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A B S T R A C T

Time-varying fields in fast-ramping magnets for accelerators are difficult to compute in the range of accuracy
required for magnet operation. This is due to the complexity of the dynamic phenomena such as hysteresis
and 3D eddy currents. On the other hand, magnetic measurements that intercept all these physical phenomena
are often limited to a subset of excitation cycles and restricted spatial domains. The measurement results are
therefore difficult to extrapolate without a validated physical model of the device.

This paper proposes measurement-updated field simulations to characterize dynamic effects in accelerator
magnets. The main idea is to construct a reduced-order model, whose variables are retrievable from
measurements by means of a state estimator, and to update the model by minimizing the error between
simulations and measurements. The proposed method is applied to a linear, time-transient electromagnetic-field
problem of an air–coil corrector magnet with aluminium collars. The proposed method is a first step towards
a hybrid twin of an accelerator magnet.
. Introduction

Particle accelerators rely on electromagnets for deflecting and fo-
using the particle beams. Different designs of magnets are adopted
o specific needs, featuring a variety of materials, geometries, and
imensions. The main distinction is the working principle of their
xcitation coil: iron-dominated normal-conducting magnets, and coil-
ominated superconducting magnets [1]. In this paper, we use the
xample of a coil-dominated, normal-conducting dipole magnet in an
luminium support structure.

Normal-conducting magnets are the first choice when fast ramp
ates of the field are required. Therefore, magnets at the injection
nd extraction points of the accelerator are mostly normal-conducting
agnets operated in pulsed mode. Pulsed magnets are also used for

nergy saving reasons, by reducing ohmic losses [2].
In pulsed magnets, the applied current cycle consists of a series of

amps and plateaus. Ideally, the magnetic field level in the aperture
hould follow the excitation current with a constant transfer function.
ut when eddy currents are induced in parts of the magnet, the field

evel is delayed with respect to the current [3]. This delay depends
n the ramp rate, the conductivity, and magnetic permeability of the
aterials, as well as the geometrical shape of the conductors, collars,

nd yokes.
The uncertainties in the simulation of transient electromagnetic

ields are often larger than the requirements for the beam operation.

∗ Corresponding author at: Politecnico di Milano, Dipartimento di Meccanica, via La Masa 1, 20156 Milano, Italy.
E-mail address: stefano.sorti@polimi.it (S. Sorti).

1 This has proved necessary in a practical case because of limitations of the power converter in the magnetic measurement lab.

Reasons include intrinsic errors in model assumptions, approximation
errors by the finite-element discretization, and coupled phenomena
such as thermal and mechanical effects (magnetostriction).

If a detailed knowledge of the magnet dynamics is required, mag-
netic measurements are generally the preferred option, as it is possible
to measure time-transient phenomena with a relative uncertainty of
the order of 10−4 [4]. However, measurements are limited by system-
atic errors (e.g., the calibration accuracy) and random errors (noise).
Without an underlying numerical model of the device, it is difficult
to interpolate between different excitation cycles or to extrapolate a
measurement to higher ramp-rates and current levels.1

In this paper we propose a hybrid technique, where a data-driven
update is applied to a numerical model of the magnet. The result
guarantees reliable extrapolation due to the physical significance of
the model, as well as accurate interpolation by matching the measured
data.

We consider a normal conducting, coil-dominated magnet without
iron-magnetization and hysteresis effects, which therefore results in a
linear field problem. Nevertheless, techniques presented here, such as
the state estimators, have the potential to be extended to non-linear
systems. The flowchart of the proposed method is shown in Fig. 1. It
is required that the models of the excitation coils and the aluminium
yoke are subjected to a model-order reduction before the assembly
of the full system targeted to the updating by measurements. A well-
suited excitation function is applied both to the simulation and the real
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Fig. 1. Flowchart of the proposed technique. Coil and yoke models are reduced by augmented truncation [5]. A Kalman filter is applied to the complete (assembled) model, for
the state estimation from measurements and then reduced by proper orthogonal decomposition (POD). In parallel, the response to the complete model is simulated and proper
orthogonal decomposition is applied. The two sets of modes are then compared and the model updated.
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device in order to model the main dynamics of both. Measurements are
processed by a state estimator so that the full state of the system is also
available experimentally. The simulated and the measured states are
then processed through Proper Orthogonal Decomposition (POD) [5] to

atch the simulated to the measured proper orthogonal modes.

. Numerical formulation of the field problem

A large number of analytical and numerical methods exist for solv-
ng magnetic field problems. The two main families of electromagnetic
odels are distributed-parameter models and lumped-parameter mod-

ls, the former are mainly based on finite elements, the latter typically
n electrical or magnetic circuit equations [6]. Distributed-parameter
odels are typically classified as follows:

• In Finite-Element Methods (FEM) the problem is transformed into
a weak formulation, and discretized by local basis and shape
functions. The method results in sparse matrices, but requires
meshing the air region up to the far-field boundaries.

• Boundary-Element Methods (BEM) are based on the Fredholm
integral equations, requiring discretization of the domain bound-
ary only. This reduces the number of degrees of freedom of
the problem, but the resulting matrices are fully populated and
non-linear material parameters are excluded.

• Volume-Integral Methods (VIM) result in less degrees of freedom
than the corresponding FEM models, but lead to fully populated
matrices.

ybrid formulations have also been adopted for particle accelerators
agnets [1] such as FEM based on reduced vector potentials and

oupled FEM/BEM formulations. For our application we apply the VIM
ormulation because of the following reasons:

• No meshing of the air domain. Accelerator magnets are character-
ized by large air-gaps, in which the field must be determined with
the highest possible accuracy. In a FEM domain, a very fine and
regular mesh would therefore be required.

• The excitation field is computed from Biot–Savart type integrals. This
is advantageous for the modelling of the multi-turn coils.

• The magnetic flux density is a linear function of the updated state
variables. The integral formulations allow to solve directly for the
current (and magnetization [7]) distribution in the 3D domain.
It is therefore possible to use the same Biot–Savart type integrals
for both measurement operation and the source field.

The VIM formulation was first developed for linear conductors [8],
nd later expanded to include non-linear magnetic materials [7]. Dif-
erent solutions have been proposed [9] to mitigate the issue of the
ully populated matrices; some of them will be discussed in this paper,
n particular for the steps preceding the model-order reduction.
2

Fig. 2. Discretization of the excitation coil with brick elements. Their local coordinate
systems are (𝜉, 𝜂, 𝜁 ). The current-density amplitude is expressed as a function of the
shape functions 𝑤𝑘(𝜂, 𝜁) weighted by 𝐼c,𝑘(𝑡).

With respect to the implementation in [8], this paper proposes a
lightly different approach where the excitation coils are discretized
s line-current segments and the inductance matrices are computed
nalytically. As the application is a magnet with an aluminium yoke,
here is no need to model non-linear ferromagnetic materials. The
ollowing sections deal with the main aspects of the model, while
etails of the numerical implementation are deferred to Appendix.

