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ABSTRACT
When imaged at high resolution, many protoplanetary discs show gaps and rings in their dust sub-mm continuum emission
profile. These structures are widely considered to originate from local maxima in the gas pressure profile. The properties of the
underlying gas structures are however unknown. In this paper, we present a method to measure the dust–gas coupling α/St and
the width of the gas pressure bumps affecting the dust distribution, applying high-precision techniques to extract the gas rotation
curve from emission line data cubes. As a proof of concept, we then apply the method to two discs with prominent substructure,
HD 163296 and AS 209. We find that in all cases the gas structures are larger than in the dust, confirming that the rings are
pressure traps. Although the grains are sufficiently decoupled from the gas to be radially concentrated, we find that the degree
of coupling of the dust is relatively good (α/St ∼ 0.1). We can therefore reject scenarios in which the disc turbulence is very low
and the dust has grown significantly. If we further assume that the dust grain sizes are set by turbulent fragmentation, we find
high values of the α turbulent parameter (α ∼ 10−2). Alternatively, solutions with smaller turbulence are still compatible with
our analysis if another process is limiting grain growth. For HD 163296, recent measurements of the disc mass suggest that this
is the case if the grain size is 1 mm. Future constraints on the dust spectral indices will help to discriminate between the two
alternatives.

Key words: accretion, accretion discs – planets and satellites: formation – protoplanetary discs – circumstellar matter –
submillimetre: planetary systems.

1 IN T RO D U C T I O N

The Atacama Large Millimeter/submillimeter Array (ALMA) is rev-
olutionizing our understanding of protoplanetary discs, thanks to its
unprecedented angular resolution. When imaged at high resolution,
most (though not all; Facchini et al. 2019; Long et al. 2019) discs
show a rich morphology of structures, in terms of crescents (van der
Marel et al. 2013), spirals (Pérez et al. 2016), and rings (ALMA
Partnership et al. 2015; Fedele et al. 2017, 2018; van der Plas
et al. 2017; Clarke et al. 2018; Dipierro et al. 2018). This latter
category in particular is the one occurring most frequently, as shown
spectacularly by the high-resolution DSHARP (Disk Substructures
at High Angular Resolution Project) campaign (Andrews et al. 2018)
and by other efforts with large disc samples (Long et al. 2018; van
der Marel et al. 2019).

These rings are interesting for many reasons. First, they are thought
to be dust traps, where the dust stops drifting towards the star and
accumulates. In this sense, they could be the solution to the long-
standing problem of how to reduce the importance of radial drift,
which if unimpeded would deplete discs on a very short time-scale
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(Takeuchi & Lin 2005; Brauer et al. 2007), leaving little solid mass
to form the rocky planetary cores (Greaves & Rice 2010; Manara,
Morbidelli & Guillot 2018; Rosotti et al. 2019). Second, the most
likely interpretation for the origin of these rings is that a population
of young planets is already present at these early stages; the rings
are therefore a tool to study the masses and locations of these young
planets (Rosotti et al. 2016; Bae, Pinilla & Birnstiel 2018; Zhang
et al. 2018; Lodato et al. 2019).

Independently from their formation mechanisms, there is another
sense in which the commonly imaged rings are important: they pro-
vide us with new windows to probe disc physics. One example is the
magnitude of the turbulence, another long-standing problem in planet
formation (Lynden-Bell & Pringle 1974), typically parametrized
through the dimensionless α parameter (Shakura & Sunyaev 1973).
The amount of turbulence is a crucial parameter regulating, just
to name a few examples, the efficiency of gas accretion on to the
star and forming planets (Bodenheimer et al. 2013), how discs
responds to planets (Kley & Nelson 2012; Zhang et al. 2018), the
vertical mixing of molecular species (Semenov & Wiebe 2011),
the importance of fragmentation for dust evolution (Ormel & Cuzzi
2007; Birnstiel, Klahr & Ercolano 2012), and many other processes.
Because turbulence in protoplanetary discs is expected to be highly
subsonic, degeneracies with the disc temperature mean however that
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the turbulence is proving very difficult to constrain directly (Teague
et al. 2016; Flaherty et al. 2017; Teague et al. 2018c) from broadening
of emission lines. This is where rings come to the rescue, since the
dust is also subject to turbulence and can also be employed as an
observational tracer of turbulence. To be more precise, in this way it is
only possible to measure α/St rather than α, where St is the so-called
Stokes parameter quantifying the aerodynamic coupling between gas
and dust. Pinte et al. (2016) showed that turbulence in the vertical
direction can be measured by quantifying the degree of smoothing
of the emission profile along the disc semi-minor axis. With a
complementary method, Dullemond et al. (2018; hereafter D18) used
the radial width of dust rings to put constraints on the turbulence in the
radial direction. Unfortunately, with their methodology a turbulence
measurement requires comparing the radial width of features in the
dust and gas surface densities, but only data regarding the former
were available. Therefore, they were able only to identify a range of
permitted values and not to measure the value of α/St.

