Conjugacy classes of maximal cyclic subgroups of metacyclic p-groups

M. Bianchi, R.D. Camina, \& Mark L. Lewis

Abstract

In this paper, we set $\eta(G)$ to be the number of conjugacy classes of maximal cyclic subgroups of a finite group G. We compute $\eta(G)$ for all metacyclic p-groups. We show that if G is a metacyclic p-group of order p^{n} that is not dihedral, generalized quaternion, or semi-dihedral, then $\eta(G) \geq n-2$, and we determine when equality holds.

Keywords: group covering, metacyclic group
2020 Mathematics Subject Classification: 20D15

1 Introduction

Unless otherwise stated, all groups in this paper are finite, and we will follow standard notation from [6]. As in [3] and [4], we set $\eta(G)$ to be the number of conjugacy classes of maximal cyclic subgroups of a group G. For $p=2$, we have that $\eta(G)=3$ when G is a dihedral 2-group, a generalized quaternion 2-group, or a semi-dihedral group. In [1], the second and third authors along with Yiftach Barnea and Mikhail Ershov have shown that for every prime $p \geq 5$ there are infinitely many p-groups with $\eta=p+2$ and for $p=3$ there are infinitely many 3 -groups with $\eta=9$. This answers negatively Question 5.0.9 from [9] which asked whether $\eta(G)$ grows with the order of G when G is a p-group and p is odd.

On the other hand, it is rare for this to occur. Indeed, the only 2-groups (in fact the only p-groups) that have $\eta=3$ are the Klein 4-group, the dihedral groups, the generalized quaternion groups, and the semi-dihedral groups. To
see this, we know that $\eta(G) \geq \eta\left(G / G^{\prime}\right)$ (see [3]), and for p-groups $\eta\left(G / G^{\prime}\right) \geq$ $p+1$ when G / G^{\prime} is not cyclic (see [4]). Thus, $\eta=3$ can only occur when $p=2$. Also, in 4], we show that $\eta\left(G / G^{\prime}\right)=3$ if and only if $G / G^{\prime} \cong C_{2} \times C_{2}$. It is well known that if G is a 2-group of order at least 8 and $\left|G: G^{\prime}\right|=4$, then G is either dihedral, generalized quaternion, or semi-dihedral. (See Problem 6B. 8 of [6].)

Now, dihedral groups, generalized quaternion groups, and semi-dihedral groups are examples of metacyclic groups. I.e., groups G with a normal subgroup N so that N and G / N are both cyclic groups. This motivated us to investigate the invariant η for all metacyclic p-groups. Indeed this project began before the results of [1] were known and we were originally curious as to whether we would find another family of metacyclic p-groups with fixed η. However, we prove the following:

Theorem 1.1 Let G be a metacyclic p-group of order p^{n} that is not a dihedral group, generalized quaternion group, or semi-dihedral group. Then $\eta(G) \geq n-2$.

In fact, we compute $\eta(G)$ for every metacyclic p-group G. Thus, we list the metacyclic p-groups where equality occurs in Theorem 1.1, King in [7] gave a description of all metacyclic p-groups. We will give this description of these groups in Section 3. In particular, King divided the metacyclic p groups into two families of groups which he called positive type and negative type. The negative type groups only occur when $p=2$, so if p is an odd prime, then all of the metacyclic p-groups are of positive type. We have the following result for the metacyclic groups of positive type.

Theorem 1.2 Let G be a metacyclic group of positive type. Then $\eta(G)=$ $\eta\left(G / G^{\prime}\right)$.

We note that Rogério in [8] has a formula to compute $\eta(A)$ for an abelian group A. His formula involves the Euler ϕ-function and a second number theoretic function. When G is a metacyclic abelian p-group, we prove in [4] a formula for $\eta(G)$ that is only in terms of the sizes of the direct factors of G. Notice in Theorem 1.2 that G / G^{\prime} will be a metacyclic abelian p-group, and so, our formula will compute $\eta\left(G / G^{\prime}\right)$ and hence, $\eta(G)$.

When G is a metacyclic p-group of negative type, it is not usually the case that $\eta(G)$ and $\eta\left(G / G^{\prime}\right)$ are equal. However, we will find that there usually
is a proper quotient whose value of η equals $\eta(G)$. We will also see for most metacyclic groups of negative type that the formula for η is dependent on the formula for η that we found for the metacyclic abelian p-groups.

The authors would like to thank Emanuele Pacifici for a number of helpful conversations while working on this paper.

2 Preliminaries

In our preprint [3], we prove two results that we need in this paper. The first is a criteria for determining when the quotient of a p-group G has the same value for η as $\eta(G)$. Given a prime p, we set $G^{\{p\}}=\left\{g^{p} \mid g \in G\right\}$. I.e., $G^{\{p\}}$ is the set of p-th powers in G.

Theorem 2.1 Let N be a normal subgroup of the p-group G. Then $\eta(G / N) \leq$ $\eta(G)$. Furthermore, $\eta(G / N)=\eta(G)$ if and only if $N \subseteq G^{\{p\}}$ and for all $x \in G \backslash G^{\{p\}}$ every element of $x N$ is conjugate to a generator of $\langle x\rangle$. In particular, if $\eta(G / N)=\eta(G)$, then $G^{\{p\}}$ is a union of N-cosets and $G^{\{p\}} N=G^{\{p\}}$.

This second Proposition relates $\eta(G)$ to the number of G-orbits of maximal cyclic subgroups of a normal subgroup.

Proposition 2.2 Let N be a normal subgroup of a group G and let $\eta^{*}(N)$ be the number of G-orbits on the N-conjugacy classes of maximal cyclic subgroups of N. Then $\eta(G) \geq \eta^{*}(N)$. In particular,
(i) if N is central in G, then $\eta(G) \geq \eta(N)$.
(ii) if $|G: N|=k$, then $\eta(G) \geq \eta(N) / k$.

Let p be a prime, and let a and b be positive integers. We take $k=$ $\max (a, b)$ and $l=\min (a, b)$. We set $g_{p}(a, b)=p^{(l-1)}((k-l)(p-1)+p+1)$. In [4], we prove the following lemma.

Lemma 2.3 If p is a prime and a and b are positive integers so that $G=$ $C_{p^{a}} \times C_{p^{b}}$, then $g_{p}(a, b)=\eta(G)$.

We close this section with an easy lemma that computes g_{2} for small values and gives a lower bound for larger values. We remark that when $p=2$, this function is much easier to work with.

Lemma 2.4 Suppose $k \geq l$. Then the following hold:

1. If $l=1$, then $g_{2}(k, 1)=k+2$.
2. If $l=2$, then $g_{2}(k, 2)=2(k+1)$.
3. If $l=3$, then $g_{2}(k, 3)=4 k$.
4. If $l \geq 4$, then $g_{2}(k, l) \geq 4 k+2 l$.

Proof. We have $g_{2}(a, b)=g_{2}(k, l)=2^{l-1}(k-l+3)$. Conclusions (1), (2), and (3) are immediate. We focus on (4). Begin with $g_{2}(4,4)=24$; so the result holds for $g_{2}(4,4)$. Next, $g_{2}(l, l)-6 l=3 \cdot 2^{l-1}-6 l$ is clearly increasing when $l \geq 3$. Thus, we have $g_{2}(l, l) \geq 4 l+2 l$ when $l \geq 3$. Let $k=l+m$ for $m \geq 0$. Then $g_{2}(k, l)=g_{2}(l+m, m)=2^{l-1}(m+3)$ and $4 k+2 l=4(l+m)+2 l=6 l+4 m$. Fixing $l \geq 4$, we note that $2^{l-1}(m+3)-6 l-4 m$ will be an increasing function in m. We conclude that $g_{2}(k, l) \geq 4 k+2 l$ for $l \geq 4$.

3 Metacyclic p-Groups

For the rest of the paper, we will focus on metacyclic p-groups. A finite metacyclic p-group can be described as follows. This description is taken from [7],

$$
G_{p}(\alpha, \beta, \epsilon, \delta, \pm)=\left\langle x, y \mid x^{p^{\alpha}}=1, y^{p^{\beta}}=x^{p^{\alpha-\epsilon}}, x^{y}=x^{r}\right\rangle
$$

where $r=p^{\alpha-\delta}+1$ (positive type) or $r=p^{\alpha-\delta}-1$ (negative type). The integers $\alpha, \beta, \delta, \epsilon$ satisfy $\alpha, \beta>0$ and δ, ϵ nonnegative, furthermore $\delta \leq$ $\min \{\alpha-1, \beta\}$ and $\delta+\epsilon \leq \alpha$. When G has negative type, only $\epsilon=0$ or 1 occur. For p odd

$$
G \cong G_{p}(\alpha, \beta, \epsilon, \delta,+)
$$

In other words, the negative type only occurs when $p=2$; when p is odd, only the positive type occurs. Metacyclic 2-groups can be of either positive type or negative type. We note that dihedral, semi-dihedral and generalized quaternion groups are all of negative type.

If $p=2$, then in addition $\alpha-\delta>1$ and

$$
G \cong G_{2}(\alpha, \beta, \epsilon, \delta,+) \text { or } G \cong G_{2}(\alpha, \beta, \epsilon, \delta,-)
$$

Note, the above presentation does not guarantee nonisomorphic groups for different parameters (see [2]). However, the parameters do determine some structural information about G. For example, $|G|=p^{\alpha+\beta}$ and $G^{\prime}=\left\langle x^{p^{\alpha-\delta}}\right\rangle$ if G is of positive type and $G^{\prime}=\left\langle x^{2}\right\rangle$ if G is of negative type. All elements of G can be written as $y^{b} x^{a}$ for some integers a and b. Also if G is of positive type then $Z(G)=\left\langle x^{p^{\delta}}, y^{p^{\delta}}\right\rangle$ and $|Z(G)|=p^{\alpha+\beta-2 \delta}$, if G is of negative type $Z(G)=\left\langle x^{2^{\alpha-1}}, y^{2^{\max \{1, \delta\}}}\right\rangle$, [2, Prop. 2.5]. Note that if G is of positive type and $\delta=0$, then G will be abelian.