. The model for the excitation coil

The multi-turn, 3D geometry of the excitation coil is discretized by
set of brick elements, with a prescribed current direction but varying

urrent amplitude; see Fig. 2. In each cross-section, the Degrees of
reedom (DOFs) are the current densities in the brick. A local coor-
inate system (𝜉, 𝜂, 𝜁 ) is introduced where 𝜉 is aligned with the normal
ector to the cross-section. The direction of the current is expressed
y the unit vector 𝐞𝜉 ; thus the current density can be expressed as

𝐉c(𝜂, 𝜁 , 𝑡) =
∑

𝑘 𝑤𝑘(𝜂, 𝜁)𝐼c,𝑘(𝑡) 𝐞𝜉 . The subscript c denotes all quantities
related to the excitation coil.

The discretization of the coil cross section is done according to
the expected skin depth 𝛿 at the maximum ramp rate, so that all
elements in the cross section are smaller than 𝛿∕2. Inductance and
resistance matrices are assembled by a 2D quadrature rule, which
implies that quadrature nodes in the third dimension are along the
straight line-current segments.

It is therefore possible to adopt analytical formulas for the mutual
inductances, such as Grover’s formulas [10], as well as numerical
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quadrature techniques based on Neumann’s equation [11]. The analyt-
ical formulas are more suitable for near interactions, while numerical
methods are advantageous for far field interactions, because the com-
putational effort for a given accuracy reduces with the distance. A
possible solution to sparsify the matrix, discussed in Appendix A.1, is
to perform a state transformation so that the total current in the coil
𝐼c,tot becomes explicitly a degree of freedom. Far interactions can be
therefore approximated by considering an equivalent coil segment with
𝐼c,tot instead of the current distribution in the brick elements.

This state transformation also imposes current continuity between
the brick elements. The resistance term associated with 𝐼c,tot is the
total resistance of the coil, and the self-inductance term is a good
approximation of its lumped inductance.

In order to assemble the circuit equation, the minimum energy
principle based on Lagrange equations is adopted [12]. This yields

[𝐿c]
d𝑰c
d𝑡 + [𝑅c]𝑰c =

(

[𝑀c] ∣ 𝑷 c
)

[

𝑼 c
𝑈

]

, (1)

here 𝐿c and 𝑅c are the inductance and resistance matrices of the coil.
n the right-hand side 𝑷 c𝑈 accounts for the excitation voltage 𝑈 in the
oil, while [𝑀c]𝑼 c accounts for any other interaction of the conducting
omains. The Lagrange approach does not require identifying loops or
eshes in the physical circuit. Details on the practical implementation

re given in Appendix A.1.

.1. Model-order reduction of the excitation coil

Model-Order Reduction (MOR) of the excitation-coil model is not
trictly necessary for the proposed model-updating, but it is advan-
ageous for this application. Accelerator magnets are designed such
hat skin effects are small in nominal operation conditions. Reduc-
ng the complexity of the full-order coil model allows us to retain
he accurate geometrical description of the coil while disregarding
he high-frequency response. Reducing the order of sub-systems be-
ore assembling the complete model follows the principle of dynamic
ubstructuring [13].

The MOR technique is extensively covered in the literature for
oth linear [5,14] and non-linear systems [15,16]. Because the models
resented in this paper do not involve non-linear magnetic materials,
inear MOR techniques can be adopted. The equation governing the
ynamics of a linear system is written in the time domain as:

̇ = [𝐴]𝒙 + [𝐵]𝒖, (2)

here 𝒙 is the vector of state variables, [𝐴] is the state matrix, 𝒖 is the
nput vector, and [𝐵] is the input matrix. The objective of linear MOR
s to establish a transformation 𝒒 = [𝑇 ]𝒙, where the full-order state of
he system is 𝒙 ∈ R𝑛 and the reduced one 𝒒 ∈ R𝑚, with 𝑚 ≪ 𝑛.

The resulting linear equation systems (both in the frequency and
ime domains) can be reduced with well established techniques, such
s balanced truncation or moment matching [17]. The MOR used for
he conductors is known as the augmented truncation [5]. A reduced
asis is obtained by a proper selection of eigenvectors (modes) of the
tate matrix. The truncated subset of modes is selected by keeping only
he first 𝑘 modes, up to a given phase shift of the response to the
aximum expected frequency 𝑓max in the input. The minimum value

or the phase-shift 𝜙max is chosen such that all lower-order modes can
e considered as static.

The truncated transformation matrix [𝑇 ] is then augmented by
he static contribution of all truncated modes. This allows to recover
he behaviour of the full system in static conditions. The only input
onsidered in this process is the voltage from the power supply of
he magnet. All modes passing the phase-shift criterion are preserved,
egardless of their amplitude.

In order to apply this method to the excitation coil, consider again
q. (1). The system can be rewritten in the state-space form as

d𝑰c
d𝑡 = − [𝐿c]−1[𝑅c]

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝑰c + [𝐿c]−1𝑷 c

⏟⏞⏞⏟⏞⏞⏟
𝑈, (3)
[𝐴c] [𝐵c]
c

3

where matrix [𝐴c] is the state matrix. Its eigenvectors are collected in
he matrix [𝛹c] and its eigenvalues are 𝝎c. The subscript c is kept to
istinguish the excitation coil and the contribution from the yoke when
he coupled system will be introduced.

It is possible to transform the system equations in modal coordinates
y 𝑰c = [𝛹c]𝒒c. This yields from Eq. (1):

𝛹c]T[𝐿c][𝛹c]
⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

[𝐿(m)
c ]

d𝒒c
d𝑡 + [𝛹c]T[𝑅c][𝛹c]

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
[𝑅(m)

c ]

𝒒c = [𝛹c]T𝑷 c
⏟⏞⏟⏞⏟

𝑷 (m)
c

𝑈, (4)

here subscript (m) denotes modal matrices, which are diagonal be-
ause the modes are orthogonal. Modes that exhibit a phase-shift lower
han the selected threshold are removed from [𝛹c], which yields the
ubset [𝛹c,red].

The static solution is obtained from the full system, Eq. (1), as
c,0 = [𝑅c]−1𝑷 c𝑈 . The static response is 𝑰c,stat = 𝑰c,0∕𝑈 . It is then
ossible to compute the vector [𝜳 c,stat] as the residual between 𝑰c,stat
nd the static response of the reduced system.

The augmented/truncated set of modes is given by [𝛹 c] = ([𝛹c,red],
[𝜳 c,stat]). Finally, Eq. (4) is re-written with [𝛹 c] substituted for [𝛹c]. The
resulting reduced matrices are denoted [𝐿(r)

c ], [𝑅(r)
c ] and 𝑷 (r)

c , where the
subscript (r) denotes the reduced order.

