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Abstract

Purpose: Quantitative lung measures derived from computed tomography (CT) have been dem-
onstrated to improve prognostication in coronavirus disease 2019 (COVID-19) patients but are
not part of clinical routine because the required manual segmentation of lung lesions is prohibi-
tively time consuming. We aim to automatically segment ground-glass opacities and high opac-
ities (comprising consolidation and pleural effusion).

Approach: We propose a new fully automated deep-learning framework for fast multi-class
segmentation of lung lesions in COVID-19 pneumonia from both contrast and non-contrast
CT images using convolutional long short-term memory (ConvLSTM) networks. Utilizing the
expert annotations, model training was performed using five-fold cross-validation to segment
COVID-19 lesions. The performance of the method was evaluated on CT datasets from 197
patients with a positive reverse transcription polymerase chain reaction test result for SARS-
CoV-2, 68 unseen test cases, and 695 independent controls.

Results: Strong agreement between expert manual and automatic segmentation was obtained for
lung lesions with a Dice score of 0.89� 0.07; excellent correlations of 0.93 and 0.98 for ground-
glass opacity (GGO) and high opacity volumes, respectively, were obtained. In the external test-
ing set of 68 patients, we observed a Dice score of 0.89� 0.06 as well as excellent correlations
of 0.99 and 0.98 for GGO and high opacity volumes, respectively. Computations for a CT scan
comprising 120 slices were performed under 3 s on a computer equipped with an NVIDIA
TITAN RTX GPU. Diagnostically, the automated quantification of the lung burden % discrimi-
nate COVID-19 patients from controls with an area under the receiver operating curve of 0.96
(0.95–0.98).
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Conclusions: Our method allows for the rapid fully automated quantitative measurement of the
pneumonia burden from CT, which can be used to rapidly assess the severity of COVID-19
pneumonia on chest CT.
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1 Introduction

Coronavirus disease 2019 (COVID-19) is a global pandemic and public health crisis of cata-
strophic proportions, with over 437 million confirmed cases worldwide as of March 2, 2022.1

Although the vaccines are now available, they are not 100% effective; new strains are emerging
and immunization coverage varies significantly between the world regions due to socio-
economic differences. It is likely that vaccine boosters will be necessary, and continuous mon-
itoring for the disease will be needed. Although the diagnosis of COVID-19 relies on a reverse
transcription polymerase chain reaction (RT-PCR) test in respiratory tract specimens, computed
tomography (CT) remains the central modality in disease staging.2–5 Specific CT lung features
include peripheral and bilateral ground-glass opacities (GGOs), with round and other specific
morphology as well as peripheral consolidations, and increasing extension of such opacities
has been associated with the risk of critical illness.6–8 Although conventional visual scoring
of the COVID-19 pneumonia extent correlates with clinical disease severity, it requires profi-
ciency in cardiothoracic imaging and ignores lesion features, such as volumes, density, or
inhomogeneity.9,10 On the other hand, CT-derived quantitative lung measures are not part of
the clinical routine, despite being demonstrated to improve prognostication in COVID-19
patients, due to prohibitively time-consuming manual segmentation of the lung lesions required
for computation.11–13 The chest CT is currently indicated in COVID-19 patients with moderate or
severe respiratory symptoms and high pretest probability of infection, or any other clinical sce-
nario requiring rapid triage. Importantly, over 15 million chest CT (including cardiac CT) are
performed a year in the Unites States for indications not related to COVID-19.14 Additionally,
every thoracic Positron Emission Tomography (PET)/CTand Single Photon Emission Computed
Tomography (SPECT)/CT scan (including myocardial perfusion imaging) will include
Computed Tomography Attenuation Correction (CTAC) covering the lung area. Parenchymal
opacification associated with COVID-19 can be potentially seen on these exams. Critically,
in the coming months and years, it is likely that COVID-19 changes may often be an incidental
finding on chest CT performed for other diseases in asymptomatic COVID-19 patients. These
incidental findings may also be on CTAC maps often acquired in conjunction with myocardial
perfusion SPECT and PET MPI. Indeed, some first reports of such incidental findings have been
reported on PET/CT in the Journal of Nuclear Medicine (April 2020) by Albano et al.15 in Italy,
followed by others.16–19 It is worth noting that these CTAC scans are not routinely reviewed for
other abnormalities and are often viewed with window and level settings not set for review of
lung abnormalities. Thus, a rapid automated alert system for COVID-19 related abnormalities
would be of great benefit in such situations.