As we mentioned above, the dihedral groups, the generalized quaternion groups, and the semi-dihedral groups are the only p-groups G that satisfy $\eta(G)=3$. These are also precisely the 2 -groups of maximal class. We have also mentioned that they are metacyclic. In terms of our notation, the dihedral groups are $G_{2}(\alpha, 1,0,0,-)$, the generalized quaternion groups are $G_{2}(\alpha, 1,1,0,-)$, and the semi-dihedral groups are $G_{2}(\alpha, 1,0,1,-)$.

For Lemmas 3.1 and 3.3, we are writing $G_{p}(\alpha, \beta, \epsilon, \delta, \pm)$ as $G_{p}(\alpha, \beta, \epsilon, \delta, \gamma)$ where we take $\gamma=+$ when G is of positive type and $\gamma=-$ when G is of negative type. We consider quotients of G. Note that this lemma would not be well defined if $\delta=0$ and would not say anything if $\delta=1$.

Lemma 3.1 Suppose G is $G_{p}(\alpha, \beta, \epsilon, \delta, \gamma)$ with $\delta \geq 2$. Then $N=\left\langle x^{p^{\alpha-\delta+1}}\right\rangle$ is a normal subgroup of G and G / N is isomorphic to

$$
G_{p}\left(\alpha-\delta+1, \beta,(\epsilon-\delta+1)^{*}, 1, \gamma\right)
$$

where $(\epsilon-\delta+1)^{*}=\epsilon-\delta+1$ when $\epsilon \geq \delta-1$ and $(\epsilon-\delta+1)^{*}=0$ when $\epsilon<\delta-1$.

Proof. Set $Z=\left\langle x^{p^{\alpha-1}}\right\rangle \leq Z(G)$. We first prove that G / Z is isomorphic to $G_{p}(\alpha-1, \beta, \epsilon-1, \delta-1, \gamma)$ when $\epsilon \geq 1$ and $G_{p}(\alpha-1, \beta, 0, \delta-1, \gamma)$ when $\epsilon=0$. We know that $G / Z=\langle x Z, y Z\rangle$ where $x Z$ has order $p^{\alpha-1}$. Observe that $(y Z)^{p^{\beta}}=y^{p^{\beta}} Z=x^{p^{\alpha-\epsilon}} Z$. When $\epsilon \geq 1$, we have

$$
x^{p^{\alpha-\epsilon}} Z=x^{p^{(\alpha-1)-(\epsilon-1)}} Z
$$

and when $\epsilon=0$, we have

$$
x^{p^{\alpha-\epsilon}} Z=x^{p^{\alpha}} Z=Z .
$$

Also,

$$
(x Z)^{y Z}=x^{y} Z=x^{p^{\alpha-\delta}+\gamma} Z=x^{p^{(\alpha-1)-(\delta-1)}+\gamma} Z .
$$

Hence, G / Z satisfies the hypotheses for $G_{p}(\alpha-1, \beta, \epsilon-1, \delta-1, \gamma)$ when $\epsilon \geq 1$ and $G_{p}(\alpha-1, \beta, 0, \delta-1, \gamma)$ when $\epsilon=0$.

We know that $X=\langle x\rangle$ is a cyclic, normal subgroup of G. Observe that N is contained in X and so is characteristic. This implies that N is normal in G. Observe that $Z \leq N$ and we have shown that $G / Z \cong$ $G_{p}(\alpha-1, \beta, \epsilon-1, \delta-1, \gamma)$ or $G_{p}(\alpha-1, \beta, 0, \delta-1, \gamma)$. If $\delta=2$, then $N=Z$, and we have the desired result. Otherwise, we have $\delta \geq 3$. Using induction, we have $G / N \cong(G / Z) /(N / Z)$ is isomorphic to either
$G_{p}((\alpha-1)-(\delta-1)+1, \beta,(\epsilon-1)-(\delta-1)+1,1, \gamma) \cong G_{p}(\alpha-\delta+1, \beta, \epsilon-\delta+1,1, \gamma)$
or

$$
G_{p}((\alpha-1)-(\delta-1)+1, \beta, 0,1, \gamma) \cong G_{p}(\alpha-\delta+1, \beta, 0,1, \gamma)
$$

We consider the metacyclic groups of positive type and use Theorem 2.1 and Lemma 2.3. Thus, we first analyze G / G^{\prime}.

Lemma 3.2 Suppose $G=G_{p}(\alpha, \beta, \epsilon, \delta,+)$.
(i) If $\delta \geq \epsilon$ or $\delta<\epsilon$ and $\alpha \geq \beta+\epsilon$, then $G / G^{\prime}=C_{p^{\alpha-\delta}} \times C_{p^{\beta}}$.
(ii) If $\delta<\epsilon$ and $\alpha<\beta+\epsilon$, then $G / G^{\prime}=C_{p^{\alpha-\epsilon}} \times C_{p^{\beta+\epsilon-\delta}}$.

Proof. Now $G^{\prime}=\left\langle x^{p^{\alpha-\delta}}\right\rangle$, so $\left|G^{\prime}\right|=p^{\delta}$. Also $|G|=p^{\alpha+\beta}$, so $\left|G: G^{\prime}\right|=$ $p^{\alpha+\beta-\delta}$.

If $\delta \geq \epsilon$, then $\langle y\rangle \cap G^{\prime}=\left\langle x^{p^{\alpha-\epsilon}}\right\rangle=\langle x\rangle \cap\langle y\rangle$. We see that $x G^{\prime}$ has order $p^{\alpha-\delta}$, and $y G^{\prime}$ has order p^{β} and $G / G^{\prime}=\left\langle x G^{\prime}\right\rangle \times\left\langle y G^{\prime}\right\rangle$ yielding the desired result.

Now suppose $\delta<\epsilon$. In this case, we see that $G^{\prime}\left\langle\left\langle x^{p^{\alpha-\epsilon}}\right\rangle=\langle x\rangle \cap\langle y\rangle\right.$. We see that $x G^{\prime}$ has order $p^{\alpha-\delta}$ and $y G^{\prime}$ has order $p^{\beta+\epsilon-\delta}$. Since $G^{\prime}<\langle x\rangle \cap\langle y\rangle$, we do not have that G / G^{\prime} is a direct product of $\left\langle x G^{\prime}\right\rangle$ and $\left\langle y G^{\prime}\right\rangle$. We see that G / G^{\prime} is abelian and generated by $x G^{\prime}$ and $y G^{\prime}$, so every element of G / G^{\prime} has order $\leq \max \left\{p^{\alpha-\delta}, p^{\beta+\epsilon-\delta}\right\}$. If $\alpha \geq \beta+\epsilon$, then $\alpha-\delta \geq \beta+\epsilon-\delta$. In this case, $x G^{\prime}$ has the largest order of any element in G / G^{\prime}, and so we get $G / G^{\prime}=C_{p^{\alpha-\delta}} \times C_{p^{\beta}}$ since $\left|G / G^{\prime}\right|=p^{\alpha+\beta-\delta}$. On the other hand, if $\alpha<\beta+\epsilon$, then $\alpha-\delta<\beta+\epsilon-\delta$. In this case, $y G^{\prime}$ has the largest order of any element
in G / G^{\prime} and we get $G / G^{\prime}=C_{p^{\alpha-\epsilon}} \times C_{p^{\beta+\epsilon-\delta}}$.
Given an element $g \in G$, we write $\operatorname{cl}(g)$ to denote the conjugacy class of g in G.

Lemma 3.3 Let $G=G_{p}(\alpha, \beta, \epsilon, \delta, \gamma)$. If $g=y^{p l+a} x^{m}$ for integers l, m, and a so that $a \in\{1, \ldots, p-1\}$, then $\operatorname{cl}(g)=g G^{\prime}$.

Proof. We first claim that $G=\langle x, g\rangle$. We know that $G=\langle x, y\rangle$. Obviously, $\langle x, g\rangle \leq G$. Observe that $y^{p l+a}=g x^{-m} \in\langle x, g\rangle$. Since the order of y is a power of p, this implies that $y \in\langle x, g\rangle$. We conclude that $G=\langle x, y\rangle \leq$ $\langle x, g\rangle \leq G$. This proves the claim.

Because $\langle x\rangle$ is normal in G, we obtain $G=\langle x\rangle\langle g\rangle$. Observe that $\langle g\rangle \leq$ $C_{G}(g)$. By Dedekind's lemma (see Lemma X. 3 on page 328 of [6]), it follows that $C_{G}(g)=\left(C_{G}(g) \cap\langle x\rangle\right)\langle g\rangle=C_{\langle x\rangle}(g)\langle g\rangle$. Since x centralizes x^{m}, we have

$$
C_{\langle x\rangle}(g)=C_{\langle x\rangle}\left(y^{p l+a} x^{m}\right)=C_{\langle x\rangle}\left(y^{p l+a}\right)=C_{\langle x\rangle}(y)=\left\langle x^{p^{t}}\right\rangle,
$$

where $t=\delta$ if $\gamma=+$ and $t=\alpha-1$ when $\gamma=-$. We see that $C_{G}(g)=\left\langle g, x^{p^{t}}\right\rangle$. We deduce that

$$
\left|G: C_{G}(g)\right|=\left|\langle x\rangle:\left\langle x^{p^{t}}\right\rangle\right|=p^{t}=\left|G^{\prime}\right| .
$$

Since $\operatorname{cl}(g) \subseteq g G^{\prime}$, we conclude that $\operatorname{cl}(g)=g G^{\prime}$.
Given a group G and a prime p, we define $G^{p}=\left\langle G^{\{p\}}\right\rangle$. I.e., G^{p} is the subgroup generated by $G^{\{p\}}$. In a similar fashion, we define $G^{4}=\left\langle g^{4}\right| g \in$ $G\rangle$. Following the literature, we say that a finite p-group G is powerful if (i) $G^{\prime} \leq G^{p}$ when p is odd and (ii) $G^{\prime} \leq G^{4}$ when $p=2$. If G is a powerful p-group, then it is known that $G^{p}=G^{\{p\}}$, i.e. the set of p-powers of elements of G is equal to the subgroup the p-powers generate. (See Section 2 of [5] and in particular Propostion 2.6 of that citation.)

