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Introduction

A hyper-Kähler variety is a simply-connected smooth projective variety admitting a 
unique (up to scalar) non-degenerate holomorphic two-form. A hyper-Kähler surface is a 
K3 surface and the divisorial contractions are well-known in this case. If E ⊂ S is a prime 
divisor on a K3 surface S with E2 < 0, then E is a smooth rational curve and E2 = −2. 
Moreover, E can be contracted to an ODP point and any divisorial contraction with 
prime exceptional divisor is obtained in this way. Our aim is to discuss an analogous 
statement for projective hyper-Kähler fourfolds X of K3[2] type. These fourfolds are 
obtained by deforming the blow-up along the diagonal of the symmetric square of a 
K3 surface. The Beauville-Bogomolov-Fujiki quadratic form on the second cohomology 
group of X is denoted by q.

Let X be a projective fourfold of K3[2] type (appropriately general) containing a prime 
divisor E ⊂ X with q(E) < 0. Then there is a primitive big and nef divisor (class) H on 
X such that the map induced by H contracts E to a K3 surface K (possibly after some 
flops).

φH : X −→ Y

∪ ∪
E −→ K .

The description of the nef cone of X, due to Hassett-Tschinkel [27], Markman [51], 
Bayer–Macrì [2], Bayer–Hassett–Tschinkel [3], and Mongardi [54], implies that there are 
then two possibilities for q(E), it is either −2 or −8; the first case are the BN (Brill-
Noether) contractions whereas the latter case are the HC (Hilbert-Chow) contractions. 
In both cases the contraction induces a map p : E → K which is a P1-fibration over 
a K3 surface K. In the HC case this P1-fibration is the projectivization of the tangent 
bundle of K, E = P(TK) → K.

In the BN case, the P1-fibration E → K can have a non-trivial Brauer class in 
Br(K)2, the two-torsion subgroup of the Brauer group of K. Then E � P(V) for a rank 
two vector bundle V on K, equivalently, there is no rational section of the map E → K. 
Using the work of Debarre and Macrì [15], which is based on a study of the sublattice of 
H2(X, Z) generated by H and E, we find that there are four types of BN contractions. 
These correspond to irreducible components of certain Heegner divisors in period spaces 
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of polarized hyper-Kähler fourfolds of K3[2] type. In two cases one has E = P(V) where 
V is the Mukai bundle, a rigid stable vector bundle of rank two on K, see Corollary 4.3. 
These two cases differ only in the degree of the polarization on K. In the other two cases 
the fibrations E → K have a non-trivial Brauer class.

To determine the Brauer classes, we first show that X is a moduli space of β-twisted 
sheaves on some K3 surface T for some Brauer class β ∈ Br(T )2. From the results of 
Bayer and Macrì in [2] we then deduce that T = K and that β is also the Brauer class 
defined by the P1-fibration E → K, see Theorem 4.2.

Given a polarized K3 surface (K, h) with Pic(K) = Zh and h2 = 2d, not all two-
torsion elements in Br(K) are obtained as the class of a P1-fibration E → K for a BN 
exceptional divisor E. We classify the non-trivial Brauer classes α ∈ Br(K)2 as follows 
(see Theorem 2.3). For any B-field B ∈ H2(K, Q) which represents α, the intersection 
number (modulo the integers) Bh ∈ {0, 1/2} is an invariant of α. In case 4Bh + h2 ≡ 0
mod 4 there is a further invariant of α which is B2 ∈ {0, 1/2}, again modulo the integers. 
In case 4Bh +h2 ≡ 2 mod 4, the value of B2 is not an invariant of α but it is convenient 
to choose B such that B2 = 1/2. There are thus three types of order two Brauer classes 
on a generic polarized K3 surface. The type corresponds to the isometry class of the 
index two sublattice of the transcendental lattice of K determined by the Brauer class. 
This refines the classification given in [21].

The non-trivial Brauer classes determined by BN exceptional divisors are those with 
B2 = 1/2. Using the notation for Heegner divisors which is explained in Section 3, 
Theorem 4.2 and Corollary 4.3 imply:

Theorem 0.1. Let (K, h) be a polarized K3 surface with Pic(K) = Zh and h2 = 2d and 
let α ∈ Br(K)2 be a non-trivial two-torsion Brauer class.

Then α has a B-field representative with B2 = 1/2 if and only if there is a conic 
bundle E → K with Brauer class α which is the contraction of an exceptional divisor on 
a hyper-Kähler fourfold X of K3[2] type induced by a big and nef divisor class H.

The period point of (X, H) lies in D(1)
2d,8d,α if Bh = 0 and in D(1)

8d,8d,β if Bh = 1/2.

It is easy to show, see Proposition 4.1, that the exceptional divisor E of a BN contrac-
tion has canonical divisor KE with self-intersection number K3

E = 12. Any P1-fibration 
p : E → K over a K3 surface K is isomorphic to E = P(U) for an α-twisted locally free 
rank two sheaf U over K, where α ∈ Br(K)2 is the Brauer class determined by E. Using 
basic properties of twisted sheaves, we found that there exists a non-trivial conic bundle 
p : E → K with K3

E = 12 only in case E determines a Brauer class α having a B-field 
representative with B2 = 1/2.

So the basic properties of twisted sheaves already imply that at most two of the 
three types of Brauer classes are obtained from BN exceptional divisors on hyper-Kähler 
fourfolds of K3[2] type.