2 Related Work

Deep learning, a class of artificial intelligence (AI), has shown to be very effective for auto-
mated object detection and image classification from a wide range of data. Myriad AI systems
have been introduced to aid radiologists in the detection of lung involvement in COVID-19,
with several presenting the potential to improve the performance of junior radiologists to
the senior level.12,20 Bai et al.21 developed a classification network to differentiate between
COVID-19 pneumonia and other pneumonia and achieved good performance in diagnosing
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the disease, achieving an area under the receiver operating characteristic (AUROC) of 0.95.
They provided a heatmap in an effort to explain the model predictions, but it will be of great
importance in disease staging and prognosis if the model can pin-point the legions accurately.
This shortcoming was addressed by Zhang et al.,20 who developed a system that can diagnose
the disease, segment the lungs and lesions into several classes, and be used to evaluate drug
treatment effects. They developed a two-stage segmentation network for segmenting lesions in
lungs from CT slices, experimenting with various segmentation frameworks, and adopted
DeepLabv3 as the backbone for its better segmentation performance. The model was evaluated
using mean Dice coefficient and pixel accuracy by five-fold cross-validation test, achieving a
0.587 mean Dice score.

On the other hand, Fan et al.22 developed a novel COVID-19 lung infection segmentation
network that combines high-level features using a parallel partial decoder to generate a global
map as initial guidance for further steps. To establish a relationship between lesion boundaries,
they used their novel implicit recurrent reverse attention modules. The final training loss com-
prised weighted binary cross-entropy applied at different stages of the network and weighted
intersection over union loss. The authors went beyond to address the shortage of expert anno-
tations by modifying their training strategy to accommodate semi-supervised learning into their
model. Although this model does not perform multi-class segmentation by itself, it can separate
the lesions into two classes using UNet and their model output as guidance for segmentation,
achieving a mean Dice score of 0.541.

Similarly, Chaganti et al.11 also developed a system for binary segmentation of CT abnor-
malities related to COVID-19. They trained two different models: one for segmenting lung lobes
and another for lesions. The lung segmentation model was trained using a deep image-to-image
network, and the lesion segmentation model was trained using a UNet-like architecture. The
lesion segmentation model performs binary segmentation, that is, all of the lesions (GGOs and
consolidations) were treated as one class during training and later separated into two classes by
thresholding the voxels at −200Hounsfield units (HU) during inference. Finally, they introduced
two measures for evaluating the severity of the disease: percentage of opacity and percentage of
high opacitiy. The overall performance was evaluated using Pearson correlation between the
severity measures.

Gao et al.23 developed a dual-branch combination network for joint binary segmentation and
classification of COVID-19 using CT images. They proposed a lesion attention module to
improve the sensitivity of the model in detecting small lesions. The lesion attention module
is also used to interpret model predictions for the assessment of classification results. They
achieved a Dice score of 0.835 on an internal test set in segmenting the lesions and an
AUROC of 0.9771 in classifying COVID-19 patients.

The work presented in this paper builds on previous research to explore the quantitative
prognostication and disease staging by segmenting the COVID-19 lesions into multiple
classes. Earlier work focused on segmentation using one slice in the CT at a time, whereas
we focus on benefiting from additional information about the anatomy and the lesions in sev-
eral adjacent slices. However, most three-dimensional (3D) medical segmentation networks
consume a lot of memory in storing the intermediate features for skip connections24,25 making
them difficult to implement in low-end clinical systems. To this end, we adopt the state-of-the-
art segmentation network by Tao et al.26 and replace the attention from multi-scale input to
attention from adjacent slices using long short-term memory (LSTM) recurrent network,27

which are well-known for their long data sequence/series processing capabilities. We do
so to imitate a radiologist reviewing adjacent slices of a CT scan and aggregate lesion infor-
mation while making manual annotations. We employ a specific variant of the LSTM network
known as the convolutional long short-term memory (ConvLSTM) network,28 which is
capable of handling images directly. ConvLSTM operates directly on images, facilitating rapid
segmentation and accurate 3D quantification of the disease involvement of lung lesions in
COVID-19 pneumonia from both contrast and non-contrast CT images. ConvLSTM networks
have the capability of preserving relevant features while simultaneous dismissing irrelevant
ones in the form of the feedback loop, which translates into a memory-sparing strategy for
the holistic analysis of the images.
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3 Dataset