We claim that metacyclic p-groups of positive type are powerful. Let G be $G_{p}(\alpha, \beta, \epsilon, \delta,+)$, then $G^{\prime}=\left\langle x^{p^{\alpha-\delta}}\right\rangle$. As $\alpha-\delta \geq 1$ it follows immediately that G is powerful when p is odd. For $p=2$, we note that $\alpha-\delta \geq 2$ so again we have that G is powerful.

When G is of positive type, we extend Lemma 3.3.
Lemma 3.4 Let $G=G_{p}(\alpha, \beta, \epsilon, \delta,+)$ and $g \in G \backslash G^{\{p\}}$. Then $\operatorname{cl}(g)=g G^{\prime}$.

Proof. Let $g \in G$ then $g=y^{n} x^{m}$ for some integers n and m. As G is powerful, it follows that if $g \in G \backslash G^{\{p\}}$, then $g \notin G^{p}$, and thus, one of n and m is not divisible by p. When n is not divisible by p, we obtain the conclusion by Lemma 3.3.

We now suppose that $g=y^{n} x^{m}$ where m is not divisible by p. We want to prove that $\operatorname{cl}(g)=g G^{\prime}$. We know that $\operatorname{cl}(g) \subseteq g G^{\prime}$. It suffices to prove that $|\operatorname{cl}(g)| \geq\left|g G^{\prime}\right|=\left|G^{\prime}\right|=p^{\delta}$. On the other hand, we know that y acts as an automorphism of order p^{δ} on $\langle x\rangle$, so x has p^{δ} distinct images under powers of y. Thus, if $1 \leq a, b \leq p^{\delta}$, then $x^{y^{a}}=x^{y^{b}}$ if and only if $a=b$. Since m is coprime to p, we see that $\left(x^{y^{a}}\right)^{m}=\left(x^{y^{b}}\right)^{m}$ if and only if $a=b$. Hence, we have that $g^{y^{a}}=g^{y^{b}}$ if and only if $\left(y^{n} x^{m}\right)^{y^{a}}=\left(y^{n} x^{m}\right)^{y^{b}}$ and this occurs if and only if $a=b$. We deduce that g has at least p^{δ} distinct conjugates under $\langle y\rangle$ and so $|\mathrm{cl}(g)| \geq p^{\delta}$ as desired. This proves the lemma.

We now prove that if G is metacyclic of positive type, then $\eta(G)=$ $\eta\left(G / G^{\prime}\right)$. Combining this fact with Lemmas 2.3 and 3.2, we are able to compute $\eta(G)$ for all primes p.

Corollary 3.5 Suppose G is $G_{p}(\alpha, \beta, \epsilon, \delta,+)$. Then $\eta(G)=\eta\left(G / G^{\prime}\right)$.
Proof. As G is powerful, by Theorem [2.1, we need to show that for all $g \in G \backslash G^{\{p\}}$ every element of $g G^{\prime}$ is conjugate to a generator of $\langle g\rangle$, this follows from Lemma 3.4.

For the record, we explicitly record the value of $\eta(G)$ when G is a metacyclic group of positive type.

Corollary 3.6 Suppose G is $G_{p}(\alpha, \beta, \epsilon, \delta,+)$.
(i) If $\delta \geq \epsilon$ or $\delta<\epsilon$ and $\alpha \geq \beta+\epsilon$, then $\eta(G)=g_{p}(\alpha-\delta, \beta)$.
(a) If $\beta \leq \alpha-\delta$, then $\eta(G)=p^{\beta-1}((\alpha-\delta-\beta)(p-1)+p+1)$.
(b) If $\beta>\alpha-\delta$, then $\eta(G)=p^{\alpha-\delta-1}((\beta-\alpha+\delta)(p-1)+p+1)$.
(ii) If $\delta<\epsilon$ and $\alpha<\beta+\epsilon$, then $\eta(G)=g_{p}(\alpha-\epsilon, \beta+\epsilon-\delta)=p^{\alpha-\epsilon-1}((\beta-$ $\alpha+2 \epsilon-\delta)(p-1)+p+1)$.

Proof. Using Corollary 3.5, we have $\eta(G)=\eta\left(G / G^{\prime}\right)$. If $\delta \geq \epsilon$ or $\delta<\epsilon$ and $\alpha \geq \beta+\epsilon$, then in view of Lemma 3.2, we see that $G / G^{\prime}=C_{p^{\alpha-\delta}} \times C_{p^{\beta}}$
and $\eta(G)=g_{p}(\alpha-\delta, \beta)$. The remainder of (i) follows from the definition of g_{p}. Suppose $\delta<\epsilon$ and $\alpha<\beta+\epsilon$. Applying Lemma 3.2, we see that $G / G^{\prime}=C_{p^{\alpha-\epsilon}} \times C_{p^{\beta+\epsilon-\delta}}$. Observe that $\alpha<\beta+\epsilon$ yields $\alpha-\epsilon<\beta<\beta+\epsilon-\delta$ as we are assuming $\delta<\epsilon$. In light of the definition of g_{p}, we obtain conclusion (ii).

When G is metacyclic of positive type, we show that $\eta(G) \geq \alpha+\beta$.
Corollary 3.7 If G is $G_{p}(\alpha, \beta, \epsilon, \delta,+)$, then $\eta(G) \geq \alpha+\beta$.
Proof. We consider separately the cases given in Corollary 3.6. We use the fact that $2^{\beta-1} \geq \beta$ for β a positive integer. First, (i)(a), where $\alpha-\delta \geq \beta$,

$$
\begin{aligned}
\eta(G) & =p^{\beta-1}((\alpha-\delta-\beta)(p-1)+p+1) \\
& \geq 2^{\beta-1}(\alpha-\delta-\beta+3) \\
& \geq \alpha-\delta-\beta+3 \beta \\
& \geq \alpha+\beta
\end{aligned}
$$

since $\beta \geq \delta$.
Now, case (i)(b), so $\alpha-\delta<\beta$. First assume $\alpha-\delta>1$, then

$$
\begin{aligned}
\eta(G) & =p^{\alpha-\delta-1}((\beta-\alpha+\delta)(p-1)+p+1) \\
& \geq 2^{\alpha-\delta-1}(\beta-\alpha+\delta+3) \\
& \geq 2(\beta-\alpha+\delta)+3(\alpha-\delta) \\
& =2 \beta+(\alpha-\delta) \\
& \geq \beta+\alpha+(\beta-\delta) \\
& \geq \beta+\alpha
\end{aligned}
$$

since $\beta \geq \delta$. If $\alpha-\delta=1$ then $p \geq 3$, also note $\alpha=1+\delta \leq 1+\beta$. So, we have

$$
\eta(G) \geq 2(\beta-\alpha+\delta)+4=2 \beta+2>\beta+\alpha
$$

Case (ii) follows similarly to (i)(a), we have $\alpha-\epsilon \leq \beta+\epsilon-\delta$,

$$
\begin{aligned}
\eta(G) & =p^{\alpha-\epsilon-1}((\beta-\alpha+2 \epsilon-\delta)(p-1)+p+1) \\
& \geq 2^{\alpha-\epsilon-1}(\beta-\alpha+2 \epsilon-\delta+3) \\
& \geq \beta-\alpha+2 \epsilon-\delta+3(\alpha-\epsilon) \\
& =\beta+\alpha+(\alpha-\epsilon-\delta) \\
& \geq \beta+\alpha
\end{aligned}
$$

since $\alpha \geq \delta+\epsilon . \square$

4 Metacyclic Groups of Negative Type

The goal of this section is to compute η when G is a metacyclic group of negative type. We begin by looking at quotients of G. We begin with a preliminary lemma that is useful in understanding the quotients.

Using the notation of Section 3 and applying Theorem [2.1, we have that if $G=G_{2}(\alpha, \beta, \epsilon, \delta,-)$ with $\delta \geq 1$ and $N=\left\langle x^{2^{\alpha-\delta+1}}\right\rangle$, then $\eta(G) \geq \eta(G / N)$. We now show that in fact this is an equality. We remind the reader that $\alpha-\delta \geq 2$ when $p=2$.

We now prove the promised equality between $\eta(G)$ and $\eta(G / N)$.
Theorem 4.1 Let $G=G_{2}(\alpha, \beta, \epsilon, \delta,-)$ where $\delta \geq 1$. Then $\eta(G)=\eta(G / N)$ where $N=\left\langle x^{2^{\alpha-\delta+1}}\right\rangle$.

Proof. Note that N does not make sense if $\delta=0$; so that it is why we assume $\delta \geq 1$. Also, if $\delta=1$, then $N=1$; so the conclusion is trivial in this case. Hence, we will assume $\delta \geq 2$.

We first prove that $\eta(G)=\eta(G / Z)$ where $Z=\left\langle x^{2^{\alpha-1}}\right\rangle$. Recall from Theorem 2.1] that to prove $\eta(G)=\eta(G / Z)$, we need to prove that $Z \subseteq G^{\{2\}}$ and if $g \in G \backslash G^{\{2\}}$, then every element of $g Z$ is conjugate to a generator of $\langle g\rangle$. Observe that $Z \subseteq G^{\{2\}}$. Since $x^{2^{\alpha-1}}$ is the only nonidentity element of Z, it suffices to prove that if $g \notin G^{\{2\}}$, then $\langle g\rangle$ and $\left\langle g x^{2^{\alpha-1}}\right\rangle$ are conjugate. We know from [2] that $G^{\prime}=\left\langle x^{2}\right\rangle$.

