HYPERINTENSIONS FOR PROBABILISTIC
COMPUTATIONS

GIUSEPPE PRIMIERO
Logic, Uncertainty, Computation and Information Group
University of Milan, Italy
giuseppe.primiero@unimi.it

Abstract

HTLC, for Hyperintensional Typed Lambda Calculus, is an
extension of the typed A-calculus with hyperintensions and re-
lated rules, introduced in [II]. This contribution introduces
HTLC,, which adapts the former to hyperintensions for non-
deterministic processes. We formulate appropriate conditions
for reasoning with such objects, discuss its metatheory and con-
clude with some observation comparing it with the semantics of
Transparent Intensional Logic.

1 Introduction

Hyperintensions, as concepts which distinguish between necessarily
equivalent contents, are enjoying a large philosophical success. Since
their introduction in [3], a number of notions have been identified as
hyperintensional up to some extent: information, belief, knowledge,
meaning, explanation, to name just a few of the most common ones.
This success does not extend to the representation of computations in
the physical and digital domains, where hyperintensions are still little

This research has been funded by the Project PRIN2020 BRIO - Bias, Risk and
Opacity in AI (2020SSKZ7R) awarded by the Italian Ministry of University and
Research (MUR).

PRIMIERO

explored, possibly with the exception of computational semantics for
natural language [15].

A formal model of hyperintensions for the typed A-calculus HTLC
is introduced in [I1]. The system is designed to reason with expres-
sions for extensional, intensional and hyperintensional entities. Under
the Curry-Howard isomorphism, expressions of HTLC are interpreted
computationally, with a term ¢ a computational process (e.g. the ap-
plication of the successor function to define a natural number) and its
type T its output (type N or value 4); an hyperintensional term t* of
type *! can be seen as denoting computational processes t,t' which
are identical with respect to their outputs 7', but for which structural
identity fails (e.g. t might denote the successor function application,
while ¢ might denote composition of the successor function and the
summation function). Hence, distinct notations or modes of presen-
tation or execution for the computation of a given natural number, or
distinct operations to compute a given value of any other type, would
be denoted by the same hyperintensional term.

HTLC offers an alternative, proof-theoretic view to TIL hyperin-
tensions [8], the latter being especially suitable for modelling cases
from natural language [10] because of its ability to express partial
functions, the former being constrained to total functions. A recent
conjecture presented in [7] states that the non-hyperintensional frag-
ment of total functions, without modalities (quantifying over possible
worlds and times) of TIL is Henkin complete. For HTLC with only
total functions and proper constructions (no modalities quantifying
over possible worlds and times are available), we have shown that
any consistent set of closed well-formed formulas A is satisfiable in a
model in which the domain of basic and function types is denumer-
able, and the domain for hyperintensional types is non-denumerable
but strongly reducible to a model with a denumerable domain for
extensional and intensional types. There is no form of partiality or
non-determinism in HTLC.

While degrees of beliefs have long been interpreted in the form
of subjective probabilities [6], [13], the link between probabilities and
hyperintensions is little explored. In fact, in the domain of computa-

HYPERINTENSIONS FOR PROBABILISTIC COMPUTATIONS

tions with (sharp) probabilistic outputs, hyperintensional terms and
associated attitudes (such as belief and trust) become extremely nat-
ural. Standardly, types are interpreted as propositions or sets, their
terms being respectively proofs and elements of the set. In the case of
terms as computational processes, types are normally interpreted as
their output types, e.g. the result of an addition process on natural
numbers will be a natural number, thereby expressing the signature
of the computation N — N. An alternative, more characteristic inter-
pretation is to look at input and output values respectively, so that
the computational terms are natural numbers and the type is their
output value. For simplicity, we focus on the latter. Let us consider
an example:

With a fair die, the theoretical probability to obtain a 4 is
0.16666666666.