3.1 Patient Population

The cohort used in this study comprised 264 patients, who underwent chest CT and had a pos-
itive RT-PCR test result for SARS-CoV-2. A total of 197 patients were included in the training
cohort (Ncov), and 68 were used for external validation (Next). Datasets for 187 out of 197
patients from the training cohort were collected from the prospective, international, multicenter
registry involving centers from North America [Cedars-Sinai Medical Center, Los Angeles
(n ¼ 75)], Europe [Centro Cardiologico Monzino (n ¼ 64), and Istituto Auxologico Italiano
(n ¼ 17); both Milan, Italy], Australia [Monash Medical Centre, Victoria, Australia (n ¼ 6)],
and Asia [Showa Medical University, Tokyo, Japan (n ¼ 25)], where either non-contrast
(n ¼ 157) or contrast-enhanced (n ¼ 30) chest CTwas performed to aid in the triage of patients
with a high clinical suspicion for COVID-19, in the setting of a pending RTPCR test or
comorbidities associated with severe illness from COVID-19. The population is given in
Table 1. Datasets for the remaining 10 COVID-19 patients were derived from an open-access
repository of non-contrast CT images; therefore, no clinical data were provided for this cohort.
Out of 31,560 transverse slices available, 15,588 had lesions. The external testing cohort
comprised 68 non-contrast CT scans of COVID-19 patients: about 50 from an open-access
repository29 and 18 additional ones from Italy (Centro Cardiologico Monzino). There were
12,102 transverse slices available in this cohort, and 6,503 had lesions (Table 2). All data were
deidentified prior to being enrolled in this study. The CT images from each patient and the
clinical database were fully anonymized and transferred to one coordinating center for core lab

Table 1 Patient baseline characteristics and imaging data in a train-
ing cohort.

Baseline characteristics N = 187

Age, years 61 ± 16

Men 123 (65.7)

Body mass index 26.8 ± 5.3

Current smoker 22 (11.7)

Former smoker 10 (5.3)

History of lung disease 19 (10.1)

Image characteristics Ncov ¼ 197

CT scanner —

Aquilion ONE 73 (37.0)

GE revolution 13 (6.6)

GE discovery CT750 HD 37 (18.8)

LightSpeed VCT 36 (18.3)

Brilliance iCT 28 (14.2)

Unknown 10 (5.1)

CT type —

Non-contrast 167 (84.8)

CT pulmonary angiography 30 (15.2)

Note: The data presented in the table are as n (%) or mean ± SD.

Killekar et al.: Rapid quantification of COVID-19 pneumonia burden from computed tomography. . .

Journal of Medical Imaging 054001-4 Sep∕Oct 2022 • Vol. 9(5)



analysis. The study was conducted with the approval of local institutional review boards (Cedars-
Sinai Medical Center IRB# study 617) and written informed consent was waived for fully
anonymized data analysis.

3.2 Ground Truth Generation

Images were analyzed at the Cedars-Sinai Medical Center core laboratory by two physicians
(K.G. and A.L.) with 3 and 8 years of experience in chest CT, respectively, and who were blinded
to clinical data. A standard lung window (width of 1500 HU and level of −400 HU) was used.
Lung abnormalities were segmented using semi-automated research software (FusionQuant
Lung v1.0, Cedars-Sinai Medical Center, Los Angeles, California). These included GGO, con-
solidation, or pleural effusion according to the Fleischner Society lexicon. Consolidation and
pleural effusion were collectively segmented as high-opacity to facilitate the training of the
model due to a limited number of slices involving these lesions. Chronic lung abnormalities,
such as emphysema or fibrosis, were excluded from segmentation, based on correlation with
previous imaging and/or a consensus reading. GGO was defined as hazy opacities that did not
obscure the underlying bronchial structures or pulmonary vessels; consolidation as opacification
obscuring the underlying bronchial structures or pulmonary vessels; and pleural effusion as a
fluid collection in the pleural cavity. The total pneumonia volume was calculated by summing
the volumes of the GGO and consolidation components. The total pneumonia burden was cal-
culated as (total pneumonia volume/total lung volume) × 100%. Difficult cases of quantitative
analysis were resolved by consensus.

3.3 Controls Dataset

Additionally, to assess the diagnostic performance of the methods trained and tested with con-
trols (without any lung abnormalities), we utilized a set of Ncontrol ¼ 695 cases from the national
lung screen trial (NLST)30 with normal lung scans. The population characteristics are described
in Table 3.

Table 2 Image findings.

Cohorts
No. of
patients

No. of
lesions

No. of lesion slices

Ground glass
opacity

High
opacity

COVID-19 positive (Ncov) 197 31560 15375 6933

External testing (Next) 68 12102 5181 1834

Controls (Ncontrol) 695 113422 0 0

Table 3 NLST controls baseline characteristics.

Baseline characteristics Ncontrol ¼ 695

Age, years 59 ± 4

Men 395 (56.8)

Body mass index 29.0 ± 5.3

Current smoker 246 (35.4)

Former smoker 366 (52.7)

History of lung disease 88 (12.7)

NOTE: The data presented in the table are as n (%) or mean ± SD.
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4 Proposed Method

The objective is to learn the function Φð·Þ to classify each CT voxel into one of following three
classes: GGOs, high opacities, and background. This act of differentiating regions based on their
semantic properties is called semantic segmentation.