Thankfully, there is a way forward to improve on the analysis
of D18. In addition to the continuum emission, ALMA is also
revolutionizing our view of the gas disc. Thanks to the combination
of ALMA extreme sensitivity and spatial resolution, plus new
techniques developed to make use of these innovative data, the
gas rotational velocity can now be studied with high precision. As
highlighted by a few spectacular examples (Pinte et al. 2018; Teague
et al. 2018a; Teague, Bae & Bergin 2019; Dullemond et al. 2020),
there is now a growing realization that most discs are not in perfect
Keplerian rotation, with deviations amounting to a few per cent. In
our current understanding of disc dynamics, these deviations in the
gas velocity are the very reason why we observe rings in the dust
distribution (Whipple 1972).

Applying these techniques to the DSHARP data opens up the
possibility of measuring the turbulence by combining information
about the dust and the gas. In addition, measuring the width of gas
structures directly confirms that these structures are dust traps if
the gas width is larger than the dust width (see discussion in D18).
Performing these measurements is the goal of this paper. As a proof
of concept, we focus here on the two discs with most prominent
structures in gas and continuum, namely HD 163296 and AS 209.

The paper is structured as follows. Section 2 introduces the method
we use to measure the dust–gas coupling and the width of gas
structures. We then present our results and discuss possible caveats
in Section 3. Finally, we draw our conclusions in Section 4.

2 ME T H O D

Our analysis is based on the publicly available data from the
DSHARP ALMA large programme,1 focusing on the discs of
HD 163296 and AS 209 (Andrews et al. 2018; Guzmán et al. 2018;
Isella et al. 2018). Our goal is to measure the dust–gas coupling α/St.
The new aspect of this paper is that we use the 12CO data cubes to
measure the slope of the deviation from Keplerian rotation of the
gas in the proximity of the continuum peaks. As we will show, in
combination with the width of the dust rings, this can be used to
yield a measurement of α/St. Additionally, from the same data, we
can also measure the width of the rings in the gas distribution.

1https://almascience.eso.org/almadata/lp/DSHARP/

2.1 Calculating the rotation curve

To calculate the rotation curve we follow the method described
in Teague et al. (2018b), which is broken into two aspects: the
measurement of the 12CO emission surface in order to correctly
deproject the data into annuli, and second the inference of vφ in each
annulus.

Measuring the emission surface is done by fitting the map of
line centres, made using bettermoments (Teague & Foreman-
Mackey 2018), which fits a quadratic curve to the pixel of peak
intensity and two neighbouring pixels, with a Keplerian rotation
pattern including a correction for the 3D geometry of the disc, as
described in Keppler et al. (2019) using the eddy Python package
(Teague 2019). As AS 209 has cloud-contaminated regions, we
additionally use the method described in Pinte et al. (2018) that is
less sensitive to cloud contamination to verify the emission surfaces
we obtain. We find excellent agreement with previous determinations
in these sources (Isella et al. 2018; Teague et al. 2018b).

Using these emission surfaces we deproject the data into disc-
centric coordinates, (r, φ), and divide them into annuli with a width
of 1/4 of the beam major axis. We stress that this binning does not
remove the spatial correlation between nearby annuli, but minimizes
the impact of Keplerian shear across the beam when measuring vφ .
Within each annulus the projected component of vφ is assumed to
vary as a function of azimuth, vφ, proj = vφ cos φ sin i, where φ is
measured from the red-shifted major axis of the disc and i is the disc
inclination. Using eddy (Teague 2019), vφ is inferred by finding the
value of vφ that allows for the spectra to be shifted back to a common
line centre (the systemic velocity). More details of the exact fitting
procedure can be found in Teague et al. (2018b). This procedure is
repeated for each annulus, yielding vφ as a function of radius. In order
to measure the deviation δvφ = vφ − vK from the Keplerian value
vK, we fit the vφ profiles with a double power-law profile. While a
single power law would be sufficient for a purely Keplerian rotation
profile, the inclusion of radial pressure gradients and changes in the
emission height with radius result in systematic deviations from a
pure vK Keplerian profile. An important fact to stress is that in reality
we do not know the true Keplerian value, because we do not know
precisely enough the stellar mass. As a surrogate, we employ the
deviation from the double power-law fit, implying that there might
be a constant, unknown offset (with magnitude of a few per cent)
between our δvφ and the deviation from Keplerian, but for simplicity,
in the rest of the paper we will often refer to δvφ as ’deviation from
Keplerian’. Our analysis is not affected by this offset since we will
show that it relies on the derivative.

2.2 Using the rotation curve to measure α/St and gas widths

By studying δvφ , we can now determine α/St. Assuming that the disc
is razor thin, we show in Appendix A that, to first order in r − r0,
the dust surface density is a Gaussian with width wd. The following
expression (see equation A12) links the width wd with the dust–gas
coupling and the observables

α

St
= −2w2

d
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v2
k

c2
s

d

dr
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As we derive in Appendix A (A1), the same observables we use to
measure α/St can also be used to measure the width of the gas rings
wg, using the following expression (see equation A15, Appendix A)
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The efficiency of dust trapping 175

Figure 1. Graphical illustration of the method we use in this paper (see
equation 2 and Appendix A) to measure the gas width: the width of a Gaussian
surface density profile (top panel) is linked to the steepness of the deviation
of the rotation curve from Keplerian (bottom panel).

Fig. 1 illustrates graphically this method, showing how Gaussians
of different width produce a different gradient in the deviation from
Keplerian rotation.