One way to express this more precisely is to say: under the prob-
ability distribution corresponding to a fair die, throwing the die will
produce 4 with a theoretical probability of 0.16666666666. Note that
here the process of throwing the die can be seen as a computational
process with 4 as its output. It is now quite natural to see compu-
tations with probabilistic outputs as possible denotations of hyperin-
tensional terms:

1. the claim that
the theoretical probability to obtain 4 is 0.16666666666

can be seen as the subjective probability 1 measuring the degree
of belief that the die is fair at least with respect to output 4;

2. the claim assigns a probability value valid under a number of
distinct initial probability distributions expressing either a fair
or a biased die; hence, an assertion of identity valid for two
processes observed for a given probabilistic output, may fail for
different outputs; in other words, one may believe that "the
theoretical probability to obtain a 4 is 0.16666666666", without
necessarily believing to be using a fair die.

PRIMIERO

To see this in more detail, consider rolling two dice, where d; is
fair, and dg is biased (although we might not know that): d; (theo-
retically) shows a probability 0.16666666666 of outputting 4; ds, may
be biased in a way that the probability of outputting 4 is still the
same, while the probability of outputting 5 is 0.2 and the probability
of outputting any of 1,2, 3,6 is 0.158333333335. As their actual prob-
ability distribution is unknown, the two dice represent two systems
which are behaviourally identical with respect to a given output, but
structurally different otherwise. As we might not know what their
actual structure is, biased or fair, they are epistemically opaque in
the sense of an explanation of their working not being transparently
accessible. An abstract procedure denoting the throw of a die with
a probability 0.16666666666 of outputting 4 maybe actually refer to
both dy and ds.

In [4], further extended in [5], a natural deduction system for prob-
abilistic computations is offered, with the above sentence formalised
as follows:

{za:11/6,2a:21/6,0d:31 /65T 41 /6,Cd:51/6,Ta:61 /6 1d:40.16666666666

This formula has: on the left-hand side of the derivability sign
a probability distribution in which a random variable z associated
with the process d receives uniformly probability 1/6 for each of its
possible outputs 1,...,6; under such distribution, one derives on the
right-hand side the expected probability of 0.16666666666 to get out-
put 4 from process d. A major task in [5] is to allow reasoning under
an unknown initial distribution to infer trustworthiness of computa-
tions by comparing the frequency of a given observed output with its
expected probability. Evaluating trustworthiness clearly seems a nat-
ural task for a language like HTLC which includes hyperintensional
terms denoting processes which are identical for some output but are
structurally distinct, as it is the case for probabilistic computations.

In this paper we sketch the extension of HTLC to probabilistic out-
puts in a language dubbed HTLC,,, identifying appropriate conditions
for reasoning from probabilistic computations to their hyperinten-
sional counteparts and back. We offer an overview of meta-theoretical

HYPERINTENSIONS FOR PROBABILISTIC COMPUTATIONS

results, and conclude with some comparison with the notion of seman-
tic computation holding for Transparent Intensional Logic.

2 The Logic HTLC,

2.1 Language

The syntax of HTLC,, is a typed A-calculus extended with probabilis-
tic types and a type for hyperintensional terms denoting them:

Definition 1 (Grammar).

Tp =Ty | (Tp Tl}l T) [(T+T)y | +Tr

trmap | P ..oxe,] | [t] |

In the present context, we are especially interested in an interpre-
tation of types following the Curry-Howard-De Bruijn isomorphism:
terms are computations and types are their (probabilistic) outputs.
As mentioned above, probabilitic outputs can be seen both as types
of outputs and as output values, and we focus here on the latter in-
terpretation. Hence the first significant difference from HTLC in this
grammar is the addition of a probabilistic index p to types.

The type syntax includes extensional entities 7). Among these
we might include probabilistic truth values, individuals with a certain
probability to belong to a given universe, but also output values in
those domains, e.g. a random number generator and its output 4 in
the domain N with a given probability to be produced. The latter
will be the most natural interpretation for HTLC,,.

