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Simple Summary: Mitochondria are organelles involved in different biological processes, including
tumorigenesis. Accumulating evidence strongly supports that, despite the presence of an active
glycolytic pathway (the Warburg effect), cancer cells undergo a mitochondrial metabolic rewiring
towards the OXPHOS pathway, leading to the production of high levels of ATP to sustain their
uncontrolled proliferation and aggressive behavior. Alterations of the mitochondrial structural
dynamics (biogenesis, fusion, fission, mitophagy) are also involved in cancer growth and progression.
The mechanisms underlying this mitochondrial plasticity, now considered as a hallmark of cancer,
were shown to occur with specific features in different cancer cell types and contexts. In this review,
we provide an incisive description of the peculiar metabolic rewiring and structural dynamics
occurring in prostate cancer cells during the different phases of their transformation from healthy
cells to early- and late-stage cancer cells. We also address the role of these mitochondrial dynamics as
effective targets of therapeutic approaches.

Abstract: Prostate cancer (PCa) is the second leading cause of cancer deaths among men in Western
countries. Mitochondria, the “powerhouse” of cells, undergo distinctive metabolic and structural
dynamics in different types of cancer. PCa cells experience peculiar metabolic changes during their
progression from normal epithelial cells to early-stage and, progressively, to late-stage cancer cells.
Specifically, healthy cells display a truncated tricarboxylic acid (TCA) cycle and inefficient oxidative
phosphorylation (OXPHOS) due to the high accumulation of zinc that impairs the activity of m-
aconitase, the enzyme of the TCA cycle responsible for the oxidation of citrate. During the early phase
of cancer development, intracellular zinc levels decrease leading to the reactivation of m-aconitase,
TCA cycle and OXPHOS. PCa cells change their metabolic features again when progressing to the
late stage of cancer. In particular, the Warburg effect was consistently shown to be the main metabolic
feature of late-stage PCa cells. However, accumulating evidence sustains that both the TCA cycle
and the OXPHOS pathway are still present and active in these cells. The androgen receptor axis as
well as mutations in mitochondrial genes involved in metabolic rewiring were shown to play a key
role in PCa cell metabolic reprogramming. Mitochondrial structural dynamics, such as biogenesis,
fusion/fission and mitophagy, were also observed in PCa cells. In this review, we focus on the
mitochondrial metabolic and structural dynamics occurring in PCa during tumor development and
progression; their role as effective molecular targets for novel therapeutic strategies in PCa patients is
also discussed.
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1. Introduction

Mitochondria are organelles involved in different cellular processes, including cell
proliferation and intrinsic apoptosis, redox and Ca2+ homeostasis as well as cell stemness.
They are also known as the master producers of ATP, being deeply involved in cellular
energy metabolism; in addition, being dynamic organelles, they often undergo structural
changes, including biogenesis, fusion/fission and mitophagy. Specifically, it is now well
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recognized that mitochondria undergo complex functional and structural dynamics in
cancer cells during the different phases of tumor growth and progression.

1.1. Mitochondrial Metabolism in Cancer Cells

It is now recognized that cancer cells, growing in a hypoxic and hyponutrient microen-
vironment, are forced to adapt their metabolism (“metabolic reprogramming”) to obtain
the required amount of biomass and energy to sustain their uncontrolled proliferation and
aggressive behavior.

According to the theory proposed by Otto Warburg in the 1920s (named the Warburg
effect), cancer cells are characterized by high rates of glucose uptake and preferentially
metabolize it through the glycolytic pathway, even in the presence of adequate amounts of
oxygen (aerobic glycolysis) and functional mitochondria [1,2]. Although a small amount of
ATP per mole of glucose is produced through glycolysis, it is believed that this metabolic
process rapidly produces high levels of metabolites to sustain the biosynthesis of the
molecules (i.e., amino acids, fatty acids and nucleotides) required for cancer cell growth
and division [3–8]. Moreover, the high levels of lactate produced at the end of glycolysis by
lactate dehydrogenase (LDH) are secreted by cancer cells to generate an acidic tumor mi-
croenvironment promoting their transition to the most aggressive (i.e., migratory, invasive)
phenotype and affecting the immune microenvironment to induce an immune tolerant
condition [9,10].

Despite the presence of an active glycolytic pathway, several recent data strongly
support the coexistence of functional mitochondria in cancer cells, even in the metastatic
phase [6,11–20]. Mitochondria, known as the “powerhouse of the cell”, are deeply involved
in the cellular metabolic dynamics, being the major intracellular producers of ATP through
the oxidative phosphorylation (OXPHOS) pathway; these organelles are also the “venue”
where the tricarboxylic acid (TCA) cycle takes place to provide the most building blocks
for the synthesis of biomolecules. A high level of fatty acid β-oxidation also occurs in
mitochondria to sustain the production of citrate. Moreover, glutaminolysis is activated
to convert glutamine into intermediates for the synthesis of amino acids and nucleotides,
as well as into glutamate to fuel the TCA cycle. Together, these metabolic pathways are
necessary for cell anabolism to trigger cell proliferation and metastasis in cancers [8,20–30].

A metabolic remodeling based on a shift towards the OXPHOS machinery has also
been shown to be involved in the development of drug resistance in tumor cells [31–34] and
to occur in the subpopulation of cancer stem cells (CSCs), known to play a key role in tumor
relapse, to provide sufficient amounts of energy and metabolites for their self-renewal and
evasion from cell death induced by anticancer drugs [35–43].

Cancer cell metabolic plasticity has also been reported to be regulated by neighboring
cells in the tumor microenvironment through both mechanical and chemical factors [18,44].
For instance, it has been shown that cancer-associated fibroblasts (CAFs) secrete lactate
that is taken up by tumor cells to trigger their metabolic switch towards the OXPHOS
energy-producing pathway and reactive oxygen species (ROS) generation [45–48].

The key role played by mitochondrial metabolism in cancer is strongly supported by
the observation that different compounds were shown to exert their anticancer activity by
targeting the oxidative phosphorylation pathways [42,49–56].

In addition to their central role in energy production, these organelles are also involved
in different biological processes, such as ROS production and signaling, Ca2+ homeostasis
and apoptosis [57–61]. ROS are generated as by-products of an impaired activity of the
mitochondrial electron transport chain (ETC), specifically of respiratory complexes I, II
and III, leading to an excessive production of electrons that are directly transferred to
oxygen-producing superoxides [62]. It is now clear that the effects of ROS on oxidative
cell signaling depend on the specific type of generated ROS, their localization and, in
particular, their concentration [63–67]. In cancer cells, low or moderate levels of ROS
were shown to be associated with activated mitogenic pathways, supporting cell growth
and metastatic behavior, and with a survival advantage to stress-inducing stimuli from
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the microenvironment [57,64,68,69]. On the other hand, high levels of ROS were widely
reported to induce DNA damage and to trigger pro-death mechanisms (i.e., apoptosis,
paraptosis, necroptosis) [57,70,71] as well as to mediate the activity of several anticancer
drugs [72]. ROS overproduction is frequently observed as a consequence of increased
endoplasmic reticulum (ER)-derived Ca2+ levels in mitochondria. Ca2+ overload and ROS-
associated mitochondrial dysfunctions have been reported to be linked to the induction of
apoptosis and paraptosis [54,73–76].

