1	Revision_1
2	A neutron diffraction study of boussingaultite,
3	$(NH_4)_2[Mg(H_2O)_6](SO_4)_2$
4	G. Diego Gatta, Giorgio Guastella, Alessandro Guastoni, Valentina Gagliardi,
5	Laura Cañadillas-Delgado and Maria Teresa Fernandez-Diaz
6	
7	Running title: Crystal chemistry of boussingaultite
0	
8	Abstraat Varmanda
9	Adstract, Keywords
10	
11	Sample description and occurrence
12	Experimental methods and Results
13	1) Gravimetric determination of sulphates
14	2) EDTA titrimetric determination of magnesium 2) Determination of fluoring and chloring by ion galacting electroide
15	 A) Determination of Informe and chlorine by ion selective electrode A) Determination of motion content by booting
16	4) Determination of water content by neating 5) Determination of minor elements by inductively coupled plasma atomic
17	emission spectroscopy (ICP-AFS) and air-acetylene flame atomic emission
10	spectrometry (FAES)
20	5.1) Determination of REE concentration by ICP-AES
21	5.2) Determination of other minor elements concentration by ICP-AES
22	6) Indirect gravimetric determination of ammonium as (NH4,Rb,Cs,K)
23	tetraphenylborate
24	7) Determination of CHN
25	8) Single-crystal neutron diffraction
26	8.1) Neutron data collections and treatments
27	8.2) Neutron structure refinements
28	Discussion and implications
29	Acknowledgements
30	References
31	Figures/Tables
32	
33	
34 25	Corresponding author: G. Diego GATTA Dipartimento di Scienza della Terra, Università degli Studi di Milano
35 36	Via Botticelli 23 I-20133 Milano Italy
37	Tel. +39 02 503 15607, Fax +39 02 503 15597, E-Mail: diego.gatta@unimi.it
38	
39	
40	
41	Manuscript submitted to American Mineralogist

49

50

51 52

53

54

55 56

A neutron diffraction study of boussingaultite, (NH4)2[Mg(H2O)6](SO4)2

G. Diego Gatta ¹ , Giorgio Guastella ² , Alessandro Guastoni ³ , Valentina Gaglia	di ⁴ ,
Laura Cañadillas-Delgado ⁵ and Maria Teresa Fernandez-Diaz ⁶	

¹Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Botticelli 23, I-20133 Milano, Italy
²Agenzia delle Accise, Dogane e Monopoli, DTI – Lombardia, Ufficio Antifrode - Sezione Laboratori, Via Marco Bruto 14, I-20138 Milano, Italy
³Dipartmento di Geoscienze, Università degli Studi di Padova, Via G. Gradenigo 6, I-35131, Padova, Italy
⁴Istituto Gemmologico Italiano, Piazza San Sepolcro 1, I-20123 Milano, Italy
⁵Institut Laue-Langevin, 71 Avenue des Martyrs, F-38000 Grenoble, France

57 Abstract

The crystal structure and the chemical composition of boussingaultite from Pécs-Vasas, 58 Mecsek Mountains, South Hungary, were investigated by single-crystal neutron diffraction (at 20 K) 59 along with a series of chemical analytical techniques (*i.e.*, gravimetric determination of sulphates, 60 EDTA titrimetric determination of magnesium, ion selective electrode for F and Cl, indirect 61 gravimetric determination of ammonium as (NH₄,Rb,Cs,K) tetraphenylborate, inductively coupled 62 plasma atomic emission spectroscopy for REE and other minor elements, elemental analysis for C, N 63 and H content, high-T mass loss for H₂O content). The concentration of more than 50 elements was 64 The experimental formula of the boussingaultite of this 65 measured. study is: $[(NH_4)_{1.77}K_{0.22})_{\Sigma_{1.99}}[(Mg_{0.95}Mn_{0.06})_{\Sigma_{1.01}}(H_2O)_{5.7}](SO_4)_{1.99}$. The neutron refinement confirms that the 66 structure of boussingaultite is built up by: isolated Mg(H₂O)₆-octahedra, along with isolated NH₄-67 and SO₄-tetrahedra connected by a complex H-bonds network. Mg^{2+} is completely solvated by H₂O 68 molecules, in a typical octahedral bonding configuration. All the seven independent oxygen sites of 69 the structure are involved in H-bonds, as *donors* or as *acceptors*. The geometry of all the H₂O molecules, 70 bonded to Mg, is in line with what usually observed in crystalline compounds. The H₂O molecules show 71 moderate-strong H-bonds, with H...Oacceptor and Odonor...Oacceptor ranging between 1.72-1.87 Å and 2.70-72 2.84 Å, respectively, along with O_{donor} - $H_{\dots}O_{\text{acceptor}}$ angles between 168-178°. The four independent N-73 H...O bonds show $H...O_{\text{acceptor}}$ and $N_{\text{donor}}...O_{\text{acceptor}}$ distances ranging between 1.81-2.00 and 2.84-2.98 74 Å, respectively, with *N*-*H*...*O* angles between 158-176°. All the H-bonds of the H₂O molecules and of 75 the NH₄-group involve the oxygen sites of the SO₄-group as *acceptors*: the SO₄-group is, therefore, the 76 "bridging unit" between the NH4 and the Mg(H2O)6 units, via H-bonds. The structure refinement of this 77 study proved, unambiguously, that the partial $K^+ vs$. NH_4^+ replacement generates a local disorder. K lies 78

at the N site, and its bonding configuration is described with a distorted polyhedron with CN=8. 79 However, the K^+ vs. NH_4^+ replacement implies a change in the configuration of the SO₄-tetrahedron, 80 through a sort of rotation of the polyhedron. This is the first evidence of a partial picromerite component 81 in the boussingaultite structure, which gives rise to a local disorder likely due to the significantly 82 different bonding configurations of the two cations. The refinement proved also that Mn²⁺ replaces Mg²⁺ 83 at the Mg site. No evidence of distortion of the octahedron is observed in response to such a replacement, 84 but the fraction of Mn²⁺ is modest. An analysis of previous Raman and IR findings is provided, compared 85 with the experimental results of this study. 86

87

88 **Keywords:** Boussingaultite, sulphates, neutron diffraction, crystal chemistry, hydrogen bonding.

89

90 Introduction

91 Boussingaultite is a magnesium ammonium sulphate hexahydrate, with ideal chemical formula usually given as (NH₄)₂Mg(SO₄)₂·6H₂O. It is a rare mineral, which occurs as sublimate formed under 92 93 fumarolic conditions, geysers, or from coal gas at burning coal-dumps (e.g., Cipriani 1959; Larsen and Shannon 1920; Shimobayashi et al. 2011). It is found as stalactites and incrustations, more rarely as 94 monoclinic crystals (short prismatic [001] with {001} prominent). Boussingaultite is one of a wide 95 number of isomorphous compounds (mainly synthetic) called "Tutton's salts" (Tutton 1900, 1905), a 96 family of double salts with the formula $A_{2}^{+}B^{2+}(SO_{4})_{2}(H_{2}O)_{6}$ (sulphates) or $A_{2}^{+}B^{2+}(SeO_{4})_{2}(H_{2}O)_{6}$ 97 (selenates), with A⁺: K, Rb, Cs, Tl or NH₄, B²⁺: Mg, V, Cr, Mn, Fe, Co, Ni, Cu, Zn or Cd. Focusing on 98 natural compounds, boussingaultite belongs to the picromerite group of minerals, with picromerite 99 $(K_2Mg(SO_4)_2 \cdot 6H_2O),$ nickelpicromerite $(K_2Ni(SO_4)_2 \cdot 6H_2O),$ nickelboussingaultite 100 $((NH_4)_2Ni(SO_4)_2 \cdot 6H_2O)$, mohrite $((NH_4)_2Fe(SO_4)_2 \cdot 6H_2O)$, katerinopoulosite $((NH_4)_2Zn(SO_4)_2 \cdot 6H_2O)$, 101 and cyanochroite ($K_2Cu(SO_4)_2 \cdot 6H_2O$). Tutton's salts structure is monoclinic, usually described in the 102 space group $P2_1/a$ with $a \sim 9.0-9.4$, $b \sim 12.3-12.9$, $c \sim 6.0-6.4$ Å and $\beta \sim 104-107^\circ$, Z = 2. The first general 103 structure model was reported by Hofmann (1931), followed by a series of re-investigations for any 104 105 specific compound of the family based on X-ray or even neutron diffraction, on single-crystal or polycrystalline sample. Concerning boussingaultite, a few crystallographic studies were performed but 106 all on the synthetic counterpart with ideal composition (Margulis and Templeton 1962; Montgomery and 107 Lingafelter 1964; Maslen et al. 1988). As a matter of fact, all the mineralogical databases refer only to 108 the structural models of the synthetic analogous. The building units of the boussingaultite structure 109 consist of isolated Mg(H₂O)₆-octahedra, NH₄- and SO₄-tetrahedra connected by a network of H-bonds, 110 which must plays a fundamental role on the stability of the crystalline edifice. In this light, the chemical 111

formula of boussingaultite is better written as $(NH_4)_2[Mg(H_2O)_6](SO_4)_2$, rather than (NH₄)₂Mg(SO₄)₂·6H₂O as commonly reported. The presence of NH₄-group generates a different bonding configuration with respect to other members of the picromerite group, in which *e.g.* K⁺ replaces NH₄⁺ (Bosi et al. 2009). A thorough comparative crystal-chemical study of a series of synthetic compounds with general formula K₂[$B^{2+}(H_2O)_6$](SO₄)₂, with $B^{2+} = Mg$, Fe, Co, Ni, Cu, and Zn, was reported by Bosi et al. (2009).

An additional limitation of the literature data on (natural) boussingaultite concerns the chemical composition of this mineral based on modern standards. Only a few chemical analyses are available, and the reference one is often that reported by Larsen and Shannon (1920) (with wt.% oxide equals to 98.3 wt%).

