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Puberty is a critical phase of life associated with physiological changes related

to sexual maturation, and represents a complex process regulated by multiple

endocrine and genetic controls. Puberty is driven by hormones, and it can

impact the gut microbiome (GM). GM differences between sex emerge at

puberty onset, confirming a relationship between microbiota and sex

hormones. In this narrative review, we present an overview of precocious

pubertal development and the changes in the GM in precocious puberty (PP) in

order to consider the role of the sex hormone–gut microbiome axis from the

perspective of pediatric endocrinology. Bidirectional interactions between the

GM and sex hormones have been proposed in different studies. Although

the evidence on the interaction between microbiota and sex hormones

remains limited in pediatric patients, the evidence that GM alterations may

occur in girls with central precocious puberty (CPP) represents an interesting

finding for the prediction and prevention of PP. Deepening the understanding

of the connection between the sex hormones and the role of microbiota

changes can lead to the implementation of microbiota-targeted therapies in

pubertal disorders by offering a pediatric endocrinology perspective.
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Introduction

Puberty is a critical phase of life associated with physiological changes related to

sexual maturation and represents a complex process regulated by multiple endocrine and

genetic controls (1). Gonadal sex hormones are secreted in accordance with the pulsatile

secretion of the pituitary gonadotropin follicle-stimulating hormone and luteinizing
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hormone (FSH and LH), which is activated by the release of the

hypothalamic gonadotropin releasing hormone (GnRH) (2).

Rising levels of sex steroid hormones trigger changes in

physical appearance during pubertal development.

Pubertal development can be at the appropriate time,

precocious or delayed. Abnormal pubertal development can

cause considerable distress to the patient and could also be a

sign of an underlying pathology.

Puberty is driven by hormones, and it can impacts the gut

microbiome (GM) (3). Gut microbial communities represent

one source of human genetic and metabolic diversity; they

influence nutrient acquisition, brain development, immunity,

endocrinology and the nervous system (4–6). Few studies have

described changes in the gut microbiome as a function of age. It

has been observed that the development of the microbiome from

infancy to childhood is dependent on multiple factors, and an

association between sex hormones and microbiota has been

proposed. GM differences between sex emerge at puberty

onset, confirming a relationship between microbiota and sex

hormones (3, 7). Some theories suggest that the GM regulates

the levels of sex hormones via interactions among its

metabolites, the immune system, chronic inflammation and

some nerve–endocrine axes, such as the gut–brain axis.

Additionally, bidirectional interactions between the

microbiome and the hormonal system have also been

proposed, and the mechanisms of these interactions are being

explored; data are limited in pediatrics (8).

In this narrative review, we presented an overview on the

precocious pubertal development and the changes in the GM in

precocious puberty in order to consider the role of the sex

hormone–gut microbiome axis from the perspective of

pediatric endocrinology.
Methods

A narrative review was presented (9); a non-systematic

summation and analysis of the available literature on the topic

of the changes in the GM in precocious puberty and the role of

the sex hormone–gut microbiome axis was considered. Authors

reviewed the relevant English literature on a specific topic, in the

past 15 years, including original papers, metanalysis, clinical

trials and reviews. Case reports and case series were excluded. A

search in PubMed, Scopus, EMBASE, and Web of Science was

adopted. The following search terms (alone and/or in

combination) were adopted: precocious puberty, timing of

puberty, gut microbiome, sex hormones, sex hormone–

gut microbiome axis. The authors revised the abstracts of the

available literature (n=83) and reviewed the full texts of

potentially relevant articles (n=50) that were analyzed and

critically discussed. The reference list of all articles was

checked to consider relevant studies. The contributions were

independently collected by V.R., G.M., C.R. and C.H., critically
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analyzed by V.C., S.P. and V.C., S.P., C.B., G.Z discussed the

resulting draft before finalizing. The final version was approved

by all the coauthors.
Pubertal development

Physiology of the puberty

Puberty is a crucial developmental milestone characterized

by the maturation of gametogenesis (precursor cells undergo cell

division and differentiation to form mature haploid gametes),

the production of gonadal hormones and the development of

secondary sexual characteristics and reproductive functions.

