ã3
0 := {v1 6= 0} = A3(x, z, v0), (u = v0x);

Ã3
1 := {v0 6= 0} = A3(u, z, v1), (x = v1u).

Notice that

E0 := E ∩ Ã3
0 = {x = 0},

E1 := E ∩ Ã3
1 = {u = 0}.

The inverse image of B1 : x = 0 in Ã3 lies in {v1u = 0}; since u is not identically zero on B1, the

strict transform B
(1)
1 of B1 lies in v1 = 0. Hence, B

(1)
1 ∩ Ã3

0 = ∅. Therefore, to study B
(1)
1 we only

need to consider Ã3
1. The preimages of B3 and B6 are given by

σ−1(B3) : v1u = z,

σ−1(B6) : u(v1z − u) = 0;

denote by B
(1)
i the strict transform of Bi in Ã3

1. As E1 = {u = 0} we have

(5) σ∗(B1 +B2 +B3) ∩ Ã3
1 = 2E1 +B

(1)
1 +B

(1)
3 +B

(1)
6 .

By construction, Ã3 ⊂ U (1) and the projection σ(1) : U (1) → P3 restricted to Ã3 is σ. From (5)
it follows that E is not in the branch locus of X(1).
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Then, to compute the canonical divisor KX(1) of X(1), notice that the branch locus of X on P3

is B = B1 + · · ·+B6, a divisor of degree 8 and hence

(6) B = −2KP3.

Its strict transform is

(7) B(1) = σ(1)∗B − 2E.

By adjunction

(8) σ(1)∗KP3 = K(1) − E.

Equations (6), (7), and (8) yield

(9) B(1) = −2K(1),

proving the first statement.
The second statement follows immediately from the definition of blow up, noticing that the node

P of B1 lies on B1,6, and this point is also the point of intersection of the two components of
B3,6. �

3.2. The second blow up. We proceed by blowing the strict transform of B2,5.

Definition 3.5. We define

σ(2) : U (2) → U (1)

as the blow up of U (1) along B
(1)
2,5 , the strict transform of B2,5 in U (1).

We denote by B(2) and B
(2)
i the strict transforms in U (2) of B(1) and B

(1)
i , respectively. We also

denote by K(2) the canonical divisor of U (2).

We obtain a result analogous to Lemma 3.4.

Lemma 3.6. The divisor B(2) is linearly equivalent to −2K(2) and it inherits all the singularities
of B(1), cf. Lemma 3.4, except:

• B
(2)
6 is smooth,

• B
(2)
2 and B

(2)
5 intersect transversally in a line,

• B
(2)
4 and B

(2)
5 intersect in two disjoint lines.

Proof. Let E be the exceptional divisor of U (2) introduced by the blow up σ(2). Then, reasoning

as in the proof of Lemma 3.4, one can show that B(2) = σ(2)∗B(1) − 2E and σ(2)∗K(1) = K(2) −E.
As above, these two equalities and (9) yield

B(2) = −2K(2).

Again, the second statement follows immediately form the definition of blow up, noticing that

the node of B
(1)
5 lies on B

(1)
2,5 , and this node is also the intersection point of the two components of

B
(1)
4,5 . �
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3.3. The third blow up. We proceed as above, blowing up the strict transform of one of the
components of B5,6. Recall that B5,6 has two irreducible components meeting in two points. The

strict transform B
(2)
5,6 ⊂ U (2) stays reducible, with the two components still meeting in two points.

This feature prevents B(2) from being an arrangement. In order to solve this obstruction, we blow
up one of the two components.

Definition 3.7. We define

σ(3) : U (3) → U (2)

as the blow up of U (2) along (B1
5,6)

(2), the strict transform of (B1
5,6)

(1) in U (2).

We denote by B(3) and B
(3)
i the strict transforms in U (3) of B(2) and B

(2)
i , respectively. We also

denote by K(3) the canonical divisor of U (3).

Lemma 3.8. The divisor B(3) is linearly equivalent to −2K(3) and it inherits all the singularities

of B(2), cf. Lemma 3.6, except that B
(3)
5 and B

(3)
6 intersect in a single smooth conic.