There is a raising interest on boussingaultite, or its synthetic counterpart, generated by some 122 potential industrial and agricultural utilization of this material, following the operational principles of 123 circular economy for sustainable development. For example, the global demand for agricultural fertilizer 124 by nutrient from the quaternary system (NH₄)₂SO₄-MgSO₄-K₂SO₄-H₂O is increasing drastically (e.g., 125 the world capacity for producing ammonia + phosphoric acid + potash increased from 292 Mt on 2016 126 to 316 Mt on 2021; F.A.O. 2019). This leads to the requirement of the new technology for producing an 127 increasing mass of fertilizers: soluble crystalline precipitates (among those, boussingaultite) from 128 industrial waste sludge, as null by-product of polymers manufacturing digested to retrieve the rubber by 129 using sulphuric acid, are used as source of S, N, K and Mg (e.g., Taweepreda 2013; Li et al. 2020). A 130 null by-product becomes a second raw material. In addition, boussingaultite (along with other Tutton's 131 salt) is one of the potential materials suitable for strong energy absorption by solar collectors: energy 132 required for domestic heating and hot-water supply could be "stored" in reversible transformations, *e.g.* 133 in chemical reactions or in phase transitions (e.g., Gronvold and Meisingset 1982; Lim and Lee 2010). 134 135 Salt hydrates, and among those even Tutton's salts, have relatively low dehydration or melting temperatures, representing some among the most promising materials for this purpose. Furthermore, 136 Highfield et al. (2012) reported the role of boussingaultite in the activation of serpentine for CO₂ 137 mineralization by flux extraction of soluble magnesium salts using ammonium sulphate. 138

Considering the capacity of the Tutton's salt structure to allocate a series of cations at the A^+ and B^{2+} site, and the presence in nature of isomorphic minerals of boussingaultite in which Mg²⁺ is replaced by Ni²⁺ (*e.g.*, nickelboussingaultite) or in which NH₄⁺ is replaced by K⁺ (*e.g.*, picromerite), the aim of this study is a reinvestigation of the crystal chemistry of a natural boussingaultite (from Pécs-Vasas, South Hungary) on the basis of a multi-methodological approach based on single-crystal neutron diffraction and a series of chemical analytical techniques in order: *a*) to unveil potential replacement mechanisms at the A^+ and B^{2+} occurring in nature and not described so far, and *b*) to describe unambiguously the location and the anisotropic displacement regime of the proton sites, the geometry of the NH₄-group along with the complex H-bonding configuration in the structure of boussingaultite.

148

149

Sample description and occurrence

150 The sample of boussingaultite used for this study belongs to the mineral collection of the Museum of Mineralogy of the University of Padova (catalogue number MM6606). The hand 151 specimen is made by an aggregate of whitish, colourless, platy-tabular millimetric crystals collected 152 at Pécs-Vasas, Mecsek Mountains, South Hungary (Szakáll and Kristály 2008). Pécs-Vasas is an 153 abandoned coalmine with a large open pit located near Köves Hill. Coal ores of Jurassic age occur 154 within sandstones, claystones, mudstone sedimentary layers and carbonatic rocks. Pécs-Vasas 155 coalfields is the type locality for ammoniomagnesiovoltaite $[(NH_4)_2Mg^{2+}_5Fe^{3+}_3Al(SO_4)_{12}\cdot 18H_2O_5]$ 156 Szakáll et al. 2012] and kollerite [(NH₄)₂Fe³⁺(SO₃)₂(OH)·H₂O, Ende et al. 2021). Several others NH₄, 157 Al, Fe, Mg, Ca and Fe-bearing sulphates were found in the coal dumps of Pécs-Vasas. Most of them 158 occur as euhedral, idiomorphic millimetric crystals, formed by the spontaneous burning and 159 combustion of coal. The most interesting and uncommon NH₄-bearing sulphate minerals, at this 160 locality, are ammonioalunite and adranosite (Szabó et al. 2015), ammoniojarosite, clairite, 161 efremovite, godovikovite, koktaite, mascagnite, mohrite and tschermigite (Szakáll and Kristály 162 2008). Ammonium sulphates are often accompanied by other more common sulphates, such as 163 alunogen, butlerite, halotrichite, pickeringite, copiapite, gypsum, hexahydrite, kieserite, metavoltine 164 and voltaite. The formation of a relevant number of N-bearing sulphates and sulphites can be 165 explained by the decay of the organic matter of coal, which also contain abundant pyrite and 166 marcasite. These iron sulphides are the source of sulphur oxides, from which sulphates are formed. 167

- 168
- 169

Experimental methods and Results

170 171

1) Gravimetric determination of sulphates

A mass of 150-200 mg of sample was placed in a 400 ml beaker; then, 200 ml of water and 1 ml of concentrated hydrochloric acid were added. The clear solution was heated to boiling and 10 ml of 10% barium chloride solution was then added dropwise. The beaker was covered with a clockglass and was heated below the boiling point for 4 hours. The precipitate was then filtered and washed with 150 ml of hot water. A filter was placed in a pre-weighted platinum capsule (m1) and dried at 105°C for 1 hour. The filter was then completely incinerated on a Bunsen burner, and the platinum capsule was heated at 800°C until a constant weight (m2) was measured. The different of weigh (m2 - m1) is the total SO₃ content of the mineral, expressed as BaSO₄. The measured fraction of SO₃ was 44.2(2) wt%.

- 181
- 182

2) EDTA titrimetric determination of magnesium

A mass of 100-150 mg of sample were placed in a 200 ml beaker, and then diluted to 100 ml 183 with water. After complete dissolution, 10 ml of buffer solution (pH 10 mix ammonium 184 chloride/ammonia) were added, along with 5 ml of hydroxylammonium chloride (3% solution), 1 ml 185 of ammonium sulphide (20% solution) and 3-4 drops of Eriochrome black-T solution (2gr/l in 186 ethanol). The solution was then titrated with standard solution of EDTA (ethylenediaminetetraacetic 187 acid) 0.01 M. The end point was reached when the reddish purple colour of the solution altered to 188 blue or green. The total volume of the added EDTA is proportional to the average content of 189 magnesium in the mineral. The measured fraction of MgO was 10.6(2) wt%. 190

- 191
- 192

3) Determination of fluorine and chlorine by ion selective electrode

A mass of 20 mg of sample was placed in a 50 ml plastic test tube, along with 15 ml of water and 0.5 ml of nitric acid 1M. 2-3 ml of total ionic strength adjustment buffer (*TISAB III* solution) were added to the clear solution, and then diluted to 20 ml with water. Fluorine content was determined using the *perfectION* Combination Fluoride Ion Selective Electrode (by *Mettler Toledo*), adopting the conventional method of standard addition. Solutions of fluorine from 0.1 to 5.0 mg/l were prepared by Certified Reference Material - CRM 1000 mg/l of fluorine. The resulting F fraction was < 0.01 wt% (uncertainty not determined).

A mass of 40 mg of sample was placed in a 50 ml plastic test tube, along with 15 ml of water and 0.5 ml of nitric acid 1M. 2-3 ml of ionic strength adjustment solution (*perfectION ISA solid state ISE*) were added to the clear solution, then diluted to 20 ml with water. Chlorine content was determined using the *perfectION* Combination Chloride Ion Selective Electrode (by *Mettler Toledo*), adopting the conventional method of standard addition. Solutions of chlorine from 2 to 10 mg/l were prepared by CRM 1000 mg/l of chlorine. The resulting Cl fraction was < 0.1 wt% (uncertainty not determined).

- 207
- 208

4) Determination of water content by heating

A mass of 400-500 mg of sample was placed in a quartz crucible with lid and gradually heated (10°C/min) in a muffle furnace from ambient temperature up to 200°C. Assuming that the mass loss represents the total amount of H_2O , the estimated H_2O fraction of the boussingaultite sample was 28.4(2) wt%.

- 213
- 214

215 216

217

5) Determination of minor elements by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and air-acetylene flame atomic emission spectrometry (FAES)

All determinations (excluding caesium) were performed in axial view mode for REE, and radial view mode for the other minor elements, with a *Perkin Elmer Optima 7000DV* ICP-AES spectrometer. Caesium concentration was measured with a *Varian SpectrAA 220FS* air-acetylene flame atomic emission spectrometer.

- 222
- 223

5.1) Determination of REE concentration by ICP-AES

A mass of 50 mg of boussingaultite was placed in a 50 ml volumetric flask, along with 25 ml of water and 5 ml of nitric acid 1M. The resulting clear solution was then diluted with water. A calibration protocol was performed with a blank solution and a series of *ad hoc* solutions with REE concentration from 0.001 to 0.050 mg/l for each element (using CRM multi elemental standard mix for ICP). Results and instrumental parameters are listed in Table 1.

- 229
- 230

5.2) Determination of other minor elements concentration by ICP-AES

The determination of the non-REE minor elements was performed using two different protocols, the second one devoted only to the Cs concentration, described below:

i) 5-100 mg of sample was placed in a 50 ml volumetric flask, 25 ml of water, 5 ml of nitric
acid 1M and 5 ml of scandium solution 100 mg/l were added. The resulting clear solution was
diluted with water. A calibration protocol was performed with a blank solution and a series of *ad hoc* solutions with concentration from 0.001 to 0.050 mg/l for each element (using CRM
multi elemental standard mix for ICP). Results and instrumental parameters are listed in Table
2.

ii) A mass of 100-200 mg of sample was placed in a 50 ml volumetric flask, along with 25 ml
of water, 5 ml of nitric acid 1M and 300 mg of potassium nitrate. The clear solution was then
diluted with water. A calibration protocol was performed with a blank solution and a series of *ad hoc* solutions prepared with CRM multi elemental standard mix for ICP, containing 100

mg/l of Cs (5 solutions from 1 mg/l to 20 mg/l). Results and instrumental parameters are listed in Table 2.

245

246 247

6) Indirect gravimetric determination of ammonium as (NH4,Rb,Cs,K) tetraphenylborate

A mass of 100-150 mg of boussingaultite was placed in a 200 ml beaker and diluted to 50 ml 248 with water. After complete dissolution, 4 ml of 1M hydrochloric acid were added. Then, 8 ml of 5% 249 sodium tetraphenylborate solution were slowly added to the solution (in about 5 minutes). After 1 250 hour, the white precipitate was collected on a preweight 30 ml sintered-glass filtering crucible (m1) 251 (porosity n. 4), washed 3 times with 3 ml of 0.1% sodium tetraphenylborate solution and 2 times with 252 2 ml of water. The crucible was dried at 105°C until a constant weight (m2) was measured (about 24 253 hours). The different of weight (m2 - m1) is the total of (K,NH₄,Rb,Cs) content of the sample 254 expressed as (K,NH₄,Rb,Cs)[B(C₆H₅)₄]. As the fraction of K, Rb and Cs was already known, the 255 fraction of (NH₄)₂O was calculated to be 12.7(3) wt% (Table 3). 256

257

258

7) Determination of CHN

Analysis of total carbon, hydrogen and nitrogen was performed using the *Leco CHN Truspec* analyser. Carbon was not detectable. Total hydrogen fraction was found to be in accordance, at a first approximation, with ammonium and water fraction of the mineral (*i.e.*, ~5.13 wt%). Unsatisfactory results were obtained for nitrogen with this method.