Normal puberty results from prolonged, mature activity of

the hypothalamic–pituitary–gonadal (HPG) axis (2). The

hypothalamus releases the GnRH in a pulsatile way into the

pituitary portal venous system, where it stimulates LH and FSH

secretion (pulsatile as well). LH primarily stimulates Leydig cells

in the testes and theca cells in the ovary to secrete androgens.

FSH primarily stimulates the ovarian follicle or seminiferous

tubules to form estrogen, inhibin, and eggs or sperm. The

interstitial, tubular and follicular compartments act together

through paracrine processes to produce estrogen, and regulate

sex steroid production and gamete development. Steroid

hormones have endocrine negative feedback effects on GnRH

and gonadotropin secretion. FSH secretion is suppressed by the

negative feedback of inhibin, progesterone, and estradiol. In

adult female subjects, critical estradiol concentration stimulates

the LH surge that initiates ovulation.

At birth, due to the absence of placental steroids that

suppress the HPG axis, there is an activation of such axis,

which causes an increased production of steroidal hormones,

defining the first step that will be continued in adolescence. This

transient activation starts approximately one week after birth,

and it stops after few months (approximately 6 months of age)

(10–12).

The HPG axis is not completely dormant throughout

childhood, especially in females, who show moderately higher

FSH concentrations than males. Sometimes, it is also possible to

see ovarian follicles using ultrasounds. During adolescence, the

HPG axis undergoes complete reactivation.

The most important GnRH-inhibitory systems are gabaergic

(neurons that produce gamma-aminobutyric acid) and

opioidergic; Kisspeptin, neurokinin B and dynorphin A, three

neuropeptides present in the arcuate nucleus (ARC), are

considered to be fundamental generators that influence GnRH

release, as they contribute significantly to the physiology of

puberty in boys and girls (2).

The role of leptin in the physiology of puberty is well known.

Leptin is a cytokine produced mainly by adipocytes, which acts

as an anorectic factor, playing an essential role in controlling

body weight, food intake, and energy balance by inhibiting the
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hypothalamic neuropeptide Y (NPY), thus suppressing appetite

(13, 14). Normal body weight and composition must be attained

during childhood to avoid pubertal dysfunction (1). In addition

to the leptin-NPY interaction, some studies showed that leptin

acts on puberty and reproductive function by directly interacting

with the KiSS-1gene. GnRH neurons lack leptin receptors, but

KiSS-1 neurons express them. Leptin directly stimulates

kisspeptin release and mediates the pulsatile release of

GnRH (15).

Physical changes occurring in puberty in male and female

adolescents and the assessment of secondary sexual

characteristics (breast buds in girls, testicular volume in boys,

pubic hair in both), were classified according to the Marshall and

Tanner classification
Precocious puberty

Puberty is a complex process with wide physiological

variation. Mechanisms regulating the onset of puberty involve

genetic, nutritional and environmental interactions (1).

Abnormal fetal nutrition along with the endocrine system

could lead to developmental alterations that permanently affect

structure, physiology and metabolism. Interactions between

hormones and nutrition during crucial periods of growth are

essential concerning metabolic adaptation response control and

pubertal development expectation (16).

An increasing amount of evidence suggests that the prenatal

and early postnatal periods represent an important period for

the programming of puberty onset (17). Various studies have

shown that prenatal exposure to unfavorable environmental

factors, such as factors responsible for children born SGA

(small for gestational age) and/or IUGR (intrauterine growth

restriction), have an effect on puberty timing (18, 19). A child

born SGA may undergo several puberty alterations, such as

precocious puberty (20–22).

Precocious puberty (PP) is defined by the early appearance

of secondary sexual characteristics before the age of 8 years in

female adolescents and 9 years in males (23). According to the

underlying physiopathological process, pathological PP is

classified as follows:
Fron
• Central precocious puberty (CPP) or gonadotropin-

dependent PP (or true precocious puberty) caused by

an early maturation of the HPG axis due to congenital or

acquired central nervous system (CNS) lesions or

monogenic defects, or it can be idiopathic (1);

• Peripheral precocious puberty (PPP) or gonadotropin-

independent PP (or pseudoprecocious puberty), due to

an excessive secretion of gonadal sex hormones or

adrenal hormones from a genetic or tumoral etiology,

germ cell tumors secreting hCG (human chorionic
tiers in Endocrinology 03
gonadotropin—exclusively in boys), or an exogenous

source (1).
It has been evaluated that CPP affects 1 in 5000-10000

children, and is 10 times more common in females than in

males (24). In addition, most of the cases of CPP in females seem

to be idiopathic (25), whereas a higher prevalence of CPP in

males seems to be commonly caused by pathological brain

lesions (26). In particular, hypothalamic hamartoma is the

most common brain lesion causing CPP.