Proof. As for Lemma 3.6. �

3.4. The fourth and fifth blow ups. We proceed our plan of resolving the singularities of B in
order to obtain an arrangement. In order to do so, we have to make sure that the strict transform of
B3 and B6, respectively B4 and B5, meet in a smooth irreducible curve. As B3 ∩B6, resp. B4 ∩B5,
meet in two incident lines, and so do their strict transforms in U (3), it is enough to blow up one
component of each intersection. Therefore, we define the blow up

σ(4) : U (4) → U (3)

of U (3) along (B1
3,6)

(3). Subsequently, we define

σ(5) : U (5) → U (4)

as the blow up of U (4) along (B1
4,5)

(4). For j = 4, 5, we define B(j) and B
(j)
i as the strict transforms

in U (j) of B(j−1) and B
(j)
i , respectively. Moreover, for j = 4, 5 we denote by K(j) the canonical

divisor of U (j).

Lemma 3.9. The divisor B(5) is linearly equivalent to −2K(5) and it is an arrangement in the
sense of Definition 3.1; it only has 2-fold curves and at most 4-fold points.

Proof. The first statement is proven as in the previous cases.
To see that B(5) is an arrangement, note that B(5) is isomorphic to B = B(0) outside the curves

that have been blown up: B1,6, B2,5, B
1
5,6, B

1
3,6, B

1
4,5. As noted in Remark 3.2, these are exactly the

loci not meeting the conditions for B to be an arrangement. Indeed, B(5) is the union of six smooth
surfaces:

• B
(5)
1 , . . . , B

(5)
4 are strict transforms of planes;

• B
(5)
5 and B

(5)
6 are the strict transforms of quadrics with a node blown up (also) along a line

containing the node, hence they are smooth;

• for every i, j ∈ {1, . . . , 6}, i 6= j, the intersection B
(5)
i ∩B

(5)
j is a smooth curve: either a line

or a conic.
As B only has 2-fold curves and at most 4-fold points, so does B(5). Notice that some of the

4-fold points have not been affected by the blow ups, e.g., (0 : 0 : 0 : 1), hence B(5) does have 4-fold
points. �
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3.5. Further blow ups. Following [4] and [12, §4.1], we proceed by blowing up the 4-fold points

and then the double curves of B(5) ⊂ U (5), eventually obtaining a smooth surface B̃ := B(n) ⊂
U (n) =: U . Let X̃ be the double cover of U ramified above B̃.

For the convenience of the reader, we also recall the definition of a Calabi–Yau threefold: a
smooth threefold Y is a Calabi–Yau threefold if and only if its canonical divisor KY is trivial and
Hi(Y,OY ) = 0 for i = 1, 2; see also Definition 4.1.

Proposition 3.10. The threefold X̃ is smooth and birationally equivalent to X. Moreover, it is a
Calabi–Yau threefold.

Proof. Let σ = σ(n) ◦ . . . ◦ σ(1) be the composition of all the blow ups

σ : U = U (n) → U (n−1) · · ·U (1) → U (0) = P3 .

Then σ is a birational map between U and P3, inducing a birational map between B̃ and B.
Therefore X̃ and X are birationally equivalent.

It remains to prove that X̃ is a Calabi–Yau threefold, i.e. it is smooth, has trivial canonical
divisor, and Hi(X̃,OX̃) = 0 for i = 1, 2.

As X̃ is the double cover of U , which is smooth, branched above the smooth (reducible) surface

B̃, we have that X̃ is also smooth.
After every blow up we have that B(k) = −2K(k), where K(k) is the canonical divisor of U (k).

Hence

B̃ = B(n) = −2K(n) = −2KU ,

yielding KX̃ = 0.

Let π : X̃ → U denote the double cover projection. As π is finite, it is affine and hence
Hi(X̃,OX̃) ∼= Hi(U, π∗OX̃) for each i ≥ 0. As X̃ is the double cover of U branched above

B̃ = −2KU , it follows that

π∗OX̃ = OU ⊕OU (KU ),

and hence

Hi(X,OX̃) ∼= Hi(U,OX̃)⊕Hi(U,OX̃(KU )).

By Serre duality we have that

Hi(U,OU (KU )) ∼= H3−i(U,OU ).

So we are only left to compute Hi(U,OU ) for i = 1, 2.
To see this, consider the sequence of blow ups

U := U (n) → U (n−1) → · · ·U (1) → U (0) := P3,

where σ(ℓ) : U (ℓ) → U (ℓ−1) is the blow up of U (ℓ−1) along a curve or a point, say Z(ℓ−1) or P (ℓ−1),
respectively.