263

A representative chemical composition of boussingaultite from Pécs-Vasas is given in Table 3, and its experimental chemical formula is: $[(NH_4)_{1.77}K_{0.22})_{\Sigma_{1.99}}[(Mg_{0.95}Mn_{0.06})_{\Sigma_{1.01}}(H_2O)_{5.7}](SO_4)_{1.99}$.

266

269

8) Single-crystal neutron diffraction

8.1) Neutron data collections and treatments

In order to check the quality of the crystals to be used for the neutron diffraction experiments,
a series of preliminary tests were performed by single-crystal X-ray diffraction with a Rigaku
XtaLABSynergy-i diffractometer, equipped with a PhotonJet-i MoKα microfocus source and a
HyPix-6000HE Hybrid Photon Counting (HPC) detector, at the Earth Science Dept. Univ. Milan.

A single crystal with size 3.5 x 2.1 x 1.6 mm³ was mounted on a vanadium pin of 1 mm of 274 diameter and placed on a close-circuit displex device on the monochromatic four-circle diffractometer 275 D19 at ILL (Grenoble, France). Neutron diffraction data were collected at 20(1) K, with a wavelength 276 of 0.9500 Å, provided by a flat Cu monochromator using the 331 reflection, at $2\theta_M = 69.91^\circ$ take-off 277 angle (Gatta et al. 2021a). The measurement strategy consisted on several ω scans with steps of 0.07° 278 at different γ and φ positions. These ω scans cover either 79° or 64° depending on the γ angle, in order 279 to avoid collisions with the cryostat. NOMAD control software from ILL was used for data collection. 280 The unit-cell determination was done by using the PFIND and DIRAX programs; processing of the 281 raw data, to obtain the integrated intensities, was performed using the RETREAT and RAFD19 282 programs (McIntyre and Stansfield 1988; Wilkinson et al. 1988; Duisenberg 1992). Absorption 283 effects, due to the low-T device and to the crystal size and composition, were corrected using the 284 D19ABS program (Matthewman et al. 1982). The lattice was found to be metrically monoclinic (Table 285 4, *deposited*), and consistent with the previous experimental findings of boussingaultite reported in 286 the literature. The reflection conditions were found to be consistent with the space group $P2_1/a$. A 287 total number of 8640 reflections were collected (with $-14 \le h \le +16$, $-17 \le k \le +21$ and $-11 \le l \le +5$), 288 out of which 3785 were unique ($R_{int} = 0.0371$, Laue class 2/m) and 3463 with $F_0 > 4\sigma(F_0)$, with $d_{min} \sim$ 289 0.54 Å (Table 4, *deposited*). The Wilson plot and the statistics of distributions of the normalized 290 structure factors suggested the structure is centrosymmetric at ~96% likelihood (with the Sheldrick's 291 $|E^{2}-1|$ criterion of 0.981). Further details pertaining to neutron data collection are listed in Table 4 292 (*deposited*). 293

- 294
- 295

8.2) Neutron structure refinements

Anisotropic structure refinement, based on the neutron intensity data collected at 20 K, was performed using the SHELXL-2018/3 software (Sheldrick 2015) in the space group $P2_1/a$, starting from the structure model of Montgomery and Lingafelter (1964), without any H atom. Neutron scattering lengths of Mg, Mn, K, S, N, O and H were taken from Sears (1986). Secondary isotropic extinction effect was corrected according to the formalism of Larson (1967), implemented in SHELX;

however, the correction was found to be not significant. On the basis of the chemical analysis, the 301 Mg site in the structure model of Montgomery and Lingafelter (1964) was modelled as partially 302 occupied by Mg and Mn, and the fraction of the two elements was refined. After the first cycles of 303 refinement, a series of negative residual peaks in the final difference-Fourier map of the nuclear 304 305 density were found. These negative residual peaks were then assigned to ten independent H sites (H1, .., H10) in the next cycles, as H has a negative neutron scattering length. With such a structure model, 306 convergence was achieved and the variance-covariance matrix showed no significant correlation 307 among the refined variables. However, two significant residual peaks were found in the difference-308 Fourier map of the nuclear density function, only ~0.4 apart from the O1 (*i.e.*, +4.3 fm/Å³) and O2 309 $(i.e., +3.4 \text{ fm/Å}^3)$ sites and, in addition, the N site required a partial site occupancy for a better figure 310 of merit. The structural model was then adjusted considering; 1) two additional O sites, labelled as 311 O1A and O2A, with partial and refinable site occupancy, and 2) the N site as populated by N and K 312 (according to the chemical analysis), and the fraction of the two elements was refined (fixing 313 s.o.f.(N)=s.o.f.(H1,H2,H3,H4), Table 5 - deposited). With this new model, convergence was rapidly 314 achieved and no significant correlation among the refined variables was observed in the variance-315 covariance matrix. The final residuals were -1.3/+0.8 fm/Å³. All the principal mean-square atomic 316 displacement parameters were positive (excluding the O1A and O2A, having partial site occupancy, 317 which were modelled as isotropic) and the final $R_1(F) = 0.0334$, for 3466obs./190par. Additional 318 details pertaining to the structure refinements with and without the split O1A and O2A sites are listed 319 in Tables 4 (deposited), and the relative atomic coordinates and displacement parameters are given in 320 Tables 5, 6 and 7 (all deposited) and in the CIFs. Some selected interatomic distances and angles are 321 listed in Table 8. 322

- 323
- 324 325

Discussion and implications

The chemical data of the boussingaultite from Pécs-Vasas, obtained by the multi-326 methodological approach of this study, confirm the general chemical formula for this mineral reported 327 in the literature: $(NH_4)_2[Mg(H_2O)_6](SO_4)_2$. However, two important substituents were detected: Mn^{2+} 328 and K⁺ (Table 2). The crystallographic data confirm that Mn^{2+} replaces Mg^{2+} at the octahedral Mg 329 site, whereas K^+ replaces the NH₄⁺ group (with K lying at the N site), giving the actual chemical 330 formula: [(NH₄)_{1.77}K_{0.22})_{Σ1.99}[(Mg_{0.95}Mn_{0.06})_{Σ1.01}(H₂O)_{5.7}](SO₄)_{1.99} (Table 3). The very low fraction of 331 rubidium (*i.e.*, Rb₂O 0.05 wt%, Table 2) can replace NH₄⁺ along with K⁺, that of iron (*i.e.*, Fe₂O₃ 0.01 332 wt%, Table 2) can replace Mg at the octahedral Mg site. There is no evidence of potential substituents 333

for the SO_4^{2-} -group. Silicon (*i.e.*, SiO₂ 0.04 wt%, Table 2) is likely the effect of a low fraction of 334 quartz coexisting with boussingaultite. The concentration of REE and other minor elements is 335 substantially irrelevant (Tables 1 and 2). The protocol here used for the chemical analyses, and for 336 the recalculation of the chemical formula, proved to be appropriate for such a chemically complex 337 338 materials containing NH₄⁺ and H₂O, which cannot be characterised using the routine protocols in mineralogy, based essentially on EPMA-WDS. We have successfully applied a similar protocol to 339 investigate hydrous minerals containing other light elements as principal constituents, as Li, Be and 340 B (e.g., Gatta et al. 2014, 2019, 2020; Lotti et al. 2018). We cannot exclude that the slightly lower 341 fraction of measured H₂O m.p.f.u. with respect to the ideal ones (*i.e.*, 5.7 vs. 6.0 m.p.f.u.) is the effect 342 of a partial dehydration of the starting material, which is not surprising if we consider the occurrence 343 of boussingaultite. However, the potential dehydration was not revealed by the single-crystal neutron 344 structure refinement (based on data collected at 20 K, Table 5). 345

The structure model of boussingaultite obtained in this study, based on neutron diffraction data, 346 is (partially) consistent with that of synthetic $(NH_4)_2[Mg(H_2O)_6](SO_4)_2$ previously reported by 347 Margulis and Templeton (1962), Montgomery and Lingafelter (1964) and Maslen et al. (1988). The 348 structure consist of three building units: isolated Mg(H₂O)₆-octahedra, along with isolated NH₄- and 349 SO₄-tetrahedra connected by a complex H-bonds network (Fig. 1). Mg^{2+} is completely solvated by H₂O 350 molecules, in a typical octahedral bonding configuration. The geometry of the $Mg(H_2O)_6$ -octahedron is 351 almost ideal, with Mg-O distances ranging between ~2.058 and ~2.094 Å, and O-Mg-O angles between 352 ~88.70 and ~91.30°. Even the SO₄-tetrahedron is only slightly distorted, having S-O distances ranging 353 between ~1.48 and ~1.49 Å and O-S-O between ~108.3 and ~110.1°. Isolated SO₄-tetrahedra, connected 354 by H-bonds, usually show such an almost ideal configuration, especially at low temperature (e.g., in 355 thaumasite or in ettringite, Gatta et al. 2012, 2019). The NH₄-tetrahedron shows a modest distortion, with 356 N-H distances and H-N-H angles ranging, respectively, between ~1.024-1.033 Å and ~106.5-111.6°. 357 The analysis of the principal root-mean-square components of the atomic displacement parameters show 358 that even the H sites display only a modest anisotropy: the RMS_{max}/RMS_{min} ratio is lower than 1.8 for all 359 the seven independent H sites (Fig. 1, Table 7 - deposited). Furthermore, the H sites of the NH₄-group 360 show a slightly higher libration anisotropy if compared to those of the H₂O molecules (Table 7 -361 deposited). 362

All the seven independent oxygen sites of the structure (*i.e.*, O1, ..., O7, Table 5 - *deposited*) are involved in H-bonds, as *donors* or as *acceptors* (Table 8). The geometry of all the H₂O molecules, bonded to Mg, is in line with what usually observed in crystalline compounds, in which the molecules are involved in H-bonds (*e.g.*, Steiner 1998): the *O-H* distances, corrected for riding motion effect

