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Abstract
Cardiac magnetic resonance (CMR) has become an essential tool for the evaluation of patients affected or at risk of develop-
ing cardiomyopathies (CMPs). In fact, CMR not only provides precise data on cardiac volumes, wall thickness, mass and 
systolic function but it also a non-invasive characterization of myocardial tissue, thus helping the early diagnosis and the 
precise phenotyping of the different CMPs, which is essential for early and individualized treatment of patients. Furthermore, 
several CMR characteristics, such as the presence of extensive LGE or abnormal mapping values, are emerging as prog-
nostic markers, therefore helping to define patients’ risk. Lastly new experimental CMR techniques are under investigation 
and might contribute to widen our knowledge in the field of CMPs. In this perspective, CMR appears an essential tool to be 
systematically applied in the diagnostic and prognostic work-up of CMPs in clinical practice. This review provides a deep 
overview of clinical applicability of standard and emerging CMR techniques in the management of CMPs.
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Introduction

Cardiomyopathies (CMPs) are a group of myocardial dis-
orders, often affecting young individuals, characterized by 
the presence of structural and functional abnormalities of 
the heart muscle, not explained by coronary artery disease, 
hypertension, valvular disease or congenital heart disease [1]. 

Advancements in medical treatments and the availability of 
implantable cardioverter defibrillator to prevent sudden car-
diac death (SCD) have allowed a substantial increase in the 
survival of affected individuals, thus making early diagnosis 
and prompt treatment mandatory [2].

The non-invasive characterization of cardiomyopathies 
has received a great boost from the recent advances in car-
diovascular magnetic resonance imaging (CMR), which to 
date represents the gold standard for non-invasive assess-
ment of cardiac morphology, function and myocardial tissue 
changes. In fact, CMR allows not only the quantification of 
biventricular volumes, mass, wall thickness, systolic- and 
diastolic function, intra- and extracardiac flows, but also the 
detection of myocardial oedema, fibrosis, and the accumu-
lation of other intra/extracellular substances (such as fat, 
iron, amyloid), providing unique information for the etio-
logical, diagnostic and prognostic definition of the disease. 
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In addition to the conventional sequences, new quantitative 
techniques are now available and further experimental CMR 
techniques are under investigation and might contribute to 
widen our knowledge in the field of CMP. The purpose of 
this joined document of Working Groups on Myocardial 
and Pericardial Diseases and on CMR of Italian Society of 
Cardiology is to provide practical information for the appli-
cation of both standard and emerging CMR techniques in 
the clinical management of CMPs, bringing the most recent 
scientific evidence to daily clinical practice.

Overview of CMR sequences 
in cardiomyopathies (Table 1 and Figure 1)

CMR is a multiparametric, highly reproducible, non-invasive 
imaging technique, with a relatively high spatial, temporal 
and contrast resolution [3–5]. This is made possible thanks 
to a great number of different sequences, each obtained 
combining specific magnetic gradients and radiofrequency 
pulses, whose detailed explanation goes beyond the scope of 
this review (for detailed description see Table 1 and Fig. 1).

The most common conventional sequences in CMR are cine 
steady state free-precession (SSFP) images for the assessment 
of cardiac volumes, wall thickness, mass and systolic function 
[6] and several different static sequences for myocardial tissue 
characterization. For instance, fatty infiltration can be seen as 
a dark “India Ink” sign in SSFP images or as a hyperintense 
area in T1 or PD-weighted fast spin echo (FSE) sequences 
[7] while myocardial edema appears hyperintense in T2-STIR 
(short-tau inversion-recovery) sequences. Fibrosis can be seen 
as a hyperintense area on late gadolinium enhancement (LGE) 
sequences, which are acquired 10–15 min after gadolinium-
based contrast agent administration. The various pattern of 
LGE have been used to distinguish ischemic cardiomyopathy 
(characterized by subendocardial or transmural LGE, corre-
sponding to a coronary territory) from primary nonischemic 
cardiomyopathies (characterized by patchy or mid-wall LGE), 
myocarditis (sub-epicardial LGE) and cardiac amyloidosis 
(diffuse subendocardial-to-transmural LGE).

As compared to the wide range of information derived from 
CMR, there are only few contraindications, mostly related to 
MR-unsafe metal implants, severe renal failure (which limits 
the use of several gadolinium-based contrast agents), patient dis-
comfort (claustrophobia) and tachyarrhythmias or poor breath-
holding (with consequent impairment of image quality) [8, 9].