Next, we add intensional entities with a given probability p of
outputting type 1" when the probabilities of their input type is re-
spectively py for 71 up to p, for T,). While in HTLC these are
constrained to total functions, by having functions with probabilistic
arguments Tpl1 ... Ty we obtain an output T, with p = I(py -~ - - Dn)
which implements a form of indeterminacy. We simplify the arrow

PRIMIERO

notation of multi-argument functions (73 — --- — T,, — T') with the
pair notation (((7"71,)...)T1). As in standard typed A-calculi we use
association to the left when dealing with function types, so the curried
version can be rewritten as (7 T}, ... T1). We can build higher-order
functions that take functions as arguments and return a function as
value. Specific to this calculus is the case where all the input types to
a function express the probability distribution of outputs under which
a given one can be obtained: (Az)t: (T, T1_,) is thus a specific form
of a function type term in which the probability p of £ to get output
T depends on the probability 1 — p of ¢ to get output 7. Return-
ing to our example from the previous section, consider the expression
d: (41/6 116 ---61/6), which expresses the function type denoting a
fair die such that if there is a probability 1/6 to get any of its possible
outputs, then there is a probability 1/6 to get output 4.

Moreover, and precisely to obtain such functional interpretation,
we add a disjunction type, through which we can express exclusive
probabilistic outputs by the same computation, summing up to prob-
ability p = 1. Hence, for our fair die we can induce the expression
Fd:(1+---46); saying that the probability of getting one of outputs
1...6 from die d is 1.

Finally, we include hyperintensional entities of type %7, where
a term of this type denotes an entity with a given probability p of
having an extensional or intensional type 7. Hyperintensional types
are thus interpreted as procedures denoting computations with a given
probabilistic output. We explain this further below referring to a term
of such type.

Terms of the language are thus computations. As in HTLC we in-
clude variables, abstraction terms denoting functions and application
terms denoting values of functions on given arguments. Here another
notable difference from HTLC is that variables get indexed with the
term (or computation) for which they act as a random variable, as-
serting the probability of its output. Hence, the list of variables on the
left-hand side of an expression provides the probability distribution
for a term on its right-hand side. To follow up on the example above,

HYPERINTENSIONS FOR PROBABILISTIC COMPUTATIONS

{l'd . 11/6,...,33d . 61/6} l_d241/6

denotes the expression that states that under the probability dis-
tribution of a fair die d, there is a probability 1/6 to have output
4.

Hyperintensional terms denote abstract procedures for computa-
tions of any of the above forms, with a given probability for the cor-
responding output: the two procedures denoted by the same hyperin-
tensional term have necessarily identical probabilities for some of their
value (and in turn necessarily identical beliefs are attributed to them
for those values), while they might differ for probabilities assigned to
other output values (and in turn different beliefs are attributed to
them for those values). This is possible for example because there is
no explicit formulation of the internal structure of such computations,
or such structure is not accessible (hence, technically they might be
black boxes, opaque in the sense used above). For example, the in-
tuition is that an expression t* : x%0.16666666666 denotes any process,
including any rolling die (fair or not), which may return 4 with prob-
ability 0.16666666666. Currently, we do not distinguish in the syntax
the theoretical probability of the fair die from the expected proba-
bility or frequency of a die observed rolling (something we explicitly
do in TPTND), but will allow ourselves to consider such distinctions
informally.

To sum up, a judgement of HTLC, is a formula of the form

{w1: Ty, e TR} LT,

saying that a computation ¢ outputs T with probability p, provided
that z; outputs T with probability pi, up to =, outputs 7™ with
probability p,.

2.2 Rules

Inference rules for computational terms of arbitrary types are adapted
from [5] and further extended with rules to define the meaning of

PRIMIERO

hyperintensional terms denoting probabilistic computations, see Fig-
ure Note that in this preliminary formulation we merge what in
TPTND [5] is strictly separated, namely reasoning about random vari-
ables, single experiments and rules for sampling.

The Assumption rule allows the derivation of a typed random
variable from its own assumption. The Abstraction rule allows to
construct a A-term for a function type that takes inputs 71,...,T"
respectively with probabilities p1, ..., p, (possibly with more assump-
tions encoded in I'), returns output 7" with probability p. The Appli-
cation rule creates a term of type 1" denoting the value of a function,
expressed by a computation ¢ on the n-tuple of arguments expressed
by computational terms t1,...,t,, where the probability of T" is com-
puted as the product of the probabilities of all its inputs. We further
formulate rules for the additivity of exclusive probabilistic outputs.
Given a probability distribution encoded in I' and process t giving
output 7" with probability p and output 7" with probability p’, pro-
cess t will give either output with a probability p + p/, with such
probabilities adding up to 1. Taken the disjunction of all possible
outputs T + T" of process t and the probability p of one such output
T, the probability of the remaining output 7" will be 1 — p.