4. The model for the conducting yoke

All electrically-conducting domains but the excitation coils them-
selves, are modelled by the current vector potential formulation (𝑻 ).
With 𝑱 y = ∇ × 𝑻 , this yields for the current density 𝑱 y(𝒓, 𝑡) =

∑

𝑘 ∇ ×
𝐰𝑘(𝒓)𝐼y,𝑘(𝑡), where 𝐰𝑘(𝒓) are the shape functions of the vector potential
and 𝐼y,𝑘(𝑡) its line integral along the edge 𝑘 [8]. The subscript y denotes
the variables for the yoke. The choice of current vector potential
guarantees that the field solutions are solenoidal. As uniqueness is not
guaranteed we apply a tree-cotree gauging. The conducting domain is
meshed with hexahedra, supporting Kameari’s edge elements [18] with
20 nodes and 36 edge degrees of freedom. The integral equation is
given by

𝜂𝑱 y(𝒓, 𝑡) +
𝜇0
4𝜋 ∫𝒱

1
|𝒓 − 𝒓′|

𝜕𝑱 y
(

𝒓′, 𝑡
)

𝜕𝑡
dV′ = −

𝜕𝑨𝑒(𝒓, 𝑡)
𝜕𝑡

, (5)

where 𝜂 is the resistance tensor, 𝜇0 the vacuum permeability, 𝒓 the
osition of the field point and 𝒓′ of the source point. dV′ is the

volume element of the source in any conducting domain such as the
yoke (or a conducting vacuum chamber). 𝑨𝑒 is the magnetic vector
potential coupling to the coil or any other source of the magnetic field.
Following a Galerkin scheme, the weak formulation results in the linear
differential equation system of first order:

[𝐿y]
d𝑰y

d𝑡 + [𝑅y]𝑰y = [𝑀y]𝑼y, (6)

where [𝐿y] and [𝑅y] are the inductance and resistance matrices. [𝑀y]𝑼y
accounts for the contribution of the vector potential in Eq. (5). More
details on the numerical implementation are given in Appendix A.2.

Augmented truncation applied to the yoke takes as an input 𝑼y =
d𝑰c∕d𝑡. It is possible to reduce the excitation of the yoke to a scalar
actor; the most trivial approach is to normalize a fixed current distri-
ution in the coil by 𝐼c,tot. Applying the Laplace transform to Eq. (6),

we obtain

𝑠[𝐿y]𝑰y + [𝑅y]𝑰y = [𝑀y]
𝑰c(𝑠0)

𝐼c,tot(𝑠0)
𝑠𝐼c,tot(𝑠), (7)

here 𝑠0 is the frequency at which the current distribution is com-
uted. It is therefore possible to replicate the augmentation/truncation
rocedure of Section 3. Eq. (6) is re-written in the state-space form
ith matrices [𝐴y] and [𝐵y]. The eigenvectors of [𝐴y] are collected in

he matrix [𝛹y] and the corresponding eigenvalues are 𝝎y. The modal
oordinate transformation is now 𝑰 = [𝛹 ]𝒒 .
y y y
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For the evaluation of the modal response at the highest frequency,
the current distribution in the coil at 𝑓max is computed. The phase-
hift of the yoke modes are evaluated with respect to 𝐼c,tot. The static

response is given by 𝑰y,stat = [𝑅y]−1[𝑀y]𝑰c(0)∕𝐼c,tot(0). The transforma-
tion matrix to obtain the augmented/truncated model is finally given
as 𝛹y = ( [𝛹y,red], [𝜳 y,stat] ). The resulting reduced matrices, obtained by
pplying modal transformation to Eq. (6), are denoted [𝐿(r)

y ], [𝑅(r)
y ], and

𝑀 (r)
y ], where the superscript (r) denotes the order reduction.

. The assembled model

The assembly of the model accounts for the coupling of coil and
oke. Biot–Savart type integrals are again employed; the details are
iven in Appendix A.3.

.1. Model assembly

The coupling between the excitation coil and the conducting yoke
s performed by computing the matrix [𝑀y] in Eq. (6), resulting from
𝑨𝑒(𝒓, 𝑡) in Eq. (5). The magnetic vector potential is integrated nu-
merically in the yoke domain, by evaluating it in Gauss points by
means of the Biot–Savart type integrals. Considering that the coupling
is symmetric, a similar computation yields the coupling terms collected
in the matrix [𝑀c] of Eq. (1).

Prior to the final assembly, also this coupling matrix is reduced:
[𝑀 (r)

y,c] = [𝛹y]T[𝑀y,c][𝛹 c]. The final equation system for the complete
agnet assembly is therefore given by

[𝐿(r)
y ] [𝑀 (r)

y,c]
[𝑀 (r)T

y,c ] [𝐿(r)
c ]

)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
[𝐿(r)]

d𝒒
d𝑡 +

(

[𝑅(r)
y ] 0
0 [𝑅(r)

c ]

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
[𝑅(r)]

𝒒 =
(

0
𝑷 (r)

c

)

⏟⏟⏟
𝑷 (r)

𝑈, (8)

where the vector 𝒒T = (𝒒y, 𝒒c) contains reduced coordinates of both
yoke and coil. The only input of the assembled system is the power
supply voltage 𝑈 and the input vector is 𝑷 (r).

5.2. Model outputs

The measurable outputs of the model are fluxes or flux-density
components, which can be computed with Biot–Savart type integrals for
both the excitation coils and the conducting domain. All the (simulated)
measurands are collected in the vector 𝒚. In the most simple case, the
magnetic flux density is required in the position of a point-like mea-
surement sensor such as a Hall probe. If induction-coil magnetometers
are used, the magnetic flux linkage can be computed by integrating
the vector potential along the tracks of the induction coil. Considering
that most measurement instruments are based on linear time-invariant
equations, it is often possible to write 𝒚 = [𝐻]𝒒 where [𝐻] is a discrete
linear operator, mapping a state vector 𝒒 to measurands 𝒚.

For model updating by magnetic measurements, the complete model
includes the dynamic equation from Eq. (8) and the output equations
of the field transducer. Adopting again the state-space representation
gives:

⎧

⎪

⎨

⎪

⎩

d𝒒
d𝑡 (𝒒, 𝑡) = [𝐴]𝒒(𝑡) + 𝑩𝑈 (𝑡)

𝒚(𝑰 , 𝑡) = [𝐻](𝒒, 𝑡) + 𝒏(𝑡)
(9)

where [𝐴] = −[𝐿(r)]−1[𝑅(r)] and 𝑩 = [𝐿(r)]−1𝑷 (r) are the state and input
atrices.

