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2 Conjugacy classes of maximal cyclic subgroups

of metacyclic p-groups

M. Bianchi, R.D. Camina, & Mark L. Lewis

Abstract

In this paper, we set η(G) to be the number of conjugacy classes of
maximal cyclic subgroups of a finite group G. We compute η(G) for
all metacyclic p-groups. We show that if G is a metacyclic p-group of
order pn that is not dihedral, generalized quaternion, or semi-dihedral,
then η(G) ≥ n− 2, and we determine when equality holds.
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1 Introduction

Unless otherwise stated, all groups in this paper are finite, and we will follow
standard notation from [6]. As in [3] and [4], we set η(G) to be the number
of conjugacy classes of maximal cyclic subgroups of a group G. For p = 2, we
have that η(G) = 3 when G is a dihedral 2-group, a generalized quaternion
2-group, or a semi-dihedral group. In [1], the second and third authors along
with Yiftach Barnea and Mikhail Ershov have shown that for every prime
p ≥ 5 there are infinitely many p-groups with η = p+ 2 and for p = 3 there
are infinitely many 3-groups with η = 9. This answers negatively Question
5.0.9 from [9] which asked whether η(G) grows with the order of G when G
is a p-group and p is odd.

On the other hand, it is rare for this to occur. Indeed, the only 2-groups
(in fact the only p-groups) that have η = 3 are the Klein 4-group, the dihedral
groups, the generalized quaternion groups, and the semi-dihedral groups. To
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see this, we know that η(G) ≥ η(G/G′) (see [3]), and for p-groups η(G/G′) ≥
p + 1 when G/G′ is not cyclic (see [4]). Thus, η = 3 can only occur when
p = 2. Also, in [4], we show that η(G/G′) = 3 if and only if G/G′ ∼= C2×C2.
It is well known that if G is a 2-group of order at least 8 and |G : G′| = 4, then
G is either dihedral, generalized quaternion, or semi-dihedral. (See Problem
6B.8 of [6].)

Now, dihedral groups, generalized quaternion groups, and semi-dihedral
groups are examples of metacyclic groups. I.e., groups G with a normal
subgroup N so that N and G/N are both cyclic groups. This motivated us
to investigate the invariant η for all metacyclic p-groups. Indeed this project
began before the results of [1] were known and we were originally curious as
to whether we would find another family of metacyclic p-groups with fixed
η. However, we prove the following:

Theorem 1.1 Let G be a metacyclic p-group of order pn that is not a di-
hedral group, generalized quaternion group, or semi-dihedral group. Then
η(G) ≥ n− 2.

In fact, we compute η(G) for every metacyclic p-group G. Thus, we list
the metacyclic p-groups where equality occurs in Theorem 1.1. King in [7]
gave a description of all metacyclic p-groups. We will give this description
of these groups in Section 3. In particular, King divided the metacyclic p-
groups into two families of groups which he called positive type and negative
type. The negative type groups only occur when p = 2, so if p is an odd
prime, then all of the metacyclic p-groups are of positive type. We have the
following result for the metacyclic groups of positive type.

Theorem 1.2 Let G be a metacyclic group of positive type. Then η(G) =
η(G/G′).

We note that Rogério in [8] has a formula to compute η(A) for an abelian
group A. His formula involves the Euler φ-function and a second number
theoretic function. When G is a metacyclic abelian p-group, we prove in [4]
a formula for η(G) that is only in terms of the sizes of the direct factors of
G. Notice in Theorem 1.2 that G/G′ will be a metacyclic abelian p-group,
and so, our formula will compute η(G/G′) and hence, η(G).

When G is a metacyclic p-group of negative type, it is not usually the case
that η(G) and η(G/G′) are equal. However, we will find that there usually
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is a proper quotient whose value of η equals η(G). We will also see for most
metacyclic groups of negative type that the formula for η is dependent on
the formula for η that we found for the metacyclic abelian p-groups.

The authors would like to thank Emanuele Pacifici for a number of helpful
conversations while working on this paper.

2 Preliminaries

In our preprint [3], we prove two results that we need in this paper. The first
is a criteria for determining when the quotient of a p-group G has the same
value for η as η(G). Given a prime p, we set G{p} = {gp | g ∈ G}. I.e., G{p}

is the set of p-th powers in G.

Theorem 2.1 Let N be a normal subgroup of the p-group G. Then η(G/N) ≤
η(G). Furthermore, η(G/N) = η(G) if and only if N ⊆ G{p} and for all
x ∈ G\G{p} every element of xN is conjugate to a generator of 〈x〉. In partic-
ular, if η(G/N) = η(G), then G{p} is a union of N-cosets and G{p}N = G{p}.

This second Proposition relates η(G) to the number of G-orbits of maxi-
mal cyclic subgroups of a normal subgroup.

Proposition 2.2 Let N be a normal subgroup of a group G and let η∗(N)
be the number of G-orbits on the N-conjugacy classes of maximal cyclic sub-
groups of N . Then η(G) ≥ η∗(N). In particular,

(i) if N is central in G, then η(G) ≥ η(N).

(ii) if |G : N | = k, then η(G) ≥ η(N)/k.

Let p be a prime, and let a and b be positive integers. We take k =
max(a, b) and l = min(a, b). We set gp(a, b) = p(l−1)((k − l)(p− 1) + p + 1).
In [4], we prove the following lemma.

Lemma 2.3 If p is a prime and a and b are positive integers so that G =
Cpa × Cpb, then gp(a, b) = η(G).

We close this section with an easy lemma that computes g2 for small
values and gives a lower bound for larger values. We remark that when
p = 2, this function is much easier to work with.
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Lemma 2.4 Suppose k ≥ l. Then the following hold:

1. If l = 1, then g2(k, 1) = k + 2.

2. If l = 2, then g2(k, 2) = 2(k + 1).

3. If l = 3, then g2(k, 3) = 4k.

4. If l ≥ 4, then g2(k, l) ≥ 4k + 2l.

Proof. We have g2(a, b) = g2(k, l) = 2l−1(k − l + 3). Conclusions (1),
(2), and (3) are immediate. We focus on (4). Begin with g2(4, 4) = 24; so
the result holds for g2(4, 4). Next, g2(l, l) − 6l = 3 · 2l−1 − 6l is clearly
increasing when l ≥ 3. Thus, we have g2(l, l) ≥ 4l + 2l when l ≥ 3.
Let k = l + m for m ≥ 0. Then g2(k, l) = g2(l + m,m) = 2l−1(m + 3)
and 4k + 2l = 4(l + m) + 2l = 6l + 4m. Fixing l ≥ 4, we note that
2l−1(m + 3) − 6l − 4m will be an increasing function in m. We conclude
that g2(k, l) ≥ 4k + 2l for l ≥ 4. ✷

3 Metacyclic p-Groups

For the rest of the paper, we will focus on metacyclic p-groups. A finite
metacyclic p-group can be described as follows. This description is taken
from [7],

Gp(α, β, ǫ, δ,±) = 〈x, y | xpα = 1, yp
β

= xpα−ǫ

, xy = xr〉

where r = pα−δ + 1 (positive type) or r = pα−δ − 1 (negative type). The
integers α, β, δ, ǫ satisfy α, β > 0 and δ, ǫ nonnegative, furthermore δ ≤
min{α − 1, β} and δ + ǫ ≤ α. When G has negative type, only ǫ = 0 or 1
occur. For p odd

G ∼= Gp(α, β, ǫ, δ,+).