If σ(ℓ) is the blow up along the curve Z(ℓ−1), then codimU(ℓ−1) Z(ℓ−1) = 2. From [15, Theorem
7.31], it follows that

Hi(U (ℓ),Z) ∼= Hi(U (ℓ−1),Z)⊕Hi−2(Z(ℓ−1),Z).

Then, for i = 1, we have

H1(U (ℓ),Z) ∼= H1(U (ℓ−1),Z) ;

for i = 2,

H2(U (ℓ),Z) ∼= H2(U (ℓ−1),Z)⊕H0(Z(ℓ−1),Z) ∼= H2(U (ℓ−1),Z)⊕ Z,



10 DINO FESTI, BERT VAN GEEMEN

as Zℓ−1 is a curve and hence H0(U (ℓ−1),Z) ∼= Z. Moreover, H0(U (ℓ−1),Z) is of type (0, 0), and
hence its contribution to H2(U ℓ,Z) is of type (1, 1).

The above reasoning applies also if σ(ℓ) is the blow up along the point P (ℓ). In this case
codimU(ℓ) P (ℓ) = 3. Then, from [15, Theorem 7.31], it follows that

Hi(U (ℓ),Z) ∼= Hi(U (ℓ−1),Z)⊕Hi−2(P (ℓ−1),Z)⊕Hi−4(P (ℓ−1),Z).

From this it follows that

H1(U (ℓ),Z) ∼= H1(U (ℓ−1),Z) ,

H2(U (ℓ),Z) ∼= H2(U (ℓ−1),Z)⊕ Z ,

exactly as in the previous case. Also in this case, the contribution to H2(U (ℓ),Z) comes from
H0(P (ℓ−1),Z) ∼= Z and it is of type (1, 1).

For ℓ = 1 we then have

H1(U (1),Z) ∼= H1(P3,Z) = 0 ,

H2(U (1),Z) ∼= H2(P3,Z)⊕H0(Z(1),Z) ∼= Z2 .

As H2(P3,Z) is of type (1, 1), so is H2(U (1),Z). Then, proceeding by induction, we obtain

H1(U,Z) ∼= H1(P3,Z) = 0 ,

H2(U,Z) = H2(U (n),Z) ∼= Zn+1 ,

with H2(U,Z) purely of type (1, 1). From H1(U,Z) = 0 it follows that 0 = h1(U) = h1,0 + h0,1 and
hence

0 = h0,1 = dimH1(U,OU ),

concluding that H1(U,OU ) = 0; from H2(U,Z) ∼= Zn+1, of type (1, 1), it follows that

n+ 1 = h2(U) = h2,0(U) + h1,1(U) + h0,2 = h2,0(U) + (n+ 1) + h0,2,

yielding h2,0 = h0,2 = 0. In particular, h0,2 = 0 means that H2(U,OU ) = 0, concluding the proof.
�

We are now ready to prove the main theorem.

Proof of Theorem 1.3. From [2, Proposition 18], the square root
√
f1f2f3f4 is rationalizable if and

only if Y is unirational. As Y is birationally equivalent to X , then the condition above is equivalent
to the unirationality of X . From Proposition 3.10 we know that X is birationally equivalent to
X̃ and that X̃ is a Calabi–Yau threefold, hence it is not unirational. Therefore

√
f1f2f3f4 is

non-rationalizable.
The non-rationalizability of A follows immediately from the first statement and [2, Proposition

47]. �

Remark 3.11. Notice that in order to prove the theorem, it would have been enough to show that
X̃ has a trivial, and in fact even just effective, canonical divisor. Indeed, this would already imply
that h3,0 = 1  0 and hence X̃ cannot be unirational.
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4. Guessing unirationality via point counting

In this section we show how to use modularity and point counting to guess the unirationality of a
given threefold Y defined over Q, cf. Corollary 4.21. The technique reported below is very quick to
employ but subject to assumptions that are often hard to check, making this method not viable to
give a proof. A consistency check can be made under the assumption that the smooth model Ỹ of
Y is a K3 surface or a Calabi–Yau threefold, cf. Conjecture 4.25 and Conjecture 4.31, respectively.

4.1. Introduction to modularity of Calabi–Yau varieties. In what follows, Y will denote a
(not necessarily smooth) complex projective variety of dimension d that can be defined over Q. In
this subsection we will mostly follow [12, Chapter 1].