We prove the claim by working by induction on δ. We begin with the case that $\delta=2$. We know that $x^{y}=x^{2^{\alpha-2}-1}$. It follows that

$$
\left(x^{2}\right)^{y}=\left(x^{y}\right)^{2}=\left(x^{2^{\alpha-2}-1}\right)^{2}=x^{2^{\alpha-1}-2}=\left(x^{-2}\right) x^{2^{\alpha-1}}
$$

Observe that this yields that $\left(x^{-2}\right)^{y}=x^{2} x^{2^{\alpha-1}}$. Using this fact and the observation that $x^{2^{\alpha-1}}$ is central, we then have

$$
\left(x^{2}\right)^{y^{2}}=\left(x^{-2} x^{2^{\alpha-1}}\right)^{y}=x^{2} x^{2^{\alpha-1}} x^{2^{\alpha-1}}=x^{2} .
$$

It follows that x^{2} and y^{2} commute. Let $A=\left\langle x^{2}, y^{2}\right\rangle$, and observe that $G^{\prime} \leq A$, so A is a normal, abelian subgroup of G.

We know that every element of G has the form $y^{k} x^{m}$ where $0 \leq k \leq 2^{\beta}-1$ and $0 \leq m \leq 2^{\alpha}-1$ are integers. Notice that if 4 divides both k and m, then $g \in A^{\{2\}} \subseteq G^{\{2\}}$. Also, $x^{2}, y^{2} \in G^{\{2\}}$.

If $g=y^{2 l+1} x^{m}$ for integers l and m, then we can appeal to Lemma 3.3 to see that g is conjugate to $g x^{2^{\alpha-1}}$ and so, $\langle g\rangle$ and $\left\langle g x^{2^{\alpha-1}}\right\rangle$ are conjugate, as desired.

Since $x^{y}=x^{2^{\alpha-2}-1}$, we have $x^{y^{2}}=x^{2^{2 \alpha-4}-2^{\alpha-1}+1}$. Since $\delta \geq 2$, we know that $\alpha \geq 4$ (this is using the fact that $\alpha-\delta \geq 2$), so $2 \alpha-4 \geq \alpha$. Hence, we have $x^{y^{2}}=x^{-2^{\alpha-1}+1}$. In addition, $x^{2^{\alpha-1}}$ has order 2, so $x^{-2^{\alpha-1}}=x^{2^{\alpha-1}}$. Thus, we have shown $x^{y^{2}}=x^{2^{\alpha-1}+1}$.

Suppose now that $g=y^{2 l} x^{2 h+1}$ for integers l and h. From above, we have $g^{y^{2}}=\left(y^{2 l} x^{2 h+1}\right)^{y^{2}}=y^{2 l}\left(x^{y^{2}}\right)^{2 h+1}=y^{2 l}\left(x^{2^{\alpha-1}+1}\right)^{2 h+1}=y^{2 l} x^{2 h+1} x^{2^{\alpha-1}}=g x^{2^{\alpha-1}}$.

We deduce that $\langle g\rangle$ and $\left\langle g x^{2^{\alpha-1}}\right\rangle$ are conjugate, as desired.
We have shown that $x^{y^{2}}=x x^{2^{\alpha-1}}$. This implies that $x^{-1} y^{-2} x=x^{2^{\alpha-1}} y^{-2}$. Inverting, we obtain $\left(y^{2}\right)^{x}=y^{2} x^{2^{\alpha}-1}$. Now, suppose that $g=y^{2 l} x^{2 h}$. We can assume from above that either l is odd or h is odd. Assume first that l is odd. We have

$$
g^{x}=\left(y^{2 l} x^{2 h}\right)^{x}=\left(\left(y^{2}\right)^{x}\right)^{l} x^{2 h}=\left(y^{2} x^{2^{\alpha-1}}\right)^{l} x^{2 h}=y^{2 l} x^{2 h} x^{2^{\alpha-1}}=g x^{2^{\alpha}-1} .
$$

We obtain $\langle g\rangle$ and $\left\langle g x^{2^{\alpha-1}}\right\rangle$ are conjugate, as desired.
We are left with the case that $g=y^{4 l} x^{2(2 h+1)}$ for integers h and l. We claim that $g \in G^{\{2\}}$. Notice that there is an integer k so that $\langle g\rangle=\left\langle y^{4 k} x^{2}\right\rangle$ and that $g \in G^{\{2\}}$ if and only if $y^{4 k} x^{2} \in G^{\{2\}}$. We show that $y^{4 k} x^{2} \in G^{\{2\}}$. We have $x^{y^{2}}=x x^{2^{\alpha-1}}$. It follows that $x y^{2}=y^{2} x x^{2^{\alpha-1}}$ and

$$
\left(y^{2 k} x\right)^{2}=y^{2 k} x y^{2 k} x=y^{2 k} y^{2 k} x x^{2^{\alpha-1} k} x=y^{4 k} x^{2} x^{2^{\alpha-1} k} .
$$

When k is even, we see that $\left(y^{2 k} x\right)^{2}=y^{4 k} x^{2}$. Now assume that k is odd. We have

$$
\begin{aligned}
\left(y^{2 k} x x^{2^{\alpha-2}}\right)^{2} & =y^{2 k} x x^{2^{\alpha-2}} y^{2 k} x x^{2^{\alpha-2}}=y^{2 k} y^{2 k} x x^{2^{\alpha-1} k} x x^{2^{\alpha-2} 2} \\
& =y^{4 k} x^{2} x^{2^{\alpha-1}(k+1)}=y^{4 k} x^{2}
\end{aligned}
$$

Note that we are using the fact that $x^{2^{\alpha-2}}$ commutes with both x and y^{2} here. Thus, this yields $g \in G^{\{2\}}$. We conclude for all elements $g \in G \backslash G^{\{2\}}$ that g and $g x^{2^{\alpha-1}}$ are conjugate and we have proved that $\eta(G)=\eta(G / Z)$ when $\delta=2$.

We now assume that $\delta>2$. Let $M=\left\langle x^{2}, y\right\rangle$. Since $x^{y}=x^{2^{\alpha-\delta}-1}$, we see that $\left(x^{2}\right)^{y}=\left(x^{2^{\alpha-\delta}-1}\right)^{2}=\left(x^{2}\right)^{2^{(\alpha-1)-(\delta-1)}-1}$. Also, $y^{2^{\beta}}=x^{2^{\alpha-\epsilon}}=\left(x^{2}\right)^{2^{(\alpha-1)-\epsilon}}$. Observe that $\left(x^{2}\right)^{2^{(\alpha-1)-1}}=x^{2^{\alpha-1}}$. We conclude that $M=G_{2}(\alpha-1, \beta, \epsilon, \delta-$ $1,-)$. Let $g \in G \backslash G^{\{2\}}$. If $g \in M$, then $g \in M \backslash M^{\{2\}}$. By induction, we have that g is conjugate to $g\left(x^{2}\right)^{2^{(\alpha-1)-1}}$, and so, g and $g x^{2^{\alpha-1}}$ are conjugate. Thus, we may assume that $g \notin M$. This implies that $g=y^{l} x^{2 m+1}$ for integers l and m. We know that y induces an automorphism of $\langle x\rangle$ of order 2^{δ}. It follows that $y^{2^{\delta-1}}$ induces an automorphism of $\langle x\rangle$ of order 2 . Since $\delta \geq 3$, we know that this automorphism is a square. It is not difficult to see that $x \mapsto x x^{2^{\alpha-1}}$ is the unique automorphism of $\langle x\rangle$ that has order 2 and is a square. Hence, we see that $x^{y^{2^{\delta-1}}}=x x^{2^{\alpha-1}}$. We conclude that $g^{y^{2^{\delta-1}}}=\left(y^{l} x^{2 m+1}\right)^{y^{2^{\delta-1}}}=$ $y^{l}\left(x^{y^{2^{\delta-1}}}\right)^{2 m+1}=y^{l}\left(x x^{2^{\alpha-1}}\right)^{2 m+1}=y^{l} x^{2 m+1} x^{2^{\alpha-1}}=g x^{2^{\alpha-1}}$. This completes the proof of the claim that $\eta(G)=\eta(G / Z)$.

We now work to prove $\eta(G)=\eta(G / N)$. We work by induction on δ. If $\delta=$ 2 , then $N=Z$, and the above claim yields the result. We assume that $\delta \geq 3$. We have that $\eta(G)=\eta(G / Z)$. By induction, $\eta(G / Z)=\eta((G / Z) /(N / Z))$, and the First Isomorphism Theorem implies that $G / N \cong(G / Z) /(N / Z)$, so $\eta(G / N)=\eta((G / Z) /(N / Z))$, and we have the desired equality.

In light of Theorem 4.1 and Lemma 3.1, we see that if we can compute η for $G_{2}(\alpha, \beta, \epsilon, \delta,-)$ when $\delta=0,1$, then we can compute η for all metacyclic 2 -groups of negative type. There are a number of cases to consider when $\delta=0$ or 1 , and then using these cases, we will compute η when $\delta \geq 2$. Recall that the dihedral 2-groups are the groups of the form $G_{2}(\alpha, 1,0,0,-)$, the generalized quaternion 2 -groups are of the form $G_{2}(\alpha, 1,1,0,-)$, and the semi-dihedral groups are of the form $G_{2}(\alpha, 1,0,1,-)$. Also, it is known that $G_{2}(\alpha, \beta, 1,0,-)$ and $G_{2}(\alpha, \beta, 1,1,-)$ are isomorphic for all $\alpha \geq 3$ and $\beta \geq 2$. Since $\delta \leq \beta$, it follows that dihedral, generalized quaternion, and semi-dihedral are the only groups of negative type where $\beta=1$.