EQ-TARGET;temp:intralink-;e001;116;680Φ∶ I → ΦðIÞ; (1)

where I is a set of aligned consecutive CT slices such that I ∈ RH×W×F. H, W, and F denote the
height, width, and cardinality of the input sequence I, respectively, with F being referred to as
buffer size elsewhere in the paper. In Sec. 4.1, we introduce the data preprocessing technique
used in our method. In Sec. 4.2, we explain in detail the functioning of each block of our network
architecture. Finally, in Secs. 4.3 and 4.4, we introduce the loss functions31 and optimization
techniques used in our method.

4.1 Data Preprocessing

CT scans from different scanners or with different reconstruction parameters may have different
appearance (as seen in column 1 of Fig. 1) and contain voxel values (HU) ranging between
−1024 to þ3071 for a 12-bit scan. Therefore, there is a need for homogenizing the data before
we train or infer from it. The input stack of CT images I are first cropped to the body region of the
middle-most image and resized to 256 × 256. Because we have a very small dataset to train on,
we randomly augment the data with rotation of ½−10 deg;þ10 deg�, translation of up to
10-pixels in the x- and y-directions, and scaling of [0.9, 1.05] times. Finally, we normalize the
data by clipping the Hounsfield units between −1024 to þ600 (expert reader’s lung window),
followed by a voxel intensity scaling technique called standardization or Z-score normalization.

EQ-TARGET;temp:intralink-;e002;116;432I ¼
8<
:

−1024; I < −1024
I; −1024 ≤ I ≤ þ600

þ600; I > þ600

; (2)

EQ-TARGET;temp:intralink-;e003;116;360Istd ¼
I − μ

σ
; (3)

where μ is the mean of all of the HU values of voxels in the lung region of the training set and
σ is its standard deviation. For simplicity, we refer to Istd as I in the rest of the paper.

Fig. 1 Order of data preprocessing from input I (left) to processed output Istd (right).
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To crop the scan to the body region, we threshold the scan at −500 HU and create a binary
mask followed by a series of morphological operations: closing, erosion, dilation, etc., and
obtain a bounding box around the largest object in the threshold scan. Transferring this bounding
box, the original scan returns the body cropped input scan (shown in column 2 of Fig. 1).

4.2 Network Architecture

The network architecture, shown in Fig. 2, is inspired by the hierarchical multi-scale attention for
semantic segmentation26 with major changes in the attention branch. Instead of the attention
branch looking at the input at various different scales as in Ref. 26, we formulate the attention
branch to focus on adjacent slices to aggregate information about the lesions/anatomy from the
neighboring slices using a ConvLSTM in the attention branch of the network to improve lesion
recognition.

4.2.1 Main branch Φmain

All of the larger and easy-to-classify lesions are segmented by this branch of the network.
It consists of two trainable blocks: the dense block Φdense

main , also referred to as Trunk elsewhere
in the paper, and the segmentation block Φseg

main. Throughout this paper, the subscript of
Φ represents the branch name, and the superscript represents the block in that branch.

EQ-TARGET;temp:intralink-;e004;116;491Smain ¼ ΦmainðIkÞ; ¼ Φseg
mainðscale_upðΦdense

main ðIkÞÞÞ; (4)

where Smain ∈ RH×W×C are the output features from the segmentation block 1, C is the number
output classes, scale_up re-scales the features back to the input size using bilinear interpolation,
and Ik is the k’th slice in the input CT stack I, typically the middle most slice.

Dense block Φdense
main . This is the feature extraction block that extracts 256 feature maps of

size 64 × 64 from input I. It is made up of the first dense block of DenseNet121.32 The reason for
choosing a DenseNet for feature extraction is its ability to strengthen feature propagation and
mitigate the vanishing-gradient problem, as well as its reduced number of trainable parameters.

Segmentation block 1Φseg
main. This block is downstream to the dense block. It uses the 256

up-scaled feature maps from Φdense
main as input and classifies each voxel into one of three classes.

This block is composed of three convolutional sub-blocks: the first two are made up of 3 × 3

Fig. 2 Framework of the proposed method.
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convolutional layers followed by a batch normalization layer and a leaky ReLU layer and the
final sub-block is just a 1 × 1 convolutional layer (see segmentation block in Fig. 2).

4.2.2 Attention branch Φattn

All of the errors made by the main branch in ambiguous and difficult to segment parts of the
lesions are corrected by the attention branch using information from adjacent slices (shown in
Fig. 3). The attention branch comprises a sequential processorΦclstm

attn , a segmentation blockΦseg
attn,

and a self-attention block Φattn
attn.

EQ-TARGET;temp:intralink-;e005;116;626α ¼ Φattn
attnðΦclstm

attn ðIÞÞ; (5)

where α is the self-attention.

EQ-TARGET;temp:intralink-;e006;116;582Sattn ¼ ΦattnðIÞ; ¼ Φseg
attnðIk ⊘Φclstm

attn ðIÞÞ; (6)

where Sattn ∈ RH×W×C are the output features from the segmentation block 2 and C is the number
output classes.