Definition 4.1. We say that Y is a Calabi–Yau variety if it is smooth, Hi(Y,OY ) = 0 for every
0 < i < d, and the canonical divisor KY ∼ 0 is trivial.

From the second condition and by Serre duality we get that

h0,0(Y ) = hd,0(Y ) = h0,d(Y ) = hd,d(Y ) = 1,

where hp,q(Y ) := dimC Hq(Y,Ωp
Y ) is the p, q-th Hodge number of Y .

Example 4.2. A Calabi–Yau variety of dimension d = 1 (equipped with a rational point) is an
elliptic curve. It has the following Hodge diamond.

1
1 1

1

Example 4.3. A Calabi–Yau variety of dimension d = 2 is a K3 surface. It has the following
Hodge diamond.

1
0 0

1 20 1
0 0

1

Example 4.4. A Calabi–Yau variety of dimension d = 3 is an Calabi–Yau threefold, from now on
abbreviated into CY 3-fold. It has the following Hodge diamond.

1
0 0

0 h1,1(Y ) 0
1 h2,1(Y ) h1,2(Y ) 1

0 h2,2(Y ) 0
0 0

1

Remark 4.5. CY manifolds are Kähler, hence h1,1(Y ) > 0. For CY 3-folds, all 2-cycles are
algebraic, hence H2(Y,Z) ∼= PicY , that is, h1,1(Y ) = h2(Y ) = ρ(Y ), the Picard number of Y .

Definition 4.6. We say that a CY 3-fold Y is rigid if h2,1(Y ) = 0, otherwise we call it non-rigid.

As Y is defined over Q, it admits a model over Z.
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Definition 4.7. Let Y be a CY variety. We say that a prime p is of good reduction for Y if the
reduction Ȳp of Y over Fp is again a CY variety. So, in particular, Ȳp is smooth.

Let p be a prime of good reduction for Y . Then the Frobenius map Frobp : Fp → Fp, x 7→ xp, acts
on Ȳp; it induces an action on the cohomology groups, in particular on Hd

ét(Ȳp,Qℓ) ∼= Hd
ét(Y,Qℓ),

where ℓ 6= p is a prime. We can then consider the trace of the pullback of Frobp on Hd
ét(Y,Qℓ),

denoted by

tr(Frob∗p |Hd
ét(Y,Qℓ)).

Definition 4.8. We recall that the L-function of Y (or Hd(Y )) is a series

L(Y, s) :=
∞∑

k=1

ak(Y )

ks
,

and one has
• a1(Y ) = 1,
• for every prime p of good reduction, ap = tr(Frob∗p |Hd

ét(Y,Qℓ)).

Theorem 4.9 (Lefschetz trace formula). Let Y be a smooth variety over Fp and, for r ≥ 1, let
#Ypr denote the number of points of Y over Fpr . Then

#Ypr =

2d∑

i=0

(−1)i tr((Frob∗p)
r |Hd

ét(Ȳ ,Qℓ)).

Theorem 4.10 (Weil–Deligne). Let Y be a smooth complex variety that can be defined over
Q and let p be a prime of good reduction for Y . Then, for every i = 0, ..., 2d the quantity
tr(Frob∗p |Hi

ét(Y,Qℓ)) is an integer and

| tr(Frob∗p |Hi
ét(Y,Qℓ))| ≤ hi(Y )pi/2.

So, in particular,

|ap(Y )| ≤ hd(Y )pd/2.

Using the knowledge of the Hodge diamond it is possible to give formulas to compute ap(Y )
when Y is a CY variety that can be defined over Q, see below.

Example 4.11. Let E be an elliptic curve, p a prime of good reduction and ℓ 6= p another prime,
then

• a1(E) = 1,
• ap(E) = tr(Frob∗p |H1

ét(E,Qℓ)),

• #Ep =
∑2

i=0(−1)i tr(Frob∗p |Hi
ét(E,Qℓ)) = 1− ap(E) + p,

from which it follows that ap(E) = p+ 1−#Ep.