In the expressions above, r0 is trivially obtained as the location of
the dust ring. We already discussed in the previous section how we
derive the rotation curve and we discuss more in detail in Section 3.1
how we measure the slope. For what concerns the dust width wd, we
measure it from the continuum images as in D18. We discuss in the
next paragraph the last parameter, the gas temperature.

The razor-thin model should be considered only as pedagogical
since it is very well known that the CO emission comes from an
elevated surface. Therefore, a proper modelling should take into
account the disc vertical structure. We show in Appendix B that in
practice this can be accounted for using the gas temperature at the
emitting layer, instead of the mid-plane temperature, for computing
c2

s in equations (1) and (2). At the emitting layer, the temperature
can be estimated with high precision from the 12CO data using the
peak brightness temperature given the high optical depth of 12CO;
we therefore use directly these values from the data.

3 R ESULTS

3.1 Derived values

We show in the middle panel of Fig. 2 the rotation curves extracted
from the data. For comparison, we show also the continuum profiles
on the top panels. We note that in the vicinity of the continuum peaks
δvφ decreases, as expected in the case of a pressure maximum. The
curves are also reasonably well described by a constant slope, with
the most spectacular example in the vicinity of the B100 peak of
HD 163296, with a relatively extended radial range. Overall, there
is therefore reasonable agreement between the dust structure and
the rotation curve. That being said, we note that in the B100 peak
of HD 163296 and in the B120 peak of AS 209, the region with

a decreasing δvφ is not symmetrical with respect to the continuum
peak, as one might instead expect. We discuss possible explanations
for this in Section 3.4.

To measure the slope, we find that the raw derivative (bottom
panel) can be relatively noisy, given the data spatial resolution and
signal to noise; we thus perform a linear fit that is more robust towards
the noise and correctly accounts for uncertainties. We list in Table 1
the measured gradients ∂δvφ /∂r.

In Table 1 we list also the gas temperature TB close to the peak,
measured using the peak brightness temperature (see Section 2), and
the Keplerian velocity vkep (estimated via the double power-law fit).
To compute the sound speed, we assume a mean molecular weight μ

= 2.37. We also list the dust widths wd measured by fitting Gaussians
in the azimuthally averaged continuum profiles (Andrews et al. 2018;
Huang et al. 2018), which agree in all cases with those measured by
D18, except for B155 that was not analysed by them (in this case,
we fitted the continuum emission between 150 and 158 au following
the procedure in D18). As already argued by D18, the finite radial
extent of the dust rings implies that some mechanism is stirring the
dust in the radial direction.

We now quantify the efficiency of this stirring mechanism. We
report in Table 1 the resulting α/St values, deduced using equation
(1), and we plot graphically the constraints in the α−St plane in Fig. 3.
In general, we find that the degree of coupling of the dust is relatively
good, with an average α/St ∼ 0.1. We discuss the implications of
these results in Section 4.

Finally, we also measure the gas width wg using equation (2).
Although D18 did not analyse the gas data to measure gas widths,
they identified possible lower and upper limits based on different
physical criteria. Our values fall inside this range except for B100,
in which case we find a wider gap than their upper limit – this might
be because they employed the full width at half-maximum to set a
constraint on the possible width. We note that in all cases the gas
widths are larger than the dust ones, providing support to the idea
that these structures are pressure traps.

3.2 Deriving an α value

Because the dust dynamics depends only on the ratio α/St, so far
we have been unable to measure individually the two parameters. To
break the degeneracy between them, we need some information on
St. As shown by Birnstiel et al. (2012), in models of dust coagulation
the dust grain size is limited by either fragmentation or radial drift.
Since the rings are pressure maxima, the dust is not rapidly drifting
in their vicinity; therefore, it is plausible to assume that the grain
size should be set by fragmentation (e.g. see Bae et al. 2018). In this
case, using equation (3) of Birnstiel et al. (2012)

αfrag =
√

1

3

u2
f

c2
s

( α

St

)
measured

, (3)

where uf is the fragmentation velocity and cs the sound speed in the
mid-plane estimated using the temperatures computed by D18. We
report in Table 2 the resulting αfrag values when assuming a value of
the fragmentation velocity of 10 m s−1 (note the linear dependence
on this parameter). We also added these values as the star markers in
Fig. 3. Conventionally, α is assumed to lie in the approximate range
(10−4, 10−2); the values we find are towards the upper end of this
range.

We cannot know if the grain size is indeed set by fragmentation,
but we argue that αfrag is an upper limit on the value of α. This is
because if α was greater than αfrag, fragmentation would limit the
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Figure 2. Data for HD 163296 and AS 209, left and right, respectively. Top panel: continuum emission profiles. We marked the location of the continuum
peaks, using the notation of Huang et al. (2018). The full widths at half-maximum of the synthesized beams are shown in the bottom left of each panel: 104 and
94 mas, respectively. Middle panel: rotation curves derived from the observations. We marked with the grey dashed lines the linear fits in the vicinity of the
continuum peaks. Bottom panel: derivative of δvφ .

Table 1. Values derived from the observations for the five pressure traps analysed in this paper with 1σ uncertainties.