In other words, the negative type only occurs when p = 2; when p is odd,
only the positive type occurs. Metacyclic 2-groups can be of either positive
type or negative type. We note that dihedral, semi-dihedral and generalized
quaternion groups are all of negative type.

If p = 2, then in addition α− δ > 1 and

G ∼= G2(α, β, ǫ, δ,+) or G ∼= G2(α, β, ǫ, δ,−).
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Note, the above presentation does not guarantee nonisomorphic groups for
different parameters (see [2]). However, the parameters do determine some
structural information about G. For example, |G| = pα+β and G′ = 〈xpα−δ

〉
if G is of positive type and G′ = 〈x2〉 if G is of negative type. All elements
of G can be written as ybxa for some integers a and b. Also if G is of positive
type then Z(G) = 〈xpδ , yp

δ

〉 and |Z(G)| = pα+β−2δ, if G is of negative type

Z(G) = 〈x2α−1
, y2

max{1,δ}
〉, [2, Prop. 2.5]. Note that if G is of positive type

and δ = 0, then G will be abelian.
As we mentioned above, the dihedral groups, the generalized quaternion

groups, and the semi-dihedral groups are the only p-groups G that satisfy
η(G) = 3. These are also precisely the 2-groups of maximal class. We
have also mentioned that they are metacyclic. In terms of our notation, the
dihedral groups are G2(α, 1, 0, 0,−), the generalized quaternion groups are
G2(α, 1, 1, 0,−), and the semi-dihedral groups are G2(α, 1, 0, 1,−).

For Lemmas 3.1 and 3.3, we are writing Gp(α, β, ǫ, δ,±) as Gp(α, β, ǫ, δ, γ)
where we take γ = + when G is of positive type and γ = − when G is of
negative type. We consider quotients of G. Note that this lemma would not
be well defined if δ = 0 and would not say anything if δ = 1.

Lemma 3.1 Suppose G is Gp(α, β, ǫ, δ, γ) with δ ≥ 2. Then N = 〈xpα−δ+1
〉

is a normal subgroup of G and G/N is isomorphic to

Gp(α− δ + 1, β, (ǫ− δ + 1)∗, 1, γ)

where (ǫ − δ + 1)∗ = ǫ − δ + 1 when ǫ ≥ δ − 1 and (ǫ − δ + 1)∗ = 0 when
ǫ < δ − 1.

Proof. Set Z = 〈xpα−1
〉 ≤ Z(G). We first prove that G/Z is isomorphic

to Gp(α− 1, β, ǫ− 1, δ − 1, γ) when ǫ ≥ 1 and Gp(α− 1, β, 0, δ − 1, γ) when
ǫ = 0. We know that G/Z = 〈xZ, yZ〉 where xZ has order pα−1. Observe
that (yZ)p

β

= yp
β

Z = xpα−ǫ

Z. When ǫ ≥ 1, we have

xpα−ǫ

Z = xp(α−1)−(ǫ−1)

Z

and when ǫ = 0, we have

xpα−ǫ

Z = xpαZ = Z.

Also,

(xZ)yZ = xyZ = xpα−δ+γZ = xp(α−1)−(δ−1)+γZ.
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Hence, G/Z satisfies the hypotheses for Gp(α−1, β, ǫ−1, δ−1, γ) when ǫ ≥ 1
and Gp(α− 1, β, 0, δ − 1, γ) when ǫ = 0.

We know that X = 〈x〉 is a cyclic, normal subgroup of G. Observe
that N is contained in X and so is characteristic. This implies that N
is normal in G. Observe that Z ≤ N and we have shown that G/Z ∼=
Gp(α− 1, β, ǫ− 1, δ− 1, γ) or Gp(α− 1, β, 0, δ− 1, γ). If δ = 2, then N = Z,
and we have the desired result. Otherwise, we have δ ≥ 3. Using induction,
we have G/N ∼= (G/Z)/(N/Z) is isomorphic to either

Gp((α−1)−(δ−1)+1, β, (ǫ−1)−(δ−1)+1, 1, γ) ∼= Gp( α−δ+1, β, ǫ−δ+1, 1, γ)

or

Gp((α− 1)− (δ − 1) + 1, β, 0, 1, γ) ∼= Gp(α− δ + 1, β, 0, 1, γ). ✷

We consider the metacyclic groups of positive type and use Theorem 2.1
and Lemma 2.3. Thus, we first analyze G/G′.

Lemma 3.2 Suppose G = Gp(α, β, ǫ, δ,+).

(i) If δ ≥ ǫ or δ < ǫ and α ≥ β + ǫ, then G/G′ = Cpα−δ × Cpβ .

(ii) If δ < ǫ and α < β + ǫ, then G/G′ = Cpα−ǫ × Cpβ+ǫ−δ.

Proof. Now G′ = 〈xpα−δ

〉, so |G′| = pδ. Also |G| = pα+β , so |G : G′| =
pα+β−δ.

If δ ≥ ǫ, then 〈y〉 ∩ G′ = 〈xpα−ǫ

〉 = 〈x〉 ∩ 〈y〉. We see that xG′ has order
pα−δ, and yG′ has order pβ and G/G′ = 〈xG′〉 × 〈yG′〉 yielding the desired
result.

Now suppose δ < ǫ. In this case, we see that G′ < 〈xpα−ǫ

〉 = 〈x〉∩〈y〉. We
see that xG′ has order pα−δ and yG′ has order pβ+ǫ−δ. Since G′ < 〈x〉 ∩ 〈y〉,
we do not have that G/G′ is a direct product of 〈xG′〉 and 〈yG′〉. We see
that G/G′ is abelian and generated by xG′ and yG′, so every element of G/G′

has order ≤ max{pα−δ, pβ+ǫ−δ}. If α ≥ β + ǫ, then α − δ ≥ β + ǫ − δ. In
this case, xG′ has the largest order of any element in G/G′, and so we get
G/G′ = Cpα−δ ×Cpβ since |G/G′| = pα+β−δ. On the other hand, if α < β+ ǫ,
then α− δ < β+ ǫ− δ. In this case, yG′ has the largest order of any element
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in G/G′ and we get G/G′ = Cpα−ǫ × Cpβ+ǫ−δ. ✷

Given an element g ∈ G, we write cl(g) to denote the conjugacy class of
g in G.