Next we add rules for hyperintensional terms. The Trivialization
rule defines the process of going from a given computation ¢ which
outputs T' with probability p to the hyperintensional term t* which
denotes a construction of the computation denoted by ¢, i.e. t* de-
notes any of the computations with the same output as £. When the
trivialized computation ¢ is of type 7}, Trivialization allows to shift
from a an extensional computation to a hyperintensional one produc-
ing it. When the trivialized computation ¢ is of type (T}, T, ... T},),
Trivialization allows to shift from a functional computation to a hy-
perintensional one producing it. We do not consider higher-order triv-
iliased terms here. The criterion for selecting a procedure t* denoting
any computation with output 7j, is fidelity, which can be evaluated by
the corresponding elimination rule. Execution proceeds from a hyper-
intensional type %7 to its intended denoted extensional or intensional
computational term with output T with probability p. In order to

HYPERINTENSIONS FOR PROBABILISTIC COMPUTATIONS

do so, i.e. to identify a computation t' that satisfies the hyperin-
tensionally denoted output 7T},, we exploit the trustworthiness criteria
defined for TPTND in [5]. Given a procedure t* of type *'7, Execu-
tion returns a computation ¢’ denoting its output, that is a term of
type T' with probability p’, provided the absolute difference between
the intended and the observed probability of the outputs is below a
given critical threshold, typically the confidence interval for the in-
tended probability parametrized over the number n of times one has
observed t' outputting 7" over the overall number of occurrences of ¢’
with any other output. Similarly so for a term t* of type (T Tt--Tn)
where Execution returns the functional computation ¢’ that denotes

an intensional entity of type (7, Tpl1 T).

Note that Execution requires canonical terms, i.e. terminating
computations in normal form by S-reduction rules, see Figure 2] In
these evaluation rules, we state: evaluation by argument substitution
in abstraction; evaluation to equivalent abstracted terms; evaluation
to equivalent applied terms; evaluation to equivalent arguments in ap-
plication. We use —3 for these evaluation steps. Further, we extend
reduction rules with one specific instance to account for the reduction
of terms with one equivalent among exclusive distinct outputs, see
Figure 3, We use —, for this evaluation step. We use simply — for
the common evaluation relation and — for its transitive and reflexive
closure. The latter evaluation rule allows us to establish two impor-
tant variations from HTLC. First: subject reduction is in a weaker
form as it allows some form of subtyping by establishing that if ¢’ is a
term obtained by an evaluation rule (including —,) from term t, its
type T” must be included in the type T of the latter, up to identity,
see Figure [Second: term identity is defined in a stronger form,
under reduction for all possible output types, see Figure [5]

Coming back to our example, consider two expressions: I' - dy :
40.16666666666 and A dg : 40.16666666666 denote respectively that the
first and the second die show a behaviourally identical probability to
output 4 (assuming here the same number of throws), under the (pos-
sibly unknown) distribution of their outputs encoded respectively in
I' and A. Applying Trivialization to each, will return the same term

PRIMIERO

xp Ty o T, Assumption
F’xlle}l”"aJ:n3T£l|_t:Tp
Abstracti
11"[>\$1...ﬂs7~b.t]:(Tp TZ}I’.._’T;;) straction

. 1 s :
Ut (T, Ty, T5) Tibtn Ty Tt T Application
D0y, T b [t ttn] : Ty

xp: Tpyay: Ty bt 2 T, xp: Tpyay Ty bt T,

4T
xp: Tpyae: Ty bt (T + T)pipr<a

xt:Tp,xt:Tl’J,,Ft:(T—i—T’)l xt:Tp,xt:Té/,Ft:Tp

+E
xy: Tpywe s Tyt 1Y,
L'=t:1T,
T Trivialization
' t*:x'r
[T At Ty lp—p' |<e(n) Executio
xecution
DLAFY:T,