There are some reports of familial forms, but the genetic

basis is not completely understood. Some studies have shown

associations with mutations (loss or gain of function) of KISS1

and makorin ring finger (MRF3) genes and their receptors.

Mutations in these genes result in CPP; on the contrary, in

familial CPP, MKRN3 defects were found in approximately 30%

of families in subjects with apparently sporadic CPP, and

MKRN3 defects were noted in approximately 8% of cases (27).

Patients with PP show accelerated sexual and physical

growth concurrently with a growth spurt. If untreated, the

accelerated epiphysial growth could lead to a short stature in

adulthood due to premature epiphysial closure.

An accurate personal and familiar history, a complete

physical examination, hormonal, and radiological exams is

crucial in the PP diagnosis (23, 24, 28, 29).

The clinical examination should be focused on the

auxological data, the assessment of pubertal signs according to

the Marshall and Tanner classification (12, 30), the growth

pattern during the last 6–12 months, the rate of progression of

pubertal signs and additional signs of puberty (acne, oily skin,

erections, nocturnal emissions in boys and vaginal discharge and

menstrual bleedings in girls).

The baseline LH level is a promising biomarker to diagnose

CPP (31); a basal morning LH value of more than 0.2 mUI/ml is

usually considered indicative of puberty (28, 31–37). In

addiction, an LH to FSH ratio higher than 0.6 has been

associated with CPP (31, 34). Moreover, the GnRH

stimulation test remains the gold standard to identify CPP,

and the cutoff peak LH level of >5 IU/L is widely used to

diagnose CPP (come sopra).

Other hormonal evaluations should include thyroid tests,

testosterone, estradiol, 17-hydroxyprogesterone (17-OHP),

carcinoembryonic antigen (CEA), Cancer antigen 125

(CA125), alpha-fetoprotein and beta-hCG depending on the

patient’s history (38).

To define the biological age of the child, a bone age X-ray of

the nondominant (left) hand and wrist is taken. An advanced

bone age of more than 2.5 standard deviations (SD) or more

than 2 years is more likely associated with pathological PP

(28, 35).

In girls, pelvic ultrasound is a useful tool to assess the

premature pubertal development of ovaries and exclude the

presence of ovarian cysts or tumors (39, 40).
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Brain MRI is suggested in patients with a CPP diagnosis to

rule out CNS lesions (28), that should be performed routinely in

young boys (< 6 years) (28).

The most important goals of the PP treatment are to

preserve the adult height and to reduce the associated

psychosocial stress.

GnRH agonists, with 1-month or 3-month depot

formulations, are the standard of care in CPP. GnRH agonist

therapy is widely considered safe. The most common adverse

reactions include local skin effects and postmenopausal

symptoms (35). The periodic verification of pubertal

progression, growth velocity, and skeletal maturation is required.

The treatment of PPP varies according to the pathogenesis,

and the primary aim of treatment is to eliminate the endogenous

or exogenous sources of sex steroids (41, 42). Surgery is

indicated in adrenal and gonadal tumors.
Gut–sex hormones axis

The human intestinal tract is colonized by a large number

of microorganisms (circa 1013-1014), known together as

“microbiota”. The gut microbiome is the human body’s

major ecosystem, so much so that according to some authors,

it represents a “separate organ” (43). The human colon can be

populated by more than 1000 different bacterial species and,

each host can boast at least 160, which, however, vary in type

and quantity depending on the person’s own health (44–46).