Lemma 3.3 Let G = Gp(α, β, ǫ, δ, γ). If g = ypl+axm for integers l, m, and
a so that a ∈ {1, . . . , p− 1}, then cl(g) = gG′.

Proof. We first claim that G = 〈x, g〉. We know that G = 〈x, y〉. Obviously,
〈x, g〉 ≤ G. Observe that ypl+a = gx−m ∈ 〈x, g〉. Since the order of y is
a power of p, this implies that y ∈ 〈x, g〉. We conclude that G = 〈x, y〉 ≤
〈x, g〉 ≤ G. This proves the claim.

Because 〈x〉 is normal in G, we obtain G = 〈x〉〈g〉. Observe that 〈g〉 ≤
CG(g). By Dedekind’s lemma (see Lemma X.3 on page 328 of [6]), it follows
that CG(g) = (CG(g)∩ 〈x〉)〈g〉 = C〈x〉(g)〈g〉. Since x centralizes xm, we have

C〈x〉(g) = C〈x〉(y
pl+axm) = C〈x〉(y

pl+a) = C〈x〉(y) = 〈xpt〉,

where t = δ if γ = + and t = α−1 when γ = −. We see that CG(g) = 〈g, xpt〉.
We deduce that

|G : CG(g)| = |〈x〉 : 〈xpt〉| = pt = |G′|.

Since cl(g) ⊆ gG′, we conclude that cl(g) = gG′. ✷

Given a group G and a prime p, we define Gp = 〈G{p}〉. I.e., Gp is the
subgroup generated by G{p}. In a similar fashion, we define G4 = 〈g4 | g ∈
G〉. Following the literature, we say that a finite p-group G is powerful if (i)
G′ ≤ Gp when p is odd and (ii) G′ ≤ G4 when p = 2. If G is a powerful
p-group, then it is known that Gp = G{p}, i.e. the set of p-powers of elements
of G is equal to the subgroup the p-powers generate. (See Section 2 of [5]
and in particular Propostion 2.6 of that citation.)

We claim that metacyclic p-groups of positive type are powerful. Let G
be Gp(α, β, ǫ, δ,+), then G′ = 〈xpα−δ

〉. As α − δ ≥ 1 it follows immediately
that G is powerful when p is odd. For p = 2, we note that α− δ ≥ 2 so again
we have that G is powerful.

When G is of positive type, we extend Lemma 3.3.

Lemma 3.4 Let G = Gp(α, β, ǫ, δ,+) and g ∈ G \G{p}. Then cl(g) = gG′.
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Proof. Let g ∈ G then g = ynxm for some integers n and m. As G is
powerful, it follows that if g ∈ G \ G{p}, then g 6∈ Gp, and thus, one of n
and m is not divisible by p. When n is not divisible by p, we obtain the
conclusion by Lemma 3.3.

We now suppose that g = ynxm where m is not divisible by p. We want
to prove that cl(g) = gG′. We know that cl(g) ⊆ gG′. It suffices to prove
that |cl(g)| ≥ |gG′| = |G′| = pδ. On the other hand, we know that y acts
as an automorphism of order pδ on 〈x〉, so x has pδ distinct images under
powers of y. Thus, if 1 ≤ a, b ≤ pδ, then xya = xyb if and only if a = b. Since
m is coprime to p, we see that (xya)m = (xyb)m if and only if a = b. Hence,
we have that gy

a

= gy
b

if and only if (ynxm)y
a

= (ynxm)y
b

and this occurs if
and only if a = b. We deduce that g has at least pδ distinct conjugates under
〈y〉 and so |cl(g)| ≥ pδ as desired. This proves the lemma. ✷

We now prove that if G is metacyclic of positive type, then η(G) =
η(G/G′). Combining this fact with Lemmas 2.3 and 3.2, we are able to
compute η(G) for all primes p.

Corollary 3.5 Suppose G is Gp(α, β, ǫ, δ,+). Then η(G) = η(G/G′).

Proof. As G is powerful, by Theorem 2.1, we need to show that for all
g ∈ G \ G{p} every element of gG′ is conjugate to a generator of 〈g〉, this
follows from Lemma 3.4. ✷

For the record, we explicitly record the value of η(G) when G is a meta-
cyclic group of positive type.

Corollary 3.6 Suppose G is Gp(α, β, ǫ, δ,+).

(i) If δ ≥ ǫ or δ < ǫ and α ≥ β + ǫ, then η(G) = gp(α− δ, β).

(a) If β ≤ α− δ, then η(G) = pβ−1((α− δ − β)(p− 1) + p+ 1).

(b) If β > α− δ, then η(G) = pα−δ−1((β − α + δ)(p− 1) + p+ 1).

(ii) If δ < ǫ and α < β + ǫ, then η(G) = gp(α− ǫ, β + ǫ− δ) = pα−ǫ−1((β −
α+ 2ǫ− δ)(p− 1) + p+ 1).

Proof. Using Corollary 3.5, we have η(G) = η(G/G′). If δ ≥ ǫ or δ < ǫ
and α ≥ β + ǫ, then in view of Lemma 3.2, we see that G/G′ = Cpα−δ × Cpβ
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and η(G) = gp(α − δ, β). The remainder of (i) follows from the definition
of gp. Suppose δ < ǫ and α < β + ǫ. Applying Lemma 3.2, we see that
G/G′ = Cpα−ǫ ×Cpβ+ǫ−δ . Observe that α < β+ ǫ yields α− ǫ < β < β+ ǫ− δ
as we are assuming δ < ǫ. In light of the definition of gp, we obtain conclusion
(ii). ✷

When G is metacyclic of positive type, we show that η(G) ≥ α + β.

Corollary 3.7 If G is Gp(α, β, ǫ, δ,+), then η(G) ≥ α+ β.

Proof. We consider separately the cases given in Corollary 3.6. We use the
fact that 2β−1 ≥ β for β a positive integer. First, (i)(a), where α− δ ≥ β,

η(G) = pβ−1((α− δ − β)(p− 1) + p+ 1)

≥ 2β−1(α− δ − β + 3)

≥ α− δ − β + 3β

≥ α + β

since β ≥ δ.
Now, case (i)(b), so α− δ < β. First assume α− δ > 1, then

η(G) = pα−δ−1((β − α + δ)(p− 1) + p+ 1)

≥ 2α−δ−1(β − α + δ + 3)

≥ 2(β − α+ δ) + 3(α− δ)

= 2β + (α− δ)

≥ β + α + (β − δ)

≥ β + α

since β ≥ δ. If α − δ = 1 then p ≥ 3, also note α = 1 + δ ≤ 1 + β. So, we
have

η(G) ≥ 2(β − α + δ) + 4 = 2β + 2 > β + α.