Compared to conventional imaging, the novel mapping 
sequences allow the absolute quantification of T1, T2, and T2* 
relaxation times (ms) for each tissue generating pixel-wise quan-
titative myocardial maps [10, 11], reflecting changes due to sev-
eral myocardial diseases [12].

Native (pre-contrast) T1 mapping encompasses both intra-
cellular and extracellular changes: myocardial infarction, 
inflammation, edema, fibrosis or amyloid all demonstrate pro-
longed native T1 values compared with normal myocardium, 
while iron (in cardiac hemochromatosis) or lipids (as in Fabry 
disease) shorten pre-contrast T1 [12, 13].

– The myocardial extracellular volume (ECV) is calculated 
from pre- and post-contrast T1 mapping and hematocrit 
and correlates with the extent of interstitial space (where 
gadolinium-based contrast agents accumulate). Myocar-
dial necrosis, interstitial oedema, fibrosis and amyloi-
dosis are the most common causes of an increased ECV 
[14, 15]. Differently from LGE, ECV mapping does not 
require the presence of local differences in the myocar-
dium, thus allowing the detection of diffuse myocardial 
changes (i.e. diffuse interstitial fibrosis), which can 
hardly be detected with the sole LGE technique.

– T2 mapping detects myocardial oedema, with a higher 
sensitivity and reproducibility than T2-STIR sequences 
[16], in both ischemic and non-ischemic cardiac diseases.

– T2* differs from T2 mapping because it accounts for 
magnetic field inhomogeneities, and it has emerged as a 
valuable tool in the detection and quantification of myo-
cardial iron deposits, such as in myocardial hemorrhage 
and hemochromatosis [17, 18].

Further experimental CMR techniques (resumed in Sup-
plemental Table 1) are under investigation and may become 
available for clinical practice in the near future.

Non‑ischemic dilated cardiomyopathies

Non-ischemic dilated cardiomyopathy (DCM) is character-
ized by the presence of a poorly contractile and frequently 
dilated left and/or right ventricle, resulting from a complex 
interplay between individual genetic background and envi-
ronmental factor [19].

In this context, CMR is now acknowledged as the gold 
standard technique for the quantification of chamber vol-
umes, mass, and ejection fraction (EF) [20, 21]. Furthermore, 
CMR has the ability to characterize myocardial tissue and to 
detect myocardial fibrosis, which has been recognized to have 
a prognostic relevance in patients with DCM, thus improv-
ing risk stratification and patients’ outcome. Therefore, it is 
widely accepted that all DCMs should undergo an early CMR 
as a part of the diagnostic and prognostic workup.

Histological studies have pointed out that in DCM fibrosis 
can occur in two forms [22]. One is irreversible replacement 
fibrosis, corresponding to the presence of LGE, which depicts 
areas of myocardial scarring developed as a consequence of 
cell death [22, 23]. LGE can be found in about 30–40% of 
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Fig. 1  Main standard and emerging CMR techniques and their main application in the diagnostic and prognostic work up of several cardiomyo-
pathies. Legend: “ + + ” very useful, “ + ” useful, ± “not so useful”, “- “ not useful
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DCM patients, the most typical pattern being in the midwall 
of the interventricular septum, even if also a subepicardial 
pattern can be found, especially in post inflammatory DCM 
[24]. Since the first prospective longitudinal study conducted 
in 2006 by Assomull et al. [25], midwall fibrosis detected 
by LGE has emerged as a predictor of adverse prognosis in 
patients with DCM, including all-cause mortality, hospi-
talization and SCD/VT. Subsequent studies have confirmed 
these data, pointing out that the presence of myocardial scar 
allows to identify a subgroup of patients at a higher risk 
of adverse outcome independently from LVEF [24, 26]. A 
recent meta-analysis [24], confirmed that the presence of 
LGE is significantly associated with arrhythmic endpoint, 
such as SCD, sustained VT and appropriate ICD therapy 
(pooled OR 4.3, 95% CI 3.3 to 5.8, p = 0.001). Moreover, 
in this meta-analysis LVEF was not able to predict arrhyth-
mic events in DCM, while a significant association between 
LGE and VA or SCD was observed also in patients with 
LVEF above 35%. On these bases, the recently published 
ESC guidelines [20], which have reduced ICD recommenda-
tion class for patients with non-ischemic CMP and severely 
reduced EF (i.e. class IIA, level of evidence A), encompass 
the use of LGE as a tool with additional value to LVEF for 
the identification of the best candidates to ICD implantation 
in primary prevention [26, 27]. However, no specific cut off 
have been validated and patients should be counseled on indi-
vidual basis. Furthermore, whether LGE localization, pattern 
of distribution or LGE extension could have a prognostic 
impact is still not clear and further investigations are needed. 
CMR could also be useful in patients receiving cardiac resyn-
chronization therapy (CRT) thanks to its capability to guide 
LV lead placement away from scarred tissue [28, 29].