This element underscores the interdependence that exists

between host and GM, which affects multiple aspects of host

health, particularly endocrine, gastroenterological (digestive

function and intestinal permeability), and immune

(resistance to foreign pathogens and stimulation of

immunity) (47). Microbiota interact with a variety of

metabolic and endocrine pathways of the host through

genetic expression of more than 100 times the human

genome. GM’s variety, composition and impact on health

depend on a great number of variables, both internal, such as

age, genetic factors, gender, and endocrine and immune

systems, as well as external factors, such as diet ,

environment, drugs, and pathogens. All together they

influence th e d e l i c a t e ba l anc e o f th e in t e s t i n a l

microecological system. In addition, research has shown that

an imbalance in the GM can lead to a range of related diseases,

especially those of autoimmune origin (5, 47).

In healthy subjects, more than 90% of bacteria are part of

Firmicutes or Bacteroides’ phyla, and alterations in microbiota

diversity are related to adverse outcomes in the host’s health. A

decreased Firmicutes/Bacteroides ratio correlates with health

issues such as obesity and immunological diseases (4, 48).

Some authors have reported an association between an

incremented Firmicutes/Bacteroides ratio and type 1 diabetes

mediated by cell junction disruption with incremental gut
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permeability, bacterial translocation and the subsequent

expression of pro-inflammatory cytokines (49).

The relationship between sex hormones and GM has been

widely explored in recent studies and is an expanding research

field that may lead to new therapeutic options for a great variety

of sex-related diseases; the cluster of the gut microbiome’s genes

capable of influencing sex hormone levels has been named

the “microgenderome”.

One of the earliest studies was performed at the cellular level

in the 1980s, in which it was found that progesterone promoted

the growth of Bacteroides species and Prevotella intermedia (50,

51). Recently, Yurkovetskiy et al. (52) sequenced bacterial DNA

extracted from the cecal contents of prepubertal (4 weeks old)

and postpubertal (10-13 weeks old) mice and found that a-
diversity was not significantly different between the sexes in

prepubertal mice, which was evident among postpubertal mice.

Furthermore, by sequencing the 16S rRNA genes of the

microbiota of males, females, and castrated males, they

observed that the microbiome of females was closer to that of

castrated males than that of uncastrated males (50, 52). Among

the most recent studies evaluating the relationship between

microbiota and sex hormones, Elin Org et al. (53) further

demonstrated the effect of androgens on microbiota

composition, particularly by assessing the effects arising from

gonadectomy and hormone supplementation (53). In contrast,

there are still few studies conducted in humans evaluating the

relationship between estrogen fluctuation and gut microbiome

composition (4, 48). Moreover, these studies have an important

limitation dictated by interfering factors, such as genetics and

the environment, so most results can only support the existence

of a correlation between sex hormones and the microbiome,

rather than a causal relationship (50). Koren et al. (54), when

sequencing stool samples from 91 women, observed that the gut

microbiome was markedly altered during pregnancy, especially

during the third trimester, when estrogen peaks, regardless of

health status (50, 54). A European study by Mueller et al. (55)

showed that healthy males had a higher abundance of

Bacteroides-Prevotella than fertile females, while the

microbiota of postmenopausal women did not differ from that

of males (50, 56). Both studies demonstrate how estrogen and

related female hormones are crucial in regulating the

composition of the gut microbiome.

Therefore, it is well known that microbiota can affect

estrogen levels and that, in turn, estrogen levels may be

influenced by microbiota composition and diversity.

Microbiome is capable of metabolizing estrogens via the

expression of B-glucuronidase, an enzyme that mediates the

deconjugation of dietary and non-dietary estrogen.

Unconjugated estrogen can enter the systemic flow and

become metabolically active by acting on alpha and beta

estrogen receptors, which are expressed in a variety of organs

and tissues; estrogen activity has an impact not only on

reproductive health but also on cardiovascular risk, metabolic
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and bone homeostasis and the central nervous system (49, 50).

Microbiota diversity is associated with higher urinary estrogen

levels in postmenopausal women and in men, whereas in

premenopausal women, estrogen levels do not seem to be

influenced by microbiota composition, suggesting that

microbiota mostly influences the levels of non-ovarian

estrogens. The supplementation of phytoestrogen is capable of

promoting gut colonization from specific bacterial species, and a

phytoestrogen-rich diet may be associated with a lower risk of

metabolic syndrome in Asian postmenopausal women (57, 58).