1.2. Mitochondrial Dynamics in Cancer Cells

Mitochondria are also highly dynamic organelles undergoing changes in number and
structure through different processes such as biogenesis, fusion, fission (fragmentation)
and mitophagy (removal of impaired mitochondria). A balance between these processes is
required for the maintenance of homeostasis in healthy cells; on the other hand, adaptations
of mitochondrial dynamics have been widely reported in cells undergoing metabolic and
stressful conditions (i.e., glucose starvation, hypoxia), such as cancer cells [8,77–82].

Mitochondrial biogenesis is the generation of new organelles from pre-existing ones.
In cancer cells, an increase in mitochondrial mass is induced by a variety of stressful
signals and has been found to correlate with cell growth, invasiveness, metastasis and
drug resistance [83,84]. The master regulator of mitochondrial biogenesis is peroxisome
proliferator-activated receptor gamma coactivator 1α (PGC1α) which cooperates with differ-
ent transcription factors to increase the expression of the mitochondrial transcription factor
(TFAM), the final effector of the increase of mitochondrial mass [85]. PGC1α, activated by
phosphorylation by the energy sensor adenosine monophosphate-activated protein kinase
(AMPK) and by deacetylation by silent information regulator 1 (SIRT1), also triggers the
transcription of both nuclear and mitochondrial genes, leading to increased mitochondrial
mass, OXPHOS activity and ATP production [86–88]. Mitochondrial biogenesis has been
shown to mediate the ability of CSCs to overcome antitumor therapies [89–91].

An imbalance in the mitochondrial fusion/fission leads to peculiar changes of the mor-
phological features of these organelles (interconnected vs. fragmented). GTPases belonging
to the dynamin family play a pivotal role in mediating both of these processes [16,60,79,82].
Mitochondrial fusion is the physical merging of the outer membranes (OMM) and the
inner membranes (IMM) of distinct mitochondria and depends on GTP hydrolysis. This
process foresees the activity of three GTPases, mitofusin (MFN) 1 and 2 on the OMM and
optic atrophy protein 1 (OPA1) on the IMM. MFN 1 and 2 interact to induce the formation
of strict connections between adjacent mitochondria, leading to the fusion of the OMM.
Then, OPA1 interacts with MFNs forming intermembrane protein complexes, thus coupling
the fusion of OMMs with IMMs [92–95]. Mitochondrial fission is a multi-step process
allowing the division of one mitochondrion, leading to the formation of new organelles.
The key protein involved in this process is dynamin-related protein 1 (DRP1), a cytosolic
GTPase. Endoplasmic reticulum (ER) membranes get in touch with mitochondria allowing
a Ca2+ flux from the ER into the mitochondria, thus favoring actin polymerization and
inner mitochondrial membrane constriction at this site. At the level of ER-mitochondria
contact sites, different proteins such as mitochondrial dynamics 49 and 51 (MID49 and
MID51), MFF and mitochondrial fission 1 (FIS1) proteins, identified as DRP1 receptors, are
also located. DRP1 binds to these proteins to encircle and shrink the mitochondria, finally
leading to their fission. Accumulating evidence demonstrates that an imbalance in these
mitochondrial dynamics occurs in different types of cancer [79,96–99].

Mitophagy is the process by which damaged mitochondria are selectively removed,
thus representing a key mechanism of mitochondrial quantity and quality control. This
process foresees the engulfment of mitochondria in autophagosomes by which the or-
ganelles are transferred to lysosomes where they are degraded [100]. The PTEN-induced
serine/threonine kinase 1 (PINK1)/Parkin (an E3 ubiquitin ligase) pathway plays a pivotal
role in detecting dysfunctional mitochondria and in activating mechanisms leading to
their removal and replacement. In the presence of damaged mitochondria, PINK1 local-
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izes at the OMM level where it phosphorylates (i.e., activates) Parkin, which triggers the
ubiquitination of different target proteins (mitophagy receptors), such as FIS1, MFN1/2,
Miro and voltage-dependent anion channel-1 (VDAC1). These proteins, in turn, recruit
the autophagic adaptors p62 and optineurin (OPTN) and selectively interact with the au-
tophagosomal marker LC3 that mediates mitochondria engulfment into autophagosomes,
thus, ultimately, leading to their degradation at the lysosomal level [101–103]. Dysregu-
lations of the mitochondrial mitophagic process have been reported to occur in different
diseases, including cancer [102,104–106]. Last but not least, it has been reported that
changes in the mitochondrial structural dynamics together with mtDNA damage (i.e.,
mutations, altered copy number and transcription) correlate with changes in mitochondrial
respiration and ATP production in cancer cells.

2. Mitochondrial Metabolism and Dynamics in PCa

Prostate cancer (PCa) represents the most common malignancy among men and the
second leading cause of cancer deaths in developed countries [107]. Androgen-deprivation
therapy (ADT), based on gonadotropin-releasing hormone (GnRH) agonists and antago-
nists, either alone or in combination with androgen receptor antagonists (enzalutamide, apa-
lutamide, darolutamide), still remains the most common treatment for androgen-dependent
PCa patients [108–114]. However, PCa often progresses towards the castration-resistant
phase (CRPC), a condition characterized by the acquisition of a more aggressive and
metastatic behavior even in the absence of circulating androgens [115,116]. The standard
treatment of CRPC patients is presently based on chemotherapy (docetaxel) either alone or
in combination with GnRH analogs, antiandrogens or inhibitors of androgen synthesis (abi-
raterone) [117–127]. Novel therapeutic strategies, such as immune check-point inhibitors or
CAR-T approaches, are under investigation [128–131]. The elucidation of novel molecular
hallmarks of tumor progression (i.e., mitochondrial metabolism and dynamics) will likely
pave the way for the development of novel therapeutic approaches for PCa patients. Based
on the above considerations, as well as on the progressively accumulating data in the litera-
ture, in this review we aim to highlight and discuss the recent findings on the involvement
of mitochondrial functional reprogramming and structural dynamics in PCa, specifically in
its CRPC stage; we also address the impact of these mechanisms as molecular targets of
novel and effective antitumor strategies for this aggressive disease.

2.1. Mitochondrial Metabolism

Metabolic reprogramming is a well-recognized hallmark of cancer, enabling cancer
cells to acquire properties that support cell survival, proliferation and acquisition of ag-
gressive (invasive, metastatic) features. However, peculiar molecular mechanisms of this
metabolic rewiring have been reported to occur in different types of tumor cells, and this
metabolic heterogeneity confers differences in their proliferative/metastatic potential. In
prostate epithelial cells, distinctive changes of cell metabolism have been highlighted during
the different phases of their conversion from healthy cells to early-stage and, progressively,
to late-stage cancer cells [31,132–135].

2.1.1. Metabolic Rewiring

Healthy epithelial cells, located in the peripheral zone of the prostate, exhibit a peculiar
metabolic programming aimed at producing and secreting citrate into the prostatic fluid,
one of the most relevant functions of this gland [136]. In most mammalian cells, pyruvate,
the end product of the glycolytic pathway, is transported into the mitochondria where it is
decarboxylated to acetyl-CoA. Acetyl-CoA subsequently binds to oxaloacetic acid to form
citrate that enters the TCA cycle. Citrate is then converted into its isomer isocitrate that is
further oxidized into the TCA cycle for the progression to OXPHOS and ATP production;
mitochondrial aconitase (m-aconitase) is the ROS-sensitive key enzyme responsible for
the citrate-isocitrate conversion. In normal prostate epithelial cells, m-aconitase activity
is inhibited, resulting in the impairment of citrate oxidation followed by its accumulation
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and secretion [137]. The inhibition of m-aconitase strictly correlates with the ability of
these cells to accumulate zinc, due to their elevated expression of its transporter ZIP1;
high intramitochondrial zinc levels increase ROS generation, leading to the inhibition
of m-aconitase activity and resulting in a truncated TCA cycle [138]. As a consequence,
the healthy “zinc-accumulating, citrate-producing” epithelial cells are characterized by
an inefficient OXPHOS which is compensated by an increased glycolytic pathway to
support citrate production [139]. High zinc levels were also found to be associated with a
mitochondrial apoptotic phenotype mediated by the release of cytochrome c and caspase
activation [140].