Figure 1: HTLC, Rules System

t* : xhoaseessscess Hence, given a term t* : x30.16666666666 Execution
would return either d; or do. But assuming d; fair and ds biased,
e.g. such that the probability of outputting 4 is still the same, while
the probabilities of outputting 5 is 0.2 and the probability of out-
putting any of 1,2,3,6 is 0.158333333335, the two dice are identical
with respect to a given output (namely 4), but structurally different
otherwise. Hence, Subject Reduction will be satisfied for at least one
evaluation (namely of the term type with output 49 .16666666666), but
not for all such outputs, making term identity fail. The desirable
property to infer the identity of the two dice with respect to output

HYPERINTENSIONS FOR PROBABILISTIC COMPUTATIONS

CE[Az1..xn]t tp] =g tlr/te. . an/tn] 0 T

F,ml:TI}I,...,xn:T}Z';l Ft—pt' T,

D [zy..an t] =g May..oon] (T, T T

(3-Abstr

Dkt =gt (T, T) ... Ty Flktlsz}l‘..FnFtn:TpﬁlBA
-App

F,Fl .. .Fn - [t t1.. .tn] —B [t/ ty. ..tn] : szpl'm'Pn
FFt:(TpTz}l...TIfI...T;) Flktlszll.A.FnFtn:Tlﬁb Fi%t,;ﬁth:T;;l
F,F1F7L|_[ft1tltn]g)j[ftltitn}T

P=P1-ee Pl Pn

B-App

Figure 2: HTLC,: [-rules

Lt =gt (T, + Ty
F I_ t —>p t . Tpil—p/

Figure 3: HTLC,: Probabilistic reduction

4 is granted by a successful instance of the Execution rule, where the
first premise is induced by Trivializion on e.g. d; and the second
premise is an instance of do:

LA . _
[¢* : 570-16666666666 I', A k= dy : 40.16666666666 | 40.16666666666 — 40.16666666666 |= 0
I, A da = 4016666666666

Execution

Similarly, distinguishing among the two dice with respect to the
outputs 1,2,3,5,6 is possible by a failing instance of the Execution
rule using any of the other outputs:

L.l .
T t* 1 %7 0.16666666666 T,AFds: 502 | 40.16666666666 — 40.16666666666 |> €(1)

Execution
I, A ¥ da : 4016666666666

2.3 Structural Properties

Structurally, the behaviour of HTLC,, differs from its deterministic
counterpart and it is inspired by TPTND in [5], see Figure [6]

PRIMIERO

THt:T, t—t
LT, CT,

Figure 4: HTLC: Subject reduction

DHt:T VT el [Y5 =1 t—>t
THt=t

Figure 5: HTLC: Term Identity

By the Weakening rule, given the probability of a computation ¢
to have output 1" with probability p, provided the value assigned to
some variable z1 is T with probability p1; if the latter assignment is
independent (L) of a distribution A from which some process t : TpQ2
follows, then the starting conditional probability can be extended by
additional assumptions A and the probability p is left unaltered. In
other words: any given probability distribution can be extended at will
without inferring new probabilities, as long as no new dependencies
are introduced.

The Contraction rule expresses a form of plausibility test on hy-
potheses. Given more than one distinct hypothesis on the theoretical
probability p of some process with output 7!, on which computation
t with output 1" with expected probability p depends, a contraction is
a function f[0, 1] which extracts one value 2 : T\, from the hypotheses
P1,-..,Pn. The function f can be chosen at will, e.g. the Maximum
Likelihood function.

3 Normalization

In this section we adapt the Normalization strategy shown for HTLC
in [I1] and provide an appropriate novel interpretation for the role of
hyperintensional terms of probabilistic computations.