Example 4.12. Let Y be a complex K3 surface that can be defined over Q, p a prime of good
reduction and ℓ 6= p another prime, then

• a1(Y ) = 1,
• ap(Y ) = tr(Frob∗p |H2

ét(Y,Qℓ)),

• #Yp =
∑4

i=0(−1)i tr(Frob∗p |Hi
ét(Y,Qℓ)) = 1− 0 + ap(Y )− 0 + p2,

from which it follows that ap(Y ) = #Yp − 1− p2. Notice that the same computations hold for any
smooth surface with h1 = h3 = 0.
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Theorem 4.13 (Modularity of singular K3 surfaces [11]). Let S be a K3 surface defined over Q

having maximal Picard number over Q, and let q = e2πiz with Im(z) > 0. Then there exists a
newform

f(q) =

∞∑

k=1

bkq
k ∈ Snew

3 (Γ(N))

of weight 3 with respect to a congruence subgroup Γ ≤ PSL2(Z) and N = −m2 · detPicS for some
m ∈ N (cf. [13, Prop. 7.1]), such that

ap(Y ) = bp

for all the primes p of good reduction for Y .

Example 4.14. Let Y be a CY 3-fold that can be defined over Q, p a prime of good reduction
and ℓ 6= p another prime, then

• a1(Y ) = 1,
• ap(Y ) = tr(Frob∗p |H3

ét(Y,Qℓ)),
•

#Yp =

6∑

i=0

(−1)i tr(Frob∗p |Hi
ét(Y,Qℓ)) =

= 1− 0 + tr(Frob∗p |H2(Y,Qℓ))− ap(Y ) + tr(Frob∗p |H4(Y,Qℓ))− 0 + p3.

By definition of CY 3-fold, we have that H2(Y,C) = H1,1(Y ) and hence PicY = H2(Y,Z). Then

tr(Frob∗p |H2(Y,Qℓ)) = kp(Y )p,

where kp(Y ) ∈ Z and |kp(Y )| ≤ h2(Y ) = h1,1(Y ). The equality kp(Y ) = h1,1(Y ) holds if and only if
H2

ét(Y,Qℓ) = Pic(YQ)⊗Z Qℓ is generated by divisors defined over Q. By Poincaré duality it follows
that

tr(Frob∗p |H4(Y,Qℓ)) = kp(Y )p2,

yielding

ap(Y ) = 1 + (p+ p2)kp(Y ) + p3 −#Yp.

Theorem 4.15 (Modularity of rigid CY 3-folds [8]). Let Y be a rigid CY 3-fold, and q = e2πiz,
with Im(z) > 0. Then, for some integer N , there exists a new form

f(q) =

∞∑

k=1

bkq
k ∈ Snew

4 (Γ0(N))

of weight 4 with respect to Γ0(N), such that

bp = ap(Y )

for all the primes p of good reduction for Y . The level N is only divisible by the primes of bad
reduction of Y ; the maximal exponent ep of a prime dividing N is bounded:

(1) ep ≤ 2 for p > 3;
(2) e3 ≤ 5;
(3) e2 ≤ 8.

Remark 4.16. A similar result should hold for every smooth complex variety Y of dimension 2k−1
with h2k−1(Y,C) = 2 and h2k−1,0(Y ) = 1 if we replace Snew

4 with S2k, see [8, §2]. So in particular

it should hold for possibly singular threefolds Z such that its desingularization Z̃ has h3(Z̃,C) = 2

and h3,0(Z̃) = 1.
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4.2. Non-unirationality via point counting. Let Y be a complex variety, possibly non-smooth,
and let Ỹ → Y be a smooth resolution of singularities.

Assumption 4.17. The resolution Ỹ → Y is defined over Q and Ỹ is projective.

Definition 4.18. By assumption, Y has a non-singular projective model Ỹ that can be defined
over Q and hence over Z. This means that there exists a Zp-scheme Y → SpecZp such that its

generic fiber Yη is isomorphic to Ỹ .
We say that a prime p is of good reduction for Y if Yp/Fq is a smooth variety, for any q = pm.

Notice that Yp can be viewed as the reduction Ỹp of Ỹ modulo p.

Assumption 4.19. For every prime of good reduction p,

#Yp(Fp) ≡ #Yp(Fp) mod p .

Lemma 4.20. [1, Theorem 1.1] Let Y → SpecZp be a smooth Zp-scheme of dimension d. Let Yη

denote the fiber above η = (0) ∈ SpecZp, and Yp the closed fiber above (p). If hk,0(Yη) = 0 for
every k = 1, ..., d, then #Yp(Fp) ≡ 1 mod p.