As already stated, the microbiome also influences the level of

androgens in the host’s organism, and this might occur through a

similar mechanism to that observed in women; a recent study

found the levels of non-glucuronidated dihydrotestosterone to be

lower in the distal intestine of germ-free mice compared to mice

with normal microbiota, thus suggesting that intestinal bacteria

express genes capable of metabolizing human sex hormones (59).

In turn, the sex hormone level may also affect microbiome

composition: androgen excess, as in PCOS patients, may also

lead to dysbiosis and lower bacterial diversity. PCOS is an

endocrine disease characterized by higher androgen and lower

estrogen levels, and several studies associated intestinal dysbiosis

in PCOS patients with lower bacterial diversity, resulting in

reduced butyrate production, higher BMIs and higher

testosterone serum concentrations. Additionally, the gut

microbiome plays an important role in determining insulin

secretion by producing SCFAs, which help to reduce the

inflammatory response; dysbiosis may lead to insulin

resistance and alterations in glucose metabolism, as in

polycystic ovary syndrome; higher insulin levels stimulate the

ovary in producing androgens, thus perpetuating the

pathogenetic mechanism of PCOS (48).

Microbiota and their metabolites may also affect every stage

of female fertility, pregnancy, embryo development and timing

of delivery, by colonizing the vaginal tract and, according to

some authors, the endometrium and placenta. Microbiota’s

alterations have been associated with the secretion of

proinflammatory cytokines and preterm delivery (60).

Neonates born from cesarean section delivery show lower

diversity in intestinal bacteria, probably because they have not

been colonized by maternal intestinal flora by passage through

the vaginal tract (48).

Another possible mechanism for explaining microbiota’s

influence on sex hormone levels involves the “gut-brain axis”,

the two-way communication pathway between gut and CNS,

according to which gut bacteria are an important mediator

between the brain and the endocrine system (4). GM is central

in modulating the brain–gut axis, and the gut barrier SCFAs,

such as acetate, propionate, and butyrate, besides being

modulators of inflammation capable of regulating gut motility

and wound healing, represent a link between the microbiome

and the gut–brain axis (4, 5, 61–63). In addition, the incidence of

functional gastrointestinal disorders, such as functional
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dyspepsia and irritable bowel syndrome, resulting in impaired

motility and/or altered sensitivity, are significantly higher in

females, presumably due to a complex interaction between sex

hormone signaling and stress reactivity in brain–gut axis

function (6, 64). Specifically, estrogens have been observed to

interfere with gastrointestinal motility and sensitivity through

the direct activation of their receptors, located throughout the

brain–gut axis, and indirectly through the modulation of other

receptor systems (6). Gastrointestinal motility is reduced in

women during the follicular phase of the ovarian cycle, when

estrogen levels are high (6, 65). Furthermore, supporting the

hypothesis that circulating female hormones play an important

role in delayed gastric emptying, hormone replacement therapy

administered to pre- and postmenopausal women correlates

with a slower rate of gastric emptying than that of

postmenopausal women not receiving hormone therapy, which

in turn is similar to that of men of the same age (66). In contrast,

testosterone, or androgens in general, appear to have no effect on

gastric motility or gastric hypersensitivity (67, 68).

Estrogens implement their long-term mechanism of action

through actions on nuclear receptors and rapid, nongenomic

action through the activation of estrogen receptor 1 (ER 1)

receptors coupled to membrane G proteins (6, 6). ERs are

ubiquitously expressed in the CNS and in pathways involved

in visceral pain perception, including the hypothalamus,

amygdala, and midbrain, all of which have been shown to

send extensive projections to vagal neurons involved in the

modulation of gastrointestinal function (6, 69–71). Specifically,

in peripheral visceral afferents, estrogen appears to modulate

nociception by altering the opening of ion channels and the

regulation of receptor expression, as well as activating the cholic

tachykinin neurokinin 1 receptor and inducing the release of

substance P (6, 72, 73). In addition to interfering with pain

modulation, finally, estrogen is involved in visceral information

processing in the CNS. Cerebral imaging studies have found

that, in comparison with males with IBS, females with IBS

display a greater activation of emotional circuits, including the

amygdala and locus coeruleus, in response to adverse visceral

stimuli (74).

