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ORIGINAL ARTICLE

Interpreting results from Rasch analysis 1. The “most likely” measures coming 
from the model 

Luigi Tesioa,b , Antonio Caronnib , Dinesh Kumbharec,d and Stefano Scaranoa,b 

aDepartment of Biomedical Sciences for Health, Universit�a Degli Studi Di Milano, Milan, Italy; bIRCCS, Istituto Auxologico Italiano, Department 
of Neurorehabilitation Sciences, Ospedale San Luca, Milan, Italy; cDepartment of Medicine, Division of Physical Medicine and Rehabilitation, 
University of Toronto, Toronto, Ontario, Canada; dPain Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, 
Ontario, Canada    

ABSTRACT 
Purpose: The present article summarises the characteristics of Rasch’s theory, providing an original 
metrological model for persons’ measurements. Properties describing the person “as a whole” are key 
outcome variables in Medicine. This is particularly true in Physical and Rehabilitation Medicine, targeting 
the person’s interaction with the outer world. Such variables include independence, pain, fatigue, balance, 
and the like. These variables can only be observed through behaviours of various complexity, deemed 
representative of a given “latent” person’s property. So how to infer its “quantity”? Usually, behaviours 
(items) are scored ordinally, and their “raw” scores are summed across item lists (questionnaires). The lim-
its and flaws of scores (i.e., multidimensionality, non-linearity) are well known, yet they still dominate the 
measurement in Medicine. 
Conclusions: Through Rasch’s theory and statistical analysis, scores are transformed and tested for their 
capacity to respect fundamental measurement axioms. Rasch analysis returns the linear measure of the 
person’s property (“ability”) and the item’s calibrations (“difficulty”), concealed by the raw scores. The dif-
ference between a person’s ability and item difficulty determines the probability that a “pass” response is 
observed. The discrepancy between observed scores and the ideal measures (i.e., the residual) invites 
diagnostic reasoning. In a companion article, advanced applications of Rasch modelling are illustrated.    

� IMPLICATIONS FOR REHABILITATION 
� Questionnaires’ ordinal scores are poor approximations of measures. The Rasch analysis turns ques-

tionnaires’ scores into interval measures, provided that its assumptions are respected. 
� Thanks to the Rasch analysis, accurate measures of independence, pain, fatigue, cognitive capacities 

and other whole person’s variables of paramount importance in rehabilitation are available. 
� The current work is addressed to rehabilitation professionals looking for an introduction to interpret-

ing published results based on Rasch analysis. 
� The first of a series of two, the present article illustrates the most common graphic and numeric out-

puts found in published papers presenting the Rasch analysis of questionnaires. 
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The challenge of measuring a person’s behaviours and 
perceptions 

This article is the first of two companion articles on Rasch Analysis 
(RA) [1] addressed to rehabilitation professionals, and other clini-
cians interested in understanding published results based on RA of 
cumulative questionnaires (or “scales”). Scales were initially applied 
to measure psychological variables (starting, perhaps, from the 
Stanford-Binet I.Q. assessing “intelligence” [2]). Likely for this rea-
son, this scientific field is still named “psychometrics.” All areas of 
Medicine (including Physical and Rehabilitation Medicine – PRM) 
need to manage scales to measure patient-centred outcomes [3]. 
This is the case for pain, fatigue, independence, balance, mobility, 
continence, and cognitive capacities, to name a few. 

RA provides a theoretically sound solution to a person’s meas-
urement. However, because of its original conceptual approach 
[4], RA struggles to spill out of its circle of followers. 

Complementing the available literature 

Guidelines for publishing Rasch results are available [5–7]: how-
ever, these are more addressed to researchers than the lay reader. 
Examples of Rasch-based articles and books are given below in 
the “How to learn more” paragraph. In the typical medical reports, 
the Methods section needs to be expanded to describe these (still 
unfamiliar) Rasch statistics, thus burdening the manuscripts them-
selves. Unfortunately, the explanation of the Rasch technicalities is 
difficult enough not to allow the typical reader to attain a critical 
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appraisal of the results. Exhaustive books are available, but they 
require a relevant investment in time, assume more than elemen-
tary statistical knowledge, and are not (obviously) focused on 
rehabilitation issues. In a sentence, they are not tailored to the 
clinical needs of rehabilitation professionals. Therefore, a series of 
three articles were realised to fill this gap. A published article 
summarised why questionnaire scores might be misleading [8]. 
The present article focuses on how the problem can be solved: it 
describes the principles of an “ideal” scale obtained through 
Rasch modelling the original raw data. A second companion art-
icle also focuses on Rasch modelling but explores the model tech-
nicalities more in-depth [1]. 

Classical Test Theory is not enough: the “latent trait” 
approach and the Item Response Theory 

Why bother with questionnaire scores? After all, they provide 
numeric scores 

In questionnaires’ items, behaviours or perceptions deemed to 
represent a person’s variable are given numerical labels called 
“scores” (e.g., 0/1¼ absence/presence or, 0/1/2/3¼ severe/ 
moderate/mild/absent). 

In Classical Test Theory (CTT) [9–11], items’ scores are summed 
in the total questionnaire score to quantify the variable. The 
many flaws of this form of measurement are well known [12]. To 
the least, one should remember that numbers representing dis-
crete counts are not necessarily proportional to the variable’s 
amount. Counting individual oranges provides numbers not pro-
portional to their weight. In the same vein, on a scale of inde-
pendence walking, the difference 3 (“use of rollator”) � 2 (“with 
someone’s support”) does not necessarily mean the same sub-
stantial difference in independence represented by the difference 
4 (“fully autonomous”) � 3 (“use of rollator”). 