The second form of fibrosis is interstitial and it is due to the 
accumulation of collagen even in the absence of cell death [30]. 
This form of fibrosis may be detected and quantified by native 
myocardial T1 relaxation times and ECV, and it has recently 
emerged as an independent marker of poor outcome [31–33].

CMR can be a valuable tool also in the analysis of right ven-
tricle, often poorly visualized by echocardiography, which has 
emerged as an important tool in DCM risk stratification [34].

Finally, another promising CMR derived parameter is rep-
resented by global longitudinal strain (GLS) measured by 
feature-tracking analysis which was found to correlate better 
than LVEF and BNP with the composite of cardiac death, 
heart transplantation and appropriate ICD shock due to VT 
or VF, in a DCM population [35, 36].

Arrhythmogenic cardiomyopathy

Arrhythmogenic cardiomyopathy (ACM) is a genetically-
determined heart muscle disease characterized by fibro-
fatty myocardial replacement, clinically associated with 

malignant ventricular arrhythmias and SCD [37]. Although 
originally described as a disease with predominant right ven-
tricular (RV) involvement, subsequent increasing recogni-
tion of biventricular and left dominant phenotypic variants 
has led to broad the concept of arrhythmogenic cardiomyo-
pathy as a disease potentially involving both right and left 
ventricles [38].

CMR has always been considered as a non-invasive tool 
for the demonstration of morpho-functional abnormali-
ties. In the recently published “Padua Criteria” [39] CMR 
has gained further importance. In fact, while according to 
the previous diagnostic criteria the presence of structural 
myocardial abnormalities could only be detected by endo-
myocardial biopsy, it is now contemplated to detect these 
abnormalities also with CMR (LGE). Accordingly, it is now 
mandatory to perform CMR in patients with known or sus-
pected ACM.

The T1 weighted images, once considered useful to iden-
tify fatty infiltration, have limited sensitivity and specific-
ity because of poor resolution and partial volume artifacts 
[40–42] and might be replaced by the detection of “India 
Ink” artifacts in conventional cine-SSFP images [7]. The 
routine use of T2-weighted images for the depiction of myo-
cardial edema is also not recommended, unless in case of 
“hot-phase” presentation (chest pain and troponin release), 
which are common for instance in pediatric patients and car-
riers of desmoplakin gene mutations [43]. It is instead man-
datory to acquire LGE images which allows the detection 
of areas of fibro-fatty myocardial replacement, that are the 
hallmark lesions of ACM and which adds valuable informa-
tion for arrhythmic risk stratification, particularly in left-
dominant forms [44]. In RV diseases, LGE assessment can 
be challenging and limited by a high intra-interobserver vari-
ability; however, when considered together with wall motion 
abnormalities, it increases CMR accuracy for the diagnosis 
of ACM [45]. In LV arrhythmogenic diseases, LGE is com-
monly found in the subepicardial layers of the LV free wall, 
especially in the inferolateral region, with or without septal 
involvement [42]. The presence of circumferential LV sub-
epicardial LGE in short axis view (“ring pattern”) has been 
consistently reported in left-dominant variants with specific 
genotype [46, 47]. As in DCM, it is clearly the emerging 
impact of CMR (and specifically LGE) on top of standard 
risk scores to identify high arrhythmic risk patients, candi-
dates to primary prevention ICD implantation when a LV 
dominant form is present, regardless the amount of systolic 
dysfunction [44].

The new CMR techniques, such as T1 and T2 mapping, 
still have limited applications in patients with ACM. Con-
versely, feature-tracking CMR has recently raised inter-
est given its potential capability to detect subtle segmental 
impairment of wall contraction, useful to early identify ACM 
patients in concealed phases of disease, as well as family 
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members and asymptomatic gene carriers [48]. Supplemen-
tary materials, case 1.