(1) (2) (3) (4) (5) (6) (7) (8)

Ring ∂δvφ /∂r TB vkep wdust α/St wgas �r
�vφ

(cs/vK)2

(% au−1) (K) (m s−1) (au) (au) (au)

HD 163296
B67 − 0.20 ± 0.02 81.5 ± 8.2 4784 ± 4 6.85 ± 0.03 0.23 ± 0.03 14.4 ± 1.0 7 1.1
B100 − 0.15 ± 0.01 71.7 ± 6.2 3932 ± 2 4.66 ± 0.08 0.04 ± 0.01 23.2 ± 1.3 15 1.4
B155 − 0.12 ± 0.02 68.3 ± 5.1 3186 ± 1 7.25 ± 1.77 0.04 ± 0.02 34.8 ± 2.7 0.02 0.4

AS 209
B74 − 0.50 ± 0.05 41.6 ± 4.5 4092 ± 7 3.39 ± 0.06 0.18 ± 0.04 8.0 ± 0.6 5 2.9
B120 − 0.62 ± 0.06 37.0 ± 2.8 3146 ± 4 4.12 ± 0.07 0.13 ± 0.02 11.2 ± 0.7 10 4.8

Notes: All quantities are evaluated at the location of each dust ring. (1) Slope of the deviation of the rotation curve from Keplerian. (2) Brightness temperature,
used to estimate the temperature at the emitting layer. (3) Keplerian velocity. (4) Width of the dust ring. (5) Value of α/St computed using equation (1). (6) Width
of the gas ring computed using equation (2). (7) Radial extent over which the deviation from Keplerian has a negative slope. (8) See 3.4.

grain size to a St not compatible with our measurement of α/St.
Instead, it is acceptable that α is lower than αfrag if we invoke the
presence of another process (e.g. bouncing, or a residual level of
radial drift) setting the grain size, and that this process limits the
grain size to a value smaller than what would be set by fragmentation.
This is marked with the solid and dashed lines in Fig. 3 (see the next
paragraph for the difference between solid and dashed).

Lastly, it should be noted that the relative velocity in grain
collisions increases with St but only until St = 1 (Ormel & Cuzzi
2007); increasing St further decreases the relative velocity. This has
two important practical consequences. First, equation (3) assumes
that the relative velocity always increases with St and therefore is
only valid for the case St < 1; we have verified a posteriori that in
all cases we obtain an acceptable solution, i.e. with St < 1. Second,
if α is sufficiently low, even for St = 1 the relative velocity is lower

than the fragmentation velocity and therefore the fragmentation limit
never applies. We define αmin, frag as this critical value of α; its value
is αmin,frag = 2/3 u2

f /c
2
s (note that in this case the dependence on uf is

quadratic). As previously, we compute these values assuming a value
of the fragmentation velocity of 10 m s−1 and report them in Table 2.
These values are the separation between the solid and dashed line in
Fig. 3. The significance of the solid region is that, even without our
measurements of α/St, in this region we must invoke another process
limiting grain growth, or growth would proceed unimpeded.

To summarize, there are two possible scenarios: in the first, the
grain size is set by fragmentation and α takes the value we report
as αfrag. It is interesting to note that for HD 163296, these values
are incompatible with the upper limit reported by Flaherty et al.
(2017) of 3 × 10−3, especially for B67, while for B100 and B155 a
slight reduction in fragmentation velocity could still make the two
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Figure 3. Graphical visualization of the constraints on St and α derived in this paper. We do not plot B155 because the constraints overlap almost completely
with the ones for B100. Our method yields a measurement of α/St, i.e. a line in this plane (see grey dashed lines for reference lines of constant α/St). We
mark with the stars the fragmentation limit. The solid line marks the region where fragmentation due to turbulence never operates and therefore another process
must limit the grain size. In the region marked with the dashed line, fragmentation due to turbulence is possible, but because of the lower St another process is
limiting the grain size more efficiently than fragmentation. For HD 163296, we use the disc surface density profile of Booth et al. (2019) to set a constraint on
St, assuming a grain size of 1 mm.

Table 2. Constraints on α and grain properties derived from our measure-
ments of α/St. For AS 209, we do not use the surface density reported by
Favre et al. (2019) to set a constraint on St and α because the measurement
is most likely affected by carbon depletion.

(1) (2) (3) (4) (5)
Ring αfrag αmin, frag 	gas St	 α	

(g cm−2)

HD 163296
B67 8 × 10−3 6 × 10−4 68 2 × 10−3 6 × 10−4

B100 4 × 10−3 7 × 10−4 57 3 × 10−3 10−4

B155 4 × 10−3 10−3 53 3 × 10−3 10−4

AS 209
B74 10−2 10−3 0.3
B120 10−2 2 × 10−3 0.3

Notes: (1) Value of α if the grain size is set by fragmentation. (2) Value
of α below which fragmentation does not limit grain size. (3) Gas surface
density derived from observations. (4) Stokes number with the previous value
of the surface density, assuming a grain size of 1 mm. (5) α value obtained
combining the previous constraint on St and our measurement of α/St.

measurements compatible. In the second scenario, another process
is setting the grain size and α can take any value smaller than αfrag.
In this case, depending on the value of α, we can also further argue
that if αmin, frag < α < αfrag, this process must be more efficient than
fragmentation.