Case (ii) follows similarly to (i)(a), we have α− ǫ ≤ β + ǫ− δ,

η(G) = pα−ǫ−1((β − α + 2ǫ− δ)(p− 1) + p+ 1)

≥ 2α−ǫ−1(β − α + 2ǫ− δ + 3)

≥ β − α + 2ǫ− δ + 3(α− ǫ)

= β + α + (α− ǫ− δ)

≥ β + α

9



since α ≥ δ + ǫ.✷

4 Metacyclic Groups of Negative Type

The goal of this section is to compute η when G is a metacyclic group of
negative type. We begin by looking at quotients of G. We begin with a
preliminary lemma that is useful in understanding the quotients.

Using the notation of Section 3 and applying Theorem 2.1, we have that
if G = G2(α, β, ǫ, δ,−) with δ ≥ 1 and N = 〈x2α−δ+1

〉, then η(G) ≥ η(G/N).
We now show that in fact this is an equality. We remind the reader that
α− δ ≥ 2 when p = 2.

We now prove the promised equality between η(G) and η(G/N).

Theorem 4.1 Let G = G2(α, β, ǫ, δ,−) where δ ≥ 1. Then η(G) = η(G/N)
where N = 〈x2α−δ+1

〉.

Proof. Note that N does not make sense if δ = 0; so that it is why we
assume δ ≥ 1. Also, if δ = 1, then N = 1; so the conclusion is trivial in this
case. Hence, we will assume δ ≥ 2.

We first prove that η(G) = η(G/Z) where Z = 〈x2α−1
〉. Recall from

Theorem 2.1 that to prove η(G) = η(G/Z), we need to prove that Z ⊆ G{2}

and if g ∈ G \G{2}, then every element of gZ is conjugate to a generator of
〈g〉. Observe that Z ⊆ G{2}. Since x2α−1

is the only nonidentity element of
Z, it suffices to prove that if g 6∈ G{2}, then 〈g〉 and 〈gx2α−1

〉 are conjugate.
We know from [2] that G′ = 〈x2〉.

We prove the claim by working by induction on δ. We begin with the
case that δ = 2. We know that xy = x2α−2−1. It follows that

(x2)y = (xy)2 = (x2α−2−1)2 = x2α−1−2 = (x−2)x2α−1

.

Observe that this yields that (x−2)y = x2x2α−1
. Using this fact and the

observation that x2α−1
is central, we then have

(x2)y
2

= (x−2x2α−1

)y = x2x2α−1

x2α−1

= x2.

It follows that x2 and y2 commute. Let A = 〈x2, y2〉, and observe that
G′ ≤ A, so A is a normal, abelian subgroup of G.
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We know that every element of G has the form ykxm where 0 ≤ k ≤ 2β−1
and 0 ≤ m ≤ 2α−1 are integers. Notice that if 4 divides both k and m, then
g ∈ A{2} ⊆ G{2}. Also, x2, y2 ∈ G{2}.

If g = y2l+1xm for integers l and m, then we can appeal to Lemma 3.3 to
see that g is conjugate to gx2α−1

and so, 〈g〉 and 〈gx2α−1
〉 are conjugate, as

desired.
Since xy = x2α−2−1, we have xy2 = x22α−4−2α−1+1. Since δ ≥ 2, we know

that α ≥ 4 (this is using the fact that α − δ ≥ 2), so 2α − 4 ≥ α. Hence,
we have xy2 = x−2α−1+1. In addition, x2α−1

has order 2, so x−2α−1
= x2α−1

.
Thus, we have shown xy2 = x2α−1+1.

Suppose now that g = y2lx2h+1 for integers l and h. From above, we have

gy
2

= (y2lx2h+1)y
2

= y2l(xy2)2h+1 = y2l(x2α−1+1)2h+1 = y2lx2h+1x2α−1

= gx2α−1

.

We deduce that 〈g〉 and 〈gx2α−1
〉 are conjugate, as desired.

We have shown that xy2 = xx2α−1
. This implies that x−1y−2x = x2α−1

y−2.
Inverting, we obtain (y2)x = y2x2α−1. Now, suppose that g = y2lx2h. We can
assume from above that either l is odd or h is odd. Assume first that l is
odd. We have

gx = (y2lx2h)x = ((y2)x)lx2h = (y2x2α−1

)lx2h = y2lx2hx2α−1

= gx2α−1.

We obtain 〈g〉 and 〈gx2α−1
〉 are conjugate, as desired.

We are left with the case that g = y4lx2(2h+1) for integers h and l. We
claim that g ∈ G{2}. Notice that there is an integer k so that 〈g〉 = 〈y4kx2〉
and that g ∈ G{2} if and only if y4kx2 ∈ G{2}. We show that y4kx2 ∈ G{2}.
We have xy2 = xx2α−1

. It follows that xy2 = y2xx2α−1
and

(y2kx)2 = y2kxy2kx = y2ky2kxx2α−1kx = y4kx2x2α−1k.

When k is even, we see that (y2kx)2 = y4kx2. Now assume that k is odd. We
have

(y2kxx2α−2

)2 = y2kxx2α−2

y2kxx2α−2

= y2ky2kxx2α−1kxx2α−22

= y4kx2x2α−1(k+1) = y4kx2.

Note that we are using the fact that x2α−2
commutes with both x and y2

here. Thus, this yields g ∈ G{2}. We conclude for all elements g ∈ G \ G{2}

that g and gx2α−1
are conjugate and we have proved that η(G) = η(G/Z)

when δ = 2.
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We now assume that δ > 2. Let M = 〈x2, y〉. Since xy = x2α−δ−1, we see

that (x2)y = (x2α−δ−1)2 = (x2)2
(α−1)−(δ−1)−1. Also, y2

β

= x2α−ǫ

= (x2)2
(α−1)−ǫ

.

Observe that (x2)2
(α−1)−1

= x2α−1
. We conclude that M = G2(α− 1, β, ǫ, δ−

1,−). Let g ∈ G\G{2}. If g ∈ M , then g ∈ M \M{2}. By induction, we have

that g is conjugate to g(x2)2
(α−1)−1

, and so, g and gx2α−1
are conjugate. Thus,

we may assume that g 6∈ M . This implies that g = ylx2m+1 for integers l and
m. We know that y induces an automorphism of 〈x〉 of order 2δ. It follows
that y2

δ−1
induces an automorphism of 〈x〉 of order 2. Since δ ≥ 3, we know

that this automorphism is a square. It is not difficult to see that x 7→ xx2α−1

is the unique automorphism of 〈x〉 that has order 2 and is a square. Hence,

we see that xy2
δ−1

= xx2α−1
. We conclude that gy

2δ−1

= (ylx2m+1)y
2δ−1

=

yl(xy2
δ−1

)2m+1 = yl(xx2α−1
)2m+1 = ylx2m+1x2α−1

= gx2α−1
. This completes

the proof of the claim that η(G) = η(G/Z).
We now work to prove η(G) = η(G/N). We work by induction on δ. If δ =

2, then N = Z, and the above claim yields the result. We assume that δ ≥ 3.
We have that η(G) = η(G/Z). By induction, η(G/Z) = η((G/Z)/(N/Z)),
and the First Isomorphism Theorem implies that G/N ∼= (G/Z)/(N/Z), so
η(G/N) = η((G/Z)/(N/Z)), and we have the desired equality. ✷