Applying Execution is possible to derive distinct equivalent com-

HYPERINTENSIONS FOR PROBABILISTIC COMPUTATIONS

F,xlszlll—t:Tp Al—tQ:Tp22 xlszllJ_LA

Weakening
Loz Ty ,Abt:T,
| :T]}I,...,xl :Tpln Ft:T,
Contraction
I T}(m,...,pn) Ft:T,

Figure 6: Structural Rules

putations (i.e. terms for which the symmetric closure of — holds) of a
base type or of a function type, and hence they return the same output
value with the same probability when executed. When such reduction
includes disjunction types, evaluation may lead to terms that satisfy
only some of their subtypes. This is the classical example of failing
identity for hyperintensions of probabilistic computations. Normal-
ization grants the identity of processes with outputs with the same
probability, when these are obtained by Execution on the common hy-
perintensional term. In particular, an application of Trivialization on
distinct but reducible terms t¢1,ts (denoting e.g. respectively the fair
and the biased die) may induce distinct hyperintensional terms ¢7, t3
(two distinct representation of the distributions) of the same type. We
would like to show that they may be indistinguishable from the point
of view of output 4 when Execution is applied, but distinguishable for
other outputs, as illustrated above. To show the first case, we need
to restrict evaluation to S-reductions:

Lemma 1 (Trivialized Diamond). Let I' - t1 : T),, I' - ta : T}, and
t1 —p t2. Let, moreover, t7 : «Ir e obtained from t1 : T}, by Trivial-
ization, and t : *'» be obtained from t : T, by Trivialization. Then
] —g t5.

Proof. Identical to the proof for HTLC, see [11]. O

Theorem 1 (Church-Rosser). If 't :T,, t »gt' andt —4t" then
there is a term w such that t' -z u and t" g w and T'F u : T),.

PRIMIERO

Proof. By induction on t,t',t”, and u using Subject Reduction and the
Diamond Lemma if the term w is of the form ¢* (and thus ¢"*). O

Note that the above results do not hold in general for —, i.e. when
evaluation includes the reduction from disjunction types to any of
their subtypes, as the same premise may induce different conclusions
(i.e. differently probabilistically indexed outputs).

To illustrate this further, let us come back to our example. Con-
sider two dice, for which it can be proven that if d1 : 40.16666666666
and da : 40.16666666666, then the hyperintensional term dj will also re-
duce to d3, i.e they will have the same type (behaviourally: the same
output) by Subject Reduction. Then for dj,ds there is also a term
u to which they both reduce and for which u* : x30.16666666666 can be
obtained by Trivialization. Note, however, that such reasoning can-
not be performed for all other outputs of dy, ds as requested by Term
Identity. Hence, when —,, is involved different types may be obtained
and identity of terms resulting from Execution fails.

4 On diverging semantic computations

The reading of hyperintensions as terms denoting computational pro-
cesses with probabilistic outputs allows to maintain a distinction nat-
ural in TIL, see [14]:

 syntactic computation (also dubbed ”construction transforma-
tion”) corresponds to a computational step obtained by a (-
reduction;

o semantic computation (or "v-constructing") correlates to a com-
putational step returning a specific interpretation or evaluation
of a A-term.

Note that for construction transformation it is assumed that (-
reduction preserves strict equivalence. From this perspective, in our
notation —» g is syntactic computation, while typing expresses seman-
tic computation, which includes —,. Then Term Identity and Normal-

HYPERINTENSIONS FOR PROBABILISTIC COMPUTATIONS

ization express syntactic and semantic equivalence. However, prob-
abilistic computations with our weaker notion of Subject reduction
introduce diverging semantic computations by non-reducible syntac-
tic transformations:

Proposition 1. Consider ti,t2 such that t; : T, and ty : T}, then
t1 —g to. Consider further tq : Ul_(p_n) and ty : U{_(p_n,) but it is
not the case that t1 — to because in particular it is not the case that
tl —p tQ. Then tl 7& tQ.

In the present paper we do not further investigate the relation of
HTLC, hyperintensions with other relevant aspects of TIL, e.g. the
different kinds of #-conversions possible when considering the contrast
between syntactic and semantic transformations, or the connection to
Church-Rosser, see [9] 12]

5 Conclusions

The system HTLC, introduced in this paper is a typed A-calculus
with hyperintensions for probabilistic computations. Its semantics is
defined by rules for expressions in which contexts are representations
of probability distributions, terms are computational processes and
types are their outputs (values or types). Under this reading, hyperin-
tensional terms are useful to denote computations with some identical
probabilistic outputs, but obtained under possibly different probabil-
ity distributions. The ability to make such distinctions is granted by a
strong form of term identity and a Normalization result by appropri-
ate versions of the Diamond Lemma and the Church-Rosser Theorem
holding for S-reducible terms in a system that allows further reducibil-
ity of probabilistic terms.