A brief outline of the paper is as follows. Basic results on P1-fibrations are recalled 
in Section 1. There we also discuss examples and methods to compute Chern classes 
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associated to such fibrations. In Section 2 we give the classification of Brauer classes and 
the basic properties of twisted sheaves. The next section introduces the Heegner divisors 
and describes the hyper-Kähler fourfolds admitting contractions. These descriptions are 
used in Section 4 to prove the main result Theorem 0.1. We also discuss relations between 
the second cohomology groups of X, E and K. In Section 5 we study examples of 
conic bundles over K3 surfaces in hyper-Kähler fourfolds and their relations to classical 
constructions. We characterize in this way the Brauer classes of known conic bundles. 
In the last section we attempt a description of certain conic bundles over quartic K3 
surfaces but we obtain only partial results. By brute force computations we find that the 
Hilbert scheme of two points on the Fermat quartic surface defines an interesting EPW 
sextic Y ⊂ P5. In fact the singular locus of Y , which is a smooth surface in general, is 
now itself singular at 60 points.

Acknowledgments

We thank O. Debarre, E. Macrì and P. Stellari for helpful discussions.

1. Conic bundles

1.1. The invariants of a conic bundle

Let

p : E −→ K

be a conic bundle over a K3 surface K. We assume that E is everywhere non-degenerate, 
so all fibres are smooth rational curves. We will also refer to E as a P1-fibration over K. 
We compute the basic invariants associated to E, following [63], [11].

The relative dualizing sheaf ωE/K , a line bundle on E, is defined by the exact sequence

0 −→ p∗Ω1
K −→ Ω1

E −→ ωE/K −→ 0 . (∗)

Taking determinants we find, since ωK = OK , that

ωE
∼= p∗ωK ⊗ ωE/K

∼= ωE/K ,

so the relative dualizing sheaf is just the canonical bundle.
The Chern classes of E can be computed from the exact sequence above:

c1(E) = −KE , c2(E) = p∗c2(K) = 24f, c3(E) = −c3(Ω1
E) = −p∗c2(K)ωE = 48 ,

where f be the class of a fiber of p and thus ωEf = ωE/Kf = −2 where we used that 
(ωE/K)|f = ωf ([23, Prop. II.8.10]).
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Proposition 1.1. For a conic bundle p : E → K as above let W := p∗ω
−1
E/K . Then W is 

a locally free sheaf of rank three on the K3 surface K and

c1(W) = 0, K2
E = −c2(W)f, K3

E = 2c2(W) .

Proof. We apply Grothendieck-Riemann-Roch (GRR) to the sheaves ω±1
E/K and the map 

p : E → K.
As (ωE/K)|f = ωf , which has degree −2 on f ∼= P1, we have R0p∗ωE/K = 0 and 

R1p∗ωE/K is a line bundle on K. Using [24, Exc. 3.12, p. 85] we find that R1p∗ωE/K =
OK . Thus p!ωE/K = −[OK ] and ch(p!ωE/K) = −1K . Since td(TK) = 1 + 2P , where 
P ∈ K is a point, and GRR states that ch(p!ωE/K)td(TK) = p∗(ch(ωE/K)td(TE)), we 
find

−(1 + 2P ) = p∗(ch(ωE/K)td(TE)) .

Using that ωE/K = ωE is a line bundle with c1(ωE/K) = KE and the results from above 
we find

ch(ωE/K) = 1 + KE + 1
2K

2
E + 1

6K
3
E ,

td(TE) = 1 − 1
2KE + 1

12 (K2
E + 24f) − fKE .

Hence GRR gives

−1 − 2P = p∗(1 + 1
2KE + 1

12 (K2
E + 24f) + fKE) .

Since dimE = 3 > dimK = 2 we get p∗1 = p∗1E = 0. Similarly p∗f = 0 since the 
one dimensional fiber is contracted to a point in K. Next p∗KE = (−2) · 1KX since 
KEf = deg(Kf ) = −2. Thus the degree zero terms agree. In degree one we must have 
0 = p∗( 1

12K
2
E), hence

K2
E = cEf

for some integer cE .
Next we apply GRR to ω−1

E/K . From (ωE/K)|f = ωf we also get (ω−1
E/K)|f ∼= OP1(2), 

in particular h0(f, (ω−1
E/K)|f ) = 3 for all fibers of p so W = p∗ω

−1
E/K is locally free of rank 

three on K. Moreover, H1(f, (ω−1
E/K)|f ) = 0 for all fibers of p and thus Rip∗(ω−1

E/K) = 0
for i > 0. This implies that p!ω

−1
E/K = p∗ω

−1
E/K and since ωE/K = OE(−KE), GRR gives 

ch(W)td(TK) = p∗(ch(OE(−KE))td(TE)). We find:

ch(W) = 3 + c1(W) + 1
2 (c1(W)2 − c2(W)) ,

td(TK) = 1 + 1
12c2(K) = 1 + 2P ,

ch(O(−KE)) = 1 −KE + 1
2K

2
E − 1

6K
3
E ,

td(T ) = 1 − 1K + 1 (K2 + 24f) − fK .
E 2 E 12 E E
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The left hand side of GRR is thus:

ch(W)td(TK) = 3 + c1(W) + (6P + 1
2 (c1(W)2 − c2(W))) ,

whereas the right hand side is:

p∗(ch(OE(−KE))td(TE)) = p∗
(
1 − 3

2KE + (13
12K

2
E + 2f) − (1

2K
3
E + 3fKE)

)
.

We already found that K2
E = cEf for some constant cE , hence p∗K2

E = p∗f = 0. 
Thus the degree one term on the right hand side is zero and therefore also c1(W) = 0. 
Finally we have K3

E = cEfKE = −2cE and, identifying a zero cycle with its degree, 
p∗fKE = fKE = −2, so the last terms on the right hand side are

p∗(1
2K

3
E + 3fKE) = −cE − 6 .

Comparing with the LHS and using c1(W) = 0 we get:

6 − c2(W) = cE + 6 , hence c2(W) = −cE .