In light of Theorem 4.1 and Lemma 3.1, we see that if we can compute η
for G2(α, β, ǫ, δ,−) when δ = 0, 1, then we can compute η for all metacyclic
2-groups of negative type. There are a number of cases to consider when
δ = 0 or 1, and then using these cases, we will compute η when δ ≥ 2.
Recall that the dihedral 2-groups are the groups of the form G2(α, 1, 0, 0,−),
the generalized quaternion 2-groups are of the form G2(α, 1, 1, 0,−), and
the semi-dihedral groups are of the form G2(α, 1, 0, 1,−). Also, it is known
that G2(α, β, 1, 0,−) and G2(α, β, 1, 1,−) are isomorphic for all α ≥ 3 and
β ≥ 2. Since δ ≤ β, it follows that dihedral, generalized quaternion, and
semi-dihedral are the only groups of negative type where β = 1.

Thus, we need to analyze the negative metacyclic 2-groups of type

G2(α, β, ǫ, δ,−)

with β ≥ 2. We recall a few facts about the classification of such groups.
In particular, for negative type ǫ is either 0 or 1 only. Also the parameters
satisfy: α ≥ δ + 2 and β ≥ δ when ǫ = 0 and β ≥ δ + 1 when ǫ = 1.

When δ = 0 or 1, there is a particular abelian normal subgroup M of G.
For this subgroup M , we determine which maximal cyclic subgroups of M
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are maximal in G and how many maximal cyclic subgroups of G lie outside
of M . This yields the following result. Recall that η∗(M) is the number of
G-orbits on the M-conjugacy classes of maximal cyclic subgroups of M .

Proposition 4.2 Suppose G is G2(α, β, ǫ, δ,−) where δ = 0 or 1 and β ≥ 2.
Let M = 〈x, y2〉. Then M is a normal abelian subgroup of G and the following
holds:

(i) If δ = 0, then η(G) = η∗(M) + 1 and every maximal cyclic subgroup of
M is maximal cyclic in G except 〈y2〉.

(ii) If δ = 1, then η(G) = η∗(M) and every maximal cyclic subgroup of M
is maximal cyclic in G except 〈y2〉 and 〈y2x2α−1

〉.

Proof. As M is a subgroup of index 2 in G it follows that M is normal in G.
Let Y = 〈y2〉. Observe that y2 centralizes 〈x〉 and is obviously central in 〈y〉;
so Y = 〈y2〉 is central in G. Now, M is central-by-cyclic, so M is abelian.

We now prove that there are exactly two conjugacy classes of maximal
cyclic subgroups of G outside of M . Since 〈x〉 is normal in G and G =
〈x〉〈y〉 = 〈x〉〈xy〉, we see that CG(〈y〉) = C〈x〉(〈y〉)〈y〉 = 〈x2α−1

〉〈y〉 and

CG(〈xy〉) = 〈x2α−1
〉〈xy〉. It follows that both 〈y〉 and 〈xy〉 lie in conjugacy

classes of size |〈x〉 : 〈x2α−1
〉| = 2α−1. It is not difficult to see now that every

cyclic subgroup of G outside of M is conjugate to either 〈y〉 or 〈xy〉.
(i) For δ = 0 we show that every maximal cyclic subgroup of M is a

maximal cyclic subgroup of G except 〈y2〉 which lies in exactly 2 different
conjugacy classes of maximal cyclic subgroups of G, namely 〈y〉 and 〈xy〉.

Observe that yY acts on M/Y inverting every element. Thus, M/Y is
a cyclic subgroup of index 2 in G/Y . We have (yY )2 = Y , so G/Y is a
dihedral group. It follows that if g ∈ G \M , then (gY )2 = Y and so, g2 ∈ Y .
Hence, Y is the only maximal cyclic subgroup of M that is not maximal
cyclic in G. Notice that Y ≤ 〈y〉. Also, we know that 〈yY 〉 and 〈xyY 〉 are
in different conjugacy classes of subgroups of G/Y , so 〈y〉 and 〈xy〉 are in
different conjugacy classes of G. Since xy = x−1, so xy = yx−1. It follows
that (yx)2 = yxyx = y(yx−1)x = y2.

(ii) For δ = 1 we show that the only maximal cyclic subgroups of M
that are not maximal in G are 〈y2〉 and 〈y2x2α−1

〉. Again there are exactly 2
different conjugacy classes of maximal cyclic subgroups outside of M given
by 〈y〉 and 〈xy〉. Note that 〈y〉 contains 〈y2〉 and 〈xy〉 contains 〈y2x2α−1

〉.
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Note that M/Y is cyclic in G/Y of order 2α. Also, (yY )2 = Y and
(xY )yY = x2α−1−1Y = (xY )2

α−1−1. It follows that G/Y is isomorphic to a
semi-dihedral group. Let Z = 〈x2α−1

, Y 〉, and observe that Z/Y = Z(G/Y ).
Notice that if g ∈ G \M , then (gY )2 ∈ Z/Y . This implies that g2 ∈ Z. Ob-
serve that 〈y2〉 and 〈y2x2α−1

〉 are central (and hence normal) in G. It follows
that the square of any conjugate of y will be y2. Since δ = 1, we have xy =
x2α−1−1, so xy = yx2α−1−1. We have (yx)2 = yxyx = y(yx2α−1−1)x = y2x2α−1

.
This implies that the square of any conjugate of xy will be y2x2α−1

. Hence,
any other subgroup of M that is maximal cyclic in M will be maximal cyclic
in G. ✷

We now work to compute η for the groups with negative type and δ equal
to 0 or 1. We will first handle the case when ǫ = 0 and β = 2. For the
following lemma recall that α ≥ δ + 2 when p = 2, so when δ = 1 we must
have α ≥ 3.

Lemma 4.3 Suppose G is G2(α, 2, 0, δ,−). Then

(i) η(G) = α + 3 if δ = 0 and

(ii) η(G) = α + 2 if δ = 1.

Proof. Following Proposition 4.2, we take M = 〈x, y2〉; so M is abelian. We
have M ∼= C2α × C2 and η(M) = α + 2 by Lemma 2.3. We claim that all
subgroups of M are normal in G. To see this, note that if K is a subgroup
of M then (1) K is a subgroup of 〈x〉, (2) K = 〈xa, y2〉 for some integer 1 ≤
a ≤ 2α − 1 or (3) K = 〈xay2〉 for some integer 1 ≤ a ≤ 2α − 1. When δ = 0,
we know that xy = x−1, so (xa)y = (xa)−1 and (xay2)y = (xay2)−1 for every
integer a. When δ = 1, we have (xa)y = xa(2α−1−1). The observation is that
〈xa〉 = 〈xa(2α−1−1)〉, 〈xa, y2〉 = 〈xa(2α−1−1), y2〉, and 〈xay2〉 = 〈xa(2α−1−1)y2〉.
This proves the claim. Therefore η∗(M) = η(M) and the result follows from
Proposition 4.2. ✷.