Acute myocarditis

Acute myocarditis (AM) is an inflammatory disease of the 
myocardium with different aetiology and with a heteroge-
neous presentation and clinical course that make patients’ 
management and risk stratification challenging. [49]. The 
diagnosis of AM can be confirmed only when histological 
Dallas Criteria are met, being therefore endomyocardial 
biopsy (EMB) necessary. Despite being an invasive exami-
nation with potentially life-threatening complications, EMB 
is indicated in selected myocarditis patients with hemody-
namic instability not responsive to conventional medical 
treatment as well as when specific myocarditis aetiologies 
are suspected, also in hemodynamically stable patients [20, 
50]. The limited availability of EMB has been compensated 
for by the increased use of CMR, which is able to character-
ize myocardial tissue and to identify areas of myocardial 
oedema and fibrosis/necrosis, thus allowing a non-invasive 
diagnosis of AM.

According to the original Lake Louise Criteria (LLC) the 
diagnosis of myocarditis could be made in the presence of “any 
2 out of 3” CMR markers, consisting of T2-weighted, Early 
Gadolinium Enhancement and Late Gadolinium Enhancement 
(LGE) sequences, assessing myocardial edema, hyperemia and 
fibrosis/necrosis, respectively [51]. LLC have been shown to 
be very sensitive in the diagnosis of AM in patients presenting 
with chest pain, while sensitivity was reduced in those present-
ing with arrhythmias or heart failure [52].

The advent of parametric mapping has allowed overcom-
ing some of the limitations of standard T2-weighted and 
T1-weighted sequences. In fact, each tissue has a charac-
teristic range of T1 and T2 values which are altered in case 
of increase in the free water content (such as in myocardial 
inflammation) [10, 53].

Consequently, the LLC criteria have been recently 
updated so that, in order to achieve the diagnosis of AM, it 
is now necessary the presence of both a “T1 criterion” (pres-
ence of LGE, increased native T1-mapping or extracellular 
volume values) and a “T2 criterion” (hyperintensity on T2 
weighted sequences or increased T2 mapping values) [54].

While T1 mapping and ECV seem to be altered both in 
acute as well as chronic myocarditis, T2 mapping has proved 
to be better correlated with the disease activity (inflamma-
tion), thus allowing the detection of AM and its differentia-
tion from chronic inflammation with better accuracy [55].

Although limitations for the applicability of parametric 
mapping still exist (i.e. the lack of universal reference val-
ues), the evaluation of native T1 and T2 mapping, has been 
shown to led to an increase in CMR diagnostic accuracy, 

therefore advanced tissue characterization comprehensive of 
T1 and T2 mapping is now highly recommended by interna-
tional consensus in all patients with suspected myocarditis, 
whenever feasible. [3, 56]

Apart from the role of CMR in the diagnosis of AM, 
several studies have investigated the potential contribution 
of tissue characterization by CMR in patients’ risk stratifica-
tion. While a normal CMR correlates with a favorable out-
come, several studies have confirmed the negative prognos-
tic value of LGE as well as the correlation between abnormal 
T2-weighted imaging and worse outcome [57, 58]. Feature 
tracking analysis, thanks to a better assessment of systolic 
function and LV kinetic, has already demonstrated both to 
be helpful in detecting AM with preserved ejection fraction, 
and to be promising tool in patients’ risk stratification, even 
if more studies are needed to confirm these preliminary data 
[59–61] Fig. 2.

Hypertrophic cardiomyopathy

Hypertrophic cardiomyopathy (HCM) is a genetic disease 
characterized by inappropriate hypertrophy, myocardial fibro-
sis and diffuse disarray with diverse phenotypic expressions, 
clinical course and prognosis [62].

Cardiovascular magnetic resonance (CMR) is capable to 
provide assessment of ventricular mass, chamber volume, 
cardiac function, pattern and distribution of hypertrophy 
and tissue characterization without ionizing radiation [63, 
64] thus representing an essential tool for the diagnosis and 
morphological assessment of HCM [64–67]. CMR allows 
the detection of unusual pattern of LV hypertrophy, such 
as lateral and apical distribution, which are not always eas-
ily visualized by echocardiography. Furthermore, CMR is a 
useful tool to evaluate the extent and severity of the hyper-
trophy in terms of mass quantification [5, 68] and to recog-
nize right ventricular as well as papillary muscles hypertro-
phy, and mitral valve anomalies [69]. Moreover, CMR has 
also emerged as a valuable instrument to detect markers of 
the disease in patients with positive genotype but without 
LV hypertrophy (negative phenotype), such as myocardial 
crypts, elongated anterior mitral leaflet, abnormal apical tra-
beculae and smaller LV ventricular volumes [70] (Fig. 2).

CMR is helpful in the differential diagnosis between sar-
comeric HCM and phenocopies or secondary hypertrophy, 
showing important differences in pattern and location of LV 
hypertrophy as well as in pattern and distribution of LGE and 
different values of native T1 [56, 64, 68, 71, 72]. CMR has 
also become an essential tool in the preoperative planning in 
patients undergoing septal reduction surgery [64, 73].