Furthermore, several studies have demonstrated better

cognitive functions and reductions in psychiatric symptoms in

selected patients treated with fecal transplant. More studies on

humans are needed to better understand the underlying

mechanisms of this axis (4, 75).

In Figure 1, the sex hormone–gut microbiome axis is shown.
Microbiome in physiological
pubertal development

It is well known how a gradual change in microbiota

composition occurs with age with a general reduction in the
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number of aerobes and facultative anaerobes and an increase in

the populations of obligate anaerobic species. Traditionally, the

common idea is that between one and two years of age, the

human GM starts to resemble that of an adult, which is

dominated by species from phyla Firmicutes, Bacteroidetes,

Proteobacteria, and Actinobacteria. However, many differences

were observed at the genus level between adolescent and adult

fecal microbiota (3, 7).

Agans et al. (7) conducted a study to assess the distal GM of

adolescent children, which showed that abundance of members

of Bifidobacterium and Clostridium genera, species known to

colonize the newborn gut and to decrease gradually between 2

and 18 years of life, was statistically significantly higher in

adolescent children than adults. The prevalence of these

genera had not been recognized previously among

preadolescent and adolescent age groups (7).

In 2020, Yuan et al. (76)conducted a cross-sectional study

analyzing the biodiversity of the GM at different puberty stages

(5-15 years) through 16S rRNA sequencing. No difference in

alpha or beta diversity between non-pubertal and pubertal

subjects was found, but the study evidenced differential

bacterial taxa between the two groups. In particular, non-

pubertal subjects were characterized by mainly micro

organisms belonging to the order Clostridiales, family

Costridiaceae, and genus Coprobacillus. On the other hand, the

puberal group showed a higher prevalence of class

Betaproteobacteria, order Burkhollderiales (76). Further

analyses of the association between serum sex hormones and

bacterial abundance were conducted. The results highlight that
Frontiers in Endocrinology 06
the level of testosterone was associated with the abundance of

Adlercreutzia, Dorea, Clostridium and Parabacteroides genera.

Authors hypothesized that these bacteria might be affected by

sex hormones (76). Several studies have investigated the

connection between gut microbes and sex steroid hormones.

Shin et al. (77) demonstrated a relationship between intestinal

bacterial community profiles and testosterone/estrogen status in

humans: Acinetobacter, Dorea, Ruminococcus and Megamonas

were significantly correlated with testosterone levels, while

Slackia and Butyricimonas correlated significantly with

estradiol levels (77).

It has been reported that GM does not seem to be affected by

gender in children, but differences emerge at puberty onset (59).

Microbiota-related diseases also show a gender bias, supporting

that the relationship between intestinal bacteria and gender may

be biunivocal (4). Although data on adolescents’ GM are still

limited, a recent cross-sectional survey found that the distinction

of the GM between the two sexes becomes more marked at

puberty (78, 79). Comparing teens’ and adults’microbiota, it was

found that the amounts of bifidobacteria, in particular, decreased

with age in several studies (7, 80–82), and age-related

associations with Bacteroidetes and Firmicutes (80–82)were

also reported (79). Hollister et al. (81) compared puberal and

adult GM composition, pointing out that, during pubertal

development, GM in girls changes progressively, increasingly

resembling that of adult women, directly proportional to their

pubertal developmental degree. In both males and females,

dominant taxa are Clostridia and Bacteroidia, and the major

element suggesting maturation of microbiota is represented by a
FIGURE 1

Interconnections between sex hormone and gut microbiome.
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change in the dominance of the Clostridiales and Bacteroidales

classes of bacteria. Indeed, during puberty, the relative

abundance of Clostridiales gradually increases and that of

Bacteroidales decreases, gradually resembling the composition

of the adult microbiota. In terms of phylum, the abundance of

Firmicutes increased as puberty progressed, while the abundance

of Bacteroidetes decreased. However, although Hollister et al.

(81) observed GM changes in both boys and girls, only in female

adolescents statistically significant data were obtained,

reasonably due to later males’ pubertal development (81).