On other hand, it is now well established that prostate epithelial cells undergo a
peculiar metabolic rewiring during the early phases of cancer development. Specifically,
elevated levels of the TCA cycle enzymes and intermediate metabolites could be detected in
prostate cancer tissues in comparison to adjacent normal tissues [141–143]. Intracellular zinc
levels were found to be significantly reduced in PCa cells, thus leading to the reactivation
of m-aconitase, citrate oxidation, TCA cycle pathways and oxidative phosphorylation [144].
This reduction was shown to be related to a decreased expression of zinc transporters, such
as ZIP1 and 3 [145], mediated by the hypermethylation of their gene promoters [146]. The
low levels of zinc also allow cancer cells to avoid apoptosis; actually, it has been reported
that zinc treatments trigger cell death and promote chemosensitivity in PCa cells [147]. In
line with these observations, very low zinc levels were observed in PCa tissues [148]. Taken
together, these data support that the transformation of prostate epithelial cells into their
tumoral phenotype is associated with an efficient reactivation of the TCA cycle/OXPHOS
metabolic pathway to meet their increased energy and metabolite demand [149].

Interestingly, prostate epithelial cells seem to possess a markedly metabolic plastic-
ity by changing their mitochondrial metabolic features again when progressing from the
early-stage towards the late-stage (i.e., metastasis) of cancer, even in the presence of low in-
tracellular zinc levels. Specifically, the Warburg effect (i.e., increased glycolytic activity) has
been proposed as the prominent metabolic feature of metastatic prostate tumors [149,150].
Mechanistically, the PI3K-AKT-mammalian target of the rapamycin (mTOR) pathway, a
key driver of tumor progression, was shown to play a causal role in prostate tumorigenesis
through the up-regulation of pyruvate kinase isoenzyme type M2 (PKM2), the rate-limiting
enzyme catalyzing the final reaction of the glycolytic pathway [151,152]. Mutations of the
tumor suppressor p53, frequently occurring in advanced prostate cancers, were reported
to trigger the Warburg effect. Moreover, deletions of the tumor suppressor PTEN, often
observed in aggressive prostate tumors, were demonstrated to correlate with an increased
expression of hexokinase 2 (HK2), the initial enzyme of glycolysis, catalyzing the phos-
phorylation of glucose by ATP to glucose-6-P through the AKT-mTOR pathway [149,153].
Taken together, these observations support that PTEN and p53 tumor suppressors, together
with the PI3K-AKT-mTOR pathway, are essential drivers of the Warburg effect to maintain a
sufficient energy and metabolites supply for PCa growth and progression [154]. In addition,
it has been demonstrated that, in prostatic carcinoma cell lines, the hypoxic conditions of
the tumor microenvironment trigger the expression of SUMO1/sentrin-specific peptidase 1
(SENP1) that in turn interacts with HIF1α to promote the Warburg effect and sustain cell
proliferation [155]. In line with these data, Sun and coworkers recently reported that HK2
and HIF1α are highly expressed in PCa tissues and their expression correlates with tumor
growth and metastasis [156].

There is also consistent evidence that an association exists between obesity and the
risk of PCa growth [157]. A deleterious bidirectional cross-talk between PCa cells and
adipocytes in their microenvironment has been demonstrated [158]. Specifically, it has
been reported that PCa cells educate neighboring adipocytes towards a lipolytic phenotype,
resulting in free glycerol production and secretion; adipocyte-derived glycerol is then
uptaken by PCa cells to enter and fuel the glycolytic pathway [159]. Moreover, adipocyte
conditioning of PCa cells leads to an increased expression of glycolytic genes, resulting in
lactate production and OXPHOS inhibition [159,160]. In line with these observations, we
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recently reported that adipocyte-released extracellular vesicles significantly decrease the
sensitivity of PCa cells to the chemotherapeutic drug docetaxel and this effect is associated
with an AKT/HIF-1α axis-related Warburg effect, which is characterized by enhanced
glucose consumption, lactate release and ATP production [161].

To confirm that PCa cells undergo dynamic metabolic changes at each stage of tumor
development, Vayalil and Landar introduced the “mitochondrial oncobioenergetic index
(MOBI)” (i.e., the mathematical representation of the oncobioenergetic features of a tumor
cell). In PCa cells with progressive malignant behaviors, they demonstrated that MOBI
values (representative of OXPHOS activity) are high in premalignant prostate cells and
significantly decrease with increasing malignancy [133].

Taken together, these observations support that PCa cells reprogram their metabolism
towards the aerobic glycolysis (the Warburg effect) in the context of tumor progression.
However, contrasting results, demonstrating that the high levels of OXPHOS activity
observed in primary tumors still persists during the progression of the pathology towards
its metastatic stage, have also been reported in the literature [162–165].

Galbraith and coworkers recently demonstrated an association between peroxisome
proliferator-activated receptor gamma (PPARG) expression and metastatic features in
PCa. By means of in vitro and in vivo studies, these authors could show that, in PCa
cells, PPARG overexpression induces AKT3 expression leading to increased mitochondrial
biogenesis and ATP production, finally fueling tumor cell epithelial-to-mesenchymal tran-
sition (EMT) and metastatic behavior [166]. Pyruvate dehydrogenase complex (PDC) is
the multi-protein complex that catalyzes the conversion of pyruvate to acetyl-CoA, thus
fostering mitochondrial activity. It was reported that, in PCa cells, knockout of the major
subunit of PDC (PDHA1) is accompanied by lower levels of the TCA cycle activity, result-
ing in impaired OXPHOS activity and growth of these cells when xenografted in nude
mice [163]. Pyruvate kinase isozyme 2 (PKM2) has been shown to be highly expressed
in many types of cancer cells, including PCa cells. Interestingly, in these cells, PKM2 has
been reported to be also deeply involved in glucose metabolism (OXPHOS activity) and to
mediate proliferation, metastatic behavior and acquisition of stem cell properties [167–169].
Mitochondrial pyruvate carrier (MPC) is the hetero-dimeric complex (formed by MPC1 and
MPC2) responsible for the import of pyruvate into the mitochondria where it is converted
to acetyl-CoA and then further enters the TCA cycle to fuel the OXPHOS machinery. MPC2
expression was found to correlate with tumor aggressiveness in PCa specimens [170,171].
Transcriptional enhanced associate domain 4 (TEAD4) is a transcription factor previously
shown to be involved in the regulation of the expression of mitochondrial genes involved
in the OXPHOS pathways [172]. TEAD4 is expressed in PCa cells, and its expression has
been reported to be critical in increasing OXPHOS activity. In a recent paper, Chen and
coworkers reported that TEAD4 expression is epigenetically regulated by the semi-essential
amino acid arginine to modulate OXPHOS functions in hormone-refractory PCa cells [173].