Thus, we need to analyze the negative metacyclic 2-groups of type

$$
G_{2}(\alpha, \beta, \epsilon, \delta,-)
$$

with $\beta \geq 2$. We recall a few facts about the classification of such groups. In particular, for negative type ϵ is either 0 or 1 only. Also the parameters satisfy: $\alpha \geq \delta+2$ and $\beta \geq \delta$ when $\epsilon=0$ and $\beta \geq \delta+1$ when $\epsilon=1$.

When $\delta=0$ or 1 , there is a particular abelian normal subgroup M of G. For this subgroup M, we determine which maximal cyclic subgroups of M
are maximal in G and how many maximal cyclic subgroups of G lie outside of M. This yields the following result. Recall that $\eta^{*}(M)$ is the number of G-orbits on the M-conjugacy classes of maximal cyclic subgroups of M.

Proposition 4.2 Suppose G is $G_{2}(\alpha, \beta, \epsilon, \delta,-)$ where $\delta=0$ or 1 and $\beta \geq 2$. Let $M=\left\langle x, y^{2}\right\rangle$. Then M is a normal abelian subgroup of G and the following holds:
(i) If $\delta=0$, then $\eta(G)=\eta^{*}(M)+1$ and every maximal cyclic subgroup of M is maximal cyclic in G except $\left\langle y^{2}\right\rangle$.
(ii) If $\delta=1$, then $\eta(G)=\eta^{*}(M)$ and every maximal cyclic subgroup of M is maximal cyclic in G except $\left\langle y^{2}\right\rangle$ and $\left\langle y^{2} x^{2^{\alpha-1}}\right\rangle$.

Proof. As M is a subgroup of index 2 in G it follows that M is normal in G. Let $Y=\left\langle y^{2}\right\rangle$. Observe that y^{2} centralizes $\langle x\rangle$ and is obviously central in $\langle y\rangle$; so $Y=\left\langle y^{2}\right\rangle$ is central in G. Now, M is central-by-cyclic, so M is abelian.

We now prove that there are exactly two conjugacy classes of maximal cyclic subgroups of G outside of M. Since $\langle x\rangle$ is normal in G and $G=$ $\langle x\rangle\langle y\rangle=\langle x\rangle\langle x y\rangle$, we see that $C_{G}(\langle y\rangle)=C_{\langle x\rangle}(\langle y\rangle)\langle y\rangle=\left\langle x^{2^{\alpha-1}}\right\rangle\langle y\rangle$ and $C_{G}(\langle x y\rangle)=\left\langle x^{2^{\alpha-1}}\right\rangle\langle x y\rangle$. It follows that both $\langle y\rangle$ and $\langle x y\rangle$ lie in conjugacy classes of size $\left|\langle x\rangle:\left\langle x^{2^{\alpha-1}}\right\rangle\right|=2^{\alpha-1}$. It is not difficult to see now that every cyclic subgroup of G outside of M is conjugate to either $\langle y\rangle$ or $\langle x y\rangle$.
(i) For $\delta=0$ we show that every maximal cyclic subgroup of M is a maximal cyclic subgroup of G except $\left\langle y^{2}\right\rangle$ which lies in exactly 2 different conjugacy classes of maximal cyclic subgroups of G, namely $\langle y\rangle$ and $\langle x y\rangle$.

Observe that $y Y$ acts on M / Y inverting every element. Thus, M / Y is a cyclic subgroup of index 2 in G / Y. We have $(y Y)^{2}=Y$, so G / Y is a dihedral group. It follows that if $g \in G \backslash M$, then $(g Y)^{2}=Y$ and so, $g^{2} \in Y$. Hence, Y is the only maximal cyclic subgroup of M that is not maximal cyclic in G. Notice that $Y \leq\langle y\rangle$. Also, we know that $\langle y Y\rangle$ and $\langle x y Y\rangle$ are in different conjugacy classes of subgroups of G / Y, so $\langle y\rangle$ and $\langle x y\rangle$ are in different conjugacy classes of G. Since $x^{y}=x^{-1}$, so $x y=y x^{-1}$. It follows that $(y x)^{2}=y x y x=y\left(y x^{-1}\right) x=y^{2}$.
(ii) For $\delta=1$ we show that the only maximal cyclic subgroups of M that are not maximal in G are $\left\langle y^{2}\right\rangle$ and $\left\langle y^{2} x^{2^{\alpha-1}}\right\rangle$. Again there are exactly 2 different conjugacy classes of maximal cyclic subgroups outside of M given by $\langle y\rangle$ and $\langle x y\rangle$. Note that $\langle y\rangle$ contains $\left\langle y^{2}\right\rangle$ and $\langle x y\rangle$ contains $\left\langle y^{2} x^{2^{\alpha-1}}\right\rangle$.

Note that M / Y is cyclic in G / Y of order 2^{α}. Also, $(y Y)^{2}=Y$ and $(x Y)^{y Y}=x^{2^{\alpha-1}-1} Y=(x Y)^{2^{\alpha-1}-1}$. It follows that G / Y is isomorphic to a semi-dihedral group. Let $Z=\left\langle x^{2^{\alpha-1}}, Y\right\rangle$, and observe that $Z / Y=Z(G / Y)$. Notice that if $g \in G \backslash M$, then $(g Y)^{2} \in Z / Y$. This implies that $g^{2} \in Z$. Observe that $\left\langle y^{2}\right\rangle$ and $\left\langle y^{2} x^{2^{\alpha-1}}\right\rangle$ are central (and hence normal) in G. It follows that the square of any conjugate of y will be y^{2}. Since $\delta=1$, we have $x^{y}=$ $x^{2^{\alpha-1}-1}$, so $x y=y x^{2^{\alpha-1}-1}$. We have $(y x)^{2}=y x y x=y\left(y x^{2^{\alpha-1}-1}\right) x=y^{2} x^{2^{\alpha-1}}$. This implies that the square of any conjugate of $x y$ will be $y^{2} x^{2^{\alpha-1}}$. Hence, any other subgroup of M that is maximal cyclic in M will be maximal cyclic in G.

We now work to compute η for the groups with negative type and δ equal to 0 or 1 . We will first handle the case when $\epsilon=0$ and $\beta=2$. For the following lemma recall that $\alpha \geq \delta+2$ when $p=2$, so when $\delta=1$ we must have $\alpha \geq 3$.

Lemma 4.3 Suppose G is $G_{2}(\alpha, 2,0, \delta,-)$. Then

$$
\begin{aligned}
& \text { (i) } \eta(G)=\alpha+3 \text { if } \delta=0 \text { and } \\
& \text { (ii) } \eta(G)=\alpha+2 \text { if } \delta=1 \text {. }
\end{aligned}
$$

Proof. Following Proposition4.2, we take $M=\left\langle x, y^{2}\right\rangle$; so M is abelian. We have $M \cong C_{2^{\alpha}} \times C_{2}$ and $\eta(M)=\alpha+2$ by Lemma 2.3. We claim that all subgroups of M are normal in G. To see this, note that if K is a subgroup of M then (1) K is a subgroup of $\langle x\rangle,(2) K=\left\langle x^{a}, y^{2}\right\rangle$ for some integer $1 \leq$ $a \leq 2^{\alpha}-1$ or (3) $K=\left\langle x^{a} y^{2}\right\rangle$ for some integer $1 \leq a \leq 2^{\alpha}-1$. When $\delta=0$, we know that $x^{y}=x^{-1}$, so $\left(x^{a}\right)^{y}=\left(x^{a}\right)^{-1}$ and $\left(x^{a} y^{2}\right)^{y}=\left(x^{a} y^{2}\right)^{-1}$ for every integer a. When $\delta=1$, we have $\left(x^{a}\right)^{y}=x^{a\left(2^{\alpha-1}-1\right)}$. The observation is that $\left\langle x^{a}\right\rangle=\left\langle x^{a\left(2^{\alpha-1}-1\right)}\right\rangle,\left\langle x^{a}, y^{2}\right\rangle=\left\langle x^{a\left(2^{\alpha-1}-1\right)}, y^{2}\right\rangle$, and $\left\langle x^{a} y^{2}\right\rangle=\left\langle x^{a\left(2^{\alpha-1}-1\right)} y^{2}\right\rangle$. This proves the claim. Therefore $\eta^{*}(M)=\eta(M)$ and the result follows from Proposition 4.2. \square.

We continue with the case where $\epsilon=0$. We now consider the case that $\beta \geq 3$. Recall that $g_{p}(a, b)=p^{(l-1)}((k-l)(p-1)+p+1)$ where p a prime, a and b are positive integers, and we take $k=\max (a, b)$ and $l=\min (a, b)$. Recall also that $g_{p}(a, b)=\eta\left(C_{p^{a}} \times C_{p^{b}}\right)$. The following can be viewed as an improvement on Proposition 2.2(ii).

Theorem 4.4 Suppose G is $G_{2}(\alpha, \beta, 0, \delta,-)$ with $\beta \geq 3$. As previously let $M=\left\langle x, y^{2}\right\rangle$. Then the following hold:

1. If $\delta=1$, then $\eta(G)=\eta(M) / 2+2=g_{2}(\alpha, \beta-1) / 2+2$.
2. If $\delta=0$, then $\eta(G)=\eta(M) / 2+3=g_{2}(\alpha, \beta-1) / 2+3$.