A natural domain of application for logics such as HTLC,, is the
verification of Al systems for which only certain behavioural proper-
ties are accessible, while their inner structure may remain opaque. In
such cases, the ability to evaluate identity with respect to transpar-
ent models is essential to establish safety and liveness properties, see

PRIMIERO

[1, 2], or more generally accuracy and trustworthiness, as done e.g. in

[16].
Extensions of HTLC,, concern in particular: its relational seman-
tics,

further study of its meta-theoretical properties and applications

to bias identification for labeling methods in Al

References

1]

Nicola Angius and Giuseppe Primiero. The logic of identity and
copy for computational artefacts. J. Log. Comput., 28(6):1293—
1322, 2018.

Nicola Angius and Giuseppe Primiero. Copying safety and live-
ness properties of computational artefacts. Journal of Logic and
Computation, 08 2022. exac053.

M. J. Cresswell. Hyperintensional logic. Studia Logica, 34(1):25—
38, 1975.

Fabio Aurelio D’Asaro and Giuseppe Primiero. Probabilis-
tic typed natural deduction for trustworthy computations. In
Dongxia Wang, Rino Falcone, and Jie Zhang, editors, Proceedings
of the 22nd International Workshop on Trust in Agent Societies
(TRUST 2021) Co-located with the 20th International Confer-
ences on Autonomous Agents and Multiagent Systems (AAMAS
2021), London, UK, May 3-7, 2021, volume 3022 of CEUR Work-
shop Proceedings. CEUR-WS.org, 2021.

Fabio Aurelio D’Asaro and Giuseppe Primiero. Checking trust-
worthiness of probabilistic computations in a typed natural de-
duction system, 2022. https://arxiv.org/abs/2206.12934.

Bruno de Finetti. Theory of Probability: A Critical Introductory
Treatment. New York: John Wiley, 1970.

M. Duzi. Hyperintensions as abstract procedures. Presented at
Congress on Logic Methodology and Philosophy of Science and
Technology 2019, 2019.

https://arxiv.org/abs/2206.12934

HYPERINTENSIONS FOR PROBABILISTIC COMPUTATIONS

8]

[11]

[12]

[13]

[14]

[15]

M. Duzi, B. Jespersen, and P. Materna. Procedural Semantics for
Hyperintensional Logic — Foundations and Applications of Trans-
parent Intensional Logic, volume 17 of Logic, Epistemology, and
the Unity of Science. Springer, 2010.

Marie Duzi and Milos Kosterec. A valid rule of S-conversion for
the logic of partial functions. Organon F, 24(1):10-36, 2017.

Marie Duzi and Marek Mensik. Inferring knowledge from textual
data by natural deduction. Computacion y Sistemas, 24(1), 2020.

Michal Fait and Giuseppe Primiero. HTLC: hyperintensional
typed lambda calculus. FLAP, 8(2):469-496, 2021.

Milos Kosterec. Substitution contradiction, its resolution and
the church-rosser theorem in TIL. J. Philos. Log., 49(1):121-133,
2020.

Henry Ely Kyburg. Studies in Subjective Probability. Krieger,
1964.

Ivo Pezlar. On two notions of computation in transparent inten-
sional logic. Aziomathes, 29(2):189-205, 2018.

C. Pollard. Hyperintensions. Journal of Logic and Computation,
18(2):257-282, 2008.

Alberto Termine, Giuseppe Primiero, and Fabio Aurelio D’Asaro.
Modelling accuracy and trustworthiness of explaining agents. In
Sujata Ghosh and Thomas Icard, editors, Logic, Rationality, and
Interaction - 8th International Workshop, LORI 2021, Xi’ian,
China, October 16-18, 2021, Proceedings, volume 13039 of Lec-
ture Notes in Computer Science, pages 232-245. Springer, 2021.

	Introduction
	The Logic HTLCp
	Language
	Rules
	Structural Properties

	Normalization
	On diverging semantic computations
	Conclusions