(according to Busing and Levy 1964), range between 0.996 and 1.001 Å, the H-O-H angles between 367 105.5 and 108.2° (Table 8). The H₂O molecules show moderate-strong H-bonds, with $H_{...Oacceptor}$ and 368 Odonor...Oacceptor ranging between 1.72-1.87 Å and 2.70-2.84 Å, respectively, along with Odonor-369 $H...O_{\text{acceptor}}$ angles between 168-178° (Fig. 2, Table 8). All the H-bonds of the H₂O molecules involve 370 the oxygen sites of the SO₄-group as acceptors (i.e., O1, O2, O3 and O4; Fig. 2, Table 8). The longest 371 H...Oacceptor and Odonor...Oacceptor distances are those with O5 as donor and O4 as acceptor (i.e., O5...O4 372 = 2.836(1) and H6...O4 = 1.870(1), likely because O4 is the *acceptor* of three independent H-bonds: 373 05...04, 06...04 and N...04 (Table 8). The four independent N-H...0 bonds show H...Oacceptor and 374 *N*_{donor}...*O*_{acceptor} distances ranging between 1.81-2.00 and 2.84-2.98 Å, respectively, with *N*-*H*...*O* angles 375 between 158-176° (Table 8). All the H-bonds of the NH₄-group involve the oxygen sites of the SO₄-376 group as acceptors (i.e., O1, O3 and O4; Fig. 2, Table 8). The SO₄-group is, therefore, the "bridging 377 unit" between the NH₄ and the Mg(H₂O)₆ units, via H-bonds (Fig. 2, Table 8). Each of the O-H...O and 378 379 *N-O...H* bonds involve one *donor* and one *acceptor* only; in other words, there is no evidence of bifurcated (or even trifurcated) H-bonds as found in other hydrous minerals (e.g., Gatta et al. 2011, 2013, 380 2021b). However, some of the oxygen sites act as *donors* for more than one H-bond: this is the case of 381 the O1 site (i.e., N-H2...O1, N-H3...O1, O7-H10...O1), of the O3 site (i.e., N-H4...O3, O5-H5...O3, 382 07-H9...O3), and of the O4 site (i.e., N-H1...O4, O5-H6...O4, O6-H8...O4) (Fig. 2, Table 8). Overall, 383 the H-bonding network in boussingaultite is complex and pervasive, and the structure stability is 384 expected to be substantially governed by that. This can explain previous experimental findings on the 385 isomorphic $(NH_4)_2[Fe(H_2O)_6](SO_4)_2$, $(NH_4)_2[Zn(H_2O)_6](SO_4)_2$ or $(NH_4)_2[Co(H_2O)_6](SO_4)_2$ that 386 showed, by *in-situ* high-temperature experiments (*i.e.*, ¹H and ¹⁴N NMR, TG, DSC) the structural 387 collapse at relatively low temperature: 320-360 K (Lim 2012; Park and Lim 2017). 388

The structure refinement of this study proved, unambiguously, that the partial K^+ vs. NH_4^+ 389 390 replacement generate a local disorder. K lies at the N site, and its bonding configuration is that reported in Table 5 (deposited), describing a distorted polyhedron with CN=8 (K- $O_{min} \sim 2.60$ and K- $O_{max} \sim 3.23$ 391 Å). However, the $K^+ vs$. NH_4^+ replacement implies a change in the configuration of the SO₄ tetrahedron, 392 through a sort of rotation of the polyhedron about the O3-O4 vector: the O3 and O4 sites are kept, 393 whereas the O1 and O2 sites are replaced respectively by the O1A and O2A sites, only ~0.4 Å from the 394 parental ones, as shown in Fig. 1. Whereas the O1A and O2A are well detectable, this is not the case for 395 the position of the S site of the "rotated" tetrahedron, so that only the external geometry of the rotated 396 tetrahedron is described in Table 5 (*deposited*). The refined fraction of K⁺ is 0.26 a.p.f.u., slightly higher 397 than that obtained by chemical analysis (*i.e.*, 0.22 a.p.f.u., Table 3). To the best of our knowledge, this is 398 the first evidence of a partial picromerite component in the boussingaultite structure, which gives rise 399

to a local disorder likely due to the significantly different bonding configurations of the two cations. 400 However, the disorder does not generate any significant effect at the lattice level, as shown by the fully 401 indexed diffraction pattern. Can the data reported in this study corroborate a potential boussingaultite-402 picromerite solid solution? It is not possible to answer unambiguously to this question, which requires 403 404 more data with different compositions along the join. However, this study is the first step toward a better understanding of the substitution mechanisms in natural NH₄-bearing Tutton's salts. The 405 refinement proved also that Mn^{2+} replaces Mg^{2+} at the Mg site. No evidence of distortion of the 406 octahedron is observed in response to such a replacement, but the fraction of Mn²⁺ is modest. The refined 407 fraction of Mn^{2+} is virtually identical to that obtained by the chemical analysis, *i.e.*, 0.06 a.p.f.u. (Tables 408 3 and 5-deposited). Zn²⁺, Fe²⁺ and Ni²⁺ have already been found in isomorphic structure of 409 katerinopoulosite Mg^{2+} : $(NH_4)_2[Zn(H_2O)_6](SO_4)_2$. boussingaultite replacing mohrite 410 (NH₄)₂[Fe(H₂O)₆](SO₄)₂, and nickelboussingaultite (NH₄)₂[Ni(H₂O)₆](SO₄)₂. However, a Mn²⁺ 411 member was not reported so far. 412

The structure model obtained in this study is consistent with the Raman and IR spectra of 413 boussingaultite reported and interpreted by Culka et al. (2009), collected from a sample from 414 Larderello, Tuscany, Italy (of which the chemical composition was not reported). Micro-Raman (un-415 oriented crystal) and IR (by diffuse reflectance infrared Fourier transform - DRIFT; powder mixed 416 with KBr, in a ratio 1:10) spectra were described considering four main regions. The region with the 417 highest wavenumber (*i.e.*, above 2600 cm⁻¹) displays the combination of the OH and NH₄ stretching 418 vibrations. The region between 1800 and 1400 cm⁻¹ contains the spectral signals of the NH₄ and HOH 419 bending vibrations. The region between 1300 and 900 cm⁻¹ contains the SO₄ stretching vibrations. 420 SO_4 bending vibrations, along with the lattice modes, occur in the spectral region below 800 cm⁻¹. 421 The assignment to each Raman and infrared bands, obtained after a deconvolution of combined 422 423 signals, was proposed by the authors (Culka et al. 2009). Concerning the region of the OH and NH₄ stretching vibrations, both Raman and DRIFT spectra provide only broad bands. The deconvolution 424 of the Raman spectrum produced a reasonable fit with four independent modes assigned to OH (i.e., 425 $3380_{\rm w}$, $3290_{\rm w}$, $3080_{\rm m}$, and $3040_{\rm m}$ cm⁻¹) and two independent modes assigned to NH₄ (*i.e.*, 2919_w and 426 2845_w cm⁻¹). However, the peaks show different full-width-at-half-maximum (FWHM), suggesting 427 that additional signals were likely missed (in particular at wavenumber $> 3200 \text{ cm}^{-1}$). In the same 428 region, the DRIFT spectrum show only a very broad band and its deconvolution led to four 429 independent modes, two assigned to OH (i.e., 3290s and 3084s cm⁻¹) and two to NH₄ (i.e., 2913m and 430 2848m cm⁻¹). Even in this case, the occurrence of more (independent and missing) signals is highly 431 likely. A further study, based on IR and Raman spectroscopy, was conducted on synthetic 432

(NH₄)₂[Mg(H₂O)₆](SO₄)₂ by Jayakumar et al. (1988), who reported the IR and polarized Raman 433 spectra of the compound, with a careful assignment of the active modes coupled with a comparative 434 analysis on what previously observed from the isomorphic $K_2[Mg(H_2O)_6](SO_4)_2$. Evidence of 435 (coexisting) three different H₂O molecules were reported, with relative stretching and bending 436 437 vibrations. The potential O_{donor}-H...O_{acceptor} distances were also deduced: ranging between 0.274-0.282 Å, in good agreement with the experimental findings of this study. On the basis of the 438 vibrational modes ascribable to the SO₄ group, the linear distortion of the tetrahedron (expressed by 439 different S-O bonds) was found to be greater than its angular distortion (expressed by different O-S-440 O angles). Conversely, the NH₄ tetrahedron was found to be affected by a more pronounced angular 441 distortion, and the possibility of free rotation of the NH₄ ion was ruled out. Even these last findings 442 pertaining to the SO₄ and NH₄ groups are fully supported by the results of our study. 443

We expect that the experimental findings of this study, with a full description of the H-bonding 444 network in boussingaultite structure, along with the libration regime and orientation of all the atomic 445 sites (including the H sites), could led to a better modelling of its physical and chemical stability (i.e., 446 chemical reactivity in solution, phase stability under non-ambient P/T conditions and deformation 447 mechanisms at the atomic scale). The full understanding of the natural occurrence of boussingaultite, 448 and of its transformation paths in natural or industrial processes, requires the knowledge of its 449 physical and chemical stability. In addition, this study shed new light on the mechanisms that could 450 promote solid solution along the join boussingaultite-picromerite, and to more complex (and 451 coexisting) substitutions in the crystalline edifice $A^{+}_{2}B^{2+}(SO_{4})_{2}(H_{2}O)_{6}$ at the A (e.g., K⁺ vs. NH₄⁺) and 452 at the B (e.g., $Mn^{2+} vs$. Mg^{2+}) sites. 453

454

455 Acknowledgements

The authors thank the Institut Laue-Langevin (Grenoble, France) for the allocation of the beamtime. GDG acknowledge the support of the Italian Ministry of Education (MIUR) through the projects 'Dipartimenti di Eccellenza 2018-2022' and 'PRIN2017 - Mineral reactivity, a key to understand largescale processes'. The Associate Editor, O. Tschauner, the Technical Editor team and an anonymous reviewer are thanked for the revision of the manuscript.