Areas of myocardial LGE representing replacement fibro-
sis [67, 68] are a common finding in this disease, expressed 
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in up to 80% of HCM population [69], so that only quantita-
tive analysis is a robust marker of unfavourable prognosis, 
in terms of progressive systolic dysfunction and malignant 
arrhythmias. A LGE threshold of 10–15% of LV mass have 
proved to be a possible cut off to identify patients at high 
risk of SCD, even in the absence of other major risk factors, 
who may benefit of primary prevention therapy [64 74–79]. 
Not surprisingly, the presence of LGE has been listed among 
the criteria to be considered in ICD patients selection in the 
recently updated HCM guidelines by AHA/ACC [64].

Also high signal intensity on T2-Weighted images has been 
demonstrated to predict arrhythmic events in the setting of 
HCM [80].

Although area of low ECV have been described in areas 
remote from hypertrophy, ECV is usually elevated in the 
hypertrophied areas both in patients with HCM as well as in 
phenotype-negative carriers of the disease [64, 81].

Diffusion Tensor (DT) CMR, visualizing microstructure 
of myocardial fibers, is an innovative sequence with the 
potential to represent myocardial disarray [82]. The latter 
technique, despite its complexity and limited availability, 
has the potentiality to provide further histopathological 

insights in the study of HCM and to offer additional mark-
ers of arrhythmic risk in HCM.

Finally, advanced analyses of standard technique might 
have clinical impact in the next future: a CMR Virtual 
Native Enhancement (VNE) can be generated from “cine” 
and native T1 mapping images using artificial intelligence, 
resembling conventional LGE without contrast administra-
tion [83]. Heterogeneity of scar, expressed as “dispersion 
map of LGE” may be a better marker of poor prognosis than 
its extent [84]. Another innovative post-processing analysis 
of LGE images enables to differentiate between the scar core 
and the border zone and to isolate corridors connecting the 
areas of normal myocardium to the scar core areas [85]. 
Lastly, we have to mention the role of bSSFP analysis in 
differentiating the different etiologies of HCM [86].

Cardiac amyloidosis

Cardiac amyloidosis (CA) is a restrictive cardiomyopathy charac-
terized by a pseudo-hypertrophy resulting by extracellular depo-
sition of abnormal proteins in the myocardium [87]. Recently 

Fig. 2  Useful of standard and emerging CMR techniques in the natural history of inflammatory cardiomyopathy. Legend: “RV” right ventricle, 
“LV” left ventricle
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developed disease-modifying therapies increase the need of an 
early diagnosis [88]. Until recently, a positive biopsy was the only 
way to diagnose CA [88]. However, the combination of several 
imaging modalities has made possible a non-invasive diagnosis 
of CA, thus restricting the indication for EMB to those patients 
with equivocal or discordant clinical and imaging findings [88].

Although echocardiography remains the first line imaging 
modality in patients with suspected CA, CMR has shown to 
provide incremental information thanks to accurate morpho-
functional evaluation, and tissue characterization [88]. Among 
recently published consensus documents, only one have proposed 
a “CMR” based pathway for the diagnosis of CA [89]. According 
to an ESC position paper, CMR can be used to implement the 
diagnostic algorithm of CA both in the “scintigraphy-based” and 
in the “laboratory-based” pathways, being particularly useful in 
patients with positive hematologic test and a negative scintigra-
phy (grade zero) [90].

To date, the key CMR technique to image CA is LGE, being 
the presence of diffuse subendocardial LGE highly specific 
for CA (94%). LGE imaging in patients with CA can be chal-
lenging in advanced stages due to the diffuse nature of LGE 
and to the equalization of myocardial and blood pool nulling 
point [22, 88]. However, the characteristic alterations in inver-
sion times responsible of the aforementioned challenges in 
myocardial nulling, partially overcome by the development 
of phase sensitive inversion recovery (PSIR) sequences, are 
also strongly suggestive of the presence of amyloid deposits, 
supporting the diagnosis of CA [88, 93, 94].

Native T1 demonstrated high diagnostic accuracy in sus-
pected CA with high positive and negative predictive values 
[95]. However, being T1 a composite signal from both the 
extra and intracellular space, it has turned out to be less spe-
cific than ECV, which to date represents the best parameter for 
quantifying amyloid and which has showed the best diagnostic 
accuracy when compared to other CMR parameters [96].