Proof. Note that we are assuming δ is 0 or 1. As in Proposition 4.2, we let $M=\left\langle x, y^{2}\right\rangle$; so it follows that M is abelian. In particular, since we are assuming that $\epsilon=0$, we have $M \cong\langle x\rangle \times\left\langle y^{2}\right\rangle=C_{2^{\alpha}} \times C_{2^{\beta-1}}$. Using Lemma 2.3, we obtain $\eta(M)=g_{2}(\alpha, \beta-1)$. Let k be the maximum of α and $\beta-1$ and let l be the minimum of α and $\beta-1$; so that $\eta(M)=g_{2}(\alpha, \beta-1)=$ $2^{l-1}(k-l+3)$. We now work to prove that $\eta^{*}(M)=g_{2}(\alpha, \beta-1) / 2+2$. Once this is done, then we will have the conclusion via Proposition 4.2,

It is not difficult to see that $\langle x\rangle,\left\langle y^{2}\right\rangle$, and $\left\langle y^{2} x^{\alpha^{\alpha-1}}\right\rangle$ are maximal cyclic subgroups of M that are normal in G. We claim that $\left\langle y^{2\left(2^{\beta-2}\right)} x\right\rangle$ is a maximal cyclic subgroup of M that is normal in G. It is easy to see that it is maximal cyclic. When $\delta=0$, we see that $\left(\left\langle y^{2\left(2^{\beta-2}\right)} x\right\rangle\right)^{y}=\left\langle y^{2\left(2^{\beta-2}\right)} x^{-1}\right\rangle=$ $\left\langle\left(y^{2\left(2^{\beta-2}\right)} x\right)^{-1}\right\rangle$, and when $\delta=1$, we have $\left(\left\langle y^{2\left(2^{\beta-2}\right)} x\right\rangle\right)^{y}=\left\langle y^{2\left(2^{\beta-2}\right)} x^{2^{\alpha}-1}\right\rangle=$ $\left\langle\left(y^{2\left(2^{\beta-2}\right)} x\right)^{2^{\alpha}-1}\right\rangle$. This proves that it is normal in G.

We will prove that all the other maximal cyclic subgroups of M will be in conjugacy classes of size 2 in G. Thus, $\eta^{*}(M)=(\eta(M)-4) / 2+4=$ $\eta(M) / 2-2+4=g_{2}(\alpha, \beta-1) / 2+2$.

Let C be a maximal cyclic subgroup of M. It is not difficult to see that C will be generated by an element of the form $y^{2 l} x$ or one of the form $y^{2} x^{l}$. When $\delta=0$, we have that $\left(y^{2 l} x\right)^{y}=y^{2 l} x^{-1}$ and $\left(y^{2} x^{l}\right)^{y}=y^{2} x^{-l}$. For C to be normal, we need this conjugate to be in C. When the generator is $y^{2 l} x$, we need $y^{2 l} x^{-1}=\left(y^{2 l} x\right)^{k}=y^{2 l k} x^{k}$ for some integer k. This implies that $y^{2 l-2 l k}=x^{k+1}$. Since $\epsilon=0$, we have that $y^{2 l-2 l k}=x^{k+1}=1$. We see that we must have 2^{α} dividing $k+1$ and 2^{β} must divide $2 l(1-k)$. Thus, there is an integer r so that $k+1=2^{\alpha} r$, and thus, $k=2^{\alpha} r-1$. We obtain that $2^{\beta-1}$ must divide $l\left(1-\left(2^{\alpha} r-1\right)\right)=l\left(2-2^{\alpha} r\right)=2 l\left(1-2^{\alpha-1} r\right)$. Since we know that $\alpha \geq 2$, this implies that $2^{\beta-2}$ must divide l. It follows that $\langle x\rangle$ and $\left\langle y^{2^{\beta-1}} x\right\rangle$ are the only two maximal cyclic subgroups of M that are normal in G that are generated by an element of the form $y^{2 l} x$ when $\delta=0$.

When the generator is $y^{2} x^{l}$, we need $y^{2} x^{-l}=\left(y^{2} x^{l}\right)^{k}=y^{2 k} x^{l k}$ for some integer k. This implies that $y^{2-2 k}=x^{l k+l}=1$. This implies that 2^{β} divides $2(1-k)$ and so, $2^{\beta-1}$ divides $1-k$. Hence, there is an integer r so that $1-k=r 2^{\beta-1}$, and hence, $k=1-r 2^{\beta-1}$. We see that 2^{α} divides $l(1+k)=$
$l\left(1+\left(1-r 2^{\beta-1}\right)\right)=l\left(2-r 2^{\beta-1}\right)=2 l\left(1-r 2^{\beta-2}\right)$. Since $\beta \geq 3$, we deduce that $2^{\alpha-1}$ must divide l. It follows that $\left\langle y^{2}\right\rangle$ and $\left\langle y^{2} x^{2^{\alpha-1}}\right\rangle$ are the only maximal cyclic subgroups of M that are normal in G that are generated by an element of the form $y^{2} x^{l}$ when $\delta=0$. This proves the result when $\delta=0$.

Now we suppose that $\delta=1$. Recall that $\alpha \geq \delta+2$, so $\alpha \geq 3$. We have that $\left(y^{2 l} x\right)^{y}=y^{2 l} x^{2^{\alpha-1}-1}$ and $\left(y^{2} x^{l}\right)^{y}=y^{2} x^{l\left(2^{\alpha-1}-1\right)}$. For C to be normal, we need this conjugate to be in C. Suppose the generator is $y^{2 l} x$. We need $y^{2 l} x^{2^{\alpha-1}-1}=\left(y^{2 l} x\right)^{k}=y^{2 l k} x^{k}$ for some integer k. This implies that $y^{2 l-2 l k}=x^{k-2^{\alpha-1}+1}=1$. We deduce that 2^{α} must divide $k-2^{\alpha-1}+1$, and so, there is an integer r so that $k-2^{\alpha-1}+1=2^{\alpha} r$. We obtain $k=2^{\alpha} r+2^{\alpha-1}-1$. We have that 2^{β} divides $2 l(1-k)=2 l\left(1-2^{\alpha} r-2^{\alpha-1}+1\right)$. It follows that $2^{\beta-2}$ divides $l\left(1-2^{\alpha-1} r-2^{\alpha-2}\right)$. Since $\alpha \geq 3$, we see that $2^{\beta-2}$ divides l. We conclude that $\langle x\rangle$ and $\left\langle y^{2^{\beta-1}} x\right\rangle$ are the only two maximal cyclic subgroups of M that are normal in G that are generated by an element of the form $y^{2 l} x$ when $\delta=1$.

When the generator is $y^{2} x^{l}$, we need $y^{2} x^{l\left(2^{\alpha-1}-1\right)}=\left(y^{2} x^{l}\right)^{k}=y^{2 k} x^{l k}$ for some integer k. We see that $y^{2-2 k}=x^{l k-l\left(2^{\alpha-1}-1\right)}=1$. It follows that 2^{β} divides $2(1-k)$, and so, $2^{\beta-1}$ divides $1-k$. There is an integer r so that $1-k=2^{\beta-1} r$ which yields $k=1-2^{\beta-1} r$. We now determine that 2^{α} divides $l\left(k-2^{\alpha-1}+1\right)=l\left(1-2^{\beta-1} r-2^{\alpha-1}+1\right)=2 l\left(1-2^{\beta-2} r-2^{\alpha-2}\right)$. Since $\alpha \geq 3$ and $\beta \geq 3$, we have that $2^{\alpha-1}$ divides l. We conclude that $\left\langle y^{2}\right\rangle$ and $\left\langle y^{2} x^{2^{\alpha-1}}\right\rangle$ are the only maximal cyclic subgroups of M that are normal in G that are generated by an element of the form $y^{2} x^{l}$ when $\delta=1$. This proves the result when $\delta=1$.

In this next corollary, recall that $\delta \leq \beta$, so when $\beta=2$, we must have $\delta=2$. We are able to use Theorem 4.4 to compute η for groups of negative type where $\delta \geq 2$.

Corollary 4.5 Suppose G is $G_{2}(\alpha, \beta, \epsilon, \delta,-)$ with $\delta \geq 2$, then

1. $\eta(G)=\alpha-\delta+3=\alpha+1$ if $\beta=2$.
2. $\eta(G)=g_{2}(\alpha-\delta+1, \beta-1) / 2+2$ if $\beta \geq 3$.

Proof. By Theorem 4.1, we have that $\eta(G)=\eta(G / N)$ where $N=\left\langle x^{2^{\alpha-\delta+1}}\right\rangle$. Applying Lemma 3.1, we see that $G / N \cong G_{2}(\alpha-\delta+1, \beta, 0,1,-)$. Using Lemma 4.3, we see that $\eta(G / N)=\alpha-\delta+1+2=\alpha+3-\delta$ when $\beta=2$. Since $2 \leq \delta \leq \beta=2$, we see that $\delta=2$, and so, $\eta(G)=\alpha+1$. When $\beta \geq 3$, we
apply Theorem4.4 to see that $\eta(G)=\eta(G / N)=g_{2}(\alpha-\delta+1, \beta-1) / 2+2$.
We now compute η for groups of negative type with $\delta=0$ and $\epsilon=1$. We first handle the case where $\beta=2$.

Lemma 4.6 Suppose G is $G_{2}(\alpha, 2,1,0,-)$ then $\eta(G)=\alpha+2$.
Proof. Define $M=\left\langle x, y^{2}\right\rangle$. By Proposition4.2, we know that M is a normal abelian subgroup of G. First note that $\left(x^{2^{\alpha-2}} y^{2}\right)^{2}=x^{2^{\alpha-1}} y^{4}=x^{2^{\alpha-1}} x^{2^{\alpha-1}}=$ $x^{2^{\alpha}}=1$. Thus, $M=\langle x\rangle \times\left\langle x^{2^{\alpha-2}} y^{2}\right\rangle \cong C_{2^{\alpha}} \times C_{2}$ and $\eta(M)=\alpha+2$. Consideration of the maximal cyclic subgroups of M shows that all are normal except $\left\langle\left(1, x^{2^{\alpha-2}} y^{2}\right)\right\rangle$ and $\left\langle\left(x^{2^{\alpha-1}}, x^{2^{\alpha-2}} y^{2}\right)\right\rangle$ which are conjugate in G via y. To see that these two subgroups are conjugate, observe that M has three subgroups of order 2 and that $\left\langle x^{2^{\alpha-1}}\right\rangle=\left\langle y^{2^{\beta}}\right\rangle$ is central in G and that $Z(G)$ is cyclic. Either y normalizes both of the other two subgroups of order 2 or it permutes them. However, if y were to normalize them, they would be normal in G and since they have order 2 , that would imply that they would be central in G. This however would contradict the fact that the center of G is cyclic. Thus $\eta^{*}(M)=\alpha+1$. The result follows from Proposition 4.2,

We continue with the groups of negative type where $\delta=0$ and $\epsilon=1$. We next consider $\beta \geq 3$ and $\alpha=2$.