Searching for “latent” measures generating raw scores 

Do scores reflect measures or are they measures themselves? Two 
conflicting theoretical models 
For several decades, and still nowadays, the “latent trait” 
approach provided an innovative conceptual framework for meas-
uring a person’s variable [13–15]. In essence: (1) the person’s vari-
able is assumed to be “hidden/latent” within the person; (2) it can 
be observed only through a sample of potentially infinite behav-
iours. Therefore, based on observed scores, (3) inferences are 
necessary to estimate its amount [13,15,16]. This approach took 
the name of Item Response Theory (IRT). For CTT, the single score 
must be taken as the “truth” of that single observation [17]. By 
contrast, IRT adopts a probabilistic-inferential approach from 
scratch: the path from an item to a person’s single observed 
response is probabilistic. An error surrounds the estimates. Scores 
are (or they are supposed to be) ordered from “less-to-more” 
or vice versa, yet they remain arbitrary: “severe/moderate/ 
mild/absent” can be labelled 0/1/2/3 or 10/23.5/48/122, or 
A/B/C/D. 

The “item response theory”: scores as starting points to discover 
the latent measure 
Let’s consider only dichotomous items (no/yes, failed/passed) and 
numeric integer labels (i.e., the item’s score: 0/1). The “0” or “1” 
scores must be transformed into “the probability that one was 
observed.” This seems relatively easy to grasp, given that scores 
and probability both range from 0 to 1. However, their 

substantive meaning is different. A person facing a given item 
might have a 0.84 ± 0.03 probability of getting “1.” Still, the same 
probability might hold if the observable responses were labelled, 
say, 0/5, like in some items of the Barthel index of independence 
in activities of daily living. The reader needs to become familiar 
with the difference between the “observed” score (the response 
given to single items) and the “model-expected” score, i.e., the 
probability (coming from a statistical model) that a given 
response was observed. Also, the total score cumulated across 
items is transformed, in IRT jargon, into the person’s “measure.” 
The theory implies that the measures of quantities should be dis-
covered through inferences from the observed scores. This theory 
also needs to be substantiated in statistical models. Following 
these models, a mathematical analysis transforms the arbitrary 
“raw” scores into measures based on the response probability. 
The analysis also provides many other related indexes (e.g., reli-
ability, data-model fit, etc., as shown later). RA is often an 
umbrella term encompassing a measurement theory and statis-
tical models. A rigorous epistemic study should treat these as 
related yet distinct concepts [18]. 

An effort will be made here to use the term “theory” to high-
light the adherence of RA to fundamental measurement axioms, 
the term “model” to indicate the statistical equations stemming 
from the theory, and the term “analysis” to mean the calculations 
providing various measures and indexes. However, the umbrella 
term “Rasch Analysis,” so familiar in the medical literature, could 
not be entirely avoided. 

Rasch’s theory: discovering measures underlying 
numbers 

Rasch’s theory is usually considered part of the IRT. The theory’s 
name comes from Georg Rasch, a Danish mathematician (1901– 
1980). His statistical model, substantiating an innovative theory, 
was initially published in Danish in 1960, but it caught the eye of 
the psychometric community only after its publication in English 
in 1980 [19]. The community of rehabilitation professionals prob-
ably started considering the model only after a seminal article 
published in 1989 [20]. Nowadays, a family of “Rasch models” is 
available, compliant with the original theory. It is worth citing 
here, along with the original model for the analysis of dichotom-
ous items, models for the analysis of polytomous items (the 
“rating scale” and the “partial credit” models), and the “many-fac-
et” model that takes into account, beyond items and persons, 
additional players (e.g., the raters). The number of articles in 
indexed Journals is increasing [21]. 

The companion article [1] will give more information on the 
modelling procedures. It will also face the analysis of consistency 
between observed data and the modelled scale (the data-model 
“fit” issue). 

The Rasch theory is unique within the item response 
theory: a prescriptive, not a descriptive, theory 

The basic idea shared by all IRT models (RA included) is that the 
probability that a given person gets a given score in a given item 
is governed by the “ability” (b, the amount of any property/trait) 
of the person and the “difficulty” (d) of the item. Unlike other IRT 
models, however, the Rasch theory imposes that only ability and 
difficulty govern the response probability (see below). The Rasch 
theory implies that more able people have a higher probability, 
compared to less able people, to pass any items; and that more 
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difficult items have a lower probability of being passed, compared 
to easier items, by any person. 

Other IRT models complicate the model by considering the 
effect of different variables on the response probability. As an 
example, take the latent variable “knowledge of mathematics.” In 
a math test, a person more proficient in math is expected to pass 
items more difficult than those passed by a less proficient person. 
However, guessing or previous knowledge of one exercise, or 
other extraneous variables (e.g., tiredness), may affect the prob-
ability to complete the exercise correctly. 

Of course, a statistical model can be modified to improve its 
fit to observed data. This is done in some IRT analyses (see 
Supplemental Material, Note 1) but is strictly avoided in the RA. 
For this reason, according to some, Rasch’s theory lie outside the 
IRT family. 

In simple words, RA is prescriptive: it asks the data to fit the 
model, while other IRT are descriptive, asking the model to fit the 
data. This original standpoint can contribute to the scientific com-
munity’s resistance to RA [22], perhaps simply a variant of the 
well-known opposition of scientists to scientific discoveries [23]. 

Rasch theory asks for measures independent of persons 
and items 

In CTT, a sample of persons provides scores, and the distribution 
of the scores can be easily partitioned into “units,” e.g., percen-
tiles. This distribution (and what a “unit” means) is unavoidably 
sample-dependent. This may have consequences on the generalis-
ability of the findings. For instance, a person may “measure” in 
the 60th percentile when sample A is used for calibration but in 
the 80th percentile when sample B is used (if sample A persons 
are more proficient than those of sample B). Similarly, two per-
sons with the same ability might get different total scores when 
facing scales with other items (if the items of the two tests have 
different difficulties, albeit tackling the same variable). 

In his “separability” theorem, Rasch demonstrated [24] that 
measures become independent from the particular sample of 
items and persons if the data conform to his model, only. It is 
worth highlighting that an “if” reservation works in the back-
ground in every science, including physics: what “if” a plastic ruler 
gives different measures of the same object according to local 
temperature? Ideally, measures must be linear (what is meant by 
2-1 equals what is meant by 1923–1922) and unidimensional 
(unbiased by extraneous variables). Of course, no measure is 
entirely linear or unidimensional in the real world. Again, Rasch’s 
model appeals to general measurement axioms and it estimates 
(in terms of probability) the discrepancy between empirical items’ 
scores and model-expected scores. Under this perspective, differ-
ences with respect to measurement in “hard” sciences fade away 
(see also below the paragraph titled “Limiting and widening the 
scope of the present and the companion articles”). 