Substituting this in K2
E = cEf and K3

E = −2cE one finds the last two equalities. �
1.2. The Brauer class of a conic bundle

Let E → K be a P1-fibration over a K3 surface. Since Aut(P1) = PGL2(C), the glue-
ing data for E provides a Cech cocycle which defines a class [E] ∈ H1(K, PGL2(OK)). 
From the exact sequence

0 −→ O∗
K −→ GL2(OK) −→ PGL2(OK) −→ 0

we obtain a coboundary map H1(PGL2(OK)) → H2(O∗
K). The image of [E] through 

this map is a two-torsion element that we denote by αE ∈ H2(O∗
K)tors = Br(K), the 

Brauer group of K. We denote by Br(K)2 the subgroup of two-torsion elements in Br(K).
In case αE = 0, the P1-fibration E is obtained from a class in H1(K, GL2(OK)). 

Such a class defines a rank two vector bundle V and E ∼= P(V) is then called a trivial 
P1-fibration or a trivial conic bundle.

Since KE · f = −2, one has h0(E, nKE) = 0 for all n > 0. We now consider 
h0(E, −KE).

Proposition 1.2. Let p : E → K be a non-trivial P1-fibration over a K3 surface K with 
rk Pic(K) = 1. Then h0(E, −KE) = 0.

Proof. Assume that s ∈ H0(−KE), s 
= 0, and let D ∈ | −KE | be the effective divisor 
on E defined by s. Then there is the exact sequence:
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0 −→ OE(KE) s−→ OE −→ OD −→ 0 .

Recall that h0(KE) = 0, moreover h1(KE) = h3,1(E) = h2,0(E) = 1 and h1(OE) =
h0,1(E) = 0, see §4.3. Hence h0(D, OD) = 2.

Since Df = +2, at least one (and at most two) of the irreducible components of D
map onto K. If there are two such components or if the unique such component is not 
reduced, then p has a rational section and hence E = P(V) for a vector bundle V on K
(cf. [64, Lemma 3.5]) which contradicts the non-triviality E.

So we now assume that D has a unique reduced, irreducible, ‘horizontal’ component 
Dh mapping onto K. The support of any other component of D would be the inverse 
image of a curve in K. Since rk Pic(K) = 1 the divisor D is then linearly equivalent to 
D′ := Dh + p∗C where C is a (reduced, irreducible) curve in K. But then D′ ∈ | −KE |
is connected and reduced, contradicting h0(OD′) = 2. We conclude that h0(E, −KE) =
0. �
1.3. The vector bundle W

Let ωE/K be the relative dualizing sheaf of the conic bundle p : E → K as in Sec-
tion 1.1, it is a line bundle on E. As in Proposition 1.1 we define

W := p∗ω
−1
E/K ,

then W is a locally free sheaf of rank three on the K3 surface K with c1(W) = 0. The 
following proposition is well-known.

Proposition 1.3. The sheaf W is a locally free sheaf of rank three on K which is self dual: 
W ∼= W∨. There is a quadratic form Q : W → W∨ ∼= W such that E is the associated 
conic bundle of (W, Q).

Conversely, given a locally free rank three sheaf E on K with a nowhere degenerate 
quadratic form Q, let p : E ⊂ P(E) → K be the conic bundle defined by Q. Then 
p∗ω

−1
E/K

∼= E.

Proof. See [63], [11]. �
1.4. Chern classes for conic bundles on a double plane

Let π : K → P2 be a double cover branched along a smooth sextic curve C defined 
by f6 = 0. There are three types of non-trivial conic bundles on K, they are associated 
to a point of order two, an odd or an even theta characteristic on C (see [21], [39] and 
Theorem 2.3).

We recall well-known conic bundles E → K which have Brauer classes of each of these 
types and we (re)compute the selfintersection K3

E of their canonical bundle in two cases, 
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see Proposition 1.4, Corollary 1.6 respectively. We will discuss some implications of these 
results at the end of §2.4.

Proposition 1.4. Let π : K → P2 be a general K3 surface of degree two with branch curve 
C. A point of order two in Pic(C) defines a conic bundle p : E → K with K3

E = 12 and 
c2(p∗ω−1

E/K) = 6.

Proof. In view of Proposition 1.1, it suffices to show that c2(p∗ω−1
E/K) = 6. Let L ∈

Pic(C) be of order two, so L∨ = L, where L∨ is the dual line bundle. Let j : C ↪→ P2

be the inclusion map. There is a resolution ([10], the case e = 3 in [4, Proposition 4.6])

0 −→ OP2(−4)3 M−→ OP2(−2)3 −→ j∗L −→ 0

with a symmetric matrix M . The coefficients Mij of the 3 × 3-matrix M are elements of 
Hom(OP2(−4), OP2(−2)) = H0(OP2(2)). The determinant of M is an equation of the 
sextic curve C.

We will use [14, Section 2] to define a conic bundle E → K as a subvariety of 
P(p∗ω−1

E/K). Twisting the sequence by OP2(3) and pulling it back along the finite 
(hence affine and flat) map π to the K3 surface K we get the exact sequence, with 
OK(d) := π∗OP2(d):

0 −→ E π∗M−→ E∨ −→ π∗j∗L(3) −→ 0, E := OK(−1)3 .

The determinant of this morphism of vector bundles is π∗ det(M) ∈ H0(OK(6)) which 
has divisor D = π∗C = 2CK , where i : C ↪→ CK ⊂ K is the ramification curve, which is 
isomorphic to C.

The kernel K of π∗M is the sheaf on D defined as

K := ker(π∗M|D : E|D −→ E∨
|D) , D = 2CK = π∗C .