Interestingly, elevated OXPHOS and mitochondrial mass have been observed in the
aggressive stem cell subpopulation of different tumors, including PCa [174]. Sotgia and
coworkers proposed the development of a “mitochondrial based oncology platform” for
specifically targeting CSC metabolism [175,176]. In line with this observation, metformin
has been proposed as an effective anticancer agent based on its ability to specifically target
OXPHOS and ATP production in prostate CSCs [177]. On the other hand, impaired mito-
chondrial OXPHOS and upregulated glycolysis were observed in these cells [178]. Thus,
the presence of exacerbated OXPHOS in PCa stem cells still remains a controversial issue.

Given the crucial role of the tumor-stroma cross-talk in shaping cancer cell metabolism,
Ippolito et al. investigated how CAFs might regulate mitochondrial dynamics in PCa cells.
They found that tumor-associated CAFs significantly enhance mitochondrial respiration,
mediated by a lactate shuttle, and favor mitochondria transfer in PCa cells, thus promoting
their malignant behavior [46]. In line with these results, Grupp et al. demonstrated that a
high mitochondria content in PCa specimens correlates positively with PCa progression
and represents an effective predictor of a poor clinical prognosis and outcome [132]. Last



Cancers 2023, 15, 1192 7 of 29

but not least, a switch from glycolysis to OXPHOS activity has been observed in PCa
cells undergoing the development of resistance to standard therapies (i.e., enzalutamide,
docetaxel) [179].

Based on these observations, it is now accepted that targeting both glycolysis and
mitochondrial OXPHOS pathway might represent an effective therapeutic strategy for
advanced, metastatic and drug-resistant PCa [180].

A schematic overview of the metabolic rewiring occurring in prostate epithelial cells
during the different stages of cancer progression is given in Figure 1.
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Figure 1. Schematic overview of the mitochondrial metabolic rewiring occurring in prostate epithelial
cells during the different stages of cancer progression. (a) Healthy prostate epithelial cells accumulate
high levels of zinc (due to the overexpression of its transporter ZIP1), resulting in the inhibition
of mitochondrial m-aconitase, the key enzyme responsible for the citrate-isocitrate conversion in
the TCA cycle (1). This inhibition ultimately leads to the truncation of the TCA cycle and to citrate
accumulation and secretion. As a result, normal prostate epithelial cells are characterized by an
inefficient OXPHOS machinery (complexes I-V, COI-V) (2). (b) In the early stage of tumor progression,
intracellular zinc levels are significantly reduced (due to a decreased expression of its transporter) (1); this
leads to the reactivation of m-aconitase, restoring the citrate-isocitrate conversion, and consequently of
the TCA cycle and OXPHOS metabolic pathways (2). (c) In the advanced stage of tumor progression,
PCa cells exhibit the Warburg effect, an active aerobic glycolysis accompanied by high levels of lactate
production (1). However, it is now well established that a high activity of the TCA cycle/OXPHOS
pathways still persists in these cells, and it is even exacerbated in PCa stem cells as well as in
drug-resistant PCa cells (2).

2.1.2. The AR-Mitochondria Axis

ADT still represents the therapy of choice for early-stage, androgen-dependent PCa.
However, most patients progress towards the aggressive CRPC stage characterized by
a high rate of cell proliferation, invasiveness and metastatic behavior; interestingly, in
most CRPC patients (about 80%) a reactivation of the androgen receptor (AR) has been
observed. The persistent activity of AR in this stage has been shown to involve different
mechanisms, including AR gene amplification, AR mutations, AR gene alternative splicing,
generating different receptor splice variants and intratumoral synthesis of androgens.
Since PCa progression is also associated with a peculiar metabolic reprogramming, as
discussed above, it has been postulated that AR might be a master regulator of PCa
cell metabolism. In line with this hypothesis, genomic, transcriptomic and metabolomic
functional studies pointed out that AR regulates different metabolic pathways, including
glucose uptake (through the induction of different glucose transporters), glycolysis, TCA
cycle, mitochondrial biogenesis and respiration, de novo lipid synthesis and fatty acid
β-oxidation [143,170,181–184].

Different intracellular signaling pathways were reported to be involved in this AR-
driven metabolic reprogramming. Importantly, AR activation was demonstrated to induce
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mTOR translocation into the nucleus where it binds to the promoter regions of metabolic
genes (such as HK2), thereby regulating their expression; accordingly, inhibition of the
mTOR pathway resulted in impaired glycolytic activities and reduced proliferation in PCa
cells [183]. In AR-expressing PCa cells, it was shown that androgens promote the activity of
the AMPK/PGC1α signaling cascade, leading to increased glycolytic rates, mitochondrial
biogenesis, OXPHOS, intracellular ATP levels and cell growth [182].

An additional interesting mediator of the AR metabolic activity is MPC (specifically the
MPC2 isoform), reported to be highly expressed in AR-positive PCa cells (both hormone-
dependent and CRPC cells) but almost absent in AR-negative PCa cells and to play a
pivotal role in supporting a functional TCA cycle. Bader and coworkers demonstrated
that MPC is transcriptionally upregulated by AR in PCa cells, and its inhibition impairs
O2 consumption, TCA cycle metabolite levels and oxidative phosphorylation, thus halting
cell proliferation. Moreover, these authors could show that targeting MPC with the MPC
inhibitors UK5099 and MSDC0160 (this inhibitor is orally administered and clinically viable)
results in the suppression of the growth of AR-expressing, but not AR-negative, PCa cells
in in vitro and in vivo studies [143,170,185]. In line with these results, it has been reported
that, in androgen-sensitive and CRPC cells, activation of the AR signaling upregulates the
expression of DRP1 (the mediator of the mitochondrial fission) to induce the formation of
the VDAC/MPC2 complex and thereby the pyruvate transport into the mitochondria and
sustains mitochondrial metabolic pathways, such as OXPHOS.

Ultimately, DRP1 overexpression was observed to positively correlate with cancer cell
proliferation and survival in different conditions of metabolic stress, such as oxidative stress
and hypoxia; moreover, high DRP1 expression levels in patients with CRPC were found
to be suggestive of poor prognosis [171]. Interestingly, by means of in vitro and in vivo
models, Xu et al. recently reported a loss of MPC expression during the progression of PCa
cells towards the most aggressive and AR-negative neuroendocrine phenotype (NEPC); in
these models, MPC loss induces the expression of PKM2 that, in turn, translocates into the
nucleus to regulate the expression of EMT markers [186].

On the other hand, it has been shown that knockout of KDM4B, a transcriptional
activator of AR, in CRPC cells reduces proliferation and triggers a metabolic switch to-
wards OXPHOS [187]. Bajpai and coworkers found that, in experimental models of AR
overexpression in AR-negative PCa cells, AR localizes to mitochondria where it decreases
mitochondrial DNA (mtDNA) content and impairs OXPHOS activity [188].

Taken together, these data suggest that, even if most of the published data support that
in the PCa models in which it is expressed and active (i.e., AR-driven hormone-sensitive
and castration-resistant PCa) AR plays a pivotal role as a master regulator of the cancer cell
metabolic reprogramming towards mitochondrial respiration, further studies are needed
to definitely assess this issue.

2.1.3. mtDNA Mutations

So far, most studies addressing the relevance of genetic mutations in PCa development
have been focused on the nuclear genome. Mitochondria, maternally inherited organelles,
are deeply involved in the process of tumorigenesis by orchestrating metabolic and energy
production pathways, ROS signaling and apoptosis [8,57,189]. Thus, dissecting the mito-
chondrial genome is currently considered an essential step to obtain a complete view of the
genetic alteration profile in PCas.