Using Lemma 4.20, one can make a first guess about the unirationality of Y via point counting
under Assumption 4.19, as shown by the following result.

Corollary 4.21. Let Y be defined as before and let p be a prime of good reduction for Y . Un-
der Assumption 4.19, if #Yp(Fp) 6≡ 1 mod p, then Y is not unirational.

Proof. Assume that Y is unirational, then it follows that Ỹ and hence Yη are unirational too. In par-
ticular, hk,0(Yη) = 0 for k = 1, 2, 3, Then, as p is a prime of good reduction for Y , c.f. Definition 4.18,
we have that #Yp(Fp) ≡ 1 mod p by Lemma 4.20. Moreover, by Assumption 4.19, it holds that
#Yp(Fp) ≡ #Yp(Fp) mod p. So, in particular,

1 ≡ #Yp(Fp) ≡ #Yp(Fp) 6≡ 1 mod p ,

a contradiction. This proves that Y is not unirational. �

We can apply the above tools to the more specific cases of K3 surfaces and Calabi–Yau threefolds,
for which, in some cases, we can use the modularity theorems to perform a consistency check. In
what follows, we will need the following definition.

Definition 4.22. Let B ∈ N a positive integer. Then we define the sets:

Σ(B) = {p prime : p ≤ B and p is of good reduction for Y } , and
Σ0(B) = {p ∈ Σ(B) : #Yp(Fp) 6≡ 1 mod p}.

4.3. Point counting for K3 surfaces. In this subsection we assume that dimY = 2 and Y sat-
isfies assumptions 4.17 and 4.19. We denote by Ỹ a fixed minimal smooth model of Y .

Lemma 4.23. If Ỹ is a K3 surface, then the following congruence holds:

ap(Ỹ ) ≡ #Yp(Fp)− 1 mod p

for every prime of good reduction p.

Proof. As Ỹ is a K3 surface and p is a prime of good reduction, we know that

ap(Ỹ ) = #Yp(Fp)− 1− p2,
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see Example 4.12. By Assumption 4.19, this yields

ap(Ỹ ) ≡ #Yp(Fp)− 1 mod p,

concluding the proof. �

If we suspect that Y is not unirational (for example by Corollary 4.21) and, moreover, that

its desingularization Ỹ is a singular K3 surface, i.e. a K3 surface with maximal Picard number
over Q, we can use Lemma 4.23 to do a consistency check via point counting, instead of explicitly
computing the cohomology of Ỹ . To do so, we consider the set of primes of good reduction Σ(B),
cf. Definition 4.22, and we compute the number of points #Y (Fp) for p ∈ Σ(B). In the examples
below, this set does not need to be very large, we took B = 100. So, upon computing the number
of points #Yp(Fp) for a finite set Σ(B) of primes of good reduction, we can look for levels N ,
congruence subgroups Γ ≤ PSL2(Z) and modular forms

f(q) =

∞∑

k=1

bkq
k ∈ Snew

3 (Γ(N))

such that bp ≡ #Yp(Fp)− 1 mod p for any p ∈ Σ(B).

Assumption 4.24. For some N ∈ N, subgroup Γ ≤ PSL2(Z), and a positive integer B such that
#Σ0(B) ≥ 10, there exists a newform f ∈ Snew

3 (Γ(N)) such that

bp ≡ #Yp(Fp)− 1 mod p

for every p ∈ Σ(B).

Conjecture 4.25. If Y satisfies Assumption 4.24, then Y is birationally equivalent to a smooth
surface Ỹ with h2,0(Ỹ ) ≥ 1. In particular, Y is not unirational.

Remark 4.26. It is important to take all the primes up to a certain bound B: given a surface
Y such that Ỹ is a singular K3 surface, it might still happen that all for the primes p satisfying a
certain congruence one has #Yp(Fp) ≡ 1 mod p, giving the false impression that Y is unirational.
In fact this happens for the surface S in §4.5: in this case we find that #Yp(Fp) ≡ 1 mod p for all
the primes p ≡ 5, 7 mod 8. The same happens for the Fermat quartic and all the primes p ≡ 3
mod 4.

Remark 4.27. If Ỹ is a K3 surface with Picard number 20 over Q, then the level N of the form
f determines the discriminant of Pic Ỹ modulo squares, cf. Theorem 4.13. In this case we expect
that bp ≡ #Yp(Fp)− 1 mod p for all primes p of good reduction.