These data were confirmed by Yuan et al. (78) who

determined the characteristics of the GM of both genders at

different pubertal status. The GM was analyzed in 89 Chinese

participants aged 5–15 years. Participants were divided into

prepuberty and puberty groups for both males (n=49) and

females (n=40). This cross-sectional study revealed that sex

differences in the GM composition and predicted metabolic

profiles existed before puberty and it became more significant

in puberty. Specifically, results indicate that Dorea, Megamonas,

Bilophila, Parabacteroides and Phascolarctobacterium genera

represent microbial markers for pubertal subjects (78). They

suggested that sex-dependent GM diversity is, in part, due to sex

hormones, and, in part, to other non-hormonal influencing

factors (78).
Gut microbioma and
precocious puberty

Considering evidences on the role of the GM during

physiological pubertal development, their role in pathological

puberty is becoming of increasing interest. As reported (83),

timing of puberty can be influenced by GM, particularly by

certain Clostridia species, including species of the genera

Ruminococcaceae Faecalibacterium and Ruminococcus, which

regulate host sex hormone levels. Specifically, these species

affect estrogen metabolism through their beta-glucuronidase

act iv i ty (81) . The beta-g lucuronidase enzymes of

Ruminococcus and Faecalibacterium spp. are able to cleave

both estrone and estradiol, whereas Bacteroides species are

only capable of metabolizing estrone. Therefore, estrone-

estrogen metabolite ratio in urine correlates positively with the

relative abundance of Ruminococcus and negatively with that of

Bacteroides spp (81, 84). According to these data, it is

conceivable that the GM may partly regulate the onset of

puberty through its estrogen metabolism. However, as much

as the GM, through specific gut microbes capable of

metabolizing estrogen, seems capable of regulating puberty,

the reverse may also be possible. In fact, sex hormones could

directly affect the growth of specific taxa by directing the

maturation of the gut microbiota (81).
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Furthermore, recent studies have observed that metabolites

produced by the GM could influence the human endocrine

system, activating the enteric nervous system. Some of the best

studies on microbiota functions highlight how gut

microorganisms provide energy to the host through the

production of short-chain fatty acids (SCFAs), including

butyrate (the most abundant SCFA) and propionate, both of

which participate in bile salts metabolism and play an important

role in brain-gut axis (4, 48). It has been demonstrated that Free

Fatty Acid Receptor (FFAR) 2 and FFAR3, endogenous

receptors, interact with the SCFAs and have been shown to be

expressed in enteroendocrine cells that produce peptide YY, an

anorectic hormone, with consequent involvement in the

regulation of the host energy, appetite, adipose tissue stores

and hormonal balance, influencing puberty timing (85, 86)

Indeed a close association between obesity and puberty has

been found; in particular, PP has been positively related with

body mass index (BMI). On the basis of this information and

given that children affected by PP tend to be obese, it has been

hypothesized that GM could be involved in the pathogenesis of

PP. The study conducted by Dong et al. (87) elucidated

differences in the GM between patients with idiopathic central

precocious puberty (ICPP) (n=25) and healthy girls (n=23).

Authors applied 16S rDNA sequencing to compare the GM

between two groups. They observed that the gut genera

identified in ICPP are similar to those that are associated with

obesity, in particular, Rumicoccus Gemmiger, Oscillibacter and

Clostridium XIVb. Considering microbial species levels, girls

with ICPP were enriched in Rumicoccus bromii, Ruminococcus

gnavus, and Ruminococcus leptum. The first two were found in

obese populations; they could promote the energy absorption

and hyperplasia of adipose tissue, while Ruminococcus leptum

was reported to influence human weight changes (87–89). These

results highlight the association among obesity, ICPP and GM

dysbiosis. The authors hypothesized that GM dysbiosis leads

preadolescent girls to a process similar to that in obese patients

and that the proliferation and deposition of adipocytes trigger

precocious puberty. However, intestinal dysbiosis could also

induce the earlier activation of the hypothalamic–pituitary–

gonadal axis (HPGA) (87).