Convolutional LSTM Φclstm
attn . We used ConvLSTM33 for processing sequential data.

The ConvLSTM block allows for imitating a radiologist reviewing adjacent slices of a CT scan
and aggregate lesion information from adjacent slices to detect lung abnormalities and ensure
appropriate annotations.

Segmentation block 2 Φseg
attn. This block is structurally identical to segmentation block 1,

except for the input layer. It takes in the main segmentation slice concatenated with ConvLSTM
output as the input.

Fig. 3 Intermediate output showing error correction by the attention branch for four different cases
in each row. Blue indicates GGOs, and yellow indicates high opacities. Errors are encircled in red.
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Attention block Φattn
attn. As in Ref. 26, we also adopt an attention mechanism to combine

multi-branch outputs (Smain and Sattn) together at a pixel level. The attention block is identical
to the segmentation block in structure with the only difference being that the final 1 × 1 convolu-
tional layer is followed by a sigmoid layer. This block takes in the output of the ConvLSTM
block, as shown in Eq. (5), as input and learns to pixel-wise weight (α) the outputs from the two
branches to produce the final prediction [Eq. (7)].

The final prediction is given by the following equation in which the argmax is taken over the
channel dimension:

EQ-TARGET;temp:intralink-;e007;116;629Sout ¼ arg max
C

ðσðð1 − αÞSmain þ αSattnÞÞ; (7)

where σ∶RC → ð0;1ÞC is the Softmax over the channel dimension.

4.3 Loss Function

In our training, we utilize a combination of focal loss31 and Visual Geometry Group (VGG)
loss.34 The focal loss compensates for the imbalance between background, GGO, and high opac-
ity classes. The importance for each of the classes in focal loss was set to [0.1, 1.0, 1.0], respec-
tively, and the focusing parameter γ was set to 3. This focusing parameter in the focal loss allows
the model to penalize the hard to classify samples more than the easy ones. We tap into the low-
level features in the VGG network to compute the VGG loss, which represent edge information,
for better segmentation output. These losses are weighted equally ðλ ¼ 1.0Þ during training

EQ-TARGET;temp:intralink-;e008;116;457L ¼ Lfocal þ λLvgg: (8)

4.4 Optimization

The model parameters were optimized using an Adam (adaptive moment estimation) optimizer35

with initial learning rate of 10−3, weight decay of 10−6, and training batch size of 32. All of the
model parameters were initialized using Xavier initialization,36 except for the dense block, which
was initialized using the weights pre-trained on ImageNet.37 To avoid over-fitting while fully
train the model, we use a popular learning rate scheduler called ReduceOnPlateau (Fig. 4).38

In this technique, a metric (validation loss, accuracy, etc.) is continuously monitored throughout
the training. If no improvement is seen in the tracked metric for “patience” number of epochs/
iterations, the current learning rate is then reduced by the given “factor.” The training continues
as usual until the learning rate is reduced beyond a certain minimum (10−7). As soon as the

Fig. 4 Reduce-on-plateau learning rate scheduler. Bad epochs refers to the number of epochs
for which the validation loss has not decreased.
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learning rate hits this minimum, the training is stopped, saving the model at the last best
validation metric step. In our experiment, the parameters factor and patience were set to 0.1
and 5, respectively.

4.5 Implementation

We trained the model using the Pytorch (v1.7.1) deep-learning framework and incorporated
research CT lung analysis software (Deep Lung) written in C++. The training was performed
on an NVIDIATITAN RTX 24GB GPU with a tenth generation Intel Core i9 CPU. Deep Lung
can be used with or without the GPU acceleration.

5 Experimental Evaluation

5.1 Five-Fold Cross-Validation

The primary endpoint of this study was the performance of the deep-learning method compared
with the evaluation by the expert reader. The model is extensively evaluated using the Dice
similarity coefficient for structural similarities. The reported Dice score is the mean of per-patient
Dice scores computed over all slices in the scan. We also show the quantitative performance on
volumes using the Bland–Altman plot and coefficient of determination R2 (Pearson correlation).
To perform a robust non-biased evaluation of the framework, five-fold cross-validation was used,
using five independently trained identical models and five exclusive hold-out sets, each of 20%.
The whole cohort of Ncov ¼ 197 cases was split into five subsets called folds. For each fold of
the five-fold cross-validation, the following data splits were used: (1) training split (125 or 126
cases) was used to train the ConvLSTM; (2) alidation split (32 cases) was defined to tune the
network, select optimal hyperparameters, and verify that there was no over-fitting; and (3) test
split (39 or 40 cases) was used for the evaluation of the method. The final results were obtained
by concatenating the results from five test subsets. Thus, the overall test population was 197,
referred to as internal test set further in the paper. We also test our model on an unseen external
dataset consisting of Next ¼ 68 patients.