3.3 Which Stokes numbers are compatible with grain growth?

Because St is linked to the grain size, it is worth asking what values
are compatible with the well-known results of dust grain growth in
protoplanetary discs (see Testi et al. 2014 for a review); in turn,
this sets a constraint on α given the measurements of α/St that we
present in this paper. The Stokes number in the Epstein regime can
be expressed as

St = 1.5 × 10−3
( a

1 mm

)(
	

100 g cm−2

)−1

, (4)

where a is the grain size and we have assumed a dust bulk density of
1 g cm−3. To put some constraint on St, we thus need measurements
of the gas surface density.

For HD 163296, such a measurement is provided by the recent
detection of 13C17O (Booth et al. 2019). Given the non-detection
of this disc in the HD 1-0 transition (Kama et al. 2020), the gas
surface density of this disc is reasonably well constrained, since
increasing it would make it incompatible with the non-detection of
HD and gravitationally unstable (in contrast with the lack of observed
spiral arms), while lowering it would make it incompatible with the
detection of 13C17O. We list in Table 2 the surface density 	gas at
each ring location from the disc model of Booth et al. (2019); we
then use this surface density to compute the resulting Stokes number
St	 . These values are plotted as the triangles in Fig. 3. The resulting
α values (which we list as αSigma in the table), once combined with
our measurements of α/St, seem to exclude the possibility that α

is high and that the grain size is set by fragmentation. In order
to make fragmentation the process setting grain size, we would
need a grain size larger by a factor �10 to increase αSigma, or a
fragmentation velocity smaller by a similar amount to decrease αfrag

(or a combination of both).
For AS 209 instead, Favre et al. (2019) reports significantly lower

values of the surface density from CO isotopologues observations.
At face value, this would point towards the need for much larger
St (∼0.5), which are not compatible with our constraints since they
would imply a value of α greater than αfrag. Additionally, this result
would be at odds with attempts at modelling the dust structure
in AS 209 as due to disc–planet interaction, which consistently
highlighted the need for low viscosity values in this particular disc
(Fedele et al. 2018; Zhang et al. 2018). However, it is well known
that due to carbon depletion CO-derived disc masses are generally
underestimated in T Tauri stars (e.g. Miotello et al. 2017) and
therefore it is likely that the true disc mass is significantly higher
than the estimate of Favre et al. (2019). For this reason, we do not
plot these constraints in Fig. 3, nor indicate them in Table 2.

A caveat of this analysis is that we have simply assumed that the
grains are 1 mm. A better estimate would be needed, but we note
that, even if ALMA has now been in operation for a few years,
very few discs have been studied with sufficient spatial resolution at
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multiple wavelengths to study the grain properties in the rings, and
therefore we have limited information on the grain size. For example,
for HD 163296 the spatial resolution of Guidi et al. (2016) was not
enough to resolve the rings; Dent et al. (2019) were not able to place
constraints on the grain size due to the degeneracy between grain
growth and optical depth, and the limited difference in wavelength
between band 6 and band 7. While polarization could in principle
be an alternative way of placing constraints on the grain size, the
analysis of Ohashi & Kataoka (2019) shows that the potentially
high optical depth of the rings in the sub-mm makes the grain size
unconstrained, highlighting the need for data at longer wavelengths.
Future high-resolution studies will provide constraints on the grain
size, in this way further breaking the degeneracy between α and St.

3.4 Caveats

As we highlighted when describing Fig. 2, the rotation curve we
derive from the data is broadly consistent with the dust continuum
structure. However, we wish to discuss in this section two effects
that are in partial tension with the dust continuum. The first one has
been already introduced in Section 3.1, namely that for B100 in HD
163296 and B120 for AS 209 the continuum peak is not located at
the centre of the radial range over which δvφ decreases. The problem
is particularly severe for AS 209, in which case δvφ starts decreasing
only at the location of the peak in the continuum. For AS 209, this
effect has already been noted by Teague et al. (2018b). We note that,
because we do not know the true value of the Keplerian velocity, there
is some uncertainty in the exact location of the pressure maximum
(i.e. a constant vertical offset in δvφ would shift radially the location
where the pressure gradient crosses zero; see Keppler et al. 2019 for
an example). While this could be enough to explain the inconsistency
for B100 in HD 163296, it does not appear to be the case for B120
for AS 209, since a vertical offset would not change the fact that δvφ

increases (i.e. has a positive derivative) at radii smaller than inside
the continuum peak.

There are two reasons that could explain this discrepancy. The
first one is what we discuss in Appendix B, namely the effect of a
local variation in the height of the emission surface. Fig. B1 shows
an example where the deviation from Keplerian starts decreasing
only outside the location of the pressure maximum. The second
reason is the possibility that the gap structure is intrinsically not
symmetrical. Within the framework of this paper, we cannot account
for an asymmetry because, to first order in r − r0, the gap structure
is symmetrical by construction, but this is a possibility we plan
to investigate in future papers. The issue is of interest because
hydrodynamical models of disc–planet interaction tend to predict
a steeper pressure profile inside the pressure maximum than outside.
It is also suggestive that observational studies of transition discs show
(Pinilla et al. 2018) a similar difference in the dust distribution on
the two sides of the pressure maximum. Therefore, both effects go in
the same direction. With the current data, it is not currently possible
to disentangle between them.