Remark: Power converters for magnets in particle accelerator are
sually current controlled. In order to describe the full electromagnetic
ehaviour of the magnet, however, the proposed model takes the
oltage as input. When a comparison with magnetic measurements is
equired, it is suggested to not provide the model with the measured
losed-loop voltage in feed-forward. A simple control logic (like a P-
ontrol with a gain of some units) should be introduced to reduce the
rror between simulated and measured current.
4

6. Model updating

Model updating is defined as the process of manipulating a nu-
merical model to minimize the discrepancy between prediction and
measurement. While model updating may be limited to adjusting mate-
rial parameters (such as the conductivity in the aluminium yoke) in the
numerical model, we aim not only at minimizing the discrepancy in the
numerical simulation, but to derive a physically meaningful model with
interpolating and extrapolating properties for a wider range of inputs.

Model updating for linear systems has been extensively studied, par-
ticularly in fields of structural mechanics [19–21]. Various approaches
deal with models where mass and stiffness matrices are updated after
modal transformation, provided that experimental data are available
in modal form as well. This is not trivial because measurements often
cover only a small fraction of the unknowns in the model. Therefore,
it is necessary either to expand the measurements, or to reduce the
model, to match the sets of degrees of freedom (DOFs) in the model
and measurements. Typically, the missing DOFs are reconstructed from
the measured states by the model itself. This techniques is know as
coordinate expansion [22].

Limitations in instrument band-width, sensitivity, or sensor posi-
tioning may result in missing modes in the measurements, that is, for
a model with 𝑁 degrees of freedom (𝑁 modes), only 𝑚 < 𝑁 modes

ay be measured. Different techniques exist to construct updated mass
𝑀U] and stiffness [𝐾U] matrices directly from the experimental modes
𝛹X]. For instance, the matrix-mixing method [23] proposes the updated
atrices as:

𝑀U]−1 =
𝑚
∑

𝑖=1
𝜳X,𝑖𝜳T

X,𝑖 +
𝑁
∑

𝑖=𝑚+1
𝜳M,𝑖𝜳T

M,𝑖 (10a)

[𝐾U]−1 =
𝑚
∑

𝑖=1

𝜳X,𝑖𝜳T
X,𝑖

𝜔X,𝑖
+

𝑁
∑

𝑖=𝑚+1

𝜳M,𝑖𝜳T
M,𝑖

𝜔M,𝑖
, (10b)

where 𝜳X,𝑖 is the 𝑖th column in the experimental mode shape matrix,
and 𝜳M,𝑖 is the 𝑖th column of the adjoint set of modes from the
model. 𝜔X,𝑖 and 𝜔M,𝑖 are the eigenfrequencies of the experimental and
simulated modes.

In order to identify the modes given by measurements and those
that must be adjoined, the correlation between the two sets of modes
must be evaluated. A learnt method is to compute the Modal Assurance
Criterion (MAC) between each 𝜳M,𝑖 and 𝜳X,𝑗 . This is essentially the
ormalized scalar product in the 𝑛-dimensional space of modes. The
loser the MAC is to 1, the higher is the degree of similarity between
he modes.

AC𝑖,𝑗 =
𝜳M,𝑖 ⋅ 𝜳X,𝑗
|𝜳M,𝑖||𝜳X,𝑗 |

. (11)

Model updating with measured modes requires that they are of limited
number and well separated. While in mechanics this is often not an
issue [5], electromagnetic modes are less separated. Additionally, they
cannot be truncated to less than hundreds of modes, to obtain the re-
quired accuracy. The proposed procedure therefore employs a different
kind of modes derived from a Proper Orthogonal Decomposition (POD).

The following subsections introduce the concept of POD and its
implementation in model updating.

6.1. Proper orthogonal decomposition

Proper Orthogonal Decomposition [24] is a data analysis technique
aiming at a low-order approximation of a high-order model. The ap-
proximation is expressed by the linear transformation 𝒛 = [𝑇 ]𝒙, where
he high-order model is described by 𝒙 ∈ R𝑛 and the approximation is
∈ R𝑚, where 𝑚 ≪ 𝑛. This techniques does not require that the model

be linear because POD relies on the system response to a prescribed
input, by employing selected time-domain snapshots of the response.

Similar to what was done with the state-matrix eigenvectors in
Section 3.1, POD allows us to employ the resulting transformation for
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model order reduction. However, POD may suffer from a non-optimal
choice of the input, while state-matrix modes, that is, the eigenvalues
of the state matrix, are input-independent.

The first step of POD is to identify an appropriate input-time se-
quence, for which the full state of the system is evaluated. The state
vectors, called snapshots, are selected at well defined time steps. The
result is the matrix of snapshots [𝑆] ∈ R𝑛×R𝑚, where 𝑛 is the dimension
of the state vector and 𝑚 the number of snapshots.

The transformation matrix for model reduction obtained from POD
is a subset of the eigenvectors of [𝐾] = [𝑆][𝑆]T ∈ R𝑛 ×R𝑛. It is possible
to drastically reduce the computation time by solving the eigenvalue
problem for [𝑅] = [𝑆]T[𝑆] ∈ R𝑚 ×R𝑚, as 𝑚 ≪ 𝑛. In this case, the first 𝑚
modes of [𝐾] are given by

𝜱K,𝑖 =
1

√

𝜔R,𝑖
[𝑆]𝜱R,𝑖, 𝑖 = 1,…𝑚. (12)

he terms 𝛷 and 𝜔 are the eigenvectors and eigenvalues of the matrices
n the subscripts. The main drawback of this technique is that, for
n ill-conditioned [𝑆] the matrix [𝑅] will be even worse conditioned.
he sequence of snapshots must therefore include the most relevant
ransients, limiting the redundant information.

Proper Orthogonal Modes (POMs), derived from Eq. (12), can
e employed in the model-order reduction. The process is similar
o Eq. (4), but in this case the resulting matrices are not diagonal:
OMs are orthogonal with respect to [𝐾] but not to the state matrix.
onsequently, the reduced bases are not independent to each other.
evertheless, a few POM may provide better performance than a higher
umber of state-matrix modes [24].

Proper Orthogonal Modes from Eq. (12), can also be computed
xperimentally, provided that the full state is measured. Incomplete
easurements must undergo an expansion procedure before being

ubjected to POD and updating. In the application presented in the
ext section, this expansion procedure can be seen as a state estimation,
ecause the only measurable state is the excitation current in the coil.

Once the full state is reconstructed and the POMs computed, also
he time history of the POM coordinates can be estimated. 𝒛X = [𝛷X]𝒒X,
here 𝒒X is the vector of the estimated coordinates and 𝒛X the vector
f POM coordinates. As long as we refer to POMs as modes, the state-
atrix modes are identified with the greek letter [𝛹 ] (and 𝒒 for modal

oordinates), while the Proper Orthogonal Modes are identified by [𝛷],
nd 𝒛 is the set of POM coordinates.