We continue with the case where ǫ = 0. We now consider the case that
β ≥ 3. Recall that gp(a, b) = p(l−1)((k − l)(p− 1) + p + 1) where p a prime,
a and b are positive integers, and we take k = max(a, b) and l = min(a, b).
Recall also that gp(a, b) = η(Cpa × Cpb). The following can be viewed as an
improvement on Proposition 2.2(ii).
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Theorem 4.4 Suppose G is G2(α, β, 0, δ,−) with β ≥ 3. As previously let
M = 〈x, y2〉. Then the following hold:

1. If δ = 1, then η(G) = η(M)/2 + 2 = g2(α, β − 1)/2 + 2.

2. If δ = 0, then η(G) = η(M)/2 + 3 = g2(α, β − 1)/2 + 3.

Proof. Note that we are assuming δ is 0 or 1. As in Proposition 4.2, we
let M = 〈x, y2〉; so it follows that M is abelian. In particular, since we are
assuming that ǫ = 0, we have M ∼= 〈x〉 × 〈y2〉 = C2α × C2β−1. Using Lemma
2.3, we obtain η(M) = g2(α, β − 1). Let k be the maximum of α and β − 1
and let l be the minimum of α and β − 1; so that η(M) = g2(α, β − 1) =
2l−1(k− l+3). We now work to prove that η∗(M) = g2(α, β−1)/2+2. Once
this is done, then we will have the conclusion via Proposition 4.2.

It is not difficult to see that 〈x〉, 〈y2〉, and 〈y2x2α−1
〉 are maximal cyclic

subgroups of M that are normal in G. We claim that 〈y2(2
β−2)x〉 is a max-

imal cyclic subgroup of M that is normal in G. It is easy to see that it is
maximal cyclic. When δ = 0, we see that (〈y2(2

β−2)x〉)y = 〈y2(2
β−2)x−1〉 =

〈(y2(2
β−2)x)−1〉, and when δ = 1, we have (〈y2(2

β−2)x〉)y = 〈y2(2
β−2)x2α−1〉 =

〈(y2(2
β−2)x)2

α−1〉. This proves that it is normal in G.
We will prove that all the other maximal cyclic subgroups of M will be

in conjugacy classes of size 2 in G. Thus, η∗(M) = (η(M) − 4)/2 + 4 =
η(M)/2− 2 + 4 = g2(α, β − 1)/2 + 2.

Let C be a maximal cyclic subgroup of M . It is not difficult to see that
C will be generated by an element of the form y2lx or one of the form y2xl.
When δ = 0, we have that (y2lx)y = y2lx−1 and (y2xl)y = y2x−l. For C to
be normal, we need this conjugate to be in C. When the generator is y2lx,
we need y2lx−1 = (y2lx)k = y2lkxk for some integer k. This implies that
y2l−2lk = xk+1. Since ǫ = 0, we have that y2l−2lk = xk+1 = 1. We see that we
must have 2α dividing k + 1 and 2β must divide 2l(1− k). Thus, there is an
integer r so that k + 1 = 2αr, and thus, k = 2αr − 1. We obtain that 2β−1

must divide l(1− (2αr−1)) = l(2−2αr) = 2l(1−2α−1r). Since we know that
α ≥ 2, this implies that 2β−2 must divide l. It follows that 〈x〉 and 〈y2

β−1
x〉

are the only two maximal cyclic subgroups of M that are normal in G that
are generated by an element of the form y2lx when δ = 0.

When the generator is y2xl, we need y2x−l = (y2xl)k = y2kxlk for some
integer k. This implies that y2−2k = xlk+l = 1. This implies that 2β divides
2(1 − k) and so, 2β−1 divides 1 − k. Hence, there is an integer r so that
1− k = r2β−1, and hence, k = 1 − r2β−1. We see that 2α divides l(1 + k) =
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l(1+(1−r2β−1)) = l(2−r2β−1) = 2l(1−r2β−2). Since β ≥ 3, we deduce that
2α−1 must divide l. It follows that 〈y2〉 and 〈y2x2α−1

〉 are the only maximal
cyclic subgroups of M that are normal in G that are generated by an element
of the form y2xl when δ = 0. This proves the result when δ = 0.

Now we suppose that δ = 1. Recall that α ≥ δ + 2, so α ≥ 3. We have
that (y2lx)y = y2lx2α−1−1 and (y2xl)y = y2xl(2α−1−1). For C to be normal,
we need this conjugate to be in C. Suppose the generator is y2lx. We
need y2lx2α−1−1 = (y2lx)k = y2lkxk for some integer k. This implies that
y2l−2lk = xk−2α−1+1 = 1. We deduce that 2α must divide k−2α−1+1, and so,
there is an integer r so that k−2α−1+1 = 2αr. We obtain k = 2αr+2α−1−1.
We have that 2β divides 2l(1 − k) = 2l(1 − 2αr − 2α−1 + 1). It follows that
2β−2 divides l(1−2α−1r−2α−2). Since α ≥ 3, we see that 2β−2 divides l. We
conclude that 〈x〉 and 〈y2

β−1
x〉 are the only two maximal cyclic subgroups of

M that are normal in G that are generated by an element of the form y2lx
when δ = 1.

When the generator is y2xl, we need y2xl(2α−1−1) = (y2xl)k = y2kxlk for
some integer k. We see that y2−2k = xlk−l(2α−1−1) = 1. It follows that 2β

divides 2(1 − k), and so, 2β−1 divides 1 − k. There is an integer r so that
1−k = 2β−1r which yields k = 1−2β−1r. We now determine that 2α divides
l(k− 2α−1+1) = l(1− 2β−1r− 2α−1+1) = 2l(1− 2β−2r− 2α−2). Since α ≥ 3
and β ≥ 3, we have that 2α−1 divides l. We conclude that 〈y2〉 and 〈y2x2α−1

〉
are the only maximal cyclic subgroups of M that are normal in G that are
generated by an element of the form y2xl when δ = 1. This proves the result
when δ = 1. ✷

In this next corollary, recall that δ ≤ β, so when β = 2, we must have
δ = 2. We are able to use Theorem 4.4 to compute η for groups of negative
type where δ ≥ 2.

Corollary 4.5 Suppose G is G2(α, β, ǫ, δ,−) with δ ≥ 2, then

1. η(G) = α− δ + 3 = α + 1 if β = 2.

2. η(G) = g2(α− δ + 1, β − 1)/2 + 2 if β ≥ 3.

Proof. By Theorem 4.1, we have that η(G) = η(G/N) where N = 〈x2α−δ+1
〉.