Rasch theory turned into a statistical model: a simple 
yet very demanding, equation 

The very intuitive Equation embodying the Rasch model is: 

P passð Þ ¼ f ðb � dÞ (1)  

This can be read as: the probability P that a “pass” is observed 
(i.e., that the higher of two alternative scores is deserved) is “a 
function of” the difference between ability and difficulty, and only 
of this difference. This function needs to be an increasing mono-
tonic one, of course. “Probability to get score 1” (or whatever 

label stands for a quantity of the variable) is the “expected score” 
(reaching probability 0 or 1 asymptotically). Suppose a person is 
proficient in math and expected to pass a very easy item with a 
probability of 0.94: what if he/she failed (observed score ¼ 0)? Is 
this discrepancy statistically significant? The difference between 
expected and observed scores should stimulate diagnostic 
reasoning. 

Modelling probabilities to pass. The “item characteristic 
curve” – ICC 

How to model the so far generic f function relating the ability- 
difficulty difference to the “pass” probability to a given item? The 
“function” f in Equation (1) can be rather complicated and may 
change according to different IRT models. Details will be provided 
in the companion paper [1]. 

The Rasch model summarised by an equation estimating 
probabilities to pass or fail 

In the model proposed by Georg Rasch [19,25], the function is 
represented graphically by an S-shaped curve (Figure 1, panels A 
and B) asymptotically reaching 0 or 1 when (b � d) goes – 
orþ infinity, respectively. Figure 1 shows the so-called “item char-
acteristic curves,” ICC. Figure 1(A) represents the more straightfor-
ward case for dichotomous items (0/1; no/yes; fail/pass), i.e., the 
issue considered by the original Rasch model. 

The ordinate gives the probability of getting a score of 0 or 1 
(e.g., “fail” ¼ 1 - P; or “pass” ¼ P) as a function of the difference 
between a person’s ability and the item’s difficulty (b � d), on the 
abscissa. In Figure 1(B), the ICCs for a series of dichotomous items 
are represented (only the probability to “pass” is displayed). The 
units on the abscissa, likely unfamiliar to the reader, are called 
“logits” (below, in this figure). 

The weird “logit” units: why complicate your life? 

A logit is the natural logarithm of the pass/fail ratio (the odds, a 
quantity familiar to bookies and gamblers): 

logit ¼ ln P= 1 � Pð Þ
� �

(2)  

In Equation (2) above, P¼pass probability and (1 - P) ¼ fail 
probability, when only pass or fail are foreseen. Probabilities are 
confined between 0 and 1, but the difference between ability and 
difficulty may range from – toþ infinity. Logits also may go – 
toþ infinity, thus allowing a linear relationship with the b � d dif-
ference. Logits (not probabilities) are the conceptual equivalent of 
metric units on a ruler. The perhaps counterintuitive need for 
transforming probabilities into odds and finally into logits is moti-
vated in the Supplementary Material, Note 2. 

The Rasch model is summarised by an equation estimating 
linear measures of ability and difficulty 

In RA, Equation (1) takes the form: 

ln P= 1 � Pð Þ
� �

¼ b � d ¼ logit (3)  

The logits represent the measurement units. The logit measure 
(of items or persons) is also called “calibration” in the Rasch litera-
ture. In everyday language, calibration compares a measure to a 
traceable standard. A more proper term for the logit unit should 
be “calibrator” because it represents the bar over which ability 
and difficulty are confronted. Here, the lay reader only needs to 
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consider that the logit unit remains invariant along the variable’s 
span. Suppose a patient reduces his/her disability from 3 to 1 
logit. This improvement is the same as another patient passing 
from 6 to 4 logit. Logits work like �C and �F (as well as cm 
and kg). 

When “pass” and “fail” have the same probability of 
occurring: understanding the “threshold” concept as a 
measure of item difficulty 

The left panel in Figure 1 shows that the more score 1 is prob-
able, the less score 0 is probable, given that only 1 or 0 can be 
observed. The b � d value at which the two curves cross, i.e., the 
adjacent scores are equally likely, is called a “threshold” (more 
precisely, these 50-50 thresholds are referred to as Andrich’s 
modal thresholds, or s parameters). In dichotomous items (like 
those in Figure 1(A,B), the threshold marks a 50% pass probability, 
meaning that ability and difficulty are the same sizes. Algebra tells 
that if b ¼ d, then b � d ¼ 0 and ln(P/(1 � P)) ¼ 0, so that 
P/(1 � P) ¼ 1, i.e., P ¼ (1 � P). A 0-logit difficulty value is conven-
tionally set at the mean value across thresholds on a scale made 
by several items. For illustrative purposes, the item in panel A has 
its threshold at 0 logits. Of course, not all items should have their 
thresholds at 0 logits on a scale. Panel B shows the ICC of three 
items. Item 2 is the exact item represented in panel A. Item 1 is 
less difficult, and item 3 is more difficult than item 2. 
Correspondingly, their thresholds (i.e., a 50% pass probability) are 
found at lower and higher logit values (higher persons’ ability lev-
els). However, the curves’ slope (i.e., the item’s discrimination, the 
item’s capacity to assign different probabilities to persons with 
varying levels of ability) is the same across all items, so the curves 
are parallel. This is why the Rasch model is also called “1-PL” 
(1-parameter logistic) model by some authors. This property is 
peculiar to the Rasch model within IRT models (see 
Supplementary Material, Note 1). This graph indirectly shows that 
for any given ability – difficulty difference, probabilities to pass 
are progressively lower for items 1, 2, and 3, respectively: a strin-
gent and peculiar requirement of Rasch modelling, which is in 
agreement with the intuitive expectation that the more difficult is 

an item, the lower is the probability of passing it, no matter how 
“able” the subject is. 