We need to know the restriction of K to the curve CK . Since π : CK → C is an isomor-
phism we have an exact sequence:

0 −→ K|CK
−→ E|CK

M|CK−→ E∨
|CK

−→ L(3) −→ 0 ,

where now L is viewed as a line bundle on CK . Since M|CK
is symmetric, after dualizing 

the surjection of vector bundles on C above, we get L(−3) ↪→ E|C → E∨
|C and thus 

K|CK
= L(−3).

Define a vector bundle Ẽ on K as the dual of the kernel of the surjection

Ẽ∨ := ker(E∨ −→ E∨
X|CK

−→ K∨
|CK

= i∗L(3) −→ 0) ,

so that we have the exact sequence (see [14, (7)])
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0 −→ Ẽ∨ −→ E∨ −→ i∗L(3) −→ 0 .

The quadratic form π∗M on E∨ defines a nowhere degenerate quadratic form on Ẽ. The 
conic bundle E → K is defined by this quadratic form on Ẽ .

By Proposition 1.3 we have that p∗ω−1
E/K = Ẽ . To compute the Chern classes of Ẽ we 

recall that, with h := c1(OK(1)), the total Chern class of E∨ is

c(E∨) = (1 + h)3 = 1 + 3h + 3h2 so c1(E∨) = 3h, c2(E∨) = 3h2 = 6 .

Computing the Chern classes of i∗L(3) with [20, §2.1, Lemma 1] we get:

c1(E∨) = c1(Ẽ∨) + [CK ], hence c1(Ẽ∨) = c1(E∨) − [CK ] = 0 ,

as expected since Ẽ should be self-dual, and

c2(E∨) = c2(Ẽ∨) + c1(Ẽ∨)[CK ] + ([CK ]2 − i∗c1(L(3))),

as c1(Ẽ∨) = 0 and [CK ]2 − i∗c1(L(3)) = (3h)2 − 3h · 3h = 0, we find c2(Ẽ) = c2(Ẽ∨) = 6. 
Using c2(E) = c2(E∨) we are done. �
1.5. Computing Chern classes of Azumaya algebras

The following proposition allows us to determine the Chern classes of some Azumaya 
algebras on a K3 double plane. The idea is based on [40] and [45], but Proposition 1.5
simplifies the computations.

Proposition 1.5. Let π : K → P2 be a K3 double cover of P2 and let A be a coherent sheaf 
on K of rank r with c1(A) = 0. Then we have c1(π∗A) = −3rH, with H := c1(OP2(1)), 
and:

c2(A) = −9
2r(r − 1) + c2(π∗(A)) .

Proof. Recall that the GRR for a map π : T → S and a coherent sheaf A of rank r on 
T states:

ch(π!A)td(TS) = π∗(ch(A)td(TT )) .

In case T is a K3 surface (so KT = −c1(T ) = 0 and c2(T ) = 24P , with P a point in T ) 
and S = P2 (so KS = −3H and c2(TS) = 3H2). For a double cover π : T → S we have 
f!A = f∗A since π is affine and thus Riπ∗A = 0 for i > 0. The left hand side of GRR is 
then

ch(π∗A)td(TP2)
= 2r + (3rH + c (π (A))) + (2r + 3c (π (A))H + 1c (π A)2 − c (π (A))) .
1 ∗ 2 1 ∗ 2 1 ∗ 2 ∗
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The right hand side is

π∗(ch(A)td(TT )) = 2r + π∗c1(A) + (2r + 1
2π∗(c1(A))2 − c2(A)) ,

where we view the codimension two cycles as integers.
Since c1(A) = 0 one finds c1(π∗A) = −3rH and

c2(A) = −
( 3

2c1(π∗(A))H + 1
2c1(π∗A)2 − c2(π∗(A))

)
.

Substituting for c1(π∗A) and using H2 = 1, one finds the formula for c2(A). �
The following corollary computes K3

E for the conic bundle over the double plane K
defined by an odd theta characteristic on the branch curve. These conic bundles are also 
obtained from cubic fourfolds with a plane, see §5.2.

Corollary 1.6. Let π : K → P2 be a general K3 surface of degree two with branch curve 
C. An odd theta characteristic on C defines a conic bundle p : E → K with K3

E = 12
and c2(p∗ω−1

E/K) = 6.

Proof. Let L be an odd theta characteristic on C, so L ⊗ L ∼= ωC and h0(L) is odd. 
Since K is general, h0(L) = 1 and j∗L, where j : C ↪→ P2 has a resolution (see [4, Prop. 
4.2(b)])

0 −→ OP2(−2)3 ⊕OP2(−3) M−→ OP2(−1)3 ⊕OP2 −→ j∗L −→ 0 ,

where M is a symmetric matrix with det(M) = f6, a degree six polynomial defining C. 
Thus M also gives a quadratic form

M : E := O3 ⊕ O(−1) −→ O(1), M =

⎛
⎜⎜⎜⎝

a11 a21 a31 b1
a21 a22 a23 b2
a31 a32 a33 b3
b1 b2 b3 c

⎞
⎟⎟⎟⎠ ,

with aij , bk, c global sections of O(1), O(2) and O(3) respectively. The rulings of the 
quadric surface defined by Mx are the fibers of the conic bundle E over the points in 
π−1(x) for x ∈ P2.