Applying Lemma 3.1, we see that G/N ∼= G2(α − δ + 1, β, 0, 1,−). Using
Lemma 4.3, we see that η(G/N) = α−δ+1+2 = α+3−δ when β = 2. Since
2 ≤ δ ≤ β = 2, we see that δ = 2, and so, η(G) = α + 1. When β ≥ 3, we
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apply Theorem 4.4 to see that η(G) = η(G/N) = g2(α−δ+1, β−1)/2+2. ✷

We now compute η for groups of negative type with δ = 0 and ǫ = 1. We
first handle the case where β = 2.

Lemma 4.6 Suppose G is G2(α, 2, 1, 0,−) then η(G) = α + 2.

Proof. Define M = 〈x, y2〉. By Proposition 4.2, we know that M is a normal
abelian subgroup of G. First note that (x2α−2

y2)2 = x2α−1
y4 = x2α−1

x2α−1
=

x2α = 1. Thus, M = 〈x〉 × 〈x2α−2
y2〉 ∼= C2α × C2 and η(M) = α + 2. Con-

sideration of the maximal cyclic subgroups of M shows that all are normal
except 〈(1, x2α−2

y2)〉 and 〈(x2α−1
, x2α−2

y2)〉 which are conjugate in G via y.
To see that these two subgroups are conjugate, observe that M has three
subgroups of order 2 and that 〈x2α−1

〉 = 〈y2
β

〉 is central in G and that Z(G)
is cyclic. Either y normalizes both of the other two subgroups of order 2
or it permutes them. However, if y were to normalize them, they would be
normal in G and since they have order 2, that would imply that they would
be central in G. This however would contradict the fact that the center of G
is cyclic. Thus η∗(M) = α + 1. The result follows from Proposition 4.2. ✷

We continue with the groups of negative type where δ = 0 and ǫ = 1. We
next consider β ≥ 3 and α = 2.

Lemma 4.7 Suppose G is G2(2, β, 1, 0,−) with β ≥ 3. Then η(G) = β + 2.

Proof. Define M = 〈x, y2〉. By Proposition 4.2, we know that M is a normal
abelian subgroup of G. Note that (xy2

β−1
)2 = x2y2

β

= x2x2 = x4 = 1. So
M = 〈xy2

β−1
〉×〈y2〉 ∼= C2×C2β and η(M) = β+2. Consideration of the max-

imal cyclic subgroups of M shows that all are normal except for 〈(xy2
β−1

, 1)〉
and 〈(xy2

β−1
, y2

β

)〉 which are conjugate in G via y. The proof that these two
subgroups are conjugate is similar to the proof of Lemma 4.6. In particular,
Z(G) is cyclic, M has three subgroups of order 2, and if y normalized these
two subgroups, then it would centralize them and contradict the fact that
Z(G) is cyclic. Thus η∗(M) = β + 1. The result follows from Proposition
4.2. ✷

We conclude by computing η when δ = 0, ǫ = 1, α ≥ 3, and β ≥ 3. Note
this also covers the cases δ = 1, ǫ = 1 and α, β ≥ 3.
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Theorem 4.8 Suppose G is G2(α, β, 1, 0,−) with α ≥ 3 and β ≥ 3. Let
M = 〈x, y2〉.

1. If α ≥ β, then η(G) = η(M)/2 + 3 = g2(α, β − 1)/2 + 3.

2. If α < β, then η(G) = η(M)/2 + 3 = g2(α− 1, β)/2 + 3.

Proof. As in Proposition 4.2, we let M = 〈x, y2〉; so it follows that M is
abelian. We know that |M | = 2α+β−1, that x has order 2α and y2 has order
2β. Suppose α ≥ β, then M ∼= C2α × C2β−1, and so η(M) = g2(α, β − 1).
Let w = y2x2α−β

. Observe that w2β−2
= (y2x2α−β

)2
β−2

= y2
β−1

x2α−2
6∈ 〈x〉

and w2β−1
= (y2x2α−β

)2
β−1

= y2
β

x2α−1
= x2α−1

x2α−1
= 1. It follows that

M = 〈x〉 × 〈w〉.
If β ≥ α + 1, then M ∼= C2α−1 × C2β , and so η(M) = g2(α − 1, β).

Let u = y2
β−α+1

x. We compute u2α−2
= (y2

β−α+1
x)2

α−2
= y2

β−1
x2α−2

6∈ 〈y〉
and u2α−1

= (y2
β−α+1

x)2
α−1

= y2
β

x2α−1
= x2α−1

x2α−1
= 1. We deduce that

M = 〈u〉 × 〈y〉.
In both cases, we will show that η∗(M) = η(M)/2 + 2, and we obtain

the conclusion by applying Proposition 4.2. Notice that a maximal cyclic
subgroup of M will be generated either by an element of the form y2lx for
some integer l or by an element of the form y2xl for some integer l. Observe
that 〈x〉 and 〈y2〉 are maximal cyclic subgroups of M that are normal in G.

We next show that 〈y2
β−1

x〉 and 〈y2x2α−2
〉 are normal subgroups in G.

Since M is abelian and has index 2 in G, it suffices to show that y normalizes
these subgroups. We compute (y2

β−1
x)y = y2

β−1
x−1 = (y2

β−1
x)−1. Since y

conjugates the generator of 〈y2
β−1

x〉 to its inverse, this implies that 〈y2
β−1

x〉
is normal in G.

We now turn to 〈y2x2α−2
〉. We begin with the observation that (y2x2α−2

)4 =
y8. Since β ≥ 3, we see that x2α−1

= y2
β

∈ 〈y2x2α−2
〉. Conjugating

yields (y2x2α−2
)y = y2x−2α−2

. Note that x−2α−2
= x2α−2

x2α−1
. We have

(y2x2α−2
)y = y2x2α−2

x2α−1
. Since both y2x2α−2

and x2α−1
lie in 〈y2x2α−2

〉,
we conclude that (y2x2α−2

)y lies in 〈y2x2α−2
〉. We deduce that 〈y2x2α−2

〉 is
normal in G.