If Ỹ is a K3 surface with Picard number 20 over Q, then we expect even more: #Yp(Fp) =
1 + 20p+ bp + p2.

4.4. Point counting for Calabi–Yau threefolds. In this subsection we assume that dimY = 3
and Y satisfies assumptions 4.17 and 4.19. We denote by Ỹ a fixed smooth model of Y .

Remark 4.28. If Y has only ordinary double points, then Assumption 4.19 is satisfied. Indeed, an
ordinary double point gets resolved after one blow up, introducing a P1 ×P1 as exceptional divisor.
Then the claim follows from the computations in [12, §1.6.1].

Lemma 4.29. If Ỹ is a Calabi–Yau threefold, then the following congruence holds:

ap(Ỹ ) ≡ 1−#Yp(Fp) mod p

for every prime of good reduction p.
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Proof. As Ỹ is a CY 3-fold, we know that

ap(Ỹ ) = 1 + (p+ p2)kp(Ỹ ) + p3 −#Yp(Fp),

cf. Example 4.14. By Assumption 4.19, this yields

ap(Ỹ ) ≡ 1 + (kp(Ỹ )− αp)p+ (kp(Ỹ )− βp)p
2 + p3 −#Yp(Fp) mod p

≡ 1−#Yp(Fp) mod p .

�

Analogously to the previous section, Lemma 4.29 tells us that if we suspect that Y is not uni-
rational (for example by Corollary 4.21) and that, moreover, its desingularization Ỹ is a rigid CY
3-fold, then we can do a consistency check via point counting instead of explicitly computing the
cohomology of Ỹ . To do so, it is enough to consider the primes in the set Σ(B), cf. Definition 4.22,
for some bound B. Also in the example below, we take B = 100.

We can then look for levels N and modular forms

f(q) =
∞∑

k=1

bkq
k ∈ Snew

4 (Γ0(N))

such that bp ≡ 1 − #Yp(Fp) mod p for any p ∈ Σ(B). Note that in this case the congruence
subgroup is fixed, and Theorem 4.15 gives us a hint about the possible values for N , making the
search more practical.

Assumption 4.30. For some N ∈ N and a positive integer B such that #Σ0(B) ≥ 10, there exists
a newform f ∈ Snew

4 (Γ0(N)) such that

bp ≡ 1−#Yp(Fp) mod p

for every p ∈ Σ(B).

Conjecture 4.31. If Y satisfies Assumption 4.30, then Y is birationally equivalent to a smooth
threefold Ỹ with h3,0(Ỹ ) ≥ 1. In particular, Y is not unirational.

4.5. Application to two surfaces. Let Q ⊂ P3 be the quartic surface defined by

Q : − x2
3(x

2
4 − x1x2) + (x1 + x2)(x1x

2
4 + x2x

2
4 − 4x1x2x4 + x2

1x2 + x1x
2
2) = 0,

and S ⊂ P(3, 1, 1, 1) the double sextic defined by

S : y20 = (y21 + y22 − 2y23)(y
2
1y

2
2 − y43),

both studied in [7]. The two surfaces have several singular points, so we cannot immediately
conclude that they are birationally equivalent to K3 surfaces. After counting points of the reductions
modulo all the odd primes smaller than 100, one sees that #Qp(Fp),#Sp(Fp) 6≡ 1 mod p for many
primes p. Moreover Q and S both satisfy Assumption 4.24 with

f(q) = q − 6q5 + 9q9 + 10q13 − 30q17 + 11q25 + 42q29 − 70q37 +O(q41) ∈ Snew
3 (Γ1(16)),

g(q) = q − 2q2 − 2q3 + 4q4 + 4q6 − 8q8 − 5q9 + 14q11 − 8q12 +O(q14) ∈ Snew
3 (Γ1(8))

respectively. Therefore we expect Q and S not to be unirational.
The prediction for S is confirmed by [7, Theorem], where it is shown that its smooth model S̃ a

K3 surface whose Picard lattice has rank 20 and discriminant −8. In the same paper, the authors
suggest that Q and S are birationally equivalent, which contradicts the heuristic associating them
to two distinct modular forms, moreover of levels differing by 2, which is not a square. Below we
show that the suggestion is indeed wrong.
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Proposition 4.32. The surfaces Q and S are not birationally equivalent.