5.2 Diagnostic Per-Patient Performance

To assess the diagnostic performance of the convLSTM on a per-patient basis, we trained our
model utilizing an additional Ntrain

control ¼ 197 NLST controls (read as number of controls in
training) during the five-fold cross-validation, making the total training cases N ¼ Ncov þ
Ntrain

control ¼ 394. An additional set of Ntest
control ¼ 498 normal NLST cases (read as number of con-

trols in testing), added during testing, were evaluated with the best fold model from the five-fold
cross-validation. Thus, the total normal NLST cases included in experiment sums to Ncontrol ¼
Ntrain

control þ Ntest
control ¼ 695. Each normal case was evaluated with the model, which did not include

these cases for training. We report the specificity at 95% sensitivity for the convLSTM models
trained with and without additional controls. The diagnostic sensitivity and specificity was com-
pared using McNemar’s test39 on paired measurements.

6 Results

6.1 Ablation Study

Table 4 shows how the results are affected by altering different building blocks of our model.40

We select the model with the best validation Dice score (mean of GGO and high opacity) for the
final evaluation. The model configurations with the highest and lowest performances are high-
lighted in green and orange, respectively. We experimentally found that the best results were
obtained at buffer size F ¼ 3.
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6.2 Model Comparison

In Table 5, we show the performance of our model as compared with UNet2D and UNet3D across
five-folds (Ncov ¼ 197). For fair comparison, UNet2D and UNet3D were trained with an identical
training setup to our model, i.e., the same loss function, optimizer, learning rate strategy, and
training fold splits. The performance is measured with two main metrics: mean Dice score and
compute resource utilization. The mean Dice score reported in Table 5 gives the binarized mean
Dice score per class. The computation time and memory are calculated for 128 CT slices and 16
CT slices, respectively, on an Nvidia Titan RTX GPU and Intel i9 CPU using Pytorch Profiler.41

In Fig. 5, we show the significance of our results using the Wilcoxon signed-rank test. We see
that our model outperforms UNet2D (p ¼ 0.001) and Unet3d (p < 0.0001) in segmenting high-
opacities, has a comparable performance to UNet2D (p ¼ 0.22) in segmenting GGOs, and sig-
nificantly outperforms UNet3D (p < 0.0001) in segmenting GGOs. But the major advantages of
our model over the other two are in terms of computational resources as follows:

1. It is nearly 1.3× and 6.8× faster than UNet2D and UNet3D, respectively, on the GPU.
2. It is 2.1× and 1.2× faster than UNet2D and UNet3D, respectively, on the CPU.

Hence, it is can be easily deployed on less powerful machines in clinical setups.
Model complexity in terms of number of trainable parameters and the required tera floating

point operations (TFLOPs) is shown in Table 6.

6.3 Lesion Quantification in the Internal Testing (Ncov = 197) and External
Testing (Next = 98) Cohorts

In Table 7, we present the interquartile range (IQR) and coefficient of determination (R2) on
volumes between expert and automatic segmentation along with the overall per-patient mean

Table 5 Model comparisons on Ncov ¼ 197 (UNet2D, UNet3D, and our). Best performance is
highlighted in bold.

Model

Mean Dice score (five-fold test set) Model inferencea

Ground glass
opacity High opacity

CPU time
(s)

GPU time
(ms)

Memory
(Gb)

UNet2D 0.9152 ± 0.0526 0.9427 ± 0.0662 91.02 1379.00 3.60

UNet3D 0.8949 ± 0.0555 0.9395 ± 0.0679 59.81 6986.67 13.08

Our 0.9171 ± 0.0502 0.9473 ± 0.0611 45.01 1040.29 6.65

Note: The data preprocessing is the same for all models and takes about 2.52 s for 128 CT slices.
aTime for 128 slices and memory for 16 slices.

Table 4 Ablation study on fold-1 for model selection (Ncov ¼ 197). Highest and lowest perfor-
mances are highlighted in bold and italic, respectively.

Trunk
Main branch
input dim

Buffer
size (F )

Feature
merge

Validation (Dice score)

Background
Ground glass

opacity
High

opacity Mean

Dense 3 5 Add 0.9964 0.6727 0.5690 0.6208

Dense 3 3 Add 0.9967 0.6854 0.6172 0.6513

Dense 1 3 Add 0.9966 0.6938 0.5958 0.6448

ResNet50 3 3 Add 0.9962 0.6801 0.5221 0.6011

Dense 3 3 Max 0.9967 0.6849 0.5788 0.6319

Killekar et al.: Rapid quantification of COVID-19 pneumonia burden from computed tomography. . .