Beyond its role in the diagnostic workup of CA, CMR is 
important for prognostic information. The presence of LGE, 
especially when transmural, is a significant and independent 
predictor of mortality [88, 91, 97]. Furthermore, the afore-
mentioned alterations in myocardial inversion times have 
also been found to be a negative prognostic marker thanks 
to their correlation with amyloid burden [22, 88, 92, 93].

ECV was found to be the parameter with the highest haz-
ard ratio (as compared to LGE and native T1) in predict-
ing patients’ prognosis, and its changes over the time could 
allow the assessment patients’ response to treatments [96, 
98, 99]. The role of T2 mapping, adenosine stress perfusion 
and CMR-FT strain imaging have also showed to provide 
additional information in patients with CA, but further stud-
ies are needed to validate these findings in order to allow the 
application of these new techniques in daily clinical practice 
[100–105]. Supplementary material, case 2.

Anderson fabry disease and other rare CMPs

Apart from sarcomeric HCM and amyloidosis, there are 
several other CMPs characterized by LV hypertrophy and 
therefore defined HCM mimics of phenocopies. Despite this 
overlapping phenotype, it is of extreme importance to cor-
rectly differentiate these entities, especially since specific 
treatments have become available to treat these conditions.

Anderson fabry disease

Anderson-Fabry disease (AFD) is a rare X-linked inherited 
disorder caused by deficiency or absence of the enzyme 
α-galactosidase A (GLA), with subsequent accumulation of 
glycosphingolipids in several districts included the heart mus-
cle cells and coronary circulation. The AFD clinical phenotype 
encompasses several scenarios due to the presence of different 
pathogenetic mutations in the GLA genes as well as to the 
X-linked inheritance of the disease, with homozygous males 
presenting with early signs and symptoms and heterozygous 
females experiencing milder phenotypes with later onset [106].

Although echocardiography remains the first line imaging 
examination in suspected AFD, CMR can help both in the 
differential diagnosis between AFD and sarcomeric HCM, as 
well as in the detection of subclinical stages of the disease. The 
main CMR findings in AFD are concentric LV hypertrophy 
[107] and non-ischemic mid-wall or subepicardial LGE pattern 
mainly involving the basal inferolateral LV segment [108]. In 
males, it seems that LGE does not precede the development 
of LV hypertrophy, while its presence has been reported in a 
significant proportion of female patients without hypertrophy 
[109]. The recently developed mapping techniques also pro-
vide useful data for the diagnosis of AFD. Indeed, intracellular 
accumulation of sphingolipids causes a typical shortening of 
native T1 relaxation times, even before the development of 
hypertrophy, and allows also to distinguish AFD from other 
hypertrophic diseases, typically characterized by elevated T1 
values [109, 110]. However, it is also important to remember 
that during the disease course, the development of myocar-
dial fibrosis, secondary to myocardial inflammation mediated 
by sphingolipid, balances the effect of sphingolipid on T1 
relaxation times leading to a pseudo-normalization of native 
T1, at least in myocardial regions involved by fibrosis. Among 
parameters derived from mapping analysis, ECV is typically 
normal in AFD because of the intracellular accumulation of 
sphingolipids, as compared to other CMPs characterized by 
interstitial infiltration (e.g., amyloidosis). In fact, ECV val-
ues reflect the increase of the extracellular space, typically not 
affected in AFD [56]. Finally, T2 mapping has been used to 
demonstrate the presence of myocardial inflammation, which 
is thought to contribute to disease progression [111–113].
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Recently, both enzyme replacement therapy (ERT) and 
chaperone therapy have demonstrated to be safe and effective 
in stabilizing the disease course and improving symptoms in 
patients affected by AFD. The initiation of ERT treatment 
is yet recommend for patients exhibiting symptoms and LV 
hypertrophy. CMR techniques hold strong potential in AFD 
not only for guiding the appropriate timing for ERT intro-
duction and prognostic classification, but also for monitoring 
response to therapy. For instance, several studies reported 
more effective results of ERT in terms of LV mass regres-
sion when little or no LGE was present at baseline evaluation 
[114] thus suggesting that specific treatment should be initi-
ated earlier, as soon as the first structural or functional car-
diac abnormalities become detectable and before develop-
ment of myocardial fibrosis. Supplementary, material case 3.