Understanding outputs from Rasch analysis: the 
“category probability curves” 

Items can be polytomous, i.e., graded on discrete 
levels (“categories”) such as - imagine an item in a pain scale 
- severe/moderate/mild/absent ¼ 0/1/2/3, and the like. As antici-
pated, the labelling of categories is irrelevant, provided they are 
conceived as quantitatively ordered (e.g., from small to large, 
from rare to frequent, etc.). RA re-scores responses as 0/1/2/3, 
etc., and estimates thresholds across categories. When the prob-
ability of getting a score of 1 increases, the probability of getting 
a score of 0 decreases, etc. The combined graphic effect is a “hilly 
pattern,” like the one depicted in Figure 2(B): the Category 
Probability Curves (CPC), a visual output widespread in Rasch’s 
published articles. 

Figure 2 refers to the FIMTM-Functional Independence Measure 
questionnaire (motor subscale), an instrument widely adopted 
worldwide [26] (Figure 2(A)). The FIM includes 13 items concern-
ing self-care, sphincter management, mobility/transfer, and loco-
motion. Five more items cover communication and social 
cognition domains, not considered here [27]. According to a 
detailed manual, each item can be scored from 1 to 7: the higher, 
the greater the person’s independence in daily activities. The 
scores from 300 stroke patients at discharge from an inpatient 
rehabilitation unit were analysed (first author’s data, see Legend 
for details). In panel B, the curves give the model-expected proba-
bilities that a given category is observed (on the ordinate) as a 
function of the difference between the subject’s ability and item 
difficulties (on the abscissa). The model (Andrich’s “rating scale” 
Rasch model, see the companion paper for details) assumes that 
the pattern of category difficulties is the same across items. The 
mean threshold difficulty in the graph is “centralised” at 0 logits 
so that the same chart represents all items. Of course, lower abso-
lute probabilities are expected for each category when more diffi-
cult items are faced by a given patient (not illustrated). It can be 
seen that the categories work as intended: on average, higher 

Figure 1. Item characteristic curves (ICC). Graphs show the ICC of dichotomous items according to the Rasch model. (A) The panel shows the relationship between 
the probability that response 1 (the P label; increasing curve) or 0 (the 1 � P label; decreasing curve) is observed, on the ordinate, as a function of the difference 
between the person’s ability and the item’s difficulty (b � d), on the abscissa. The greater the person’s ability, the higher the probability of observing 1, and the 
lower the probability of observing 0. The ability value at which the curves cross (both responses are equally likely) is called a “threshold.” When b ¼ d there is the 
same probability of observing either response (here, 50%). Probabilities reach 0 or 1 only asymptotically. (B) Three dichotomous items within a scale are represented 
(probability to get a score of 1 only; decreasing curves are not shown). Item 2 (the same represented in panel A) is more difficult than item 1, and item 3 is more dif-
ficult than item 2. The curves run parallel (not necessarily at equal distances on the abscissa). Whichever the person’s ability, the probability of observing response 1 
is lower the more difficult the item is.  
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scores (from 1 to 7) are more “difficult,” i.e., they represent “more” 
independence and require higher abilities to be achieved. In add-
ition to categories, thresholds are also “ordered.” The boundary 
between scores 1 and 2 marks a lower ability level than the 
boundary between scores 2 and 3, etc. The graphic counterpart is 
that all categories “emerge” over the adjacent categories for at 
least some range of ability levels (a limited one for category 2, a 
large one for category 6, etc.). 

It is interesting to consider the numeric counterpart of Figure 
2(B). It must be highlighted that the “difficulty” of the category is 
the mean of the model-estimated ability levels of persons select-
ing a given category across all items (Table 1). Different software 
programs may provide these values in different graphic outputs. 

It may be seen that thresholds are “ordered,” not less than the 
average measure of the categories. What “more” or “less” means 
is consistent with their intended ordering. 

Disordered thresholds can coexist with ordered 
categories: a counterintuitive property of the model 

In building a new scale or testing the validity of an existing scale 
through RA, Andrich’s thresholds may often appear disordered, 

i.e., not ordered “from-less-to-more” as intended, even when the 
difficulty of the categories remains ordered. This difference may 
originate when a category is seldomly chosen by respondents, a 
condition that can happen for several reasons, including a poor 
conceptualisation of the item’s categories. For instance, is 
“sometimes ¼ 2” perceived sharply by the rater as “more” of a 
given property compared to “occasionally ¼ 1”? Does the 
(ambiguous but popular) “don’t know” category represent an 
intermediate quantity across adjacent categories? Typically, one or 
more of the “hills” get submerged in such instances. 

Figure 3(A) gives the CPC of items in a rating scale of health- 
related Quality of Life in Strabismus (AS-20, revised version) [28], 
applied to 584 adults. 

The original scale consists of 20 items: illustrative items are 
“I feel inferior to others because of my eyes” and “I need to 
take frequent breaks when reading because of my eyes.” Items 
are scored as never ¼ 0, rarely ¼ 1, sometimes ¼ 2, often ¼ 3, 
always ¼ 4. Therefore, on this scale, the higher the score, the 
worse the condition. Something unexpected pops up in Figure 
3(A). Category 1-rarely did not emerge in the initial analysis 
(panel A). The never-rarely (0-1) threshold (the logit value at 
which the corresponding curves cross) flagged a worse condi-
tion than the rarely-sometimes (1–2) threshold. At the same 
time, it can be caught by eye that, on average, the ability 
measures subtended by the various categories are ordered. 
People responding “0” are, on average, less able than people 
responding “1,” who are less able than people responding “2,” 
etc. Ordered categories and disordered thresholds can thus 
coexist. 

According to some scholars, threshold “disordering” is a minor 
problem if the average measures subtended by the categories 
remain ordered [29]. However, Andrich and other researchers 
affirm that thresholds should also be ordered to conclude that 
the item’s category structure functions as intended [22]. There is 
an actual controversy about these aspects of Rasch modelling. 