The involvement of the GM in the mechanism of secretion of

estrogen, FSH and LH has been investigated in different studies, but

it is still unclear. A previous study indicated a relationship between

estrogen and bacteria, such as Clostridia and Ruminococcaceae, and

a significant microbial differences among the control group and

ICPP (90). Dong et al. (87) explored the relationship between three

clinical biomarkers (FSH, LH and insulin resistance) and the GM.

Considering ICPP girls, authors demonstrated a positive correlation

between FSH and Fusobacterium, and LH and Gemmiger, and a

negative correlation between LH and Romboutsia (87). In addition,

insulin resistance has been positively correlated with Gemmiger,

Ruminococcus, Megamonas and Bifidobacterium (87).
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In female puberty onset, the important role of leptin is well

known. Leptin is an adipocyte metabolic peptide, and the gene

involved in its expression is correlated with SCFAs (83, 85, 88,

91, 92).

The close association among the GM, hormone secretion

and obesity inspired the study of the mechanism of the GM in

triggering CPP. ICPP girls investigated in the work by Dong

et al. were characterized by microbes associated with SCFA

production: Ruminococcus bromii, Ruminococcus callidus,

Roseburia inulinivorans, Coprococcus eutactus, Clostridium

sporosphaeroides and Clostridium lactatifermentans. The

relationship between SCFA production and ICPP is explained

through the mechanism induced by a high concentration of

SCFAs to the expression of the leptin gene, which activates the

HPGA, which, consequently, leads to the onset of puberty (87).

Li et al. (93) enrolled 27 CPP girls, 24 overweight girls and 22

healthy controls to explore the connection between obesity and

CPP. This study showed that CPP patients exhibited

overrepresented Alistipes, Klebsiella and Sutterella, which are

normally present in patients with neurological diseases. These

microorganisms produce metabolites with neurotransmission

activity (serotonin and dopamine), which trigger the earlier

onset of puberty activating HPGA. The authors identified

Prevotella both in CPP and in the overweight group; branched-

chain amino acid production could promote insulin resistance.

This mechanism could explain the high occurrence of obesity in

CPP patients (93). In addition, in both groups, elevated nitric

oxide synthesis was observed, which is an important gas
Frontiers in Endocrinology 08
neurotransmitter that stimulates the secretion of gonadotropin-

releasing hormone and promote insulin resistance (93). These

conditions, the altered expression of the GM, could explain the

link between CPP and obesity (93), as shown in Figure 2.

As reported (1), the macronutrient food content, such as

high fat intake, may modulate the premature activation of the

HPG axis, inducing precocious activation of puberty. Recently,

in experimental model Bo et al. (94) showed that the effect of

high-fat diet (HFD) on precocious puberty is regulated by the

interaction of gut microbiota and hormones. HFD after weaning

caused PP, increased serum estradiol, leptin, deoxycholic acid

and GnRH in the hypothalamus (94). In particular, GnRH was

positively correlated with Desulfovibrio, Lachnoclostridium,

GCA-900066575, Streptococcus, Anaerotruncus , and

Bifidobacterium, suggesting that these bacteria may have a role

in promoting sexual development (94). Additionally, the authors

(94) reported that “HFD-microbiota” transplantation promoted

the PP of mice, supporting that GM modulates local and

systemic levels of sex steroids promoting precocious puberty.
Conclusions

Bidirectional interactions between the GM and the

sex hormones have been proposed in different studies. During

puberty, the somatic developmental changes are predominantly

driven by hormones; therefore, this dynamic and transitional

period represents an opportunity to assess the impact of
FIGURE 2

Precocious puberty–gut microbiome and obesity: a close association. SCFAs, short-chain fatty acids; HPGA, hypothalamic–pituitary–gonadal axis.
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potential hormonal effects on the GM. Although the evidence of

the interaction between microbiota and sex hormones remains

limited in pediatric patients, the evidence that diversity of the

GM at different puberty stages exists and that GM alterations

may occur in girls with CPP represents an interesting finding

for the prediction and prevention of precocious pubertal

development. Deepening the understanding of the connection

between the sex hormones and the role of microbiota

changes can lead to the implementation of microbiota-targeted

therapies in pubertal disorders by offering a pediatric

endocrinology perspective.
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