We prove that the remaining maximal cyclic subgroups of M lie in orbits
of size 2. We have noted that a maximal cyclic subgroup C of M will have
a generator of the form y2lx or of the form y2xl for some integer l. If C has
a generator of the form y2lx, then for C to be normal we need (y2lx)y =
y2lx−1 ∈ C. This implies that y2lx−1 = (y2lx)k for some integer k. We have
y2l−2lk = xk+1 = u ∈ 〈x〉 ∩ 〈y2〉 = 〈x2α−1

〉. Hence, u is either 1 or x2α−1
. If
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u = 1, then 2α divides k+1 and 2β+1 divides 2l(1−k). We see that there is an
integer r so that k+1 = 2αr, and hence, k = 2αr−1. This implies that 2β+1

divides 2l(1−k) = 2l(1−2αr+1) = 4l(1−2α−1r). Since α ≥ 2, this yields 2β−1

divides l. When u = x2α−1
, we obtain that k + 1 ≡ 2α−1 (mod 2α). Hence,

there is an integer r so that k + 1 = 2α−1 + r2α, and so, k = 2α−1 + r2α − 1.
We see that 2l(1 − k) ≡ 2β (mod 2β+1). This implies that 2β+1 divides
2l(1− k)− 2β = 2l(1− 2α−1 − r2α+1)− 2β = 4l(1− 2α−2− r2α−1)− 2β. We
deduce that 2β−2 divides l. We conclude that 〈x〉 and 〈y2

β−1
x〉 are the only

maximal cyclic subgroups of M having the form 〈y2lx〉 that are normal in G.
We now suppose that C has a generator of the form y2xl. We need

(y2xl)y = y2x−l ∈ C. Hence, we have that y2x−l = (y2xl)k = y2kxlk for some
integer k. We have y2−2k = xlk+l = u. As in the previous paragraph, we see
that u is either 1 or x2α−1

. If u = 1, then we have that 2β+1 divides 2(1− k),
and so, there is an integer r so that 1−k = 2βr. We determine that 2α divides
l(k+1) = l(1−2βr+1) = 2l(1−2β−1r). It follows that 2α−1 divides l. Now,
suppose that u = x2α−1

. We must have that 2(1 − k) ≡ 2β (mod 2β+1) and
l(k+1) ≡ 2α−1 (mod 2α). Hence, there is an integer r so that 2(1−k) = 2β+
2β+1r. This implies that k = 1− 2β−1− 2βr. We then obtain that 2α divides
l(k+1)−2α−1 = l(1−2β−1−2βr+1)−2α−1 = 2(l(1−2β−2−2β−1r)−2α−2).
This implies that 2α−1 divides l(1 − 2β−2 − 2β−1r) − 2α−2. Hence, there is
an integer s so that l(1 − 2β−2 − 2β−1r) − 2α−2 = 2α−1s. This leads to
l(1− 2β−2 − 2β−1r) = 2α−1s + 2α−2 = 2α−2(2s+ 1). This yields 2α−2 divides
l. Observe that x2α−1

= y2
β

, and so, 〈y2x2α−1
〉 = 〈y2〉. We deduce that 〈y2〉

and 〈y2x2α−2
〉 are the only maximal cyclic subgroups of M having the form

〈y2xl〉 that are normal in G,
We now see that the number of G-orbits of maximal cyclic subgroups of

M is (η(M)− 4)/2 + 4 = η(M)/2− 2 + 4 = η(M) + 2, which completes the
proof of the result. ✷

We close by proving that when G is metacyclic of minus type that is not
dihedral, generalized quaternion, or semi-dihedral, then η(G) ≥ α + β − 2
and we determine when equality occurs. We first handle when δ equals 0 or
1. In this case, we have η(G) ≥ α+ β.

Proposition 4.9 Suppose G = G2(α, β, ǫ, δ,−) with δ = 0 or 1 and β ≥ 2.
Then η(G) ≥ α + β.

Proof. (i) Suppose ǫ = 0. Denote l = min(α, β − 1) and k = max(α, β − 1).
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First, consider l ≥ 3. Then β ≥ 4 and by Theorem 4.4 and Lemma 2.4

η(G) ≥ g2(α, β − 1)/2 + 2 ≥ 2k + 2 ≥ α + β.

Next, assume l = 2. So β ≥ 3 and by Theorem 4.4 and Lemma 2.4

η(G) ≥ g2(α, β − 1)/2 + 2 = k + 3 ≥ α+ β.

Finally, set l = 1. As α ≥ 2, we have β = 2. The result follows from
Lemma 4.3.

(ii) Now suppose ǫ = 1. Assume α ≥ β, then l = min(α, β − 1) = β − 1
and k = max(α, β − 1) = α. If l ≥ 3, then β ≥ 4 and α ≥ 4, so we can
assume δ = 0. Applying Theorem 4.8 and Lemma 2.4 yields

η(G) = g2(α, β − 1)/2 + 3 ≥ 2k + 3 ≥ α + β.

If l = 2, then β = 3, and we again appeal to Theorem 4.8 to obtain

η(G) = g2(α, β − 1)/2 + 3 = g2(k, 2)/2 + 3 = k + 4 ≥ α + β.

If l = 1, then β = 2. If α = 2 then δ = 0 and if α ≥ 3 we can assume δ = 0.
Thus we apply Lemma 4.6.

Finally, suppose ǫ = 1 and α < β. We set l = min(α− 1, β) = α− 1 and
k = max(α− 1, β) = β. When l ≥ 3, we apply Theorem 4.8 and Lemma 2.4
to get

η(G) = g2(α− 1, β)/2 + 3 ≥ 2k + 3 ≥ α + β.

If l = 2, then α = 3 and β > 3. Apply Theorem 4.8 with Lemma 2.4 to give

η(G) = g2(β, 2)/2 + 3 = β + 4 ≥ α + β.

If l = 1, then α = 2 and δ = 0, the result follows from Lemma 4.7. ✷

We now have the case where δ ≥ 2.

Proposition 4.10 Suppose G = G2(α, β, ǫ, δ,−) with δ ≥ 2. Then η(G) ≥
α + β − 2. Equality holds if and only if β = δ and either (i) β = 3 or (ii)
β ≥ 4 and α− β = 2.
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Proof. Set l = min(α − δ + 1, β − 1) and k = max(α − δ + 1, β − 1). We
consider various cases according to the value of l.

First, suppose l ≥ 4. Then by Corollary 4.5 and Lemma 2.4

η(G) = g2(α− δ + 1, β − 1)/2 + 2

= g2(k, l)/2 + 2 ≥ 2k + l + 2

= (k + l) + k + 2

≥ α− δ + β + β − 1 + 2

≥ α + β + 1

since δ ≤ β.
Now consider l = 3. We use Corollary 4.5 and Lemma 2.4 to find an

exact value for η(G).

η(G) = g2(α− δ + 1, β − 1)/2 + 2 = g2(k, 3)/2 + 2 = 2k + 2.

If α− δ + 1 > β − 1 = 3, then δ ≤ 4 and

η(G) = 2(α− δ + 1) + 2 = α + (α− δ + 2) + (−δ + 2) > α + β − 2.

On the other hand, when β − 1 ≥ α − δ + 1 = 3, we obtain β ≥ 4 and
α− δ = 2, so α− 2 ≤ β and

η(G) = 2(β − 1) + 2 = 2β ≥ β + α− 2

with equality if and only if β = δ.
Next suppose l = 2. Since α − δ + 1 ≥ 2 + 1 = 3, we must have β = 3.

Applying Corollary 4.5 and Lemma 2.4,

η(G) = g2(α− δ + 1, β − 1)/2 + 2 = g2(k, 2)/2 + 2

= k + 3 = α− δ + 4

≥ α + 1 = α+ β − 2

with equality if and only if δ = 3 = β.
Lastly consider l = 1. In this case β = 2 and the result follows from

Corollary 4.5. ✷
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