Figure 2. Items of the functional independence measure. (A) The FIMTM is an 18-item questionnaire scoring the subject’s independence in daily activities. Scores may 
range from 1 to 7, the higher the patient’s independence in daily life. The 13 items A to M can be used as a “motor” subscale (score range: 13 to 91); the five items 
N to R can be used as a “cognitive” subscale (score range: 5 to 35) [26]. (B) The category probability curves of the FIM items. Given that there are n scoring options 
(categories), here there are n - 1¼ 7 - 1¼ 6 “thresholds” (ability levels at which adjacent scores are equally likely). The 13 “motor” subscale items (A to M in panel A) 
were only considered. Scores were recorded in 300 post-stroke patients (157 men), mean age 69 (SD: 14) years, at discharge from an inpatient rehabilitation unit (first 
author’s data). In this analysis, all items are expected to present the same pattern of category difficulties (Andrich’s “Rating scale” Rasch model, see the companion 
paper). The probability of observing a given score (on the ordinate) is plotted against the difference between the patient ability and the item difficulty (logit units, on 
the abscissa). The mean difficulty level of the six thresholds is conventionally assigned (“centralised”) at 0 logit measure to foster comparisons of the thresholds’ pat-
terns across items.  

Table 1. FIM motor sub-scale (see Figure 2). 

Category 
Adjacent  

categories 
Threshold difficulty 

(logits) 
Category measure 

(logits)  

1  – –   � 3.66 
2   1–2   � 2.14   � 2.38 
3   2–3   � 1.99   � 1.56 
4   3–4   � 1.38   � 0.69 
5   4–5   � 0.33   0.64 
6   5–6   1.40   2.96 
7   6–7   4.45   5.58  

Notes: First author’s data. From left to right, the columns give the category 
labels, the pairs of categories between which thresholds are placed, the thresh-
olds’ values, and the average level of ability of persons selecting any given cat-
egory (the “mean” category difficulty, or category measure), respectively.
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How to manage disordered thresholds 

Disordered thresholds flag that the corresponding submerged cat-
egory is never the category most likely selected by respondents 
(here, Category 1). In other words: the submerged category is never 
modal. A remedy for both disordered categories and thresholds 
consists in assigning to the submerged category the score of an 
adjacent category (“rescoring”), thus “collapsing” (a typical term in 
Rasch jargon) adjacent categories. The authors of the questionnaire 
represented in Figure 3 “re-scored” category 2 by assigning score 
1. Categories 1 and 2 were “collapsed” so that the scoring options 
were changed a-posteriori on the observed data from 01234 to 
01123. Unfortunately, this made category 2 (former category 3) to 
submerge (not illustrated). Then, the authors also collapsed the 
new categories 2-often and 3-always: the scoring options, therefore, 
changed their pattern from 01234 to 01122 (0¼ never; 1¼ rarely or 
sometimes; 2¼ often or always). Categories remained ordered, 
thresholds became ordered (numeric logit values of thresholds not 
shown), and all categories emerged (Figure 3(B)). 

The Rasch ruler 

Again, let’s suppose we computed the b and d parameters in logit 
units for the respondents and the 13 items of the motor-FIM 
questionnaire, respectively (same sample of patients as in Figure 
2). To assess the test functioning, one can start looking at the so- 
called “Rasch ruler” given in Figure 4. 

From bottom to top, items of increasing value are aligned in 
panel A, like ticks on a ruler, on the right. Ticks are irregularly 
spaced, like in a ruler where some ticks were cancelled here and 
there. Some items share the same difficulty level, indicating 
potential redundancy. Persons are aligned on the left of the ruler. 
Panel B is zooming (for clarity) on the upper ruler segment (0 log-
its or higher). 

One may capture, at a glance, at least three properties of the 
scale:   
a. the matching between average persons’ ability and mean 

item difficulty (“targeting”). 

b. The matching between the density of ability and difficulty 
levels. “Gaps” in the ruler imply a less precise estimate of 
ability levels (i.e., lower discrimination). 

c. The spread of the scale. Ticks of the ruler (thresholds) should 
span the ability levels of most persons in the sample. In out-
come studies, the spread of the ticks should also encase their 
ability changes. For instance, persons admitted to an acute 
rehabilitation inpatient unit show a spread of FIM measures 
in the order of 5 to 8 logits and an average increment of 
about 2 to 3 at discharge. 

The ruler ticks: thresholds, not items 

From the right panel of Figure 4, the ruler’s “ticks” are the thresh-
olds from Rasch modelling. Dichotomous items, in which item 
and threshold “difficulty” are coincident, can be seen as a particu-
lar case of polytomous items. Rasch modelling provides thresh-
olds; therefore, dichotomous and polytomous items (also with 
different categories) may coexist on the same scale. 

Numbers underlying graphics 

Many summary numeric indexes are usually shown and vary 
according to the software adopted. The floor/ceiling effect can be 
easily captured by the number of “extreme” scores (here, scores 
13 or 91), which do not enter the RA for estimating the items’ 
calibration. Their measure cannot be calculated anywhere beyond 
the scale boundaries. One person scored 91, and 30 scored 13 
(overall, 10.1% of the sample). No item was scored 1 or 7 by the 
entire sample. 

Table 2 provides refined numeric indexes deepening the infor-
mation given by the graphic ruler. 

In A, the spread of ability (for persons) and difficulty levels (for 
items) are given in standard error (SE) units (“separation”). For the 
sake of precision, SE, here, is the standard error of measurement, 
i.e., the standard deviation of a hypothetical distribution of meas-
ures centred on their “true” unknown value, a parameter quantify-
ing the uncertainty of a single measurement. 