461

References

- Busing, W.R. and Levy, H.A. (1964) The effect of thermal motion on the estimation of bond 466 lengths from diffraction measurements. Acta Crystallographica, 17, 142-146. 467 Bosi, F., Belardi, G., and Ballirano, P. (2009) Structural features in Tutton's salts 468 $K_2[M^{2+}(H_2O)_6](SO_4)_2$, with $M^{2+} = Mg$, Fe, Co, Ni, Cu, and Zn. American Mineralogist, 94, 74-82. 469 Cipriani, C. (1958) Ricerche sulla Boussingaultite manganesifera di Larderello. Rendiconti 470 471 della Società Italiana di Mineralogia e Petrologia, 14, 124. Culka, A., Jehlička, J., and Němec, I. (2009) Raman and infrared spectroscopic study of 472 boussingaultite and nickelboussingaultite. Spectrochimica Acta Part A: Molecular and Biomolecular 473 Spectroscopy, 73, 420-423. 474 Duisenberg, A.J.M. (1992) Indexing in single-crystal diffractometry with an obstinate list of 475 reflections. Journal of Applied Crystallography, 25, 92–96. 476 Ende, M., Effenberger, H., Fehér, B., Sajó, I., Kótai, L., and Szakáll, S. (2021) Kollerite, 477 $(NH_4)_2Fe^{3+}(SO_3)_2(OH) \cdot H_2O$, a new sulfite mineral. Mitteilungen der Österreichischen 478 Mineralogischen Gesellschaft, 167, 88. 479 F.A.O. (2019) World fertilizer trends and outlook to 2022. Food and Agriculture Organization 480 of the United Nations, Rome (Italy). ISBN 978-92-5-131894-2. 481 Gatta, G.D., McIntyre, G.J., Sassi, R., Rotiroti, N., and Pavese, A. (2011) Hydrogen-bond and 482 cation partitioning in $2M_1$ -muscovite: A single-crystal neutron-diffraction study at 295 and 20 K. 483 American Mineralogist, 96, 34-41. 484 Gatta, G.D., McIntyre, G.J., Swanson, G.J., and Jacobsen, S.D. (2012) Minerals in cement 485 chemistry: a single-crystal neutron diffraction and Raman spectroscopic study of thaumasite, 486 Ca₃Si(OH)₆(CO₃)(SO₄)·12H₂O. American Mineralogist, 197, 1060-1069. 487 Gatta, G.D., Merlini, M., Valdrè, G., Liermann, H-P., Nénert, G., Rothkirch, A., Kahlenberg, 488 V., and Pavese, A. (2013) On the crystal structure and compressional behaviour of talc: a mineral of 489 interest in petrology and material science. Physics and Chemistry of Minerals, 40, 145-156. 490 Gatta, G.D., Nénert, G., Guastella, G., Lotti, P., Guastoni, A., and Rizzato, S. (2014) A single-491 crystal neutron and X-ray diffraction study of a Li,Be-bearing brittle mica. Mineralogical Magazine, 492 78, 55–72. 493 Gatta, G.D., Hålenius, U., Bosi, F., Cañadillas-Delgado, L., and Fernandez-Diaz, M.T. (2019) 494 Minerals in cement chemistry: A single-crystal neutron diffraction study of ettringite, 495 Ca₆Al₂(SO₄)₃(OH)₁₂·27H₂O. American Mineralogist, 104, 73-78. 496
- 464 465

497	Gatta, G.D., Guastoni, A., Lotti, P., Guastella, G., Fabelo, O., and Fernandez-Diaz, M.T. (2019)
498	A multi-methodological study of kurnakovite: A potential B-rich aggregate. American Mineralogist,
499	104, 1315-1322.
500	Gatta, G.D., Guastoni, A., Lotti, P., Guastella, G., Fabelo, O., and Fernandez-Diaz, M.T. (2020)
501	A multi-methodological study of kernite, a mineral commodity of boron. American Mineralogist,
502	105, 1424–1431.
503	Gatta, G.D., Comboni, D., Fernandez-Diaz, M.T. and Fabelo Rosa, O.R. (2021a) On the
504	labyrinthine world of natural borates: H-bonding network in probertite, NaCaB5O7(OH)4x3H2O;
505	Institut Laue-Langevin (ILL), Grenoble, 2021 (DOI: 10.5291/ILL-DATA.5-11-447).
506	Gatta, G.D., Hradil, K., and Meven, M. (2021b) Where is the hydrogen? Elements, 17, 163-
507	168.
508	Gronvold, F. and Meisingset, K.K. (1982) Thermodynamic properties and phase transitions of
509	salt hydrates between 270 and 400 K I. $NH_4Al(SO_4)_2 \cdot 12H_2O$, $KAl(SO_4)_2 \cdot 12H_2O$, $Al_2(SO_4)_3 \cdot 17H_2O$,
510	$ZnSO_4 \cdot 7H_2O, Na_2SO_4 \cdot 10H_2O, and Na_2S_2O_3 \cdot 5H_2O. \ Journal \ of \ Chemical \ Thermodynamics, 14, 1083-10000000000000000000000000000000000$
511	1098.
512	Highfield, J., Lim, H., Fagerlund, J., and Zevenhoven, R. (2012) Activation of serpentine for
513	CO_2 mineralization by flux extraction of soluble magnesium salts using ammonium sulfate. Royal
514	Society of Chemistry Advances, 2, 6535.
515	Hofmann, W. (1931) Die Struktur der Tuttonschen Salze. Zeitschrift für Kristallographie,
516	Mineralogie und Petrographie, 78, 279-333.
517	Jayakumar, V.S., Sekar, G., Rajagopal, P., and Aruldhas, G. (1988) IR and polarized Raman
518	spectra of (NH ₄) ₂ Mg(SO ₄) ₂ ·6H ₂ O. Physica Status Solidi, 109, 635-640.
519	Larson, A.C. (1967) Inclusion of secondary extinction in least-squares calculations. Acta
520	Crystallographica, 23, 664-665.
521	Larsen, E.S. and Shannon, E.V. (1920) Boussingaultite from South Mountain, near Santa Paula,
522	California. American Mineralogist, 5, 127-128.
523	Li, C., Chen, X., Guo, H., Zhou, X., and Cao, J. (2020) Production of potash and N-Mg
524	compound fertilizer via mineral shoenite from Kun Te Yi Salt Lake: Phase diagrams of the quaternary
525	$system (NH_4)_2 SO_4 \text{-} Mg SO_4 \text{-} K_2 SO_4 \text{-} H_2 O in the isothermal evaporation and crystallization process. Acta$
526	Geologica Sinica, 95, 1016-1023.
527	Lim, A.R. (2012) Thermodynamic properties and phase transitions of Tutton salt
528	(NH ₄) ₂ Co(SO ₄) ₂ ·6H ₂ O crystals. Journal of Thermal Analysis and Calorimetry, 109, 1619–1623.

529	Lim, A.R. and Lee, J.H. (2010) ²³ Na and ⁸⁷ Rb relaxation study of the structural phase transitions
530	in the Tutton salts Na ₂ Zn(SO ₄) ₂ .6H ₂ O and Rb ₂ Zn(SO ₄) ₂ .6H ₂ O single crystals. Physica Status Solidi,
531	B247, 1242 - 1246.
532	Lotti, P., Gatta, G.D., Demitri, N., Guastella, G., Rizzato, S., Ortenzi, M.A., Magrini, F.,
533	Comboni, D., Guastoni, A., and Fernandez-Diaz M.T. (2018) Crystal-chemistry and temperature
534	behavior of the natural hydrous borate colemanite, a mineral commodity of boron. Physics and
535	Chemistry of Minerals, 45, 405–422.
536	Matthewman, J.C., Thompson, P., and Brown, P.J. (1982) The Cambridge crystallography
537	subroutine library. Journal of Applied Crystallography, 15, 167–173.
538	Margulis, T.N. and Templeton, D.H. (1962) Crystal structure and hydrogen bonding of
539	magnesium ammonium sulfate hexahydrate. Zeitschrift für Kristallographie, 117, 344-357.
540	Maslen, E.N., Ridout, S.C., Watson, K.J., and Moore, F.H. (1988) The structures of Tutton's salts.
541	I. Diammonium hexaaquamagnesium(II) sulfate. Acta Crystalographica, C44, 409-412.
542	McIntyre, G.J. and Stansfield, R.F.D. (1988) A general Lorentz correction for single-crystal
543	diffractometers. Acta Crystallographica, A44, 257-262.
544	Montgomery, H. and Lingafelter, E.C. (1964) The crystal structure of Tutton's salts. II. Magnesium
545	ammonium sulfate hexahydrate and nickel ammonium sulfate hexahydrate. Acta Crystallographica, 17,
546	1478-1479.
547	Park, S.S. and Lim, A.R. (2017) Role of NH ₄ and H ₂ O in Tutton salt (NH ₄) ₂ M(SO ₄) ₂ ·6H ₂ O
548	(<i>M</i> =Fe and Zn) single crystals studied by ¹ H and ¹⁴ N NMR at high temperatures. Journal of the
549	Korean Magnetic Resonance Society, 21, 67-71.
550	Sears, V.F. (1986) Neutron Scattering Lengths and Cross-Sections. In K. Sköld and D.L.
551	Price, Eds., Neutron Scattering, Methods of Experimental Physics, Vol. 23A, Academic Press, New
552	York, pp. 521-550.
553	Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica
554	Section C: Structural Chemistry, 71, 3-8.
555	Shimobayashi, N., Ohnishi, M., and Miura, H. (2011) Ammonium sulfate minerals from
556	Mikasa, Hokkaido, Japan: boussingaultite, godovikovite, efremovite and tschermigite. Journal of
557	Mineralogical and Petrological Sciences, 1103260174-1103260174.
558	Szabó, D., Lovász, A., Weiszburg, T., Szakáll, S., and Kristály, F. (2015) Ammonioalunite
559	and adranosite-Al. New mineral species from the burning coal dumps of Pécs-Vasas, Hungary.
560	Proceedings of the "6th Mineral Sciences in the Carpathians Conference", Veszprém, Hungary, 17-
561	19 May, 2015.
	17

562	Szakáll, S. and Kristály, F. (2008) Ammonium sulphates from burning coal dumps at Komló
563	and Pécs-Vasas, Mecsek Mts., South Hungary. Proceedings of the "2nd Central-European
564	Mineralogical Conference (CEMS)", published in "Mineralogia, Special Papers", 32, 154.
565	Szakáll, S., Sajó, I., Fehér, B., and Bigi, S. (2012) Ammoniomagnesiovoltaite, a new voltaite-
566	related mineral species from Pécs-Vasas, Hungary. Canadian Mineralogist, 50, 65-72.
567	Steiner, T. (1998) Opening and narrowing of the water H-O-H angle by hydrogen-bonding
568	effects: Re-inspection of neutron diffraction data. Acta Crystallographica, B54, 464-470.
569	Taweepreda, W. (2013) Rubber recovery from centrifuged natural rubber latex residue
570	using sulfuric acid. Songklanakarin Journal of Science and Technology, 35, 213-216.
571	Tutton, A.E.H. (1900) A comparative crystallographical study of the double selenates of the
572	series $R_2M(\text{SeO}_4)_2 \cdot 6H_2O$. Salts in which M is zinc. Proceedings of the Royal Society of London,
573	67(435–441), 58–84.
574	Tutton, A.E.H. (1905) The relation of ammonium to the alkali metals. A study of ammonium
575	magnesium and ammonium zinc sulphates and selenates. Journal of the Chemical Society, 87, 1123-
576	1183.
577	Wilkinson, C., Khamis, H.W., Stansfield, R.F.D., and McIntyre, G.J. (1988) Integration of
578	single-crystal reflections using area multidetectors. Journal of Applied Crystallography, 21, 471-478.
579	
580	
581	
582	
583	
584	