Journal of Medical Imaging 054001-11 Sep∕Oct 2022 • Vol. 9(5)



Dice score for both internal as well as external test datasets. In the internal test set (Ncov ¼ 197),
no significant difference between volumes of expert and automatic segmentations was observed
for GGOs (p ¼ 0.3612). Similarly, no significant difference between volumes of expert and
automatic segmentations was observed for GGOs (p ¼ 0.1563) or high opacities in the external
test set (Next ¼ 98).

The Bland–Altman analysis on the internal test set demonstrated a low bias of 0.56 (Fig. 6)
and 18.61 ml (Fig. 7) for GGOs and high opacities, respectively. Similarly, the Bland-Altman
analysis on the external test set demonstrated a low bias of 7.16 (Fig. 8) and 2.92 ml (Fig. 9) for

Table 6 Model complexity (UNet2D, UNet3D, and our).

Model No. of trainable parameters TFLOPs

UNet2D 17,267,523 0.641

UNet3D 16,318,821 5.143

Our 788,683 0.492

Note: For TFLOPs, the lower the better.

Table 7 Our model performance on Ncov ¼ 197 and Next ¼ 68.

Ground glass opacity High opacity

Expert Automatic Expert Automatic

Internal testing
dataset
(Ncov ¼ 197)

Median (ml) 288.80 325.71 10.53 8.68

IQR (ml) 84.74–723.33 89.54–739.71 0–150.42 0.21–94.99

R2 0.8664 (p < 0.001) 0.9537 (p < 0.001)

Dice score 0.8918 ± 0.0668

External testing
dataset
(Next ¼ 68)

Median (ml) 76.51 74.37 0 0.25

IQR (ml) 26.42–150.34 27.48–150.03 0–0 0–4.23

R2 0.9716 (p < 0.001) 0.9529 (p < 0.001)

Dice score 0.8938 ± 0.0552

Note: IQR, interquratile range; ml, milliliter; R2, coefficient of determination.

Fig. 5 Box plot for Ncov ¼ 197 cases displaying the significance of Dice scores between models
using the Wilcoxon signed-rank test for (a) GGO and (b) high opacity.
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Fig. 6 Expert and automatic quantification of GGO in testing cohort (Ncov ¼ 197). (a) Bland–
Altman plot and (b) best fitting regression line.

Fig. 7 Expert and automatic quantification of high opacity in testing cohort (Ncov ¼ 197).
(a) Bland–Altman plot and (b) best fitting regression line.

Fig. 8 Expert and automatic quantification of GGO in external unseen testing cohort (Next ¼ 68).
(a) Bland–Altman plot and (b) best fitting regression line.

Fig. 9 Expert and automatic quantification of high opacity in external unseen testing cohort
(Next ¼ 68). (a) Bland–Altman plot and (b) best fitting regression line.
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GGOs and high opacities, respectively. After further analyzing the anomalies (cases outside the
limit of agreement) in the Bland–Altman plots (Figs. 6 and 7), we observed that some input scans
were corrupted due to various reasons including motion artefacts, errors in expert annotations,
etc., as shown in Fig. 10. Thus, a significant (p < 0.001) difference in high opacity volumes
between expert and automatic segmentations was observed in the internal test set.

The internal testing cohort consisted of 30 contrast enhanced and 167 non-contrast CT scans.
We observed no significant difference (p ¼ 0.2137) between the mean Dice scores calculated
for segmentations from non-contrast and contrast-enhanced CT scans, which were (0.8939�
0.0663) and (0.8801� 0.0682), respectively.

6.4 Diagnostic Comparison

We trained the same convLSTM model with and without additional Ntrain
control ¼ 197 controls and

tested them with five-fold cross-validation. We also tested an additional Ntest
control ¼ 498 unseen

controls with the best performing model from five-fold cross-validation. The AUROC with and
without NLST in training was 0.965 and 0.959, respectively, but they did not reach significance.
However, McNemar’s test results (Table 8) show that the model trained with an additional
Ntrain

control ¼ 197NLST cases significantly increased the specificity at 95% sensitivity of the model.
Thus, adding NLST controls to the training decreased the false positive rate in diagnosis. The
overall per-patient mean Dice score also improved drastically, as shown in Table 8.

7 Discussion

We developed and evaluated a novel deep-learning ConvLSTM network approach for fully auto-
matic quantification of the COVID-19 pneumonia burden from both non-contrast and contrast-

Fig. 10 Samples of extreme outliers from Bland–Altman plots. Highlighted red rectangle and ellipse
are the areas of mis-classifications. Blue indicates GGOs, and yellow indicates high opacities.

Table 8 Diagnostic performance on N total ¼ Ncov þ Ncontrol ¼ 892 NLST patients.