Figure 3. Category probability curves of the items of the Adult Strabismus-20 questionnaire. Questionnaire items (20) are scored 0 to 4; the higher, the worse the 
condition. The category labelled 1 is submerged so that the 0–1 Andrich’s threshold is trespassed by persons with a worse condition than persons trespassing 
the 1–2 threshold. After collapsing some categories (the scoring pattern changed from 01234 to 01122), the thresholds became ordered (after [28]). See the text for 
the scale’s description.  
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Understanding Rasch reliability 

The general definition of reliability is the ratio of true variance to 
the observed (i.e., trueþ error) variance [17]. Stated more simply, 
it is an index of how much the differences across measures reflect 
real differences rather than measurement errors. In RA, this type 
of reliability corresponds to the “separation reliability,” analogous 
to the Cronbach-a index of internal consistency computed on raw 

scores. Cronbach-a, however, may be inflated by a high number 
of items and by subsets of items correlated within, but not 
between, subsets [30], thus concealing multidimensionality 
(a problem discussed later on). The Reliability index allows 
computing how many “strata” of statistically distinct values 
can be discerned (means of adjacent “strata” should differ by 3 SE 
if significance is set at p< 0.05). In practice, a Reliability > 0.7 is 

Figure 4. The “Rasch ruler.” The linear “ruler” generated by the Rasch analysis of FIM scores from stroke patients discharged from an inpatient rehabilitation unit (first 
author’s data). The graphic output from WinstepsVR Rasch Measurement software (4.4.5, www.winsteps.com), one of the leading software for running the Rasch ana-
lysis, is displayed. Left panel. The vertical line with horizontal, equally spaced dashes represents the independence continuum, i.e., the variable measured by the FIM 
(lower end: low independence; top end: high independence). Like for rulers’ ticks, leftmost numbers (from � 4 to þ6) mark the logits’ position along the independ-
ence line. The position (i.e., measure) of groups of two (.) and three (#) persons is given along the independence line. Note that dots and hashtags show the fre-
quency distribution of the patients’ measures. The “M” on the left of the independence line gives the person’s mean measure. “S” and “T” give the person’s one and 
two standard deviations, respectively. Similarly, “M,” “S,” and “T” to the right of the independence line show the mean, one and two standard deviations of the items’ 
measures. Note that 0 logits correspond to the items’ mean measures conventionally. Letters from A to M on the right report the position of the FIM items along the 
independence line (i.e., their calibration, “difficulty,” from bottom to top; see Figure 2 for legend). Right panel. This inset focuses on the positive portion of the ruler 
(from 0 to 6 logit) and gives the thresholds between categories. For instance, H.6 indicates the threshold between scores 6 and 7 in item H, “Bowel management.” A 
total of 269 persons are represented out of 300. Thirty-one persons were excluded because they received extreme scores (i.e., 13 or 91, see text).  
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needed to distinguish 2 “strata” of measures [31,32], thus allowing 
us to reject the hypothesis that all estimates reflect randomness. 
In the FIM example, persons’ reliability is very high (0.98). 

Researchers new to RA may wonder how a “Reliability” index 
can be computed without replicating measurements, the basis for 
variance estimation. This feature, shared with Cronbach-a, is 
explained in the Supplementary Material, Note 3. 

The consistency between observed and expected 
scores: the “data-model fit” issue 

A critical distinction must be made between the parameters char-
acterising the model, illustrated so far, and the data set from 
which the model is “extracted.” Given a dataset, Rasch software 
invariably returns ICCs, CPCs, and a Rasch ruler. In the Authors’ 
experience, the software almost always displays at least 2 “strata” 
of persons’ ability levels. The reader should be critical and ask: do 
the data at hand justify the model? Single strings of scores or 
even single scores (assigned from a subject to the series of items 
or obtained by an item from the series of subjects) can be 
flagged as “unexpected” (“misfitting,” as per the Rasch jargon), 
given the ability of the subjects and the difficulty of the items. 
This may be the case for able subjects missing easy items or a dif-
ficult item being passed by low-ability subjects. RA is very effi-
cient in highlighting even the most subtle data-model misfit. 
Conceptually, misfit raises the issue of “content” validity or, stated 
otherwise, the issue of “what” is measured rather than the issue 
of “how much” [33]. When misfit affects most items, they are sus-
pected to reflect different variables. As an alternative, the very 
existence (outside the analyst’s mind) of the variable itself must 
be suspected [34]. This complex issue goes beyond the scope of 
the present article and will be partially faced in the companion 
article. In any case, misfit is far from rubbish. Misfit stimulates 
diagnostic reasoning and generates a challenge: when is misfit 
“too much”? Should misfitting observations, or even misfitting 
subjects, or items, be ignored or removed from the analysis? 
Should the scoring structure of polytomous items be modified? 
The analyst’s choices are partially subjective. The intricate and 

crucial issue of the data-model fit will be addressed explicitly in 
the companion article. 

The “response ogive” and the scoring pattern plot 

Figure 5(A) shows another typical graphic output of Rasch 
software. 

The motor-FIM scale is analysed (same sample of patients as in 
Figures 2 and 4). On the abscissa, the ability-difficulty values are 
given (logit units). From the bottom to the top panels, the ordin-
ate shows the model-expected total score (± SE) of the 13 FIM 
items in order of increasing difficulty (bottom to top) and the fre-
quency distribution of patients, respectively. As a note here, in RA 
the SE corresponds to the standard error of the measurement 
(not to be confounded with the standard error of the mean, 
which is also abbreviated with SE). The S-shaped curve highlights 
the concept that the closer the score is to the minimum or the 
maximum total score, the less the scores are allowed to differ 
across persons with different ability levels. Each category is shown 
over the corresponding logit measure in the middle panel. The 
vertical bars mark Andrich’s thresholds, i.e., the ability levels mak-
ing adjacent categories equally likely. In this “Andrich’s rating 
scale” model, the distance pattern across categories is the same 
for all items: the threshold sequence is shifted to the right, to a 
greater extent the more difficult the item is. 

Panel B provides an example of applying this graphic output 
to the visual analysis of the consistency of responses to the 
model expectations (“fit”) in a single person scoring 46/91 on the 
motor-FIM scale (range from 13 to 91). From the observed score 
on the ordinate (dashed horizontal segment), the corresponding 
Rasch measure can be easily found on the abscissa (here, � 0.96 
logits, dashed vertical line). The vertical grey band encases the 
measure ± SE (here, 0.28 logits). The middle panel allows seeing 
the most likely individual score for each item. The squares sur-
round the expected scores while the circles surround the unex-
pected ones (in the companion article, numeric values of “fit” will 
be given). 

The “expected” score can be estimated once the logit measure 
is known. This may be useful when persons may only respond to 

Table 2. Numeric indexes from Rasch analysis (RA) of 300 FIM records (see Figures 2 and 4). 