.2. State estimation

Proper Orthogonal Decomposition requires the full state of the
napshots, thus a Kalman Filter [25] is employed in the reconstruction
rocess. The filter allows us to account for both the noise in mea-
urements (which is already included in Eq. (9)) and the ignorance in
he physical model of the magnet. The model in the form of Eq. (9)
s thus enriched by adding a disturbance term in the state equation.
isturbances are provided by a vector 𝒘 of unknown inputs, with a
isturbance-input matrix [𝛹m], which is the matrix of the assembled
ystem modes. In this way, a single covariance is estimated for all
lements in 𝒘 and the disturbances are proportional to the magnitude
f each mode. Eq. (9) is adopted for state estimation modifying the first
et as:
d𝒒
d𝑡 (𝒒, 𝑡) = [𝐴]𝒒(𝑡) + 𝑩𝑈 (𝑡) + [𝛹m]𝒘(𝑡) . (13)

6.3. The updating procedure

The core of the model updating is, as already mentioned, a POD of
both the model and the measurements. The same input is applied to
the model and the experimental setup, and the snapshots are collected
at the same time instant. This yields the matrices of snapshots [𝑆X] and
𝑆 ].
M

5

POMs from the model 𝜱M,𝑖 and from the expanded measurements
𝜱X,𝑗 are computed. The indices 𝑖 and 𝑗 denote the 𝑖th and 𝑗th modes of
each set. In order to match each of the model and measurement modes,
the MAC is computed accordingly to Eq. (11).

Thereafter, the updated matrices can be reconstructed from the ex-
perimental modes. Because the POMs form the reduced basis, resuming
to the full matrices of physical variables, Eq. (10), is discouraged.
The updated model is therefore written directly in a reduced form,
approximating the time evolution of the experimentally obtained POM
coordinates 𝒛X. The starting point is the reduced nonupdated model,
derived from Eq. (8):

[𝛷M]T[𝐿(r)][𝛷M]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

[𝐿M]

d𝒛M
d𝑡 + [𝛷M]T[𝑅(r)][𝛷M]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
[𝑅M]

𝒛M = [𝛷M]T𝑷 (r)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝑷M

𝑈, (14)

where the subscript M denotes the quantities of the numerical model.
Assuming that also the experimentally derived POMs evolve according
to the same equation, with small updates of the coefficients, it is
possible to perform the updating through the coefficients in Eq. (14).

Starting from the nonupdated values, the updated coefficients can
be computed by minimizing the vector norm of errors

𝒆 = ∫

𝑡1

𝑡0

|

|

|

𝒒X(𝑡) − 𝒒M,u(𝑡)
|

|

|

d𝑡, (15)

here the second term is the result of the numerical model. To reduce
he number of unknowns in the procedure, Eq. (14) can be written
n state-space form. Some properties of the original matrices, such
s symmetry, should be also enforced. The final result of the update
rocedure is therefore a reduced-order, linear model, describing the
ehaviour of the POMs that are reconstructed from measurements. The
pdated model reads:

d𝒛
d𝑡 = [𝐴(u)

M ]𝒛 + 𝑩(u)
M 𝑈, (16)

where (u) denotes the update and the subscript for 𝒛 has been omitted
to emphasize that this variable is our main quantity of interest. The
input 𝑈 is the voltage across the terminals of the magnet.

7. Experimental validation

To validate the proposed method of data-driven simulation, a mea-
surement campaign was carried out on a dipole magnet, designed for
the ELENA accelerator project at CERN [26]. The magnet is built of a
pair of saddle-shaped coils that are supported by an aluminium yoke;
see Fig. 3(a). The cylindrical bore has a radius of 136 mm and a length
of 178 mm. The reference frame, located at the centre of the aperture,
is oriented such that 𝑥 points in the axial direction of the cylinder, 𝑦 to
the top of the magnet, and 𝑧 in the horizontal direction. The range of
the excitation current is 0–45 A and the ramp-rates are between 0 and
400 As−1.

Particle-accelerator magnets are characterized by their Good-Field
Regions (GFR), which are the regions of the aperture where the particle
beam is supposed to travel. Typically, the required field homogeneity
in the GFR is of the order of a few units; the unit defined as 1 ⋅ 10−4
of the main field. The cylindrical GFR in the ELENA magnet is 40 mm
in diameter as shown in Fig. 3(b). In this paper, the model updating is
performed using the computed and measured field distribution inside
the GFR considered as the output of the dynamic system.

The static field in a coil-dominated, normal-conducting magnet can
be predicted with high accuracy by applying Biot–Savart’s law to the
coil field and by limiting discretization error in the numerical model
of the contribution by the yoke. Because the ELENA magnet will be
operated at very low fields, the yoke is made entirely from aluminium
so that iron effects are avoided and no static contribution is expected.
In practice, however, coil-dominated magnets exhibit a high sensitivity
of the field to coil-positioning errors. As the main objective of the
proposed method is to describe dynamic field effects in the magnet,
the figure of merit for the updating process, considers only the field
errors from the induced eddy-currents. This requires that model errors
for static field components be low enough.
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Fig. 3. Experimental validation campaign: the magnet under investigation with the instrument positioned in its centre (a); Model mesh, Good Field Region, reference frame axes
orientation (pictured outside of the magnet for clarity) and the main PCB (b); PCB coil track and interpolation grid for the model of measurements, seen from the top (c).
7.1. The experimental set-up

Fig. 3(a) shows a rigid arm holding a set of induction-coil magne-
tometers in Printed Circuit Board (PCB) technology. The PCB coils are
displaced by a 2D precision stage in the magnet bore by ±200 mm along
the magnet axis 𝑥, and ±20 mm along the vertical 𝑦 direction. The PCB
coil can also be manually adjusted in the 𝑧 direction, in order to cover
the entire GFR.

The field transients due to prescribed excitation-current cycle in-
duce a voltage in the induction coil, acquired at a sampling frequency
of 500 kHz by a digital integrator card [27]. The excitation current and
the voltage across the magnet excitation coils are also acquired.
6

In order to exclude thermal effects, the DC resistance of the magnet
is monitored such that each measurement can be started with the
magnet at the controlled room temperature.