NLST in
training AUROC Dice scorea Sensitivity/specificity

McNemar’s test

χ2 statistics χ21;0.05 p-value

No 0.959 0.9813 ± 0.0398 95.0%/70.8% 30.22 3.841 <0.0001

Yes 0.965 0.9803 ± 0.0433 95.0%/77.3%

Note: AUROC, area under the receiver operating characteristic.
Best performance is highlighted in bold.
aIncludes GGO, high opacity, and background.
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enhanced chest CT. To the best of our knowledge, ConvLSTM has not been applied before for
segmentation of medical imaging data. We demonstrated that automatic pneumonia burden
quantification by the proposed method shows strong agreement with expert manual measure-
ments and rapid performance that is suitable for clinical deployment. Although vaccines have
been developed to protect from COVID-19, the incidental findings of COVID-19 abnormalities
due to imperfect vaccination rates and new strains will be a mainstay of medical practice. This
method will provide a ‘real-time’ detection of parenchymal opacifications associated with
COVID-19 to the physician and aid image-based triage to optimize the distribution of resources
during the pandemic. Figure 11 shows the lesion annotations (expert and automatic) in 3D for
one of the patients in test set.

The evolution of deep-learning applications for COVID-19 is reflecting the changing role of
CT imaging during the pandemic. Initially, when RT-PCR testing was unavailable or delayed,
chest CTwas used as a surrogate tool to identify suspected COVID-19 cases.42 AI-assisted image
analysis could improve the diagnostic accuracy of junior doctors in differentiating COVID-19
from other chest diseases including community-acquired pneumonia and facilitate prompt
isolation of patients with suspected SARS-CoV-2 infection.20,43

Currently, when RT-PCR testing is widely available with timely results, rapid quantification
of the pneumonia burden from chest CT as proposed here can aid prognostication and disease
staging in patients with COVID-19. As demonstrated in prior investigations, increasing attenu-
ation of GGO and a higher proportion of consolidation in the total pneumonia burden had prog-
nostic value, thus underscoring the importance of utilizing all CT information for training the
patients.13,44 Manual segmentation of the lung lesions is, however, challenging and prohibitively
time-consuming task due to complex appearances and ambiguous boundaries of the opacities.45

To automate the segmentation of respective lung lesions in COVID-19, several different
segmentation networks have been introduced.11,20,22,46 Most of these tend to consume a lot of

Fig. 11 Qualitative comparison between expert and automatic segmentations of the lung lesions
using our system. Blue represents GGO, and yellow represents high-opacity. The last row is the
3D representation. The Dice score coefficient for this patient was 0.792.
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memory in storing the intermediate features for skip connections, and it may be favorable to use
several input slices to improve the performance of semantic segmentation tasks.24,25 We propose
the application of ConvLSTM, presenting the potential to outperform other neural networks in
capturing the spatio-temporal correlations, due to its capability of preserving relevant features
with simultaneous dismission of irrelevant ones in the form of the feedback loop for the memory-
sparing strategy and holistic analysis of the images.28 It has been found that ConvLSTM local-
ized at the input end allowed for effectively capturing the global information and optimizing the
model performance.

Automated segmentation of lung lesions with ConvLSTM networks offers a solution to gen-
erating big data with limited human resources and minimal hardware requirements. Because results
of segmentation are presented to the human reader for visual inspection, eventual corrections enable
the implementation of a human-in-the-loop strategy to reduce the annotation effort and provide
high-volume training datasets to improve the performance of deep-learning models.45 Furthermore,
objective and repeatable quantification of the pneumonia burden might aid the evaluation of the
disease progression and assist the tomographic monitoring of different treatment responses.

Our study had several limitations. First, different patient profiles and treatment protocols
between countries may have resulted in heterogeneity in COVID-19 pneumonia severity.
Second, most of the CT scans were acquired during the hospital admission; therefore, availability
of the slices with high-opacity (consolidations and plural effusion), representing a peak stage of
the disease, was limited. Finally, training and external validation datasets comprised a relatively
low number of patients manually segmented by two expert readers; however, to mitigate this,
we have utilized repeated testing that has allowed us to evaluate expected average performance
of the model.

In our experiments, we have a diverse multi-center cohort not typically available for training.
But for future research, in experiments with limited availability of expertly annotated data, it is
desirable to incorporate advanced data augmentation techniques as proposed in Refs. 47 and 48
and regularization techniques49 for better model generalization and for mitigating the issue of
over-fitting.

8 Conclusions

We proposed and evaluated a deep-learning method based on convolutional LSTM and
Hierarchical multi-scale attention network for fully automated quantification of the pneumonia
burden in COVID-19 patients from both non-contrast and contrast-enhanced CT datasets. The
proposed method provided rapid segmentation of lung lesions with strong agreement with
manual segmentation and may represent a robust tool to generate big data with an accuracy
similar to that of an expert reader. The model generalized very well on unseen external datasets.
In our proposed method, the attention network using ConvLSTM largely helps with error cor-
rection in segmentation and can be used in other segmentation tasks in which one can leverage
information from adjacent slices of the scan.
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