The second caveat we wish to discuss concerns the magnitude of
the deviation from Keplerian. We can hypothesize that at sufficient
distance from the pressure bump, the pressure profile goes back to
some smooth, negative slope and therefore the rotation curve is sub-
Keplerian. As already discussed in this paper, we cannot measure this
unperturbed slope because of the uncertainties in the mass of the star,
as well as the height of the emission surface. However, we can write
that in the unperturbed region the deviation from Keplerian should be
of order δvφ /vK = 1/2(cs/vK)2γ � (cs/vK)2 (see equation A4), where
we have called γ the logarithmic slope of the unperturbed surface

density profile, and in the last passage we have ignored factors of
order unity. For the pressure bump to be a pressure maximum, the
change in vφ induced by the bump needs to be high enough for the
rotation curve to transition from sub- to super-Keplerian rotation.
Given a radial range �r of the variation and a slope m = �δvφ /�r,
this means that the total variation m�r induced by the pressure bump
needs to be larger (in absolute value) than the unperturbed value
(cs/vK)2 (note that, because of the analysis of Appendix B, it does
not matter whether we perform this comparison in the mid-plane
or at the emission surface). We list in Table 1 the �r we employ
and the ratio between the total variation and (cs/vK)2. It can be seen
that, whereas in AS 209 the total variation is comfortably higher
than what is needed to produce pressure maxima, mostly because of
the larger slopes measured from the data, for HD 163296 the total
variation is barely larger than the constraint; for B155, the slope we
measure is not large enough to produce a pressure maximum. Even
for the other two rings, this does not leave much free room to have a
pressure maximum. This could be because the pressure bumps in this
disc are indeed only shallow maxima, or because γ is small (i.e. the
unperturbed surface density is very shallow), or it could be because
of additional physics we are missing in our analysis.

It should be remarked that the data sets we analysed were not
designed to study gas kinematics; for example, they have a quite
limited spectral resolution (0.35 km s−1 native resolution, with
the actual resolution roughly two times worse due to Hanning
smoothing). Ultimately, separate data sets explicitly designed to
study kinematics are needed to re-assess in future works the caveats
we describe here.

4 D I SCUSSI ON AND C ONCLUSI ONS

In this paper, we presented a unique approach to analyse the disc
kinematics and, in comparison with the sub-mm continuum emission,
measure the α/St ratio at the ring centres, in this way providing
constraints on the level of turbulence and the dust–gas coupling.
Moreover, our method also measures the width of gas pressure
bumps. Our results confirm that the structures in the gas are larger
than in the dust and that α/St < 1, thereby providing evidence that
the rings now ubiquitously imaged are dust traps, at least for the two
discs studied here.

At the same time, our results also imply a relatively large value
of α/St, with a typical value of 0.1. Our constraints are illustrated in
Fig. 3 and they imply that we can reject a scenario in which the disc is
characterized by low turbulence (e.g. α = 10−4) and the grains have
large Stokes numbers (e.g. St = 0.1). On the contrary, our results
imply that if the grains have large Stokes numbers then the disc must
also be very turbulent (at least in the radial direction), for example in
the case limited by fragmentation (see αfrag values in Table 1). This
case also constitutes an upper limit on the value of α. On the other
hand, such high values of the turbulence appear to be in tension with
the lack of a direct detection (Flaherty et al. 2017), at least for the case
of HD 163296. We note that the analysis carried by Flaherty et al.
(2017) assumed homogeneous, isotropic turbulence, and it is possible
that this discrepancy may be solved by relaxing this assumption. The
other possibility is instead that the discrepancy points to a different
physical regime, namely that the grain size in these discs is not set
by fragmentation (α smaller than αfrag in Table 2). This possibility is
more in line with recent theoretical work proposing that accretion is
mostly driven by winds launched by the magnetic field. This option
is compatible with our data and, as we discuss in Section 3.3, also
with recent measurements of the disc mass (Booth et al. 2019) for
HD 163296. For AS 209 instead, our results are in tension with the
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low disc mass inferred from C18O observations (Favre et al. 2019),
although it is likely that carbon depletion is severely affecting those
measurements.

Lastly, it should be noted that future high-resolution gas obser-
vations of optically thin lines (which for the two discs we analysed
will be conducted by the approved Large Programme MAPS) will
test our measurements of gas widths and will provide an independent
constraint. We remark that the method we propose here is cheaper
in terms of observing time since it requires brighter, optically thick
lines. A validation of our method would then allow to apply it to a
larger disc sample.
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A P P E N D I X A : D E R I VAT I O N O F T H E
R E L AT I O N S F O R TH E D U S T – G A S C O U P L I N G
A N D G A S W I D T H

The radial width of a dust ring close to a pressure bump is set by
the competition between radial drift (which tends to collect dust at
the pressure maximum) and diffusion (that tends to smooth out the
ring). Assuming steady state and a zero net dust mass flux, balancing
the two terms means solving the following differential equation (see
e.g. D18)

	dvdrift = Dd
d	d

dr
, (A1)

where 	d is the dust surface density, vdrift the radial drift velocity, and
Dd the diffusion coefficient of the dust. We assume that the diffusion
coefficient of the dust is equal to the kinematic viscosity ν, i.e. that
the Schmidt number is 1; this is valid for dust with St � 1 (e.g.
Youdin & Lithwick 2007). Substituting the expression for the radial
drift velocity (Takeuchi & Lin 2002), we obtain

	d
St

r

d log p

d log r
= α

d	d

dr
. (A2)