Proof. Let Q̃ and S̃ denote the smooth models of Q and S, respectively. It is easy to check that Q
has only ADE singularities, and hence Q̃ is a K3 surface. The same holds for S and S̃. Recall that
if two K3 surfaces are birationally equivalent then they are isomorphic. This means that if Q and
S are birationally equivalent, Q̃ and S̃ are isomorphic; in particular, they have isometric Picard
lattices.

From [7, Theorem] we know that Pic S̃ has rank 20 and discriminant −8. By projecting from
a node of Q, we obtain a model of Q as double sextic. It is then easy to find some −2-curves on
this model. Using these curves and the exceptional divisors we generate a lattice Λ ⊆ Pic Q̃ of rank
20, discriminant −16 and index [Pic Q̃ : Λ] ≤ 2. It follows that Pic Q̃ has rank 20 and discriminant

either −16 or −4. In any case, detPic Q̃ 6∼= detPic S̃, showing that Q and S are not birationally
equivalent. �

Remark 4.33. Note that the level of f is a square multiple of detPic Q̃, as predicted by Theorem 4.13.
The same holds for g and S.

4.6. Application to the double octic. Let X be the double octic defined in (4). Notice that it
is reasonable to assume that X satisfies 4.17 and 4.19. We proceed then with the point counting,
obtaining Table 2.

p 3 5 7 11 13 17 19 23
#Xp(Fp) 46 180 500 1716 2732 6060 8132 13932
1−#Xp(Fp) mod p 0 1 5 1 12 10 1 7

p 29 31 37 41 43 47 53 59
#Xp(Fp) 27492 33476 55580 75276 86612 112380 159492 219492
1−#Xp(Fp) mod p 1 5 32 1 34 45 39 48

p 61 67 71 73 79 83 89 97
#Xp(Fp) 241916 317300 376716 409532 517892 599172 735132 948380
1−#Xp(Fp) mod p 11 13 11 72 33 6 9 87

Table 2. Point counting on Xp for every odd prime smaller than 100.

For many primes p we see that Xp(Fp) 6≡ 1 mod p, hence by Corollary 4.21 we expect X not
to be unirational. In an attempt to gather more evidence towards the non-unirationality of X ,
we look for a modular form satisfying Assumption 4.30. We then find that the unique newform
f(q) =

∑
∞

k=1 bkq
k ∈ Snew

4 (Γ0(6)), with

(10) f(q) = q − 2q2 − 3q3 + 4q4 + 6q5 + 6q6 − 16q7 − 8q8 + 9q9 − 12q10 + 12q11 +O(q12),

satisfies Assumption 4.30, giving yet a stronger hint, cf. Conjecture 4.31. The heuristics suggesting
that X is not unirational are indeed confirmed by Proposition 3.10.

Remark 4.34. In this particular case, the evidence is even stronger: indeed, one can check that

(11) bp = 1− 8p+ 4p2 + p3 −#Xp(Fp)

for every prime 3 < p < 100, suggesting that X̃ is a rigid CY 3-fold. This is confirmed by B.
Naskrȩcki in a private communication: he proves that the L-function of X̃ is indeed (10) and

deduces the rigidity of X̃. The same result was suggested also by S. Cynk.
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In [14], van den Bogaart and Edixhoven compute the cohomology of varieties defined over Q and
satisfying even stronger conditions on the number of rational points of their reduction modulo a
prime p. In particular, they show that if Y/Q is a smooth variety such that #Yp(Fp) behaves
polynomially for all primes p, then all the cohomology groups of odd degree vanish and they
determine the dimension of the cohomology groups of even degree.

Remark 4.35. The fact that (11) does not hold for p = 3 is consistent with the level of f being 6,
suggesting that p = 3 is a prime of bad reduction for X , cf. Theorem 4.15. Indeed, if X3 denotes
the reduction of X modulo 3, then, looking at Table 1, one can see that the four singular points

(1 : 1 : 1 : 0), (1 : 1 : 4 : 3), (1 : 4 : 1 : 3), (4 : 1 : 1 : 3) ∈ X

collapse to the singular point (1 : 1 : 1 : 0) ∈ X3. One can then check that X3 has a non-ordinary
singularity in (1 : 1 : 1 : 0), whereas X has an ordinary one.

Remark 4.36. The same newform f in (10) appears also in [9] and [12, §5.7], in relation to other
CY 3-folds.
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