The majority of the proteins of the four ETC complexes (COI-IV) involved in OXPHOS
are encoded by nuclear DNA; however, 13 proteins in these complexes are encoded by
mtDNA, the small circular DNA molecule found inside mitochondria. The mtDNA is
characterized by a high mutation rate, mainly linked to high levels of ETC-derived ROS
and a low efficient DNA repair system in these organelles [190]. Mutations of mtDNA have
been found in different types of human cancers, including PCa [162,191–195], although their
functional role still needs to be fully elucidated. Gomez-Zaera and coworkers analyzed
the presence of mtDNA sequence variants in human PCa tissues; they reported that the
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most frequent variants were present in the following genes: mt-RNR2, encoding the large
16S mitochondrial ribosomal RNA (rRNA) subunit; mt-D-loop (displacement loop, control
sites for the expression of the mitochondrial genome); and mt-ND4, encoding the protein
NADH dehydrogenase 4, part of the COI of the ETC pathway [196].

The analysis of somatic mutations in tumor tissues from PCa patients pointed out
their presence in genes coding for rRNA (mt-RNR1 and mt-RNR2), transfer RNA (tRNA)
and the protein-coding gene mitochondrially encoded ATP synthase membrane subunit 6
(mt-ATP6), that encodes the ATP synthase Fo subunit 6 (or subunit/chain A). Moreover,
somatic mutations in the entire mitochondrial genome were found to be associated with
high PSA levels in PCa patients [197]. By using a yeast model organism, it was shown
that the mutation mt-ATP6-P136S specifically found in PCa tissues positively correlates
with tumor progression and may be involved in cancer cell escape from apoptosis [198].
Hopkins et al. reported that mutations in mitochondrial rRNA, tRNA as well as in the
protein-coding genes mt-ATP6, mt-ND1, mt-ND2 and mitochondrially encoded cytochrome
c oxidase I (mt-CO1), component of the complex IV, cytochrome c oxidase, the last enzyme
in the mitochondrial electron transport chain which drives OXPHOS, are frequent in PCa
tissues and are drivers of PCa aggressive behavior [195]. In line with these observations,
mutations in genes encoding for proteins of the mitochondrial complex I (mt-NDs) were
reported to be frequent in high grade PCa tissues and to be associated with a reduced
activity of the NADH dehydrogenase pathway and an increased, compensatory, activity of
the succinate-using FADH2 pathway [199]. Interestingly, Sun and coworkers demonstrated
that the presence of a mutant mt-CO1 gene results in the resistance of PCa cells to the
pro-death activity of simvastatin [200].

Taken together, these data support that in PCa cells undergoing stressful conditions, ac-
tivation of the ROS signaling might have a deleterious effect on mtDNA driving mutations
at the level of genes coding for proteins deeply involved in the metabolic rewiring.

2.2. Mitochondrial Dynamics

It is now well established that alterations of the mitochondrial structural dynamics
(biogenesis, fusion, fission and mitophagy) are deeply involved in the different steps of can-
cer growth, progression and development of drug resistance [16,80,82,201,202]. However,
current data on the role of the mitochondrial structural alterations in PCa are still scanty.

PGC1α is the well-recognized master regulator of mitochondrial biogenesis [203]; it
is also involved in the control of the mitochondrial fusion/fission balance by promoting
fusion, through the activation of MFN1 and 2, and impairing DRP1 expression, through
the binding to its promoter region [204]. The expression of this gene, together with the
mitochondrial number, was found to be upregulated in tumors, including PCa, of African
American cancer patients known to be exposed to a higher risk of cancer and mortality
compared to European American patients [205]. PGC1α has been observed to be highly
expressed in PCa cells harboring either deletion or mutation of the classic tumor sup-
pressor protein p53, and its expression positively correlates with cancer cell metastatic
behavior [206]. It has been demonstrated that, in CRPC PC3 cells, overexpression of p53
decreases the expression and activity (i.e., nuclear localization) of PGC-1α, thereby lead-
ing to a reduced mitochondrial mass and a significant change in the expression levels of
genes and proteins involved in the fusion/fission balance [207]. More recently, Galbraith
and coworkers reported that, in PCa cells, the activity of PGC1α is also regulated by the
PPARG/AKT3 axis. Specifically, these authors found that, in CRPC cells, overexpression
of the transcription factor PPARG induces the expression of the AKT3 kinase that, in turn,
triggers the nuclear localization of PGC1α, thereby driving mitochondrial biogenesis and
ATP production which may fuel the metastatic behavior of tumor cells [166].

Burch et al. investigated the expression of mitochondrial biogenesis and bioenergetics
genes in PCa cells and tissues. They reported that 47 genes involved in mitochondrial
biogenesis, fusion/fission and energy metabolism are differentially expressed in malig-
nant vs. non-malignant PCa cells. Specifically, the mitochondrial carrier uncoupling
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protein 2 (UCP2) gene, involved in energy homeostasis linking mitochondrial metabolism
and redox (ROS detoxification), was observed to be overexpressed in malignant PCa cells
as well as in clinical PCa specimens [208].

Alterations of the fusion/fission balance have also shown to be deeply involved
in tumorigenesis, although the data so far available on this issue in PCa cells are still
limited. Generally, it is accepted that mitochondria fission, the division of mitochondria
in smaller organelles, is a typical feature of cells undergoing apoptosis; moreover, this
process foresees the translocation of the cytoplasmic DRP1 protein to the mitochondria
where it interacts with its receptor FIS1. In PCa cells, it has been reported that the overload
of Ca2+ in mitochondria triggers the interaction of DRP1 with FIS1, thereby leading to
mitochondrial fragmentation and enhanced cell response to pro-apoptotic agents [209]. In
line with these observations, we observed that, in CRPC cells, mitochondrial Ca2+ and
ROS overload triggers mitochondrial fission and mitophagy to mediate the pro-death
(apoptotic, paraptotic) activities of natural anticancer compounds [78]. Moreover, enhanced
mitochondrial fusion, together with mutations of the complex I mtDNA, were found to be
associated with PCa progression, as evaluated in cancer cell lines as well as in mice and
human tissue samples [210].

On the other hand, mitochondrial fission has been recently reported to play a key
role in the maintenance of stemness features in prostate CSCs. Specifically, Civenni and
coworkers focused their attention on bromodomain and extra-terminal domain (BET)
proteins, such as bromodomain containing 4 (BRD4), well known as epigenetic modifiers
of gene transcription. These authors showed that the DRP1 receptor, and fission factor,
MFF is upregulated in hormone-refractory human prostate tumors as well as in prostate
CSCs. Moreover, they could show that BRD4 acts as a key driver of MFF transcription and,
therefore, of mitochondrial fission, which is an essential biological event for the survival and
self-renewal of CSCs; accordingly, they observed that the inhibition of the BRD4 activity
and of the subsequent MFF transcription results in the accumulation of dysfunctional
mitochondria and, consequently, in the acquisition of the senescent phenotype in these cells.
Thus, mitochondrial fission is a crucial process for the maintenance of the self-renewal and
tumorigenic potential of the CSC subpopulation in prostate tumors. The authors conclude
that pharmacological inhibition of BRD4 may represent a promising effective therapeutic
strategy for PCa patients [211,212].