The position of the PCB coil with respect the magnet frame is
monitored by a LEICA® laser scanner with a 20 μm accuracy, using
retro-reflectors on the magnet, and the PCB. This fiducial marker
localization is essential for modelling the measurement set-up by the
matrix [𝐻]. The relative angle misalignment between the magnet and
the measurement instrument resulted in 13.2 mrad for the 𝑥 axis,
13.0 mrad for the 𝑦 axis, and 6.1 mrad for the 𝑧 axis.
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Fig. 4. Static field along the magnet axis. Measurement results are compared to the nonupdated model, through both absolute and relative errors. The flux density is slightly
underestimated by the model. Nevertheless, it will be shown that model updating is still applicable for the dynamic effects.
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7.2. Model implementation

The modelled magnet geometry is based on design drawings that
include small details such as screws and pins, but simplified to guaran-
tee high mesh quality. The meshes for the coil and yoke are shown in
Fig. 3(b). The coil is made of about 19000 brick elements with 18 nodes
er cross-section. The yoke contains 5800 elements, resulting in a total

of 88000 edge shape functions. After gauging, 37500 edges are identified
as degrees of freedom. The coil is made of copper (resistivity 𝜌Cu =
16.7nΩ m), while the yoke is made of aluminium alloy (𝜌Al = 48nΩ m).
After the coil and the yoke matrices are assembled, each part is reduced
by augmented truncation. Eigenvectors of each systems are therefore
computed. The eigenvalue problem is solved with the ‘‘eig’’ function
in the MATLAB® routines. After augmented truncation, 800 modes are
kept for the coil and 2800 for the yoke. The proposed criterion for
discarding modes is a phase shift of maximum 5◦ at 90 Hz, which is the
10-th-order harmonic component of the maximum current ramp cycle,
preserving modes with natural frequencies up to about 1700 Hz.

The measurement is simulated by integrating the magnetic vector
potential along the PCB coil tracks, whose 3D coordinates are obtained
from the design drawing; see Fig. 3(c). Due to the short length of
the magnet, it is not possible to identify a truly homogeneous field
region and therefore the full 3D geometry of the PCB coil must be
considered. This results in thousands of points in which the vector
potential, from coil and yoke, must be taken into account. Nevertheless,
given that the region occupied by the probe is relatively small with
respect to the aperture, it is possible to construct a regular grid around
the induction coil and interpolate the vector potential from the grid
shown in Fig. 3(c).

In order to guarantee that the result is still a Maxwellian field,

harmonic polynomials can be adopted [28]. The original method was

7

developed for the scalar potential 𝜙 in source-free domains, thus solving
∇2𝜙 = 0. For the vector potential under the same conditions, it holds
that ∇2𝐴 = 0 for its three Cartesian components. Convergence is
evaluated both in terms of grid size, polynomial orders, and the PCB
coil-track discretization. A grid of 10 × 6 × 1 cubes, with a least-square
itting of a 5-th-order harmonic polynomial is chosen for the PCB coil
racks. The flux through the 1400 segments of the PCB coil can be

computed with a relative error of less than 10−6 with a speed-up by
the factor of 100.

The model is a linear time-invariant system, which can be solved
both in the continuous-time and discrete-time domains. The magnet
model is transformed in a discrete-time system, by a zero-order hold
discretization method [29], with time steps matching at least twice the
maximum eigenfrequency of the system; in our case this is 0.2 ms.

.3. Static field components

The first experiment aims at measuring the static magnetic fields
or the magnet excited in DC mode. The computed magnet resistance
f 0.178 Ω is compared with 𝑅c,tot = 0.1852 Ω measured at room

temperature (24◦C), and the model is tuned accordingly. As shown in
Fig. 4, the measured flux density along the magnetic axis is up to 3%
higher than in the numerical model.

Different excitation currents are applied to validate the linearity of
the field. The transfer function of the flux density in the centre of the
magnet for excitation currents from 5 A to 45 A results in F = 𝐵𝑧∕𝐼 =
0.29615 mT A−1 with a standard deviation of 𝜎 = 18.99 nT A−1.
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Fig. 5. Measurement of the dynamic field on the magnet axis for the ramp up. From the top to bottom: measured voltage and current for the magnet excitation cycle; POD-reduced
model error on current; integral field of eddy currents; integral of flux density error along profile.
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7.4. Dynamic fields along the magnet axis

The transfer function of the static field is used to compute the
eddy-current field by

𝐵𝑧,ec(𝑥, 𝑦, 𝑧) = 𝐵𝑧(𝑥, 𝑦, 𝑧) − F(𝑥, 𝑦, 𝑧) 𝐼, (17)

where 𝐵𝑧(𝑥, 𝑦, 𝑧) and 𝐼 are the measured quantities. This allows us
to identify both the eddy-current transients and the steady-state field
distribution. Different current ramp rates are considered to reach 45 A,
in order to assess the linearity of the eddy-currents. This step is crucial
to ensure that the model updating can be done by measuring only one
excitation cycle. Between 100 and 400 A s−1, we obtain a central field
of 2.24 μT s A−1, with a standard deviation of 𝜎 = 6.74 nT A−1. This
corresponds to a relative uncertainty of about 0.3% and therefore the
eddy-current generation can be assumed to be linear.

Model updating is performed by a set of measurements along the
magnet axis for cycles of {0, 45, 0} A at 300 A s−1. Field points between
 t

8

−200 mm and +200 mm, with steps of 20 mm are considered. In
addition, two measurements at 𝑦 = −40 mm and 𝑦 = +40 mm are taken
nto account to intercept possible up–down asymmetries in the magnet.

The excitation cycles are repeated 30 times and averaged. The first
raph in Fig. 5 is the nominal excitation cycle. The second graph shows
he current error in the POD-reduced model before and after updating.
he third graph is the integral field generated by the eddy-current
istribution:

Int = ∫

+𝑥0

−𝑥0
𝐵z,ec(𝑥)d𝑥, (18)

here 𝑥0 = 200 mm. The bottom graph of Fig. 5 are the integrals over
he modulus of the error

rr(𝑥) = 𝐵𝑧,ec(𝑥) − 𝐵(m)
𝑧,ec(𝑥), (19)

here (m) denotes the model values (with and without update), while
he quantity without superscript is the measured one.
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Fig. 6. Eddy-current distribution during ramp-up at 𝐼 = 20 A. The most relevant difference between the simulated and the estimated fields are due to the eddy-currents in the
inner shells. This is due to the simplified model not geometrical features in the inner shells. Comparing the model to the real device shown in Fig. 3, reveals that the shell features
two protruding edges and therefore the estimated eddy-current distribution can be explained. Moreover the eddy-current distribution in the upper yoke is effected by the safety
interlocks and power leads connected in this region.
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7.5. Updating the model

The state estimator is implemented in MATLAB® as a discrete time
Kalman Filter. The state estimator has to be provided with covariance
matrices of the measurement noise, whose amplitudes are estimated to
be 100 mA for the current and 10 μT for the flux densities. Different
values for model-error disturbances are considered; the best estimation
is obtained with cov(𝑤𝑖) = 0.1.

Voltage and excitation currents are measured together with the
magnetic flux density and provided to the state estimator.

Both the model and the state estimator are executed for the nom-
inal current ramp rate of 300 As−1. Fig. 6 shows the eddy-current
distributions during the ramp-up, as predicted by the model and as
reconstructed by the estimator. The difference in the eddy currents are
due to some geometrical features that were neglected in the model; see
Fig. 3(a).