596						
200			%m/m	ICP-AES (nm)	LOD	LOQ
587		Ce_2O_3	< LOD	413.764	0.003	0.01
207		Dy_2O_3	0.003	353.170	0.0001	0.0003
588		Er_2O_3	< LOD	369.265	0.002	0.007
		Eu_2O_3	< LOD	381.967	0.0001	0.0003
589		Gd_2O_3	0.004	342.247	0.0003	0.001
500		Ho_2O_3	< LOD	345.600	0.0001	0.0003
590		La_2O_3	< LOD	398.852	0.0001	0.0003
591		La_2O_3	< LOD	408.672	0.0002	0.0006
571		Lu_2O_3	< LOD	261.542	0.0002	0.0006
592		Nd_2O_3	< LOD	406.109	0.0002	0.0006
		Pr_2O_3	< LOD	390.844	0.0002	0.0006
593		Sm_2O_3	< LOD	359.260	0.0005	0.002
50.4		Sc_2O_3	< LOD	361.383	0.0005	0.002
594		Tb_2O_3	< LOD	350.917	0.0005	0.002
595		Tm_2O_3	< LOD	313.126	0.004	0.015
575		Yb_2O_3	< LOD	328.937	0.0001	0.0003
596		Y_2O_3	< LOD	371.029	0.0001	0.0003
		ThO_2	< LOD	283.730	0.001	0.004
597		UO_2	< LOD	385.958	0.01	0.04
		Note: LOD: I	limit of dete	ection (3 σ); LOQ: Li	imit of quant	tification (10σ)
598						
599						
600						
601	Table 2. Con	centration	n of othe	r minor eleme	ents by I	CP-AES (s
602						

585	Table 1. REE (+Th	n, U) concentration	n by ICP-AES	(see text for details).
-----	-------------------	---------------------	--------------	-------------------------

602		%m/m	ICP-AES (nm)		%m/m	ICP-AES (nm)
003	Li ₂ O	< 0.01	670.784	NiO	< 0.01	231.604
604	MgO	< 0.01	285.213	CuO	< 0.01	327.393
004	K_2O	2.92	766.490	Ag ₂ O	< 0.01	328.068
605	Rb ₂ O	0.05	780.023	ZnO	< 0.01	206.200
005	Cs_2O	< 0.02	852.1*	CdO	< 0.01	228.802
606	BeO	< 0.01	313.107	Al_2O_3	< 0.02	396.153
000	CaO	< 0.01	317.933	Tl ₂ O	< 0.02	190.801
607	BaO	< 0.02	233.527	PbO	< 0.05	220.353
	TiO ₂	< 0.01	334.940	P_2O_5	< 0.02	213.617
608	ZrO_2	< 0.01	343.823	As_2O_3	< 0.02	193.696
	V_2O_5	< 0.02	292.464	Sb_2O_3	< 0.02	206.836
609	Cr_2O_3	< 0.01	267.716	Bi ₂ O ₃	< 0.02	223.061
610	MoO_3	< 0.02	202.031	SiO ₂	0.04	251.611
	MnO	1.18	257.610	SrO	< 0.01	407.771
	Fe_2O_3	0.01	238.204	B_2O_3	< 0.05	249.677
	CoO	< 0.01	228.616	MgO	10.2(7)**	285.213
	* by FAE	S; **by EDT	A titration.			

- Table 3. Representative chemical composition of boussingaultite from Pécs-Vasas, and empirical
- 612 formula recalculated on the basis of five cations.

Oxides	Wt%	e.s.d.
SO ₃	44.20	± 0.20
MgO	10.60	± 0.20
(NH ₄) ₂ O	12.70	± 0.30
K ₂ O	2.92	± 0.10
MnO	1.18	± 0.10
H ₂ O	28.40	± 0.20
TOTAL	100.1	
Elements	a.p.f.u.	
S ⁶⁺	1.99	
Mg^{2+}	0.95	
$\widetilde{\mathrm{NH}}_{4^+}$	1.77	
\mathbf{K}^+	0.22	
Mn^{2+}	0.06	
$\mathrm{H}^{\scriptscriptstyle +}$	11.40	
Empirical formul	a:	
$[(NH_4)_{1.77}K_{0.22})_{\Sigma 1.9}$	$_{99}[(Mg_{0.95}Mn_{0.06})_{\Sigma 1.01}($	$H_2O)_{5.7}](SO_4)_{1.99}$
Ideal formula:	1(50)	
$(1N\Pi 4)_2[1N1g(\Pi_2O)]$	6](304)2	
	$\begin{tabular}{ c c c c c }\hline \hline{Oxides} \\ SO_3 \\ MgO \\ (NH_4)_2O \\ K_2O \\ MnO \\ H_2O \\ TOTAL \\ \hline \hline{Elements} \\ S^{6+} \\ Mg^{2+} \\ NH_4^+ \\ K^+ \\ Mn^{2+} \\ H^+ \\ \hline empirical formula \\ [(NH_4)_{1.77}K_{0.22})_{\Sigma1:} \\ Ideal formula \\ (NH_4)_2[Mg(H_2O) \\ \hline \hline{Mg(H_2O)} \\ \hline \hline \end{tabular}$	$\begin{tabular}{ c c c c c }\hline \hline{Oxides} & \hline{Wt\%} \\ \hline SO_3 & 44.20 \\ \hline MgO & 10.60 \\ (NH_4)_2O & 12.70 \\ \hline K_2O & 2.92 \\ \hline MnO & 1.18 \\ \hline H_2O & 28.40 \\ \hline TOTAL & 100.1 \\ \hline \hline \hline \hline Elements & a.p.f.u. \\ S^{6+} & 1.99 \\ \hline Mg^{2+} & 0.95 \\ \hline NH_4^+ & 1.77 \\ \hline K^+ & 0.22 \\ \hline Mn^{2+} & 0.06 \\ \hline H^+ & 11.40 \\ \hline \hline Empirical formula: \\ [(NH_4)_{1.77}K_{0.22})_{21.99}[(Mg_{0.95}Mn_{0.06})_{21.01}] \\ \hline Ideal formula: \\ (NH_4)_2[Mg(H_2O)_6](SO_4)_2 \\ \hline \end{tabular}$

Table 4 (*deposited*). Details of neutron data collections and refinements of boussingaultite. Ref.#1 and Ref.#2 are referred, respectively, to the refinement *without* the *O1A* and *O2A* sites and *with* the *O1A* and *O2A* sites.

~	~	~
6	5	9

660		Ref. #1	Ref. #2
661	<i>T</i> (K)	20(1)	
662	Crystal shape	Prism	
002	Crystal volume (mm)	3.5 x 2.1 x 1.6	
663	Crystal colour	Whitish	
664	Unit-cell parameters	a = 9.2173(1) Å b = 12.4215(3) Å	
665		c = 6.2556(2) Å	
666		$\beta = 106.750(1)^{\circ}$ V = 685.83(3) Å ³	
667	Reference chemical formula	$(NH_4)_2[Mg(H_2O)_6](SO_4)_2$	
668	Space Group	$P 2_1/a$	
	Z	2	
669	Radiation type, λ (Å)	Neutron CW, 0.9500	
670	Diffractometer	D19 four-circle - ILL	
671	Data-collection method d_{\min} (Å)	ω-scans 0.54	
672		$-14 \le h \le +16$	
		$-17 \le k \le +21$	
673		$-11 \leq l \leq +5$	
674	Measured reflections	8652	
	Unique reflections	3788	
6/5	Unique reflections with $F_o > 4\sigma(F_o)$	3466	
676	Refined parameters	179	190
(77	R _{Int}	0.0371	0.0371
6//	R_{σ}	0.0271	0.0271
678	$R_{I}(F)$ with $F_{o} > 4\sigma(F_{o})$	0.0456	0.0334
(70	$R_{I}(F)$ for all reflections	0.0503	0.0377
0/9	$wR_2(F^2)$	0.1132	0.0801
	GooF	1.614	1.143
	Residuals (fm/Å ³)	-1.93/+4.28	-1.32/+0.81
	Note: Statistical parameters according to t	he SHELXL-2018/3 definition. The	two refinements were conducted using
	the same weighting scheme.		

Table 5 (*deposited*). Refined fractional atomic coordinates and equivalent/isotropic displacement factors (Å²) of boussingaultite, based on the neutron structure refinement at 20 K. U_{eq} is defined as one third of the trace of the orthogonalised U_{ij} tensor. *Ref.#1* and *Ref.#2* are referred, respectively, to the refinement *without* the *O1A* and *O2A* sites and *with* the *O1A* and *O2A* sites.