This differential equation contains the logarithmic derivative,
which we can put in relation with the rotation curve vφ(r) of the
gas. The relation between p(r) and vφ(r) is given by

vφ(r) = vK(r) + 1

2

c2
s

vK

d log p(r)

d log r
. (A3)

Calling δvφ ≡ vφ − vK (the deviation from Keplerian), we can write

δvφ

vK
= 1

2

c2
s

v2
K

d log p(r)

d log r
. (A4)
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In the razor-thin case p2D = c2
s 	 and it is useful to use this to rewrite

this expression as

δvφ

vK
= 1

2

c2
s

v2
K

(
d log 	

d log r
+ d log c2

s

d log r

)
. (A5)

We will not use this expression in the context of the razor-thin
analysis, but introducing it is nevertheless useful for the analysis
in Appendix B. Equation (A4) can be used to find the logarithmic
derivative of the pressure

d log p(r)

d log r
= 2

v2
k

c2
s

δvφ

vk
. (A6)

Substituting it into equation (A2) leads to the following differential
equation for the dust structure

2	d
St

r

v2
k

c2
s

δvφ

vk
= α

d	d

dr
. (A7)

In principle, we could solve this equation for the dust structure
given the δvφ /vk measured by the observations. However, this is
not straightforward (for example, we already stated that we do not
know the true Keplerian value). A more robust approach is to employ
the derivative of the velocity measured close to a pressure maximum
r0, which is equivalent to Taylor-expanding the rotation curve (or the
logarithmic derivative of the pressure profile)

δvφ

vk
= d

dr

(
δvφ

vk

)∣∣∣∣
r0

(r − r0) + O[(r − r0)2], (A8)

since by construction the rotation curve vanishes at r0. Because r0 is
a maximum, we also deduce that d/dr(δvφ /vk) < 0 in the vicinity of
r0.

With this approximation, and to first order in (r − r0), equation
(A7) becomes

2	dSt
v2

k

c2
s

δvφ

vk

(r − r0)

r0
= α

d	d

dr
. (A9)

The solution of this differential equation is a Gaussian

	d = 	d0 exp

[
− (r − r0)2

2w2
d

]
, (A10)

where we have introduced the width wd, which is given by

w2
d = −1

2

α

St

c2
s r0

v2
k

[
d

dr

(
δvφ

vk

)∣∣∣∣
r0

]−1

. (A11)

Recalling that d/dr(δvφ /vk) < 0, we can see that w2
d is as expected

a positive quantity. Inverting the last equation, we finally get to the
final expression that links α/St with the observables

α

St
= −2w2

d

r0

v2
k

c2
s

d

dr

(
δvφ

vk

)∣∣∣∣
r0

. (A12)

A1 The gas structure

The first-order expansion of the rotation curve also allows us to
write the pressure profile in the proximity of the pressure maximum.
Using the expansion to first order of the rotation curve, we can rewrite
equation (A6) as

d log p(r)

d log r
= 2

v2
k

c2
s

d

dr

(
δvφ

vk

)∣∣∣∣
r0

(r − r0). (A13)

Integrating this equation we obtain that

p(r) = p0 exp

[
− B

2r0
(r − r0)2

]
= p0 exp

[
− (r − r0)2

2w2
g

]
, (A14)

where we have called wg the width of the gas, which is linked to the
observables as follows

wg =
√

−1

2

c2
s

v2
K

r0

[
d

dr

(
δvφ

vK

)]−1

. (A15)

The expansion to first order we have done in this paper is therefore
equivalent to assume that the gas pressure profile is a Gaussian. The
same quantities that we use to estimate α/St can also be used to
measure the width of this Gaussian.

APPENDI X B: V ERTI CAL STRUCTURE

We now drop the assumption of a razor-thin disc and consider the
disc vertical structure. Force balance in the radial direction reads

v2
φ

r
= GMr(

r2 + z2
)3/2 + 1

ρ

∂p

∂r
. (B1)

We now define v2
K = GMr2/(r2 + z2)3/2, i.e. the Keplerian velocity

at height z, and use that p = c2
s ρ. As before, we introduce δvφ ≡ vφ

− vK and use these quantities to rewrite this expression as

δvφ

vK

= 1

2

c2
s

v2
k

(
∂ log ρ

∂ log r
+ ∂ log c2

s

∂ log r

)
, (B2)

where to simplify the notation we have not marked explicitly the
dependence on z of the various quantities; we will follow this
convention also in the next equations, except when it is needed
to resolve ambiguities. Note that, while in the razor-thin case we
directly prescribed a structure in the gas pressure, it is now necessary
to distinguish between density and temperature because they have a
different dependence on the vertical coordinate. We now focus on the
term ∂log ρ/∂log r. Without loss of generality, ρ(r, z) = ρ0(r)fH(r,
z), where fH(r, z) is such that fH(r, z = 0) = 1. We assume that
most of the mass is concentrated close to the mid-plane, so that ρ0