Lemma 4.7 Suppose G is $G_{2}(2, \beta, 1,0,-)$ with $\beta \geq 3$. Then $\eta(G)=\beta+2$.
Proof. Define $M=\left\langle x, y^{2}\right\rangle$. By Proposition4.2, we know that M is a normal abelian subgroup of G. Note that $\left(x y^{2^{\beta-1}}\right)^{2}=x^{2} y^{2^{\beta}}=x^{2} x^{2}=x^{4}=1$. So $M=\left\langle x y^{2^{\beta-1}}\right\rangle \times\left\langle y^{2}\right\rangle \cong C_{2} \times C_{2^{\beta}}$ and $\eta(M)=\beta+2$. Consideration of the maximal cyclic subgroups of M shows that all are normal except for $\left\langle\left(x y^{2^{\beta-1}}, 1\right)\right\rangle$ and $\left\langle\left(x y^{2^{\beta-1}}, y^{2^{\beta}}\right)\right\rangle$ which are conjugate in G via y. The proof that these two subgroups are conjugate is similar to the proof of Lemma 4.6. In particular, $Z(G)$ is cyclic, M has three subgroups of order 2 , and if y normalized these two subgroups, then it would centralize them and contradict the fact that $Z(G)$ is cyclic. Thus $\eta^{*}(M)=\beta+1$. The result follows from Proposition 4.2 .

We conclude by computing η when $\delta=0, \epsilon=1, \alpha \geq 3$, and $\beta \geq 3$. Note this also covers the cases $\delta=1, \epsilon=1$ and $\alpha, \beta \geq 3$.

Theorem 4.8 Suppose G is $G_{2}(\alpha, \beta, 1,0,-)$ with $\alpha \geq 3$ and $\beta \geq 3$. Let $M=\left\langle x, y^{2}\right\rangle$.

1. If $\alpha \geq \beta$, then $\eta(G)=\eta(M) / 2+3=g_{2}(\alpha, \beta-1) / 2+3$.
2. If $\alpha<\beta$, then $\eta(G)=\eta(M) / 2+3=g_{2}(\alpha-1, \beta) / 2+3$.

Proof. As in Proposition 4.2, we let $M=\left\langle x, y^{2}\right\rangle$; so it follows that M is abelian. We know that $|M|=2^{\alpha+\beta-1}$, that x has order 2^{α} and y^{2} has order 2^{β}. Suppose $\alpha \geq \beta$, then $M \cong C_{2^{\alpha}} \times C_{2^{\beta-1}}$, and so $\eta(M)=g_{2}(\alpha, \beta-1)$. Let $w=y^{2} x^{2^{\alpha-\beta}}$. Observe that $w^{2^{\beta-2}}=\left(y^{2} x^{2^{\alpha-\beta}}\right)^{2^{\beta-2}}=y^{2^{\beta-1}} x^{2^{\alpha-2}} \notin\langle x\rangle$ and $w^{2^{\beta-1}}=\left(y^{2} x^{2^{\alpha-\beta}}\right)^{2^{\beta-1}}=y^{2^{\beta}} x^{2^{\alpha-1}}=x^{2^{\alpha-1}} x^{2^{\alpha-1}}=1$. It follows that $M=\langle x\rangle \times\langle w\rangle$.

If $\beta \geq \alpha+1$, then $M \cong C_{2^{\alpha-1}} \times C_{2^{\beta}}$, and so $\eta(M)=g_{2}(\alpha-1, \beta)$. Let $u=y^{2^{\beta-\alpha+1}} x$. We compute $u^{2^{\alpha-2}}=\left(y^{2^{\beta-\alpha+1}} x\right)^{2^{\alpha-2}}=y^{2^{\beta-1}} x^{2^{\alpha-2}} \notin\langle y\rangle$ and $u^{2^{\alpha-1}}=\left(y^{2^{\beta-\alpha+1}} x\right)^{2^{\alpha-1}}=y^{2^{\beta}} x^{2^{\alpha-1}}=x^{2^{\alpha-1}} x^{2^{\alpha-1}}=1$. We deduce that $M=\langle u\rangle \times\langle y\rangle$.

In both cases, we will show that $\eta^{*}(M)=\eta(M) / 2+2$, and we obtain the conclusion by applying Proposition 4.2. Notice that a maximal cyclic subgroup of M will be generated either by an element of the form $y^{2 l} x$ for some integer l or by an element of the form $y^{2} x^{l}$ for some integer l. Observe that $\langle x\rangle$ and $\left\langle y^{2}\right\rangle$ are maximal cyclic subgroups of M that are normal in G.

We next show that $\left\langle y^{2^{\beta-1}} x\right\rangle$ and $\left\langle y^{2} x^{x^{\alpha-2}}\right\rangle$ are normal subgroups in G. Since M is abelian and has index 2 in G, it suffices to show that y normalizes these subgroups. We compute $\left(y^{y^{\beta-1}} x\right)^{y}=y^{2^{\beta-1}} x^{-1}=\left(y^{2^{\beta-1}} x\right)^{-1}$. Since y conjugates the generator of $\left\langle y^{2^{\beta-1}} x\right\rangle$ to its inverse, this implies that $\left\langle y^{2^{\beta-1}} x\right\rangle$ is normal in G.

We now turn to $\left\langle y^{2} x^{2^{\alpha-2}}\right\rangle$. We begin with the observation that $\left(y^{2} x^{2^{\alpha-2}}\right)^{4}=$ y^{8}. Since $\beta \geq 3$, we see that $x^{2^{\alpha-1}}=y^{2^{\beta}} \in\left\langle y^{2} x^{2^{\alpha-2}}\right\rangle$. Conjugating yields $\left(y^{2} x^{2^{\alpha-2}}\right)^{y}=y^{2} x^{-2^{\alpha-2}}$. Note that $x^{-2^{\alpha-2}}=x^{2^{\alpha-2}} x^{2^{\alpha-1}}$. We have $\left(y^{2} x^{2^{\alpha-2}}\right)^{y}=y^{2} x^{2^{\alpha-2}} x^{2^{\alpha-1}}$. Since both $y^{2} x^{2^{\alpha-2}}$ and $x^{2^{\alpha-1}}$ lie in $\left\langle y^{2} x^{2^{\alpha-2}}\right\rangle$, we conclude that $\left(y^{2} x^{2^{\alpha-2}}\right)^{y}$ lies in $\left\langle y^{2} x^{2^{\alpha-2}}\right\rangle$. We deduce that $\left\langle y^{2} x^{2^{\alpha-2}}\right\rangle$ is normal in G.

We prove that the remaining maximal cyclic subgroups of M lie in orbits of size 2 . We have noted that a maximal cyclic subgroup C of M will have a generator of the form $y^{2 l} x$ or of the form $y^{2} x^{l}$ for some integer l. If C has a generator of the form $y^{2 l} x$, then for C to be normal we need $\left(y^{2 l} x\right)^{y}=$ $y^{2 l} x^{-1} \in C$. This implies that $y^{2 l} x^{-1}=\left(y^{2 l} x\right)^{k}$ for some integer k. We have $y^{2 l-2 l k}=x^{k+1}=u \in\langle x\rangle \cap\left\langle y^{2}\right\rangle=\left\langle x^{2^{\alpha-1}}\right\rangle$. Hence, u is either 1 or $x^{2^{\alpha-1}}$. If
$u=1$, then 2^{α} divides $k+1$ and $2^{\beta+1}$ divides $2 l(1-k)$. We see that there is an integer r so that $k+1=2^{\alpha} r$, and hence, $k=2^{\alpha} r-1$. This implies that $2^{\beta+1}$ divides $2 l(1-k)=2 l\left(1-2^{\alpha} r+1\right)=4 l\left(1-2^{\alpha-1} r\right)$. Since $\alpha \geq 2$, this yields $2^{\beta-1}$ divides l. When $u=x^{2^{\alpha-1}}$, we obtain that $k+1 \equiv 2^{\alpha-1}\left(\bmod 2^{\alpha}\right)$. Hence, there is an integer r so that $k+1=2^{\alpha-1}+r 2^{\alpha}$, and so, $k=2^{\alpha-1}+r 2^{\alpha}-1$. We see that $2 l(1-k) \equiv 2^{\beta}\left(\bmod 2^{\beta+1}\right)$. This implies that $2^{\beta+1}$ divides $2 l(1-k)-2^{\beta}=2 l\left(1-2^{\alpha-1}-r 2^{\alpha}+1\right)-2^{\beta}=4 l\left(1-2^{\alpha-2}-r 2^{\alpha-1}\right)-2^{\beta}$. We deduce that $2^{\beta-2}$ divides l. We conclude that $\langle x\rangle$ and $\left\langle 2^{2^{\beta-1}} x\right\rangle$ are the only maximal cyclic subgroups of M having the form $\left\langle y^{2 l} x\right\rangle$ that are normal in G.