Mitophagy is the intracellular removal of mitochondria by autophagy. It has been
shown both to promote cancer cell survival and drug resistance through the degradation
of damaged mitochondria and to prevent tumor progression mediating the pro-death
activity of different anticancer drugs. Thus, its specific role in regulating the balance
between cell survival vs. cell death is still a matter of debate in most tumor types, including
PCa [105,106,213–216]. Han and coworkers reported that pharmacological targeting of
the androgen/AR axis promotes apoptosis of PCa cells by triggering the mitophagic
pathway [217]. It is well known that the oncogenic epidermal growth factor receptor
(EGFR) is overexpressed in different types of tumors to exert its peculiar pro-survival
effects. It has been shown that, in PCa cells, downregulation of EGFR expression, but not its
tyrosine kinase activity, results in cell death mediated by mitophagy through the activation
of the AKT/mTOR [218]. In line with these observations, it has been reported that elevated
levels of the mitophagy inhibitor leucine-rich pentatricopeptide repeat motif-containing
protein (LRPPRC) positively correlate with poor prognosis and shorter survival in PCa
patients, supporting a protective effect of mitophagy against PCa growth [219]. On the
other hand, Balvan et al. demonstrated that, in CRPC PC3 cells, activation of mitophagy
(degradation of mitochondria upon oxidative stress) represents a crucial mechanism of
protection and resistance against pro-oxidant conditions [220].

In summary, mounting evidence supports that mitochondrial dynamics are involved
in prostate carcinogenesis; however, further research is needed to definitely assess their
role in the growth and development of PCa.
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3. Targeting Mitochondrial Reprogramming and Dynamics in PCa

The data discussed so far support that mitochondrial metabolic reprogramming and
structural dynamics represent promising molecular targets for novel and effective thera-
peutic strategies for PCa patients. Actually, several “mitochondrial metabolism-interfering
agents” are currently being investigated for their anticancer activity in different tumors,
including PCa (Table 1).

Docetaxel in combination with ADT therapy as a neoadjuvant intervention before
radical prostatectomy in patients with localized, high-risk PCa is now well recognized
as an effective strategy to increase overall and progression-free survival. To dissect the
molecular mechanisms underlying the beneficial effects of this therapeutic intervention, Qu
and coworkers recently investigated the effects of neoadjuvant docetaxel in combination
with a GnRH analog on different metabolic pathways in cancer tissues. They reported
that the neoadjuvant therapy induces a significant downregulation of metabolic pathways,
such as the TCA cycle and lipid synthesis; a decrease of the GSH/GSSG ratio, supporting a
reduced oxidative stress condition, was also observed. Glutamine was downregulated in
the treatment group, supporting that the energy supply was significantly reduced in these
patients as the consequence of a reduced glutamate production and impairment of the TCA
cycle [221].

Metformin, an FDA-approved biguanide hypoglycemic compound, is the first-line
drug for the treatment of type 2 diabetes [222,223]. It is administered orally and is well
tolerated, being associated with a low incidence of side effects [224]. Recently, several
studies have pointed out that metformin exerts a significant antitumor activity in differ-
ent types of cancer cells, including PCa cells, both in vitro and in preclinical xenograft
models [225–229]. In line with these data, epidemiologic studies evidenced a decrease in
the incidence of cancer in metformin-treated diabetic patients [230–232]. In PCa cells, this
compound has been shown to decrease cell viability, induce cell cycle arrest and promote
apoptosis through modulation of different intracellular signaling pathways, including
glucose metabolism [233–236]. Specifically, metformin was reported to interfere with the
IGF-1 (insulin-like growth factor-1), the VEGF (vascular-endothelial growth factor) and
the androgen receptor signaling pathways [236–241] as well as increase ROS production,
causing a rapid imbalance in cellular redox homeostasis and causing cell death [242].
Focusing on cell glucose metabolism, it was found to induce the activation (i.e., phosphory-
lation) of the energy sensor AMPK thus inhibiting downstream mTOR activity, increasing
glucose uptake, lactate production, glycolytic rate and, more importantly, inhibiting O2
consumption and the complex I of the mitochondrial ETC, thereby impairing the OXPHOS
pathway [229,236,241,243–245]. Thus, in PCa cells, this drug decreases ATP levels, trig-
gering energy deficiency and reduced lipogenesis [246]. Metformin was also found to
target the viability of CSCs deeply involved in drug resistance and cancer relapse through
the inhibition of mitochondrial bioenergetics and the subsequent compensative increase
of the glycolytic pathway, and by triggering mitochondrial ROS production ultimately
leading to apoptosis [177,243,247,248]. In line with these data, Ippolito and coworkers
demonstrated that CRPC cells made resistant to docetaxel acquire an invasive phenotype
associated both with a decreased glycolytic rate and with an overactivation of oxidative
phosphorylation; by targeting mitochondrial complex I, metformin suppresses the pro-
liferative and invasive behavior of drug-resistant cells [31]. Moreover, by addressing the
issue of the stroma/tumor interplay in PCa, Giannoni et al. observed that CAFs induce
an aggressive phenotype in PCa cells by triggering PKM2 nuclear translocation and con-
sequent metabolic reprogramming towards oxidative phosphorylation; pharmacological
targeting of PKM2 (by DASA-58) and OXPHOS activity (by metformin) significantly coun-
teracts CAF-induced PCa cell growth in vitro and in vivo [167]. Similar observations were
reported with other antidiabetic drugs, such as the metformin analog phenformin and
the SGTL2 (sodium-glucose transporter 2) inhibitor canagliflozin [52,249]. The antitumor
activity of metformin and phenformin in PCa cells was also reported to be potentiated
by co-treating the cells with drugs shown to impair different aspects of cell metabolism,
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such as 2-deoxyglucose, an inhibitor of HK2 activity and inducer of intracellular ATP
depletion [250]; gossypol, an inhibitor of ALDH (cytosolic aldehyde dehydrogenase) and,
therefore, of cytosolic NADH production, which selectively reduces electron supply for
ATP production [52]; and salicylate, the aspirin metabolite known to activate the AMPK
pathway [251]. Recent clinical studies investigated the activity of metformin, either alone or
in combination with other anticancer compounds, in PCa patients. Metformin was reported
to be associated with improved disease-specific survival in PCa patients, with treatment
starting at tumor diagnosis or after prostatectomy [252–254]; moreover, it was shown to
improve the outcome in PCa patients co-treated with ADT [255,256]. However, contrasting
results were also reported. Cui and coworkers, by performing a systematic literature search
and meta-analysis, reported the lack of association between metformin and the risk of
PCa in diabetic patients [257]. Moreover, this drug also failed to improve the efficacy of
standard treatment regimens, such as bicalutamide and docetaxel, in overweight and in
metastatic castration-resistant PCa patients, respectively [258,259]. Several clinical trials
aimed to definitely dissect the antitumor activity of metformin and its analog phenformin,
either alone or in combination with common treatments, are currently being conducted in
PCa patients (https://www.clinicaltrials.gov/) (accessed on 21 December 2022).

Many other compounds were reported to counteract PCa growth by targeting the
mitochondrial OXPHOS pathway through the inhibition of the ETC complexes. In CRPC
DU145 cells, the class III antiarrhythmic drug amiodarone, currently available in the clinical
setting, was found to impair the activity of complex I and II, thereby suppressing ATP
production and potentiating the antitumor activity of standard therapies (docetaxel and
cisplatin) [260]. PCa cells made resistant to the AR antagonist enzalutamide (ENZA) switch
from glycolysis to OXPHOS. Basu et al. demonstrated that the complex I inhibitor IACS-
010759 exerts a significant antiproliferative activity in ENZA-resistant PCa cells, when
compared to non-resistant cells; similar results were observed with the mitochondrial
glutaminase inhibitor CB-839, which acts by decreasing the glutamate supply to the TCA
cycle [179].