A) Summary indexes B) Item statistics C) Statistics of 6 representative persons  

Separation Reliability Strata Entry label 
Total  
score 

Total  
count Measure Model SE Entry label 

Total  
score 

Total  
count Measure Model SE  

Persons   6.3   0.98   8.7 K   970   300   1.46   0.08 448   67   13   1.07   0.37 
Items   12.8   0.99   17.5 M   985   300   1.37   0.08 557   64   13   0.68   0.35     

E   1060   300   0.91   0.08 464   62   13   0.45   0.33     
F   1063   300   0.89   0.08 493   61   13   0.34   0.33     
C   1074   300   0.82   0.08 412   58   13   0.04   0.31     
L   1146   300   0.38   0.08 499   56   13 � 0.15   0.30     
D   1172   300   0.22   0.08 Extreme persons: 31     
J   1265   300   � 0.38   0.08          
B   1271   300   � 0.42   0.08          
I   1340   300   � 0.88   0.08          
G   1393   300   � 1.25   0.08          
H   1412   300   � 1.38   0.08          
A   1459   300   � 1.72   0.09          

Extreme items: 0       

Notes: Extreme items (or persons): number of items (or persons) discarded from the analysis because they achieved minimal scores, only, or maximal scores, only. In A, 
the overall Reliability of the modelled scale is given (see text for details). In B, the difficulty measures of the items are shown in descending order from top to bottom. 
Entry label: order of items in the questionnaire (from A to M, see Figure 2(A) for labelling). Total score¼ sum of scores obtained by the items across the whole sample 
of analysed persons. Total count: number of persons tested (including “extreme,” see below). Measure¼ item difficulty estimated through RA (logit units). Model SE: 
standard error of measurement, estimated by the model. In C, the same information is given (as in B) for six representative persons of intermediate ability levels. Total 
count¼ number of items answered (including “extreme” items, see below). Persons are listed in order of descending ability, from top to bottom.
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some of the items, which makes nonsense the total score in CTT. 
RA can estimate very well the missing responses. This point will 
be developed in the companion article [1]. 

How many items and thresholds? 

More is not necessarily better 

Keeping stuck to the “metric ruler” metaphor, adding items 
(and/or thresholds) to an original questionnaire may (1) increase 

the spread of the scale if the new “ticks” lower the floor and/or 
raise the ceiling of the scale or (2) the new “ticks” are nested 
between the existing ones, thus allowing greater accuracy of 
measurement or discrimination. However, this is not the case if 
passing the new thresholds implies the same ability level as pass-
ing the existing ones [35,36] (see the overlapping thresholds in 
Figure 3). The raw score is increased, but not the ability measure. 
Redundancy is only obtained, burdening the questionnaire (this 
problem is exemplified in [37], Figure 1, and [8], Figure 3). 
Redundancy is a double-edged blade. On the one edge, it can 

Figure 5. Rasch modelling of the expected responses to the items of the motor-FIM scale (see Figures 2 and 4). In panel A, the bottom graph gives the “response 
ogive,” i.e., the S-shaped function relating the total expected raw score (ranging from 13 to 91, on the ordinate) to the person’s ability level (on the abscissa, logit 
units). The score-to-measure function (continuous line) is surrounded by the standard error estimates (dotted lines). The histogram in the top panel gives the fre-
quency distribution of abilities across the sample of persons. The middle panel provides each item’s seven response options (categories) as a function of the person’s 
ability. Items are listed from bottom to top, from easiest to most difficult. On each item, scores may range from 1 to 7. The “j” symbols mark Andrich’s thresholds 
between adjacent categories. Category 2 is most likely only across a minimal span of ability levels (see Figure 2B), so it could not be visualised between the adjacent 
“j” symbols. In panel B, this graphic representation is applied to the visual analysis of the “fit” of a person scoring 46 and measuring � 0.96 (± 0.28) logits (see text). 
Panel obtained by combining graphic outputs from R software, 3.6.2.  

INTERPRETING RASCH ANALYSIS 1 9 



increase the measure’s reliability (scoring more behaviours reflect-
ing the same ability level adds to your confidence in the meas-
ure). On the opposite edge, adding items and thresholds can bear 
the risk of introducing extraneous dimensions, increasing the 
data-model misfit. 

Less is not necessarily better 

More and more articles are proposing “short forms” of original 
questionnaires [38]: item categories and whole items are removed. 
Nevertheless, too few “ticks” along the ruler may increase the 
uncertainty surrounding the ability estimate (hence, the informa-
tion provided by the measurement and its generalisability). This 
trade-off should be carefully considered [39]. 

Three good reasons to prefer Rasch-consistent 
measures to raw scores 

Striving to fit the Rasch model may seem more like a statis-
tical exercise than an effort of practical utility. Let’s summar-
ise a few good reasons which make the effort worth it. 
These reasons will receive heavier support in the companion 
article.  
1. RA provides equal-interval (linear) units. There is also evi-

dence that Rasch-transformed scores allow a higher accuracy 
(i.e., higher discrimination) in measuring the subject’s ability 
levels [35,36,40–44]. 

2. RA can provide robust measures even in case of missing scores. 
3. RA can tell you how trustworthy (i.e., “model-expected”) the 

score assigned to a single item is. Unexpected scores may 
foster diagnostic investigation. For instance, unexpectedness 
(data-model “misfit”) may come from scoring errors, guessing, 
individual or group peculiarities, etc. 

Four hints to the lay readers: the figures and tables 
they should look at, first 

Different software packages may provide different graphic and 
numeric outputs. This issue is faced in the companion paper. 
However, all packages offer the same basic information about the 
scales’ properties, seen from the Rasch perspective.   
1. The most immediate representation of the scale’s functioning 

is the Rasch “ruler” (Figure 4). According to the intuitive 
“ruler” metaphor, the spread, the precision, and the targeting 
of the scale with respect to the sample of persons appear 
immediately. For polytomous items, all the thresholds (the 
“ticks” of the ruler) should be provided. 