			Ref.#1					Ref.#2		
Site	s.o.f.	x/a	y/b	z/c	U_{eq}	s.o.f.	x/a	y/b	z/c	$U_{ m eq}/U_{ m iso}$
Mg	Mg 0.963(5),	0	0	0	0.0063(2)	Mg 0.947(3),	0	0	0	0.0063(2)
-	Mn 0.037(5)					Mn 0.053(3)				
S	1	0.41004(11)	0.13300(9)	0.73463(17)	0.0058(2)	1	0.41004(8)	0.13306(7)	0.73458(12)	0.0065(1)
01	1	0.41640(7)	0.22412(5)	0.58366(10)	0.0101(1)	0.915(6)	0.41709(10)	0.22386(5)	0.58379(7)	0.0085(2)
OIA	0					0.085(6)	0.3757(12)	0.2398(6)	0.5818(9)	0.0089(13
02	1	0.55141(7)	0.07043(6)	0.78275(11)	0.0126(1)	0.895(9)	0.55135(5)	0.06933(12)	0.7843(2)	0.0103(2)
O2A	0					0.105(9)	0.5519(6)	0.0945(10)	0.7497(13)	0.0095(11
03	1	0.28086(6)	0.06251(5)	0.61882(9)	0.00698(9)	1	0.28085(4)	0.06253(3)	0.61881(6)	0.00771(7
04	1	0.38669(6))	0.17482(5	0.94525(9)	0.00811(9)	1	0.38673(5)	0.17483(4)	0.94519(6)	0.00886(7
05	1	0.17381(6)	0.10514(5)	0.16477(9)	0.00817(9)	1	0.17383(4)	0.10513(4)	0.16480(6)	0.00892(7
06	1	-0.16162(6)	0.11309(5)	0.02944(9)	0.00788(9)	1	-0.16161(4)	0.11310(4)	0.02949(7)	0.00865(7
07	1	-0.00322(6)	-0.06902(5)	0.29772(9)	0.00767(9)	1	-0.00322(4)	-0.06900(4)	0.29778(6)	0.00833(7
Ν	1	0.13458(4)	0.34231(4)	0.35306(6)	0.01071(7)	N 0.869(3),	0.13458(3)	0.34233(3)	0.35303(4)	0.00939(6
						K 0.131(3)				
H1	1	0.0679(2)	0.32960(18)	0.1934(3)	0.0323(4)	0.869(3)	0.06782(16)	0.32964(13)	0.1932(2)	0.0285(3)
H2	1	0.2283(2)	0.29287(17)	0.3925(4)	0.0311(3)	0.869(3)	0.22826(14)	0.29285(12)	0.3925(3)	0.0274(2)
H3	1	0.0689(2)	0.32369(19)	0.4569(3)	0.0327(4)	0.869(3)	0.06905(16)	0.32356(14)	0.4569(2)	0.0288(3)
H4	1	0.1681(2)	0.42188(15)	0.3706(3)	0.0301(3)	0.869(3)	0.16799(16)	0.42181(11)	0.3707(2)	0.0266(2)
H5	1	0.22321(17)	0.08793(14)	0.3220(2)	0.0228(2)	1	0.22316(12)	0.08793(10)	0.32201(15)	0.0235(2)
H6	1	0.25245(16)	0.12143(14)	0.0937(2)	0.0234(2)	1	0.25241(12)	0.12140(10)	0.09347(18)	0.0242(2)
H7	1	-0.26636(14)	0.09873(13)	-0.0587(2)	0.0209(2)	1	-0.26636(10)	0.09870(9)	-0.05881(17)	0.0218(2)
H8	1	-0.14189(17)	0.18806(12)	-0.0019(3)	0.0219(2)	1	-0.14187(12)	0.18804(9)	-0.00188(18)	0.0227(2)
H9	1	-0.09577(17)	-0.05940(14)	0.3425(3)	0.0233(2)	1	-0.09572(12)	-0.05947(10)	0.34248(19)	0.0242(2)
H10	1	0.02592(17)	-0.14424(12)	0.3301(2)	0.0217(2)	1	0.02595(12)	-0.14428(9)	0.33009(18)	0.0226(2)
						s.o.f.(O1)+s.o.	$f_{*}(O1A) = 1, s.o.f.$	(O2)+s.o.f.(O2A) =	= 1, s.o.f.(N) = s.o.f	.(<i>H</i> 1,, <i>H</i> 4).
						OIA and $O2A$	were modelled as	isotropic	,,,,	
5						OTA alla OZA	were modelled as	isonopic		

Table 6 (*deposited*). Refined displacement parameters (Å²) of boussingaultite in the expression: $-2\pi^2[(ha^*)^2U_{11} + ... + 2hka^*b^*U_{12} + ... + 2klb^*c^*U_{23}]$, based on the neutron structure refinement at 20 K. *Ref.#1* and *Ref.#2* are referred, respectively, to the refinement *without* the *O1A* and *O2A* sites and with the O1A and O2A sites.

Ref.#1	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12} 699
Mg	0.0056(3)	0.0063(4)	0.0066(3)	0.0002(2)	0.0010(2)	0.0001/60
S	0.0041(3)	0.0057(4)	0.0070(3)	-0.0009(3)	0.0007(2)	-0.0009(3)
01	0.0127(2)	0.0076(2)	0.0102(2)	0.0003(2)	0.0033(1)	-0.00299(1)
02	0.0058(2)	0.0134(3)	0.0166(2)	-0.0036(2)	0.0002(2)	0.0017(2)
03	0.0054(2)	0.0067(2)	0.0081(2)	-0.0009(1)	0.0007(1)	-0.0017(1)
04	0.0099(2)	0.0065(2)	0.0073(2)	-0.0010(1)	0.0016(1)	-0.0002(1)
05	0.0076(2)	0.0082(2)	0.0077(2)	0.0001(1)	0.0005(1)	-0.0016(1)
06	0.0066(2)	0.0068(2)	0.0097(2)	0.0003(1)	0.0015(1)	0.000 404
07	0.0081(2)	0.0069(2)	0.0082(2)	0.0007(1)	0.0027(1)	0.0004(1)
Ν	0.0101(1)	0.0111(2)	0.0110(1)	-0.0001(1)	0.0031(1)	-0.0003(?)
H1	0.0333(7)	0.0393(10)	0.0194(5)	-0.0025(5)	-0.0002(5)	-0.0069(7)
H2	0.0234(6)	0.0282(9)	0.0421(9)	0.0046(6)	0.0103(6)	0.0099(5)
H3	0.0318(7)	0.0415(10)	0.0306(7)	0.0068(6)	0.0184(6)	0.003 7(77)
H4	0.0331(7)	0.0182(7)	0.0360(8)	-0.0013(5)	0.0050(6)	-0.0030(5)
H5	0.0232(5)	0.0274(7)	0.0146(4)	0.0028(4)	0.0004(4)	-0.0012(5)
H6	0.0198(5)	0.0287(7)	0.0241(5)	0.0002(5)	0.0103(4)	-0.0052(4)
H7	0.0132(4)	0.0214(6)	0.0253(5)	-0.0013(4)	0.0010(3)	-0.0016(4)
H8	0.0234(5)	0.0128(6)	0.0294(6)	0.0016(4)	0.0077(4)	-0.002701(0)
H9	0.0213(5)	0.0259(7)	0.0272(6)	0.0027(5)	0.0141(4)	0.0054(4)
H10	0.0256(5)	0.0144(6)	0.0256(5)	0.0039(4)	0.0083(4)	0.0041(44)
Ref.#2	$2 \mid U_{11}$	U_{22}	U_{22}	U_{22}	U_{12}	U_{12}
Mo	0.0057(2)	0.0059(3)	0.0068(2)	0.0002(2)	0.0011(1) 0.0001(1)
S	0.0051(2)	0.0063(3)	0.0075(2)	-0.0006(2)	0.00070	2) -0.0009(2)
01	0.0091(3)	0.0064(2)	0.0101(2)	0.0003(1)	0.0032(1) -0.0012(2)
02	0.0058(2)	0.0086(4)	0.0147(3)	-0.0003(3)	0.0002(1) 0.0016(1)
03	0.0061(1)	0.0075(2)	0.0088(1)	-0.00096(9) 0.0009(1) $-0.0016(1)$
04	0.0107(1)	0.0074(2)	0.0079(1)	-0.00095(9) 0.0017(1) -0.0001(1)
05	0.0082(1	0.0090(2)	0.0084(1)	-0.0001(1)	0.0007(1) $-0.0017(1)$
06	0.0073(1	0.0078(2)	0.0104(1)	0.0003(1)	0.0016(1) 0.0003(1)
07	0.0088(1	0.0075(2)	0.0089(1)	0.0008(1)	0.0028(1) 0.0004(1)
Ν	0.0089(1	0.0097(1)	0.0096(1)	-0.00013(7) 0.00279	(7) -0.00037(7)
H1	0.0306(5	0.0337(7)	0.0169(4)	-0.0021(4)	-0.0004	(4) -0.0066(5)
H2	0.0208(4)	0.0234(6)	0.0388(6)	0.0042(4)	0.0098(4) 0.0090(4)
H3	0.0285(5	0.0363(7)	0.0270(5)	0.0060(4)	0.0166	4) 0.0030(5)
H4	0.0296(5)	0.0150(5)	0.0323(5)	-0.0012(4)	0.0042(4) -0.0026(4)
H5	0.0238(4)) 0.0285(5)	0.0150(3)	0.0029(3)	0.0005	3) -0.0014(3)
H6	0.0207(3)) 0.0295(5)	0.0248(4)	-0.0002(3)	0.0105	3) -0.0060(3)
H7	0.0137(3)) 0.0225(5)	0.0261(4)	-0.0014(3)	0.0011(2) -0.0016(3)
H8	0.0240(4)) 0.0139(4)	0.0298(4)	0.0017(3)	0.0074(3) -0.0019(3)
H9	0.0219(3)) 0.0271(5)	0.0281(4)	0.0026(3)	0.0142(3) 0.0054(3)
		· · · · · · · · · · · · · · · · · · ·				
H10	0.0264(4)) 0.0153(4)	0.0266(4)	0.0041(3)	0.0087(3) 0.0044(3)

- Table 7 (*deposited*). Principal root-mean-square components (Å) of the atomic displacement parameters of the H sites, based on the neutron structure refinement at 20 K. *Ref.#1* and *Ref.#2* are referred, respectively, to the refinement *without* the *O1A* and *O2A* sites and *with* the *O1A* and *O2A* sites.