∝ 	/H neglecting the details of the vertical structure (which is valid
for realistic temperature profiles, e.g. Flock et al. 2013), where H
= cs,mid-plane/k is the gas scale height in the mid-plane. With this
notation

∂ log ρ

∂ log r
= ∂ log 	

∂ log r
− ∂ log H

∂ log r
+ ∂ log fH (r, z)

∂ log r
. (B3)

The density and sound speed in the vertical direction must satisfy the
vertical hydrostatic equilibrium

1

ρ

dp

dz
= 1

ρ

d(ρc2
s )

dz
= GMz

(rz + z2)3/2
. (B4)

If cs(z) is known, this equation is separable and can be directly
integrated; the formal solution, as can be verified by substituting it
in the previous expression, reads

ρ = ρ0

c2
s,midplane

c2
s (z)

exp

(
−
∫ z

0

2
kz

′dz′

c2
s (z′)

)
, (B5)

which specifies fH(r, z). We further assume that the sound speed cs

varies in the following way with height

c2
s (r, z) = c2

s,midplane(r)fc(r, z) = c2
s,midplane(r)g(z/H (r)), (B6)

i.e. that the increase in temperature depends only on z/H. It is then
natural to introduce the dimensionless variable x = z/H. A commonly
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Figure B1. Illustration of the effect of the disc vertical structure, and in
particular of a varying height of the emission surface. The blue line depicts
the case of a constant z/r of the emission surface (note that this means that
height of the emission surface, measured in scale heights, slightly decreases
with radius because the scale height increases with radius), while in the orange
line we consider a local increase in the height of the emission surface. This
leads to a morphological change in the shape of the rotation curve, but it does
not affect the average value.

used functional shape for g, first proposed by Dartois, Dutrey &
Guilloteau (2003), is

g(x) = 1 + (θ − 1) sin4

(
πx

xtrans

)
, (B7)

where θ is a free parameter specifying the ratio between the
temperatures in the mid-plane and in the atmosphere, while xtrans

is the vertical coordinate (in units of the scale height) where the
temperature transitions to the value in the atmosphere.

After some algebra, we get to the final expression

δvφ

vK
= 1

2

c2
s

v2
k

{
∂ log 	

∂ log r
+ ∂ log c2

s,midplane

∂ log r

+ ∂ log H

∂ log r

[∫ z/H

0

(
2x

g
− x2g′

g2

)
dx − 1

]}
, (B8)

where g′ = dg/dx and the integral (a dimensionless number) can
easily be evaluated numerically for a given choice of g. Note that
this expression correctly reduces to the isothermal limit given by
Takeuchi & Lin (2002), in which case g ≡ 1 and g′ = 0.

This formula allows us to study the validity of equations (A12)
and (A15) in comparison with equation (A5). The most obvious
change is that the temperature to use is not the one in the mid-
plane, but the one at a height z, because the term c2

s in front of the
parenthesis is now evaluated at a height z. The other difference is
that this equation contains additional terms inside the parenthesis;
for clarity, we reported these terms on the second line. To study the
impact of these terms, it is worth remembering that in this paper we
use the slope of the rotation curve, i.e. the derivative of equation
(B8). Although the additional terms present in this equation might
potentially be non-negligible, they are constant with radius as long as
(i) the temperature can be described as a power law and (ii) the height
of the emission surface (measured in scale heights) does not change.
Therefore, these terms will not introduce biases as long as those two
conditions are satisfied, although they do introduce a constant offset
in the perturbation of the rotation curve from Keplerian.2 Regarding
point (i), we note that the brightness temperature emission profile
of 12CO is relatively smooth [see fig. 7 of Isella et al. (2018) and
fig. 5 of Guzmán et al. (2018)], which justifies our assumption of
neglecting a radial temperature gradient on the same spatial scales
of the pressure bump. We note that the 12CO-derived temperature
is the one at the emission surface; there is limited information for
the temperature in the mid-plane, but at least for HD 163296, the
method of Dullemond et al. (2020) also finds a smooth temperature
profile. Regarding point (ii), it is reasonable to expect that close
to a pressure maximum, due to the increase in surface density, the
height of the emission surface might have a local increase. Because in
general the integral in equation (B8) increases with z, this produces
a local perturbation in the rotation curve around the local maximum
that is always super-Keplerian and has a maximum at the pressure
maximum. It follows that its derivative changes sign at the pressure
maximum. We illustrate this graphically in Fig. B1. In the figure, we
have modelled this local increase as a Gaussian with the same width
as the perturbation in surface density and assumed an amplitude of
the perturbation of 20 per cent; we used parameters corresponding to
B67 in HD 163296 (mid-plane temperature of 30 K, following D18,
and temperature in the upper layers of 80 K). The figure shows that
the perturbation induced by a variation of the height of the emission
surface is morphologically different from the one induced by the
pressure maximum and therefore should not bias our determination
of the width. Note that, in principle, the perturbation could have
a rather high amplitude in the value of the slope (see the bottom
panel); however, it does not affect the average value because the effect
has two different signs on the two sides of the pressure maximum.
Finally, we note that this effect also tends to shift towards the outside
the apparent location of the pressure maximum derived from the
rotation curve.

2Recall that in our methodology we do not know anyway the true Keplerian
value. The additional terms in equation (B8) are the very reason why in
general we expect an offset from the Keplerian value.
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