2. The numeric counterpart of the ruler is given here in Table 2, 
columns A and B. Column A provides the discrimination of the 
“ruler” in statistically discernible units (here, “separation” and 
“strata”) and its reliability. In essence, data in Column A answer 
the question: do the logit values of persons’ and items’ meas-
ures differ statistically from their overall, respective means? 
Significance is an on-off, risky cut-off. Complementing signifi-
cance indexes, other indexes give the “amount” of spread 
around the mean. In general, persons’ reliability > 0.8 is 
deemed acceptable. Column B is even more interesting: it pro-
vides the items with their measures (the main ruler’s ticks) 
and their SE. Items “fit” to the model is also commonly shown 
next to their calibration (not reported here; see the compan-
ion paper). Bulkier tables can also give the logit values (and 
SE) of the thresholds, i.e., the minor ruler’s ticks. A look at per-
sons’ measures may also be enlightening (column C), even if 

rarely reported in published papers. The number of people 
getting “extreme” scores is a valuable index of the scale’s tar-
geting. A person’s “misfit” may also stimulate diagnostic rea-
soning (see the companion paper). 

3. The Category Probability Curves represent the items’ catego-
ries functioning for polytomous items (see Figures 2 and 3). 
The spread of and the relative distancing across categories is 
made evident, as well as the threshold disordering, if any. 
The numeric counterpart is given by a table analogous to 
Table 2, column B, but referring to categories rather than 
items. These tables provide the average measures of people 
selecting any given category (from which the categories’ 
order can be checked), their SE, and the values of the thresh-
olds between adjacent categories. 

4. Once the scale looks promising, the clinician should ask: can 
I use this scale even without Rasch software? The “score-to- 
measure” conversion graph and table should answer this 
question. The unique requirement is that no scores are miss-
ing. This graph is shown here at the bottom of Figure 5. If 
the total raw score is available, the linear “measure” of the 
person, and his/her SE, are easily found. Usually, a numeric 
table accompanies the S-shaped graph to ease this conver-
sion. If the item thresholds map is overlapped (see Figure 5, 
right column, middle panel), the “fit” of the subject’s scores 
can also be estimated by eye. The “expected” scores of the 
subject in each item can be calculated through the score-to- 
measure conversion. The discrepancy between the observed 
and the expected items’ scores strikes the eye, with no need 
for applying Rasch software. 

Limiting and widening the scope of the present and 
the companion articles 

The present article deals only marginally with some issues rele-
vant to the understanding of Rasch modelling and - of more 
importance here - to the critical appraisal of published Rasch- 
based articles. Perhaps the main practical problem needing fur-
ther highlighting is the wide margin of choice left to the Authors 
in deciding (1) which kind of Rasch model to adopt in the ana-
lysis, (2) how to face any disordered category or threshold, and 
(3) how to face the inevitable data-model misfit. The reader will 
be further guided through some more Rasch technicalities in the 
companion article to be more critical about these points. 

As a concluding remark, it is worth stressing that becoming more 
curious about Rasch modelling can be rewarding from a more gen-
eral, cultural perspective. The Rasch theory and models must be 
encased within the general framework of measurement theory, a 
philosophical, not less than a mathematical/physical argument. 

The Rasch theory offers a bridge between the measurement in 
human biology and a person’s behaviour in Medicine [45]. The 
Rasch models pave the way for a common metrological frame-
work between social and physical sciences [46,47]. 

How to learn more 

Beyond articles already cited in the previous paragraphs, further 
readings (a very concise list of examples) are suggested here. 
Advanced guidelines for Rasch authors will be mentioned in the 
companion article. 
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Journal articles 

The argument of framing Rasch’s theory and models within the 
broader metrology domain is treated in [48]. 

The “latent-trait” approach is summarised in [13]. 
The general item-response theory is explained in [10]. 
A simple introduction to Rasch Analysis can be found in [37,49]. 
Examples of Rasch articles of methodological nature, yet 

addressed to health care professionals, are also available [50–52]. 
Many Rasch articles address various clinical conditions 

[43,52,53]. 
Of particular interest here, many articles face the disability 

assessment and the rehabilitation outcomes [54–59]. 

Dedicated journals 

These are the Journal of Applied Measurement and Rasch 
Measurement Transactions. 

Dedicated web portal 

Relevant information can be found at www.rasch.org. 

Books 

At least the following books should be cited here:  
Andrich D. Rasch models for measurement. Newbury Park, CA: Sage 

Publications, 1988. 
Andrich D, Marais I. A course in Rasch Measurement Theory. 

Measuring in the Educational, Social and Health Sciences. 
Singapore: Springer Nature Singapore, 2019. 

Bond T, Yan Z, Heene M. Applying the Rasch model: fundamental 
measurement in the human sciences. 4th ed. London/New York: 
Routledge, 2021. 

Boone WJ, Staver JR, Yale ML. Rasch Analysis in the Human 
Sciences. Dordrecht: Springer, 2014. 

Bang Christensen K, Kreiner S, Mesbah M (eds). Rasch Models in 
Health. Hoboken, NJ: John Wiley & Sons, Inc., 2013. 

Software 

Most relevant software packages now include Rasch routines. 
Specific software programs are popular within the Rasch commu-
nity (for a tentative list, see rasch.org/software.htm, accessed 12 
August 2022). The issue of differences across software packages is 
dealt with in the companion paper. 

Concluding remarks 

Rasch’s theory and modelling provided a formal solution to the 
many problems caused by raw scores and proved empirically to raise 
the metric properties of questionnaires. Questionnaires represent a 
hard challenge in measurement theory and practice: persons meas-
ure persons, and, with respect to the physical measures, the uncer-
tainty of results is higher, and the sources of uncertainty may be of 
various kinds. Problems may arise in clinical practice from the need 
for dedicated software and for the frequent omission of item and 
thresholds calibrations in the published scales, which are instead 
necessary for obtaining precise measures from newly collected ques-
tionnaires (see the Supplemental Material, Note 4 for details on the 
“anchoring” procedure). Margins of decisions are (correctly) left to 
the analyst in extracting and interpreting the results. The companion 
article will illustrate different Rasch-compliant models and more 

sophisticated metric applications. Hints to avoid misuse of the mod-
els will be proposed. 
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