Following [40, pp. 306-308], [45, §3], the (sheaf of) even Clifford algebra(s) of M is 
the sheaf

Cl0(M) =
(
⊕2

k=0E⊗2k ⊗OP2(−k)
)
/I ,

where I is generated by the local sections v ⊗ v ⊗ λ − q(v)λ with v, λ local sections of 
E and OP2(−1) respectively, so that q(v)λ is a local section of O. The rank of Cl0(q)
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as a sheaf of OS-modules is 24−1 = 8. Using the fact that the center of Cl0(M) is the 
rank two sheaf π∗OK , one can show that π∗A = Cl0(M), where A is the rank four 
Azumaya algebra on K corresponding to the conic bundle E defined by the odd theta 
characteristic. One then finds that:

π∗A = OP2 ⊕ OP2(−1)⊕3 ⊕ OP2(−2)⊕3 ⊕ OP2(−3) .

The total Chern class is thus, with H = c1(OP2(1)):

c(π∗A) = 1 · (1 −H)3(1 − 2H)3(1 − 3H) = 1 − 12H + 60H2 ,

hence c1(π∗A) = −12H and c2(π∗A) = 60. From Proposition 1.5 we get:

c2(A) = −9
2r(r − 1) + c2(π∗(A)) = −9 · 2 · 3 + 60 = 6 .

Using the trace map, A = O ⊕ A0 and A0 ∼= p∗ω
−1
E/K [11, Corollary 6.5], we get 

c2(p∗ω−1
E/K) = 6 and thus K3

E = 12 by Proposition 1.1. �
2. Brauer classes and twisted sheaves

2.1. Brauer classes and B-fields

We introduced the two-torsion subgroup Br(K)2 of the Brauer group H2(O∗
K)tors of 

a K3 surface K in §1.2. The exponential exact sequence gives the exact sequence

0 −→ H2(K,Z)/Pic(K) −→ H2(K,OK) −→ H2(O∗
K) −→ 0

where we identify Pic(K) = H1(K, O∗
K) with its image in H2(K, Z). Any α ∈ Br(K)2

has a lift α̃ to the complex vector space H2(OK) and since 2α̃ ∈ H2(K, Z)/ Pic(K) there 
is a B = Bα ∈ 1

2H
2(K, Z) mapping to α̃. We say that B is a B-field representative of 

α. If B, B′ map to the same α then B = B′ + 1
2p + c for some p ∈ Pic(K) and some 

c ∈ H2(K, Z) ([31, §4], [46, §6]).
We now assume that Pic(K) = Zh and h2 = 2d > 0. Since h2 ∈ 2Z, for any a ∈ Z

and c ∈ H2(K, Z) the intersection number (in 1
2Z)

Bh = (B′ + a
2h + c)h ≡ B′h mod Z

is an invariant of α. Since 2B ∈ H2(K, Z) we have Bh ∈ 1
2Z/Z = {0, 12}.

Kuznetsov gave a geometrical interpretation of this invariant in terms of the restriction 
of a conic bundle representing α to curves in K in [46, Lemma 6.2].

Generalizing [46, Lemma 6.1] to any d, we find another invariant of α. Since α is 
two-torsion, the B-field B can be written as B = B0/2 with B0 ∈ H2(K, Z). The lattice 
H2(K, Z) is even, so B2 = B2

0/4 ∈ 1Z.
2
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Lemma 2.1. Let K be a K3 surface with Pic(K) = Zh and h2 = 2d. Let α ∈ Br(K)2 and 
let B ∈ 1

2H
2(K, Z) ⊂ H2(K, Q) be a B-field representing α. If 4Bh + h2 ≡ 0 mod 4, 

then also B2 mod Z is an invariant of α.

Proof. With the notation as above, c2, 2B′c, 2a
2 ch = ach ∈ Z and thus

B2 = (B′ + a
2h + c)2 ≡ (B′)2 + a2

4 h2 + aB′h mod Z .

Since Bh = B′h mod Z, we also have 4B′h +h2 ≡ 0 mod 4, and thus a
2

4 h2 +aB′h ∈ Z
since h2 is even and a2 ≡ a mod 2. �

For a polarized K3 surface (K, h) with Pic(K) = Zh and h2 = 2d, a Brauer class 
α ∈ Br(K)2, with B-field representative B, thus has the invariant Bh ∈ 1

2Z/Z and:
if d is odd and Bh /∈ Z there is a further invariant B2 ∈ 1

2Z/Z,
if d is even and Bh ∈ Z there is a further invariant B2 ∈ 1

2Z/Z.
For any d we have thus distinguished three types of Brauer classes of order two.
The next lemma guarantees that a class in Br(K)2 can be represented by a B-field 

which has good properties.

Lemma 2.2. Let K be a K3 surface with Pic(K) = Zh and h2 = 2d. Let α ∈ Br(K)2, then 
there is a B-field B ∈ 1

2H
2(K, Z) ⊂ H2(K, Q) representing α such that 2B ∈ H2(X, Z)

is primitive and such that B2, Bh ∈ {0, 12} ⊂ Q.

Proof. In case α = 0 ∈ Br(K)2, we take B = 0. So we may assume that α 
= 0. Choose 
a B-field B ∈ 1

2H
2(K, Z) representing α.