Mitochondrial ATP synthase, or complex V, is the fifth OXPHOS complex, responsible
for the synthesis of ATP. High levels of ATP synthase were observed in different tumors,
including PCa. In cancer cells, ATP synthase has also been shown to translocate from
the mitochondria to the cell membrane where it contributes to many processes, such as
tumorigenesis, angiogenesis and metastasis. Several ATP synthase synthetic inhibitors
were reported to suppress cancer growth and are currently undergoing clinical investi-
gation [261]. Specifically, Elbehairi et al. reported that, in PCa cells, the Pd(II) complex
of Gboxin analog-chitooligosaccharides conjugate (Pd(II)COS@GbA) effectively impairs
ATP synthase expression and activity, leading to the suppression of ATP production, and
triggers mitochondrial fragmentation (fission) by increasing the expression levels of the
fission protein DRP1 while decreasing those of the fusion protein OPA1 [262].

It is now accepted that some antibiotics can induce death in cancer cells by impair-
ing mitochondrial functions and, based on these properties, are being used as anticancer
drugs [263]. According to the endosymbiotic theory, mitochondria are organelles that
derive from prokaryotic aerobic cells that were engulfed by eukaryotic cells during their
evolution process. In line with this theory, mitochondria contain a DNA different from
that of the nucleus and their own protein biosynthesis machinery. Lisanti and coworkers
demonstrated that in different types of cancer cells, including PCa cells, and specifically in
their stem cell counterpart, some antibiotics (i.e., azithromycin, doxycycline, tigecycline,
pyrvinium pamoate, chloramphenicol) impair mitochondrial respiration by binding to
mitoribosomes thus inhibiting protein synthesis and by impairing mitochondrial biogen-
esis, OXPHOS and ATP production [264–267]. These authors proposed the efficacy of
the mitochondrial-based oncology platform (MITO-ONC-RX), a panel of FDA-approved
antibiotics, to reduce mitochondrial mass and OXPHOS for the eradication of CSCs in
different tumors, including PCa [176]. In line with these observations, the antimicrobial
peptide Buforin IIb, in combination with 2-deoxyglucose, displays a synergistic toxic effect

https://www.clinicaltrials.gov/
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on CRPC cells, in vitro and in mouse xenograft tumors. Mechanistically, the anticancer
effects of the combination treatment were mediated by a decrease of lactate production (i.e.,
inhibition of glycolysis) and intracellular ATP levels [268]. Further studies, focusing on the
metabolic reprogramming-mediated anticancer activity of antibiotics, either alone or in
combination with standard therapies, in PCa patients are warranted.

Different natural compounds were also reported to be endowed with significant
anticancer activity in PCa, based on their antioxidant effects but also mediated by a rewiring
of mitochondrial functional and structural dynamics.

Tocotrienols (TTs; α-, β-, δ- and γ-TT) are hydrophobic compounds derived from
vitamin E and present in some plant sources, such as annatto (Bixa orellana) seeds, rice
bran and palm oil [269,270]. These compounds have been widely reported to be endowed
with different beneficial health activities in the prevention or treatment of chronic diseases,
including osteoporosis, cardiovascular and neurodegenerative diseases [271–277]. Specifi-
cally, over the last couple of decades, TTs have also emerged as potential anticancer agents,
based on their antiproliferative, proapoptotic, antimetastatic and antiangiogenic activities
in several types of cancer cells, including PCa cells [278–287]. We recently reported that, in
CRPC cells (DU145 and PC3), δ-TT triggers apoptosis, involving ER stress and autophagy,
as well as paraptosis, a non-canonical cell death mechanism. [288]. Mechanistically, we
could demonstrate that this compound inhibits glucose uptake and lactate production in
PTEN-deficient LNCaP and PC3 PCa cells by specifically decreasing HK2 expression, and
that it synergizes with metformin in inducing cell death. δ-TT also impairs mitochondrial
respiration through the downregulation of the expression of OXPOHS complexes (complex
I, II and IV), O2 consumption and ATP production. These energy-depleting effects were
associated with the induction of mitochondrial fission, which is associated with the Ca2+-
and ROS-mediated mitophagic pathway. Thus, in CRPC cells, δ-TT exerts a significant
anticancer activity by impairing the mitochondrial functional and structural dynamics and
dysregulating mitochondrial Ca2+-ROS homeostasis [78,289].

Table 1. Anticancer drugs targeting mitochondrial functional rewiring and structural dynamics in
PCa cells.

Drug Therapy Class Effects References

Docetaxel + ADT Taxane drugs + GnRH
analogs

Inhibition of TCA cycle;
decrease of the GSH/GSSG ratio;

downregulation of glutamine
[221]

Metformin, phenformin
canagliflozin

Antidiabetic (type 2
diabetes)

drugs

Inhibition of ETC complex I;
decreased O2 consumption;

AMPK activation;
suppression of the OXPHOS pathway

and ATP production;
upregulation of ROS levels

[31,52,167,177,229,236,242–251]

Amiodarone Class III antiarrythmic
drugs

Inhibition of ETC complex I and II;
suppression of ATP production [260]

IACS-010759, CB-839 Small molecule
inhibitors

Inhibition of ETC complex I;
inhibition of mitochondrial glutaminase
and glutamate supply to the TCA cycle;

decreased OXPHOS pathway

[179]

Pd(II)COS@GbA Pd(II) anticancer
complexes

Inhibition of ETC complex V (ATP
synthase);

suppression of ATP production;
mitochondrial fission

[262]
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Table 1. Cont.

Drug Therapy Class Effects References

Doxycycline,
azithromycin,

tigecycline, pyrvinium
pamoate, chloramphenicol

Antibiotics

Inhibition of the OXPHOS pathway
and mitochondrial respiration;

dysregulations of ETC complexes;
suppression of ATP production;

impairment of mitochondrial biogenesis

[176,264–267]

Buforin IIb Antimicrobial peptides Inhibition of glycolysis and ATP
production [268]

Vitamin E-derived
tocotrienols, curcumin,

resveratrol, triterpenoids,
sulforaphane, phenethyl
isothiocyanate (PEITC),

silibinin, atpenin A5
analogs, jasmonates,

alternol

Natural antioxidants

Reduced O2 consumption, ETC protein
(complexes COI-V) levels and activity;
suppression of the OXPHOS pathway

and ATP production;
decreased glycolytic pathway;

AMPK activation;
altered Ca2+/ROS homeostasis;

mitochondrial fission, mitophagy

[78,180,261,289–306]

Curcumin, also called diferuloylmethane, is the main natural curcuminoid present
in the Indian spice turmeric. It has been shown to exert a growth-suppressive activity,
which is mainly based on its ability to induce oxidative stress in different types of cancers,
including PCa [307–309]. Recent articles highlighted the role of mitochondrial reprogram-
ming as a novel molecular mechanism underlying the antitumor activity of this polyphenol.
Specifically, Ossikbayeva and coworkers recently reported that curcumin, either alone or in
association with carnosic acid, inhibits cell proliferation in CRPC cells by inducing cellcy-
cle arrest. These anticancer effects were associated with a dysfunction of mitochondrial
respiration, as evidenced by a decrease of O2 consumption and of the activities of all the
complexes (COI-IV) of the ETC, and were counteracted by cotreating the cells with the
mTOR inhibitor rapamycin [290]. In line with these data, curcumin was recently shown to
impair mitochondrial phosphorylation in PCa cells by specifically targeting mitochondrial
ATP synthase, thus suppressing ATP production [261,291].