Ref.#1	RMS_{\min}	<i>RMS</i> _{mid}	<i>RMS</i> _{max}	RMS _{max} / RMS _{min}
H1	0.129	0.186	0.213	1.65
H2	0.124	0.186	0.208	1.68
H3	0.132	0.183	0.216	1.63
H4	0.132	0.176	0.204	1.55
H5	0.114	0.158	0.174	1.53
H6	0.118	0.158	0.177	1.50
H7	0.111	0.147	0.170	1.53
H8	0.111	0.164	0.173	1.56
H9	0.114	0.154	0.182	1.60
H10	0.113	0.156	0.168	1.49
Ref.#2	RMS_{\min}	RMS_{mid}	<i>RMS</i> _{max}	RMS _{max} / RMS _{min}
H1	0.121	0.173	0.202	1.68
H2	0.114	0.172	0.199	1.76
H3				
	0.124	0.173	0.203	1.64
H4	0.124 0.120	0.173 0.166	0.203 0.194	1.64 1.62
H4 H5	0.124 0.120 0.116	0.173 0.166 0.160	0.203 0.194 0.178	1.64 1.62 1.53
H4 H5 H6	0.124 0.120 0.116 0.120	0.173 0.166 0.160 0.159	0.203 0.194 0.178 0.180	1.64 1.62 1.53 1.50
H4 H5 H6 H7	0.124 0.120 0.116 0.120 0.113	0.173 0.166 0.160 0.159 0.151	0.203 0.194 0.178 0.180 0.172	1.64 1.62 1.53 1.50 1.52
H4 H5 H6 H7 H8	0.124 0.120 0.116 0.120 0.113 0.115	0.173 0.166 0.160 0.159 0.151 0.156	0.203 0.194 0.178 0.180 0.172 0.174	1.64 1.62 1.53 1.50 1.52 1.52
H4 H5 H6 H7 H8 H9	0.124 0.120 0.116 0.120 0.113 0.115 0.117	0.173 0.166 0.160 0.159 0.151 0.156 0.158	0.203 0.194 0.178 0.180 0.172 0.174 0.185	1.64 1.62 1.53 1.50 1.52 1.52 1.52
H4 H5 H6 H7 H8 H9 H10	0.124 0.120 0.116 0.120 0.113 0.115 0.117 0.115	$\begin{array}{c} 0.173 \\ 0.166 \\ 0.160 \\ 0.159 \\ 0.151 \\ 0.156 \\ 0.158 \\ 0.158 \end{array}$	$\begin{array}{c} 0.203 \\ 0.194 \\ 0.178 \\ 0.180 \\ 0.172 \\ 0.174 \\ 0.185 \\ 0.171 \end{array}$	1.64 1.62 1.53 1.50 1.52 1.52 1.52 1.58 1.48

Table 8. Relevant bond distances (Å) and angles (°) based on the neutron structure refinement at 20 K. *Ref.#1* and *Ref.#2* are referred, respectively, to the refinement *without* the *O1A* and *O2A* sites and

with the *O1A* and *O2A* sites.

759						
760	Ref.#1					
700	<i>Mg-O5</i> (x2)	2.0936(6)	<i>O7-Mg-O5</i> (x2)	88.69(2)	O5-H5	0.981(1)
761	<i>Mg-O6</i> (x2)	2.0939(6)	07-Mg-O5' (x2)	91.31(2)	O5-H5*	1.001
/01	<i>Mg-O7</i> (x2)	2.0582(6)	<i>O7-Mg-O6</i> (x2)	89.79(2)	0503	2.776(1)
762			<i>O7-Mg-O6</i> '(x2)	90.21(2)	H5O3	1.806(1)
	S-01	1.486(1)	<i>O5-Mg-O6</i> (x2)	89.94(2)	O5-H5O3	169.4(1)
763	S-02	1.472(1)	<i>O5-Mg-O6</i> '(x2)	90.06(2)		
	S-03	1.487(1)			<i>O5-H6</i>	0.975(2)
764	S-04	1.488(1)	02-S-01	109.72(8)	<i>O5-H6*</i>	0.995
			02-S-03	109.03(8)	0504	2.835(1)
765	N-HI	1.023(2)	01-S-03	108.15(7)	H604	1.870(1)
766	<i>N-H1</i> *	1.0520	02-S-04	110.40(7)	<i>05-H604</i>	170.4(1)
767	N04	2.901(1)	01-S-04	109.82(8)		100 1 (1)
	H104	1.925(2)	<i>03-S-04</i>	109.69(7)	H5-O5-H6	108.1(1)
768	N-H104	158.3(1)		111 (0)	06.117	0.000(1)
769	N 110	1.020(2)	HI-N-H2	111.6(2)	00-H/	0.980(1)
770	N-H2	1.030(2)	H1-N-H3	106.4(2)	00-H/*	0.998
771	$N-H2^*$	1.057	H1-N-H4	109.2(2)	0002	2.703(1)
772	$N \dots OI$	2.9/1(1) 1.002(2)	$\Pi 2 - N - \Pi 3$	108.0(2) 100.0(2)	H/02	1.723(1)
773		1.995(2)	П2-N-П4 Ц2 N Ц4	109.9(2)	00-п702	1/8.4(1)
773	11-11201	137.3(2)	113-11-114	111.0(2)	06-H8	0.979(2)
774	$N_{-}H3$	1.034(2)			06-H8*	0.979(2)
775	N-H3*	1.054(2)			00-110 06 04	2.748(1)
776	N OI	2.912(1)			H8 04	1.769(2)
777	H301	1.897(2)			06-H804	177.5(1)
778	N-H301	166.2(2)				
779					H7-O6-H8	105.7(1)
780	N-H4	1.032(2)				
700	N-H4*	1.0567			07-H9	0.979(2)
/81	NO3	2.836(1)			07-H9*	1.001
782	H4O3	1.805(2)			0703	2.756(1)
783	N-H4O3	176.0(2)			H9O3	1.791(2)
784					<i>07-H903</i>	168.1(2)
785					07.010	0.077(0)
786					07-H10	0.977(2)
700					07-H10*	0.996
/8/					0/01	2.730(1) 1.756(2)
788					07 H10 01	1.730(2) 174.2(1)
789					07-11001	1/4.3(1)
790					Н9-07-Н10	105.5(1)
791						
792	* Bond distance	e corrected for	"riding motion" effec	t, following B	using and Levy (19	964)

804						
805	Ref.#2					
806	<i>Mg-O5</i> (x2)	2.0936(4)	<i>O7-Mg-O5</i> (x2)	88.70(2)	O5-H5	0.981(1)
000	<i>Mg-O6</i> (x2)	2.0941(4)	<i>O7-Mg-O5</i> '(x2)	91.30(2)	O5-H5*	1.001
807	<i>Mg-O7</i> (x2)	2.0584(4)	<i>O7-Mg-O6</i> (x2)	89.80(2)	0503	2.776(1)
808			<i>O7-Mg-O6</i> '(x2)	90.20(2)	H5O3	1.806(1)
809	S-01	1.484(1)	<i>O5-Mg-O6</i> (x2)	89.94(2)	O5-H5O3	169.48(9)
810	S-02	1.479(1)	<i>O5-Mg-O6</i> '(x2)	90.06(2)		
811	S-03	1.488(1)			05-Н6	0.975(1)
812	S-04	1.488(1)	02-S-01	110.09(9)	<i>O5-H6</i> *	0.996
012	[S↔O1A	1.612(8)]	<i>02-S-03</i>	108.67(7)	0504	2.836(1)
813	$[S \leftrightarrow O2A]$	1.370(6)]	01-S-03	108.29(5)	H604	1.870(1)
814			02-S-04	110.09(6)	<i>05-H604</i>	170.4(1)
815	K-OIA	2.603(1)	01-S-04	109.99(6)		
816	K-OIA'	3.279(1)	<i>03-S-04</i>	109.68(5)	<i>H5-O5-H</i> 6	108.2(1)
817	K-02	3.283(0)				0.004 (4)
017	K-O2A	2.906(1)	03-04	2.433(1)	06-H7	0.981(1)
818	K-03	2.836(0)	03-02	2.410(1)	06-H/*	0.998
819	K-04 K-05	2.901(2)	02-01	2.428(1)	0602	2.703(1)
820	K-05	3.232(0)	01-04	2.434(1)	H/02	1.723(1)
821	K-00	3.182(1)	04-03-02	50.28(1)	00-H/02	1/8.2(1)
822	N 111	1.024(1)	03-02-01	59.71(1)	0002A	2.725(5)
922	N-111 N-111*	1.024(1)	02-01-04	50.01(1)	06 H7 02A	1.757(5) 168 5(2)
025	N-III ·	2.001(1)	01-04-03	39.32(1)	00-11702A	108.3(2)
824	H1 O4	1.924(1)	03-04	2433(1)	06-H8	0.979(1)
825	$N_H 1 O4$	1.524(1) 158 3(1)	03-024	2.433(1) 2 427(1)	06-H8*	0.979(1)
826	11-11104	150.5(1)	$O_{2A}O_{1A}$	2.427(1) 2.453(1)	06 04	2.748(1)
827	N-H2	1.030(1)	01A-04	2.337(1)	H8 04	1.769(1)
878	N-H2*	1.055	04-03-02A	59.88(2)	06-H8 04	1775(1)
828	N01	2.977(1)	03-02A-01A	59.06(2)	00 11007	1,,,,,,(1)
829	H201	1.999(1)	02A-01A-04	60.13(2)	H7-O6-H8	105.7(1)
830	N-H201	157.6(1)	01A-04-03	59.87(2)		
831					07-H9	0.978(1)
832	N-H3	1.033(1)	H1-N-H2	111.6(1)	<i>07-H</i> 9*	0.999
833	N-H3*	1.058	H1-N-H3	106.5(1)	0703	2.756(1)
924	N01	2.906(1)	H1-N-H4	109.2(1)	H9O3	1.792(1)
034	H301	1.892(2)	H2-N-H3	108.4(1)	07-H903	168.2(1)
835	N-H301	166.3(1)	H2-N-H4	110.0(1)		
836			H3-N-H4	111.0(1)	07-H10	0.978(1)
837	N-H4	1.031(1)			07-H10*	0.997
838	<i>N-H4</i> *	1.053			0701	2.731(1)
839	NO3	2.836(1)			H1001	1.757(1)
940	H4O3	1.807(1)			07-H1001	174.3(1)
040	N-H4O3	175.9(1)				105 5(1)
841					H9-07-H10	105.5(1)
842	* D 1 1' (la anima D		
843	* Bond distance corrected for "riding motion" effect, following Busing and Levy (1964)					

Figure 1. The crystal structure of boussingaultite, based on the neutron structure refinement of this study (intensity data collected at 20 K), viewed down [001] and [100]. Configuration of the building-block units: Mg(H₂O)₆-octahedron, SO₄-tetrahedron and NH₄-tetrahedron (not to scale). SO₄-tetrahedron in response to the K⁺ vs. NH₄⁺ substitution, with a sort of rotation of the polyhedron about the *O*3-*O*4 vector: the *O*3 and *O*4 sites are kept, whereas the *O*1 and *O*2 sites are replaced respectively by the *O*1A and *O*2A sites, only ~0.4 Å from the parental ones. Displacement ellipsoid probability factor: 50%.