Since B /∈ H2(K, Z) + 1
2 Pic(K), the sublattice M :=< 2B, h > of H2(K, Z) has rank 

two. If M is degenerate, that is (2B)2h2 − (2Bh)2 = 0, Bh must be an integer since 
(2B)2 and h2 are even integers. Hence Bh = m for some m ∈ Z. Since h ∈ H2(K, Z) is 
primitive, there is a t ∈ H2(K, Z) with ht = 1 and thus (B−mt)h = 0. Since B, B−mt

define the same Brauer class, in case Bh ≡ 0 mod Z we may assume that Bh = 0. Then 
M is non-degenerate except if also B2 = 0. In that case, write B = mB′ for a primitive 
B′ ∈ 1

2H
2(K, Z) and an integer m. Since α 
= 0, m is odd. Then B′ is primitive, also 

defines α, and B′h = 0, (B′)2 = 0, so we replace B by B′.
In the other cases, M is non-degenerate and M ⊂ Mpr ⊂ H2(K, Z), where Mpr is 

the primitive closure of M , which are all the v ∈ H2(K, Z) for which an integer multiple 
lies in M . Then Mpr is a nondegenerate primitive sublattice of H2(K, Z). By results 
of Nikulin [58, Theorem 1.14.4], the embedding of Mpr in H2(K, Z) is unique up to 
isometry. Moreover, there is an isomorphism H2(K, Z) ∼= U3 ⊕ E8(−1)2 such that Mpr

maps to U2. Since h ∈ Mpr is primitive, we may assume it maps to (1, d)1 (in the first 
copy of U) where h2 = 2d. We will write B = B1 + B2 ∈ 1

2 (U ⊕ U).
In case Bh = 0, one finds that B1 must be an integer multiple of 1

2(1, −d) = (0, −d) +
1 (1, d). Hence B1 ∈ H2(K, Z) + 1 Pic(K) and we may assume that B = B2 = 1 (a, b)2
2 2 2
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for some a, b ∈ Z. Adding a suitable element of U2 ⊂ H2(K, Z) we may assume that 
a, b ∈ {0, 1}. Then 2B is primitive in H2(K, Z), B2 ∈ {0, 12} and we are done.

In case Bh ≡ 1
2 mod Z, write B = 1

2 (a, b)1 + (a′, b′)2 and we may assume that 
a, b, a′, b′ ∈ {0, 1}. As (B − a1

2h)1 = 1
2(0, c)1, we may also assume that a = 0 and then 

b = 1 (since B′h 
≡ 0). For such a B we do have Bh = 1
2 and B2 = 1

2a
′b′ ∈ {0, 12}, 

moreover 2B′ is primitive in H2(K, Z). �
2.2. Brauer classes and lattices

There is an isomorphism (cf. [21])

Br(K) := H2(O∗
K)tors =

(
H2(K,Z)/c1(Pic(K))

)
⊗Z (Q/Z) = HomZ(TK ,Q/Z),

where TK := c1(Pic(K))⊥ ⊂ H2(K, Z) is the transcendental lattice of K. The kernel of 
a non-trivial α ∈ Br(K)2 is a sublattice of index two in TK denoted by Γα:

Γα = ker(α : TK −→ Z/2Z) .

In case Pic(K) = Zh, with h2 = 2d, we classify elements of order two in the Brauer 
group by the isomorphism class of the lattice Γα (this is called T-equivalence in [34]). 
We find the same three types as before, see Theorem 2.3.

To get a more explicit description of the Γα, we use the notation from [21, §9]. Let 
Pic(K) = Zh with h2 = 2d, then the transcendental lattice TK is isomorphic to TK

∼=
Zv ⊕ Λ′ where v2 = −2d and Λ′ ∼= U2 ⊕E8(−1)2. Any α ∈ Br(K)2 = HomZ(TK , Z/2Z)
can then be written as:

α : TK −→ Z/2Z, (nv, λ) �−→ aαn + λαλ mod 2 ,

so α = (aα, λα) for a unique aα ∈ {0, 1} and a λα ∈ Λ′ whose class in Λ′/2Λ′ ∼= (Z/2Z)20
is uniquely determined by α. We will fix an isomorphism H2(K, Z) ∼= U ⊕ Λ′ such that 
h = (1, d)1, v = (1, −d)1, both in the first component U . Notice that (0, 1)1 · v = 1 and 
also (0, 1)1 · h = 1.

A B-field lift Bα ∈ H2(K, Q) of α = (aα, λα) is determined by 2Bα(nv + λ) =
aαn + λλα mod 2. Thus we can take

Bα =
(
(0, aα

2 )1, λα

2
)
∈ 1

2 (U ⊕ Λ′), hence Bαh = 1
2aα, B2

α = 1
4λ

2
α .

The following theorem completes a similar result in [21, Prop. 9.2], the only differ-
ence is for the case h2 = 2d with d even; for these h there are also three cases (the 
two isomorphism classes of lattices Γα with aα = 0 were not distinguished in [21]). In 
case d = 1 these classes are well understood in terms of points of order two and theta 
characteristics on the branch curve of the double cover φh : K → P2, see also [39]. For 
a similar classification of Brauer classes of order p for p > 2 see [53].
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The dual lattice of Γα is Γ∗
α := HomZ(Γα, Z) and we identify it with

Γ∗
α = {x ∈ Γα ⊗ Q : xγ ∈ Z, ∀γ ∈ Γα }, x : y �−→ xy ,

where the intersection form on Γα ⊂ H2(K, Z) is extended Q-bilinearly. The discriminant 
quadratic form on the (finite) discriminant group Γ∗

α/Γα is given by

qα : Γ∗
α/Γα −→ Q/2Z, qα(x) := x2 .

The isomorphism class of Γα is determined by qα ([58, Corollary 1.13.3]).

Theorem 2.3. (Refinement of [21, Prop. 9.2]) Let K be a K3 surface with Pic(K) = Zh
and h2 = 2d. Then for each d ∈ Z>0, the set of lattices Γα, with α ∈ Br(K)2, α 
= 0, is 
partitioned into three isometry classes.