Cardiac siderosis

Iron overload cardiomyopathy can occur in patients affected 
by genetic haemochromatosis or, more commonly, it can 
be secondary to excessive iron administration in subjects 
requiring repeated blood transfusion as it happens in the 
setting of hereditary anemias. When left untreated, it can 
lead to heart failure and even death. After the introduction 
of mapping techniques, CMR has become an essential tool 
in the diagnosis and risk stratification of this condition. In 
fact, the myocardial iron deposits affect T2* relaxation time, 
thus allowing the diagnosis of cardiac siderosis. Further-
more, a linear relationship between the reduction in T2* and 
the amount of iron in myocardium and an increased risk of 
ventricular arrhythmias has been demonstrated. Therefore, 
to date different cut offs of T2* are used to diagnose iron 
overload CMP and to guide the initiation of iron chelation 
therapy, as well as to monitor patients’ response to medical 
treatment, with a dramatic improvement in the prognosis of 
these patients [115]. Native T1 is also decreased in 10 and 
can be used for diagnosis [116].

Glycogen storage disease

Glycogen storage diseases (e.g., Pompe, PRKAG2, Danon) 
may determine severe increase in LV mass with rapid pro-
gression toward heart failure. CMR may be helpful also in 
the assessment of these rare CMP, for instance Danon dis-
ease is characterized by extensive LV subendocardial LGE, 
particularly at apical level, with sparing of basal septum 
[117]. However, because of the scarce amount of data, the 
role of CMR in determining prognosis in these rare condi-
tions still needs to be defined.

LV noncompaction—anatomical phenotype 
or a distinct entity?

LV noncompaction (LVNC) is a heterogeneous entity char-
acterized by the presence of extensive myocardial trabecu-
lations and currently listed among “not classified CMPs.” 
Traditionally, the presence of this characteristic ventricular 
pattern has been attributed to the arrest of normal embryo-
genesis of the endocardium and myocardium or to an abnor-
mal myocardial development, which recognize a genetic 
background in one third of cases, with mutation in genes 
encoding for sarcomeric and cytoskeletal proteins being the 
most represented [1, 118, 119]. Furthermore, several genetic 
mutations have been associated with the presence of LV sys-
tolic dysfunction and a more severe prognosis [120]. Despite 
those proved genetic determinants, there are growing data 
demonstrating the presence of reversible forms of LVNC 
related to overload conditions (i.e., strenuous training, preg-
nancy), thus suggesting that LVNC should be considered as 
an anatomical phenotype rather than a real CMP [119]. The 
definition of this entity in clinical practice has always been 
challenging especially due to an overlap with other cardio-
myopathies and with normal LV trabeculation [22]. CMR has 
become a valuable tool for the non-invasive assessment of 
patients with a suspected LVNC. Several diagnostic criteria 
have been proposed, among these the two most widely used 
are those proposed by Petersen and Jacquier which require 
the presence of a NC to C ratio of 2.3/1 and the detection of 
a trabeculated LV mass > 20% of the LV global mass, respec-
tively [22, 121, 122]. All these proposed CMR diagnostic cri-
teria have showed to be highly sensitive but also non-specific, 
with several normal individuals meeting at least one criterion 
for LVNC according to a recent study [123]. Furthermore, in 
asymptomatic subjects the presence of LVNC as diagnosed 
by the aforementioned CMR criteria have showed no progres-
sion at 10 years follow up [124]. Similarly, 1,4% of athletes 
meet the diagnostic criteria for LVNC at CMR but only a 
small percentage of them (0,1%) have also LV dysfunction or 
a positive family history. Therefore, since it has been demon-
strated that in absence of symptoms, positive family history, 
left ventricular systolic dysfunction or LGE, the event-rate 
during follow up is very low [125], CMR criteria should be 
integrated with clinical data in order to improve the speci-
ficity of LVNC diagnosis [86]. Recently, an individualized 
model for prognostic risk stratification has been proposed. 
This model, which considers also the presence of LGE on 
CMR, is based on a multicenter retrospective study enrolling 
585 patients and showing that LVNC was associated with a 
higher risk of adverse outcome during follow-up in the pres-
ence of LV systolic dysfunction or in patients with preserved 
LVEF but with LGE at CMR [126].
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At the same time, additional CMR markers could be 
validated in the future to discriminate individuals with 
an increased risk of events at follow up, among these the 
presence of LV systolic dysfunction and LGE has already 
demonstrated to correlate with a worse prognosis especially 
when associated with LV dysfunction [125, 127, 128].

Table 2 resumes the main diagnostic and prognostic CMR 
findings for both dilated and hypertrophic phenotype.