Resveratrol, a polyphenolic compound found in different vegetables such as grape,
berry and peanut fruits, has been shown to have anti-inflammatory, antioxidant, im-
munomodulatory and antitumor activities [310–313]. In cancer cells, this polyphenol was
widely shown to induce apoptosis by promoting ROS overproduction [292]. By dissecting
the biochemical mechanisms underlying the resveratrol anticancer activity, Rodriguez-
Enriquez et al. reported that, in cervix cancer HeLa cells, resveratrol inhibits cell prolif-
eration by significantly decreasing both glycolysis and OXPHOS while triggering ROS
production and mitophagy [293]. However, contrasting results were reported in PCa cells;
specifically, it was observed in CRPC PC3 cells that resveratrol significantly impairs cell
growth and that this is coincident with increased mitochondrial biogenesis, fusion and
respiration [314]. Thus, further studies are needed to definitely highlight the involvement
of mitochondrial metabolic reprogramming and dynamics in the anticancer activity of
resveratrol in PCa.

Triterpenoids are plant-derived isopentenyl pyrophosphate oligomers; so far, more
than 20,000 triterpenoids have been identified [315]. These compounds have been widely
reported to have pharmacological properties, including anti-inflammatory, antioxidant,
antipyretic and cardioprotective activities; moreover, several studies revealed their ability to
induce cell cycle arrest, cell cytotoxicity/apoptosis, anti-invasion and autophagy [316,317].
In line with these observations, in vitro and in vivo studies pointed out that a great number
of triterpenoids exhibit a potent antitumor activity against various types of cancer cells,
including PCa cells, through the regulation of different molecular pathways [318–324].
Among the various molecular mechanisms, they were reported to exert their anticancer
activity by impacting tumor metabolism [325–327]. Specifically, in PCa cells, triterpenoids
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were shown to reduce glucose uptake, aerobic glycolysis, O2 consumption and intracellular
ATP levels and to induce a sustained activation of AMPK and consequent suppression of
mTOR signaling [180,294–298].

1,4-Naphthoquinones represent the most important class of quinones found to be
endowed with anti-inflammatory, antiallergic, antibacterial, radical scavenging and, impor-
tantly, anticancer activity [328]. Dyshlovoy and coworkers recently reported that glucose-
conjugated 1,4-naphthoquinones significantly impair CRPC PC3 cell proliferation through
the inhibition of pro-survival and drug resistance mechanisms, such as AR signaling and
autophagy. These compounds also inhibit glucose uptake, disrupt mitochondrial OXPHOS
by suppressing the expression of components of the five complexes of the ETC (COI-COV)
and trigger a mitochondrial ROS overload [299].

Sulforaphane is a natural plant isothiocyanate found in many cruciferous vegetables
like broccoli, cabbage, cauliflower and kale [329]. In CRPC cells, sulforaphane has been
reported to induce mitochondrial apoptosis mediated by an increased expression of the Bax
protein. This compound also impairs mitochondrial structural dynamics by inducing mito-
chondrial biogenesis and fragmentation through the stabilization of the transcription factor
Nrf2 (nuclear factor E2-related factor) and the increase of PGC1α expression levels [300].
In line with these data, it was shown that the natural compound PEITC (phenethyl isothio-
cyanate), another isothiocyanate found in cruciferous vegetables, is a specific inhibitor of
complex III that acts by impairing oxidative phosphorylation and ATP synthesis, leading
to ROS overproduction and cell death, in PCa cells [301].

Silibinin, also known as silybin (both from Silybum, the name of the plant from which
it is extracted), is the major active constituent of silymarin, a standardized extract of the
milk thistle seeds. It has been shown to induce apoptosis in different cancer cells, both
in vitro and in vivo [330,331]. In PC3 cells, silibinin was observed to induce apoptosis by
triggering mitochondrial ROS generation and disruption of Ca2+ homeostasis, leading to
ER stress response [302].

Other natural compounds reported to induce PCa cell death by impairing mitochon-
drial functional plasticity and dynamics include atpenin A5 analogs (specific inhibitors
of complex II activity) [303], jasmonates (inducers of mitochondrial ATP depletion) [304],
alternol (inhibitor of TCA cycle, mitochondrial respiration and ATP production) [305] and
deguelin (COI inhibitor) [306]. Some of these compounds are presently under investigation
in clinical trials aimed to assess their bioavailability, lack of side effects and chemopreven-
tive activity as well as their ability to prevent the progression to metastatic disease in PCa
patients (https://www.clinicaltrials.gov/; accessed on 21 December 2022).

4. Conclusions

Mitochondria are known to play a pivotal role in crucial biological processes, such as
cell metabolism, cell proliferation/death and cell signaling pathways as well as Ca2+ and
redox homeostasis. In addition, it is now well accepted that these organelles also undergo a
peculiar functional and structural rewiring during the process of tumorigenesis to support
cancer growth and progression; however, this plasticity seems to occur specifically in the
different types of tumor cells and cell contexts.

Prostate epithelial cells are characterized by a distinctive metabolic reprogramming
during the different phases of their transformation from healthy cells to early-stage and,
sequentially, to late-stage tumor cells. Specifically, healthy cells accumulate high levels
of zinc due to elevated levels of its ZIP1 transporter at the plasma membrane. High
intramitochondrial zinc levels inhibit the activity of m-aconitase, the enzyme responsible
for the conversion of citrate into isocitrate in the TCA cycle, thus leading to an impairment
of its oxidation and to its accumulation and secretion out of the cells. Consequently, healthy
epithelial cells are characterized by a truncated TCA cycle and an impaired OXPHOS
pathway, which is compensated by an increased glycolytic rate. Moreover, in these cells
high intracellular zinc levels were also found to correlate with the mitochondria-mediated
intrinsic apoptotic pathway. On the other hand, in early-stage prostate cancer cells the
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expression of ZIP1 decreases significantly, leading to low intramitochondrial zinc levels.
As a consequence, early-stage PCa cells display a reactivation of m-aconitase and citrate
oxidation as well as the TCA cycle and OXPHOS pathways, to meet their high demand for
energy and building blocks for the synthesis of biomolecules. The low intracellular levels
of zinc also allow these cells to avoid apoptosis, thus sustaining cancer cell proliferation.
Interestingly, PCa cells undergo an additional mitochondrial metabolic rewiring during
their progression toward the late stage of tumorigenesis. The Warburg effect was initially
proposed as the main metabolic feature of aggressive/metastatic PCa cells. However,
accumulating evidence strongly supports that high levels of the TCA cycle as well as of
OXPHOS activity and ATP production are still present in late-stage as well as in drug-
resistant PCa cells. Interestingly, it has been shown that both the presence of an active AR
axis and mutations in mitochondrial genes are deeply involved in these mechanisms.

As reported for different types of tumors, distinctive mitochondrial structural dy-
namics (biogenesis, fusion/fission, mitophagy) have also been observed in PCa cells and
specifically in late-stage/CRPC cells. Based on the data discussed here, it has become
widely accepted during the last years that mitochondrial metabolic rewiring and dynamics
might represent novel molecular markers of PCa growth and progression, as well as inter-
esting targets for novel anticancer therapeutic strategies. Accordingly, it was demonstrated
that, in PCa cells, a wide range of drugs, including both synthetic and natural compounds,
exert a significant anticancer activity by specifically targeting both the rewired mitochon-
drial metabolic pathways (O2 consumption, TCA cycle, OXPHOS and ATP production) and
the altered mitochondrial dynamics. However, most of these results are still derived from
in vitro and preclinical studies; thus, clinical trials are urgently required to definitely assess
the effectiveness of these compounds in improving treatment options for PCa patients.
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