In the case that 4Bh + h2 ≡ 0 mod 4, the isomorphism class of Γα is determined by 
Bαh ∈ 1

2Z/Z and B2 ∈ 1
2Z/Z, otherwise it is determined by Bαh ∈ 1

2Z/Z only.
More explicitly, let α = (aα, λα) ∈ Br(K)2 = Hom(TK , Z/2Z), α 
= 0, have B-field 

representative Bα, then:

(1) if aα = 0 (equivalently Bαh ≡ 0), then Γ∗
α/Γα = Z/2dZ ⊕ Z/2Z ⊕ Z/2Z. There are 

220 − 1 Brauer classes α ∈ Br(K)2 with Bαh ≡ 0.
a) In case d is even, there are two isomorphism classes of such lattices. One class, 
has 29(210 + 1) − 1 elements and is characterized by λ2

α ≡ 0 mod 4, equivalently 
B2

α ≡ 0. The other class has 29(210 − 1) elements and is characterized by λ2
α ≡ 2

mod 4, equivalently B2
α ≡ 1

2 .
b) In case d is odd, these 220 − 1 lattices are isomorphic to each other.

(2) if aα = 1 (equivalently Bαh ≡ 1
2), Γ∗

α/Γα = Z/8dZ. There are 220 Brauer classes 
α ∈ Br(K)2 with Bαh ≡ 1

2 .
a) In case d is even, these 220 lattices are isomorphic to each other.
b) In case d is odd, there are two isomorphism classes of such lattices. One class, has 
29(210 + 1) elements and is characterized by λ2

α ≡ 0 mod 4, equivalently B2
α ≡ 0, 

the other class has 29(210 − 1) elements and is characterized by λ2
α ≡ 2 mod 4

equivalently B2
α ≡ 1

2 .

Proof. Only part (1) is not contained in [21, Prop. 9.2]. There it is verified that Γ∗
α/Γα =

Z/2dZ ⊕Z/2Z ⊕Z/2Z if aα = 0 (and Γ∗
α/Γα = Z/8dZ else). The generators of the dual 

lattice Γ∗
α ⊂ Γα ⊗ Q are v/2d, λα/2 and μα for any μα ∈ Λ′ with λα · μα = 1. One has, 

with (a, b, c) ∈ Z3,

qα( a
2dv + b

2λα + cμα) = a2

2d + b2λ2
α

4 + bc mod 2Z .

The two-torsion subgroup (isomorphic to (Z/2Z)3 of Γ∗
α/Γα is generated by v/2, λα/2

and μα and these elements have coordinates (da, b, c) ∈ Z.
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Assume d is even. If λ2
α ≡ 0 mod 4, then on the two-torsion subgroup qα takes values 

in Z/2Z, whereas if λ2
α ≡ 2 mod 4, qα(1

2λα) /∈ Z/2Z. Thus the lattices Γα are in (at 
least) two distinct isomorphism classes of lattices. Changing λ2

α �→ λ2
α + 4 gives an 

isomorphic discriminant group, just change c �→ b + c. It follows that there are exactly 
two isomorphism types of lattices for d even, they are distinguished by the values of λ2

α

mod 4, or equivalently by B2
α modulo integers.

Assume d is odd. If λ2
α ≡ 0 mod 8 one has qα = a2

2d +bc and if λ2
α ≡ 2 mod 8 one has 

qα = a2

2d + b2

2 + bc. Changing (a, b, c) �→ (a +db, b, a + c) maps the first to the second form 
(use d2 ≡ 1 mod 8), showing that the discriminant groups are isomorphic. Changing 
λ2
α �→ λ2

α + 4 is handled as in the d is even case. Thus there is a unique isomorphism 
type if d is odd and this concludes the proof of (1). �
2.3. Moduli spaces of twisted sheaves

We recall the fundamental results on moduli spaces of twisted sheaves on a K3 surface 
K. The Mukai lattice H̃(K, Z), of rank 24, and its bilinear form < ·, · > are defined by

H̃(K,Z) := H0(K,Z) ⊕H2(K,Z) ⊕H4(K,Z),

< (r, v, s), (r′, v′, s′) > := −rs′ − sr′ + vv′.

We consider a B-field B ∈ H2(K, Q). It defines an isometry (where H̃(K, Q) :=
H̃(K, Z) ⊗ Q):

exp(B) : H̃(K,Q) −→ H̃(K,Q), x �−→ exp(B) ∧ x,

where exp(B) = (1, B, B ∧ B/2) ∈ H̃(K, Q), and ∧ indicates the cup product on 
H̃(K, Q), so

exp(B) ∧ (r, v, s) = (r, v + rB, s + B ∧ v + rB ∧B/2) .

The B-field B defines a (polarized) Hodge structure H̃(K, B, Z) of weight two on the 
lattice H̃(K, Z) as follows ([34, Def. 2.3]):

H̃2,0(K,B) := CωK,B , where ωK,B := exp(B)ωK = ωK + B ∧ ωK ,

here ωK is a basis of H2,0(K) and B ∧ωK ∈ H4(K, C) is the cup product of B and ωK , 
next one defines:

H̃0,2(K,B) := H̃2,0(K,B), H̃1,1(K,B) :=
(
H̃2,0(K,B) ⊕ H̃0,2(K,B)

)⊥
.

The isomorphism class of the Hodge structure H̃(K, B, Z) depends only on the image 
αB of B in the quotient H2(K, Q)/(NS(K)Q + H2(K, Z)) = Br(K).
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The trivial Hodge substructure in H̃(K, B, Z) is denoted by

NS(K,B) := {x ∈ H̃(K,Z) : < x, ωK,B >= 0 },

i.e. NS(K, B) = H̃(K, B, Z) ∩ H̃1,1(K, B). Note that if x = (r, λ, s) then

< x, ωK,B > = < (r, λ, s), (0, ωK , B ∧ ωK) > = −rB ∧ ωK + λ∧ ωK = (−rB + λ) ∧ ωK .