For the updating process, three snapshots are taken, so that three
POMs can be computed. The snapshots are taken at instances of time
of the excitation-current history, shown in Fig. 7. The instances of
the snapshots are chosen to capture the main phenomena: steady-state
current, steady-state eddy currents, and the transient of eddy currents.
The same instances are taken for the model and the state-estimator.
Extracting the POM from the snapshots is again an eigenvector problem
for the symmetric, positive semi-definite matrix [𝑅] = [𝑆]T[𝑆]. The esti-
mated POM require further processing, as explained in Section 6.1. The
time history of the POM coordinates is computed and the coefficients
of their dynamic equations are estimated.

The largest POM (𝑧3) is related to the excitation-coil dynamics, the
second (𝑧2) to the eddy currents in the yoke and the third (𝑧1) to the
eddy currents in the coil; see Fig. 7. Notice that the POM coordinate 𝑧1
epresents the time derivative of 𝑧2, and 𝑧2 that of 𝑧3. The MAC matrix

between the model POM and the estimated POM resulted in

[MAC] =
⎡

⎢

⎢

⎣

0.2684, 0.1222, 0.0024
0.0811, 0.8207, 0.0025
0.0232, 0.0015, 0.9990

⎤

⎥

⎥

⎦

. (20)

This matrix can be interpreted as follows: before updating, the model
of the excitation coil is well describing the coil (𝑧3), while the main
eddy-current distribution in the yoke is less well described (𝑧 ). For
2 n

9

this reason, the secondary eddy-currents are poorly represented (𝑧1).
Nevertheless, the matrix is almost diagonal and therefore it is possible
to enforce a one-to-one correlation.

The updated values of the coefficients can therefore be computed
and provided to the model, mode-by-mode. The final result is a 3-
state, linear time-invariant system, where each of the state variables
is associated to a current distribution 𝜱𝑖. All the computed magnetic
fields can be summarized, for the reduced model, in an output matrix
of the kind [𝐶] ∈ R𝑝 × R3, where 𝑝 is the number of outputs.

The percentage differences between the original and the updated
matrices are

[𝐸] ∶= 100
|

|

|

|

|

1 −
𝐴X,𝑖,𝑗
𝐴M,𝑖,𝑗

|

|

|

|

|

=
⎡

⎢

⎢

⎣

79.1, 57.4, 48.7
57.4, 19.6, 4.78
48.7, 4.78, 7.25

⎤

⎥

⎥

⎦

. (21)

The POMs that exhibited a lower MAC (𝑧2 and in particular 𝑧1) are
eceiving the largest correction. Although the correction for 𝑧1 is rela-
ively large, the weight of this mode in the overall magnet description
s only a few percent of the total dynamics.

After model updating with measurements, an additional set of mea-
urements is done for checking the robustness of the method. These
easurements include

• Field profiles (inside and outside the GFR) that were not consid-
ered in the updating process.

• Different excitation cycles with ramp rates of 400 A s−1 and a
maximum current level of 35 A (compared to 45 A at 300 A s−1
for the updating process).

The quantity of interest is again the integral of the error modulus
or the eddy-currents field. Fig. 8 shows the errors as predicted by
he nonupdated model and the updated model. Despite higher errors
n the 400 A s−1 cycle, compared to the nominal 300 A s−1 cycle, the
pdated model is about three times better than the original one in
redicting eddy-currents. This performance is preserved even outside
he good-field region.

. Conclusion

This paper presents a first approach in data-driven modelling of
ormal-conducting magnets for particle accelerators.
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Fig. 7. Selection of snapshots (top) and the normalized POM time history (bottom). Snapshots are taken at three instances of time: (1) eddy-current transient, (2) fully developed
eddy-currents, and (3) steady-state. POM (solid line) are derived from the model, dotted lines are estimated.
Fig. 8. A comparison between the POD-reduced model before and after updating through a set of measurements.
A Volume Integral Formulation with ad-hoc solutions for excitation
oils is implemented. The advantages in using dynamic substructuring,
ogether with modal Model Order Reduction, are highlighted. Proper
rthogonal Decomposition is adopted to further reduce the order of

he system and to accommodate corrections based on measurements.
All steps are applied to a coil-dominated dipole magnet built for

n accelerator project. The results demonstrate the potential of the
roposed techniques, which yield a model of the magnet with only
DOFs, but being able to accommodate measurement-driven updates.

xperiments have shown an improved accuracy (by a factor of three)
ith respect the non-updated model.

The most promising aspect of the proposed method is that it is able
o cover the whole life cycle of the magnet. The updated model can be
sed for current cycle optimization or as a diagnostic tool for magnets
hat are already installed in the accelerator tunnel. The updated model
an be seen as a preliminary digital twin for the normal-conducting
10
magnet; not only a simulation tool, but also a way to store information
during the magnet life cycle.

Future work shall focus on ferromagnetic materials, conceivably
including them in the proposed formulation.
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Appendix. The implementation of the electromagnetic model

A.1. The excitation-coil model

As explained in Section 3, the excitation coil is modelled by brick
elements with a current-density distribution of fixed direction and
variable intensity. Inductances and resistances are therefore computed
by a 2D quadrature in the cross-sections of the bricks, resulting in
a filament-filament interaction evaluation. The overall procedure for
calculating the inductance matrix is given by

𝐿𝑖,𝑗 =
𝜇0
4𝜋 ∫𝒜𝑖

∫𝒜𝑗

wT
𝑖

⎡

⎢

⎢

⎣

∫ ∫
cos(𝛼)
|

|

|

𝐱𝑖 − 𝐱𝑗
|

|

|

d𝑧𝑖d𝑧𝑗
⎤

⎥

⎥

⎦

w𝑗d𝑎𝑖d𝑎𝑗 , (A.1)

where 𝐱𝑖, 𝐱𝑗 are the positions of the filaments, 𝛼 the angle between
filament directions and w𝑖, w𝑗 the vectors of the shape functions.

Computing mutual inductances results in a fully populated matrix.
The proposed solution is based on the total current

𝐼tot = ∫𝒜
𝐽 (𝒓)d𝑎. (A.2)

in the cross section and a coordinate transformation so that the 𝑛 DOFs
of a cross-section become the 𝑛−1 nodal variables, plus 𝐼tot that imposes
current continuity across the brick elements.

This transformation leads to a sparsification of the inductance ma-
trix. Near interactions are computed between brick elements, while
for far interactions line-current segments of 𝐼tot are sufficient. The
criterion to identify these regions is based on the relative error of these
approximation; see Fig. A.9.

The main idea underlying the concepts proposed in Fig. A.9 is
that different equations are employed for the calculation of mutual
interactions between filaments, depending on the relative distance. In
particular, near interactions (region 1) are computed by the Grover’s
formula [10]. Middle-range interactions (region 2) and far interactions
(region 3) are computed with different quadrature points by Neumann’s
formula [11]. This last equation is used also to express the interactions,
outside region 3, directly from the 𝐼tot term. The main criterion to
identify the region is distance-based: a threshold 𝜖 is introduced for
the relative error between interactions computed with two different
formulas. When the error is below the given threshold, the less-accurate
but faster method is adopted.