Conclusion

Today, more than ever before, a patient-tailored approach is 
mandatory in every medical field, and particularly in CMPs. In 
fact, the growing body of knowledge on patho-physiological 
pathways, diagnostic and prognostic work-up of CMPs as well 
as the availability of an increasing number of targeted disease-
modifying therapies make it mandatory to achieve a timely 

Table 3  Comparison of different cardiovascular imaging modalities for the management of cardiomyopathies

CAD, coronary artery disease; CCTA , coronary computed tomography angiography; CMR, cardiac magnetic resonance; COPD, chronic obstruc-
tive pulmonary disease; CT, computed tomography; CT-DE, delayed enhancement at CT; FDG, fluoro-deoxy-glucose; MIBG, meta-iodo-benzyl-
guanidine; MRS, magnetic resonance spectroscopy; PET, positron emission tomography; SPECT, single-photon emission computed tomography; 
TTE, transthoracic echocardiography

TTE CMR SPECT/PET CT

Cardiac morphology and function
Chamber volumes  +  +  +  +  +  +  +  + 
Wall thickness  +  +  +  +  + -  +  + 
Systolic function  +  +  +  +  +  +  + 
Diastolic function  +  +  +  +  +  +  + 
Myocardial mechanics  +  +  +  +  + -  + 
Myocardial tissue characterization
Fibrosis  +  +  +  +  +  +  + (CT-DE)
Inflammation -  +  +  +  +  +  + (FDG-PET)  + 
Amyloidosis  +  +  +  +  +  +  + -
Ischaemia/CAD  +  + (stress)  +  +  + (stress)  +  +  + (stress)  +  +  + (CCTA/stress)
Myocardial metabolism -  +  + (MRS)  +  +  + -
Myocardial innervation - - +++(MIBG) -
Valvular assessment
Valve morphology  +  +  +  +  + - +  + 
Cardiac haemodynamics  +  +  +  + –
Valvular stenosis  +  +  +  + - + 
Valvular regurgitation  +  +  +  +  + - + 
Pericardial assessment
Effusion/tamponade

 +  +  +  +  +  + -  +  + 

Inflammation -  +  +  +  +  + (FDG-PET)  +  + 
Constriction  +  +  +  + -  +  + 
Technical characteristics
Availability

 +  +  +  +  +  +  + 

Fast acquisition  +  +  + - -  +  + 
Spatial resolution (mm) 0.5–2 1–2 4–8(PET)/5–15(SPECT) 0.5
Temporal resolution (ms)  < 10 20–50 100–300 80–135
Feasibility in patients with severe renal failure  +  +  +  +  +  +  + -
arrhythmias  +  +  +  +  +  +  + 
pacemaker/defibrillators  +  +  +  +  +  +  +  +  + 
claustrophobia  +  +  +  +  +  +  +  + 
obesity  +  +  +  +  +  +  +  + 
COPD  +  +  +  +  +  +  +  +  +  + 
pregnancy  +  +  +  +  + - -
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diagnosis and a precise characterization of the different phe-
notypes of CMP.

Recent advances in CMR and its increased accessibil-
ity allow a precise assessment of ventricular dimension and 
function as well as a non-invasive tissue characterization of 
the myocardium. However, the growing knowledge deriving 
from CMR studies should always be interpreted in light of 
clinical elements and integrated with information derived 
by other imaging techniques (Table 3), such as echocardi-
ography (which remains the first line imaging tool to guide 
the diagnosis in patients with suspected CMP) and genotype 
or histological information. CMR, thanks to its ability to 
add information about tissue characterization, appears to be 
particularly relevant in subclinical and recently onset CMPs, 
as well as in genotype positive phenotype negative subjects 
[129]. New imaging techniques both for echo and for CMR 
(i.e. diffusion tension imaging, speckle and feature track-
ing and myocardial work, T1/T2 mapping) are increasingly 
used in experienced labs to help clinicians in the differential 
diagnosis and management of specific CMP subtypes (i.e. 
Amyloid or Anderson Fabry disease) [129]. Although the 
increased enthusiasm for the use of CMR in the diagnosis 
and characterization of CMP, it has to be recognized that a 
multimodality imaging approach remains the gold-standard, 
mostly for challenging settings such as infiltrative cardio-
myopathies [129, 130].

In conclusion, an integrated clinical and imaging approach 
seems to be essential to guide diagnosis, define the differ-
ent CMP phenotypes (HCM, DCM, arrhythmogenic cardio-
myopathy, restricted cardiomyopathy, LVNC) and unravel 
specific underlying aetiologies as well as to ensure a tailored 
therapeutic management and predict disease prognosis.
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