We now suppose that C has a generator of the form $y^{2} x^{l}$. We need $\left(y^{2} x^{l}\right)^{y}=y^{2} x^{-l} \in C$. Hence, we have that $y^{2} x^{-l}=\left(y^{2} x^{l}\right)^{k}=y^{2 k} x^{l k}$ for some integer k. We have $y^{2-2 k}=x^{l k+l}=u$. As in the previous paragraph, we see that u is either 1 or $x^{2^{\alpha-1}}$. If $u=1$, then we have that $2^{\beta+1}$ divides $2(1-k)$, and so, there is an integer r so that $1-k=2^{\beta} r$. We determine that 2^{α} divides $l(k+1)=l\left(1-2^{\beta} r+1\right)=2 l\left(1-2^{\beta-1} r\right)$. It follows that $2^{\alpha-1}$ divides l. Now, suppose that $u=x^{2^{\alpha-1}}$. We must have that $2(1-k) \equiv 2^{\beta}\left(\bmod 2^{\beta+1}\right)$ and $l(k+1) \equiv 2^{\alpha-1}\left(\bmod 2^{\alpha}\right)$. Hence, there is an integer r so that $2(1-k)=2^{\beta}+$ $2^{\beta+1} r$. This implies that $k=1-2^{\beta-1}-2^{\beta} r$. We then obtain that 2^{α} divides $l(k+1)-2^{\alpha-1}=l\left(1-2^{\beta-1}-2^{\beta} r+1\right)-2^{\alpha-1}=2\left(l\left(1-2^{\beta-2}-2^{\beta-1} r\right)-2^{\alpha-2}\right)$. This implies that $2^{\alpha-1}$ divides $l\left(1-2^{\beta-2}-2^{\beta-1} r\right)-2^{\alpha-2}$. Hence, there is an integer s so that $l\left(1-2^{\beta-2}-2^{\beta-1} r\right)-2^{\alpha-2}=2^{\alpha-1} s$. This leads to $l\left(1-2^{\beta-2}-2^{\beta-1} r\right)=2^{\alpha-1} s+2^{\alpha-2}=2^{\alpha-2}(2 s+1)$. This yields $2^{\alpha-2}$ divides l. Observe that $x^{2^{\alpha-1}}=y^{2^{\beta}}$, and so, $\left\langle y^{2} x^{2^{\alpha-1}}\right\rangle=\left\langle y^{2}\right\rangle$. We deduce that $\left\langle y^{2}\right\rangle$ and $\left\langle y^{2} x^{2^{\alpha-2}}\right\rangle$ are the only maximal cyclic subgroups of M having the form $\left\langle y^{2} x^{l}\right\rangle$ that are normal in G,

We now see that the number of G-orbits of maximal cyclic subgroups of M is $(\eta(M)-4) / 2+4=\eta(M) / 2-2+4=\eta(M)+2$, which completes the proof of the result.

We close by proving that when G is metacyclic of minus type that is not dihedral, generalized quaternion, or semi-dihedral, then $\eta(G) \geq \alpha+\beta-2$ and we determine when equality occurs. We first handle when δ equals 0 or 1. In this case, we have $\eta(G) \geq \alpha+\beta$.

Proposition 4.9 Suppose $G=G_{2}(\alpha, \beta, \epsilon, \delta,-)$ with $\delta=0$ or 1 and $\beta \geq 2$. Then $\eta(G) \geq \alpha+\beta$.

Proof. (i) Suppose $\epsilon=0$. Denote $l=\min (\alpha, \beta-1)$ and $k=\max (\alpha, \beta-1)$.

First, consider $l \geq 3$. Then $\beta \geq 4$ and by Theorem 4.4 and Lemma 2.4

$$
\eta(G) \geq g_{2}(\alpha, \beta-1) / 2+2 \geq 2 k+2 \geq \alpha+\beta
$$

Next, assume $l=2$. So $\beta \geq 3$ and by Theorem 4.4 and Lemma 2.4

$$
\eta(G) \geq g_{2}(\alpha, \beta-1) / 2+2=k+3 \geq \alpha+\beta
$$

Finally, set $l=1$. As $\alpha \geq 2$, we have $\beta=2$. The result follows from Lemma 4.3.
(ii) Now suppose $\epsilon=1$. Assume $\alpha \geq \beta$, then $l=\min (\alpha, \beta-1)=\beta-1$ and $k=\max (\alpha, \beta-1)=\alpha$. If $l \geq 3$, then $\beta \geq 4$ and $\alpha \geq 4$, so we can assume $\delta=0$. Applying Theorem 4.8 and Lemma 2.4 yields

$$
\eta(G)=g_{2}(\alpha, \beta-1) / 2+3 \geq 2 k+3 \geq \alpha+\beta
$$

If $l=2$, then $\beta=3$, and we again appeal to Theorem 4.8 to obtain

$$
\eta(G)=g_{2}(\alpha, \beta-1) / 2+3=g_{2}(k, 2) / 2+3=k+4 \geq \alpha+\beta .
$$

If $l=1$, then $\beta=2$. If $\alpha=2$ then $\delta=0$ and if $\alpha \geq 3$ we can assume $\delta=0$. Thus we apply Lemma 4.6.

Finally, suppose $\epsilon=1$ and $\alpha<\beta$. We set $l=\min (\alpha-1, \beta)=\alpha-1$ and $k=\max (\alpha-1, \beta)=\beta$. When $l \geq 3$, we apply Theorem 4.8 and Lemma 2.4 to get

$$
\eta(G)=g_{2}(\alpha-1, \beta) / 2+3 \geq 2 k+3 \geq \alpha+\beta .
$$

If $l=2$, then $\alpha=3$ and $\beta>3$. Apply Theorem 4.8 with Lemma 2.4 to give

$$
\eta(G)=g_{2}(\beta, 2) / 2+3=\beta+4 \geq \alpha+\beta
$$

If $l=1$, then $\alpha=2$ and $\delta=0$, the result follows from Lemma 4.7,
We now have the case where $\delta \geq 2$.
Proposition 4.10 Suppose $G=G_{2}(\alpha, \beta, \epsilon, \delta,-)$ with $\delta \geq 2$. Then $\eta(G) \geq$ $\alpha+\beta-2$. Equality holds if and only if $\beta=\delta$ and either (i) $\beta=3$ or (ii) $\beta \geq 4$ and $\alpha-\beta=2$.

Proof. Set $l=\min (\alpha-\delta+1, \beta-1)$ and $k=\max (\alpha-\delta+1, \beta-1)$. We consider various cases according to the value of l.

First, suppose $l \geq 4$. Then by Corollary 4.5 and Lemma 2.4

$$
\begin{aligned}
\eta(G) & =g_{2}(\alpha-\delta+1, \beta-1) / 2+2 \\
& =g_{2}(k, l) / 2+2 \geq 2 k+l+2 \\
& =(k+l)+k+2 \\
& \geq \alpha-\delta+\beta+\beta-1+2 \\
& \geq \alpha+\beta+1
\end{aligned}
$$

since $\delta \leq \beta$.
Now consider $l=3$. We use Corollary 4.5 and Lemma 2.4 to find an exact value for $\eta(G)$.

$$
\eta(G)=g_{2}(\alpha-\delta+1, \beta-1) / 2+2=g_{2}(k, 3) / 2+2=2 k+2 .
$$

If $\alpha-\delta+1>\beta-1=3$, then $\delta \leq 4$ and

$$
\eta(G)=2(\alpha-\delta+1)+2=\alpha+(\alpha-\delta+2)+(-\delta+2)>\alpha+\beta-2 .
$$

On the other hand, when $\beta-1 \geq \alpha-\delta+1=3$, we obtain $\beta \geq 4$ and $\alpha-\delta=2$, so $\alpha-2 \leq \beta$ and

$$
\eta(G)=2(\beta-1)+2=2 \beta \geq \beta+\alpha-2
$$

with equality if and only if $\beta=\delta$.
Next suppose $l=2$. Since $\alpha-\delta+1 \geq 2+1=3$, we must have $\beta=3$. Applying Corollary 4.5 and Lemma 2.4,

$$
\begin{aligned}
\eta(G) & =g_{2}(\alpha-\delta+1, \beta-1) / 2+2=g_{2}(k, 2) / 2+2 \\
& =k+3=\alpha-\delta+4 \\
& \geq \alpha+1=\alpha+\beta-2
\end{aligned}
$$

with equality if and only if $\delta=3=\beta$.
Lastly consider $l=1$. In this case $\beta=2$ and the result follows from Corollary 4.5.

References

[1] Y. Barnea, R. D. Camina, M. Ershov, M. L. Lewis, On groups that can be covered by conjugates of finitely many cyclic or procyclic subgroups, Preprint.
[2] J. R. Beuerle, An elementary classification of finite metacyclic p-groups of class at least 3, Algebra Colloquium 12:4 (2005) 553-562.
[3] M. Bianchi, R. D. Camina, M. L. Lewis, E. Pacifici, Conjugacy classes of maximal cyclic subgroups, submitted for publication, arXiv:2201.05637.
[4] M. Bianchi, R. D. Camina, M. L. Lewis, Conjugacy classes of maximal cyclic subgroups and nilpotence class of p-groups, to appear in Bull. Aust. Math. Soc., doi:10.1017/S0004972722000211. arXiv:2201.05642.
[5] J. D. Dixon, M. P. F. du Sautoy, A. Mann, D. Segal, Analytic pro-pgroups, London Mathematical Society Lecture Note Series, 157. Cambridge University Press, Cambridge, 1991.
[6] I. M. Isaacs, Finite Group Theory, Graduate Studies in Mathematics, Volume 92, American Mathematical Society, Providence, Rhode Island, 2008.
[7] B. King, Presentations of metacyclic groups, Bull. Austral. Math. Soc. 8 (1973) 103-131.
[8] J. R. Rogério, A note on maximal coverings of groups, Comm. Algebra $42(10)$ (2014), 4498-4508.
[9] T. W. von Puttkamer, On the Finiteness of the Classifying Space for Virtually Cyclic Subgroups, PhD thesis.

Mariagrazia Bianchi: Dipartimento di Matematica F. Enriques, Università degli Studi di Milano, via Saldini 50, 20133 Milano, Italy.
mariagrazia.bianchi@unimi.it
Rachel Camina: Fitzwilliam College, Cambridge, CB3 0DG, UK. rdc26@cam.ac.uk
Mark L. Lewis: Department of Mathematical Sciences, Kent State University, Kent, Ohio, 44242 USA.
lewis@math.kent.edu