In the case that all the bricks have almost the same length, this
evaluation could be done on a sample of interactions. In this way,
the regions of application of the various formula are fixed and they
can be directly imposed to the segments in the final computation of
inductance. These regions are represented in Fig. A.9 as cylinders.

Instead of enforcing Kirchhoff’s laws on currents and voltages of the
resulting circuit, an energetic approach based on Lagrange equations
is adopted [12]: The Lagrangian function is defined as  = 𝑇 − 𝑉 ,
where 𝑇 and 𝑉 are the kinetic and potential energies of the system. The
mechanical–electrical analogy is presented in Table A.1 It is therefore
possible to write:
d
d𝑡

𝜕
𝜕𝑞̇𝑖

− 𝜕
𝜕𝑞𝑖

+ 𝜕𝐷
𝜕𝑞̇𝑖

= 𝐹 for 𝑖 = 1,… , 𝑛. (A.3)

where 𝑞𝑖 are the independent variables of the system. The resulting
equation can be written as Eq. (6).
11
Table A.1
Mechanic–electric analogy for Lagrange equations, for a simple circuit
made of a resistor 𝑅, an inductor 𝐿, and a capacitor 𝑄. 𝑘 and 𝑐 are a
lumped stiffness and a lumped damper attached to a body of mass 𝑚.
Mechanics Electrics E mech. E elec.

Position 𝑥 Charge 𝑄 𝑉 = 1
2
𝑘𝑥2 𝑉 = 1

2
𝑄2

𝐶

Velocity 𝑥̇ Current 𝐼 𝑇 = 1
2
𝑚𝑥̇2 𝑇 = 1

2
𝐿𝐼2

𝐷 = 1
2
𝑐𝑥̇2 𝐷 = 1

2
𝑅𝐼2

Force 𝐹 emf 𝑉 𝑊 = 𝐹𝑥 𝑊 = 𝑉 𝑄

A.2. The conductor model

Eq. (5) is integrated over the volume where 𝑱 (𝒓, 𝑡) is evaluated,
where V is the volume element of the source in the domain 𝒱 . The
final equations, as already expressed in Eq. (6), can be written as

[𝐿]d𝑰d𝑡 + [𝑅]𝑰 = 𝑼 , (A.4)

here:

𝐿𝑖𝑘 =
𝜇0
4𝜋 ∫𝒱 ∫𝒱

∇ × 𝐰𝑖(𝒓) ⋅ ∇ × 𝐰𝑘(𝒓′)
|𝒓 − 𝒓′|

dVdV′, (A.5a)

𝑅𝑖𝑘 = ∫𝒱
∇ × 𝐰𝑖(𝒓) ⋅ 𝜼 ⋅ ∇ × 𝐰𝑘(𝒓)dV, (A.5b)

𝑈𝑖 = −∫𝒱
∇ × 𝐰𝑖(𝒓) ⋅ 𝜕𝑨𝑒(𝒓, 𝑡)∕𝜕𝑡 dV. (A.5c)

he self-inductance term becomes singular when source and field points
oincide; 𝒓 = 𝒓′. Although analytical solutions can be kept finite,
umerical methods diverge at this point. To overcome this problem,
he equivalent spheres method is adopted [8].

Consistent with learnt practises, tree-cotree gauging is applied. If a
ree for the network of edge elements is provided, then the minimum
umber of unknowns is given by the line integrals of 𝑻 along the edges

forming the corresponding cotree, that is, the degrees of freedom (DOF)
associated to the cotree. Every branch of the cotree closes with the tree
a loop in which it is the only active edge. Therefore, the value of the
line integral of 𝑻 along the loop is, by virtue of Stokes’ theorem, the
total current linked with the loop. The potential 𝑻 is thus uniquely
determined for a prescribed solution of the DOF. Imposing that the
current density is zero at the domain boundaries implies that the line
integral of 𝑻 is zero as well. Therefore, cotree edges on boundaries of
simply connected domains must be excluded.

The inductance matrix is a fully populated matrix. It is symmetric
and positive definite, but depending on the geometry, it can be very
large, and thus demanding on memory and solution time. A possible
mitigation, yet to be fully exploited, is to adopt a low-rank approxima-
tion of blocks in the matrix corresponding to far-field interactions. Es-
tablished methods include domain decomposition, fast-multipole meth-
ods or adaptive-cross approximation (ACA) algorithms [31].

A.3. Magnetic field computations

The coupling between the excitation coil and the conducting yoke
is given by Eq. (A.5c). The term 𝑨𝑒(𝒓, 𝑡) is the magnetic vector potential
in the domain of the yoke, generated by the excitation coil. It can be
computed analytically with the Biot–Savart law straight line-current
segments:

𝑨𝑒 =
𝜇0𝐼
4𝜋

[

sinh−1
𝑧2
𝑑

− sinh−1
𝑧1
𝑑

]

eAB, (A.6)

where 𝐼 is the current flowing in the segment AB and directed as
eAB, the unit vector in axial direction of the segment. 𝑑, 𝑧1, 𝑧2 are
geometrical parameters as shown in Fig. A.10a.

The last quantity of interest is the measured magnetic field. De-
pending on the measurement techniques, 𝑯 , 𝑩 or 𝑨 may be required.
Their computation must consider the generation from both the exciting
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Fig. A.9. Near and far interactions scheme. Different methods for inductance calculation are employed to the three different regions: analytical [10] in region (1), fine numerical
uadrature formula [11] for region (2) and reduced numerical [30] for region (3). For brick elements outside these regions, the eddy-current distribution can be neglected and
nteractions computed by a reduced quadrature method are accumulated in the matrix 𝐿 related to 𝐼tot.
Fig. A.10. Geometric elements and parameters for the computation of 𝑨 (a) and 𝑯 (b). Black arrows identify the orientation of segments. Current flows from A to B.
oil and the eddy currents in the yoke. For all the cases, the Biot–
avart law is adopted. As an example, consider the calculation of 𝑯 . As
or Eq. (A.6), analytical expressions for finite-length, straight filaments
xist, while for solid conductors a numerical integration is required:

𝐻c = 𝐼
4𝜋𝑑

(

cos 𝜃1 + cos 𝜃2
)

, (A.7)

𝑯y = 1
4𝜋 ∫𝒱

𝑱 (𝒓′, 𝑡) × (𝒓 − 𝒓)
|𝒓 − 𝒓|3

dV′ (A.8)

The geometric parameters for 𝐻c are shown in Fig. A.10b. The direction
of 𝐻c is orthogonal to the spanned triangle and is determined by the
right-hand rule on eAB.
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