The kernel of the map H2(K, Q) → H4(K, C), μ �→ μ ∧ ωK is NS(K)Q. From this it 
follows that if (−rB + λ) ∧ ωK = 0 then −rB + λ = D for some D ∈ Pic(K)Q, hence 
λ = rB +D and (r, λ, s) = r(1, B, 0) + (0, D, 0) + (0, 0, s). A Brauer class α of order r in 
Br(K) has a B-field lift B ∈ H2(K, Q) such that rB ∈ H2(K, Z) is primitive and then 
one finds

NS(K,B) =< (r, rB, 0) > ⊕NS(K) ⊕H4(K,Z) .

An element v ∈ NS(K, B) is called a (B-twisted) Mukai vector.
In analogy with the untwisted case, one defines the transcendental lattice of 

H̃(K, B, Z) as:

T (K,B) := {x ∈ H̃(K,B,Z) : xy = 0 ∀y ∈ NS(K,B) }.

If α ∈ Br(K) = Hom(TK , Q/Z) is the Brauer class defined by B then there is an isometry 
of Hodge structures ([31, Prop. 4.7], where Γα, T (K, B) are denoted by T (X, α) and T (φ)
respectively):

Γα
∼= T (K,B) .

Let α ∈ Br(K) and let B be a B-field representative for α. Then there is a twisted 
Chern character chB from the K-group of α-twisted coherent sheaves on K to NS(K, B)
and the (twisted) Mukai vector an α-twisted sheaf E is defined as vB(E) := chB(E) ·√

td(K) [31, §4], [35]. If v = (r, 
, s) is a primitive B-twisted Mukai vector with r > 0
then the moduli space Mv(K, B) of α-twisted sheaves E with vB(E) = v is an irreducible 
hyper-Kähler manifold of dimension 2 + v2 which is deformation equivalent to K [n] with 
2n = 2 +v2 (see [68, Thm. 3.16]). Moreover, if v2 > 0 then there is an isometry of Hodge 
structures (see [68, Thm. 3.19])

H2(Mv(K,B),Z) ∼= v⊥, NS(Mv(K,B)) ∼= v⊥ ∩NS(K,B) .

In particular, the transcendental lattice of H2(Mv(K, B), Z)) is T (K, B).
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2.4. Twisted sheaves and Azumaya algebras

Using twisted sheaves, one finds a convenient description for the Azumaya algebra 
associated to a P1-fibration. In the next proposition we do not assume that the Brauer 
class is non-trivial so it holds also for B = 0. In that case, one has E = P(V) where V is 
a rank two vector bundle on K and the Azumaya algebra is A = V⊗V∨. The proposition 
can be generalized to Pr−1-fibrations and locally free twisted sheaves of rank r (cf. [44, 
§9]).

In Section 4 we show that an exceptional BN divisor E is a P1-fibration over a K3 
surface with K3

E = 12. Therefore we compute K3
E in terms of the Mukai vector of a 

twisted sheaf. Proposition 2.6 then implies that there are Brauer classes on a general K3 
surface that do not arise from such exceptional divisors.

Proposition 2.4. Let p : E → K be a P1-fibration over a K3 surface with Brauer class 
α ∈ Br(K)2 (as in Section 1.2) and let B be a B-field representative of α. Then E = P(U)
for a locally free α-twisted sheaf of rank two U on K, the Azumaya algebra defined by E
is isomorphic to U ⊗ U∨ and one has:

c2(A) = vB(U)2 + 8 , K3
E = 2c2(A) .

Proof. The conic bundle E is locally trivial (in the complex topology), so for a suitable 
open covering K = ∪iUi we have Ei := p−1(Ui) ∼= Ui × P1 and the gluing is by isomor-
phisms φ′

ij ∈ PGL(2, OK(Ui ∩ Uj)) which can be lifted to φij ∈ GL(2, OK(Ui ∩ Uj)). 
These φij define a cocycle αijk ∈ Γ(Ui ∩Uj ∩Uk, O∗

K) which represents the Brauer class 
α of E. The φij also define a locally free twisted sheaf U on K with B-field B which also 
determines α and E = P(U) (cf. [68, §1], [34, §1]).

According to [9, Thm. 1.3.5] and [41], for any Azumaya algebra A over K with two 
torsion Brauer class α there is a locally free α-twisted sheaf of rank two U such that 
A � End(U). More explicitly, let Gi := p∗OEi

(1), where OEi
(1) is the pull-back of OP1(1)

along the projection Ei = Ui × P1 → P1. Then Gi
∼= OUi

⊗ H0(P1, OP1(1)), a locally 
free sheaf of rank two, and Ei = P(G∨

i ). The p∗Gi are locally free sheaves on Ei which 
glue after twisting by a collection of tautological line bundles to a locally free sheaf of 
rank two G on E ([68, §1.1]). This sheaf sits in the (non-split) relative Euler sequence 
on E:

0 −→ OE −→ G −→ ω−1
E/K −→ 0

(here ω−1
E/K is usually written as TE/K). Such extensions are parametrized by H1(E,

ωE/K) (∼= H1(E, ωK) = H3,1(E)) which is one dimensional, hence the exact sequence 
characterizes G. According to [11, §6], where G is denoted by J , the Azumaya algebra 
on K defined by E is A := p∗EndE(G) = p∗(G∨ ⊗ G).

Using the trace map, A = O ⊕ A0 and A0 ∼= p∗ω
−1
E/K [11, Corollary 6.5]. Hence 

K3
E = 2c2(A0) = 2c2(A) by Proposition 1.1.
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Now from [68, p. 5] we have U ⊗ U∨ � A. Let chB(U) = (r, λ, s), with r = 2, be the 
twisted Chern character of U . Then ch−B(U∨) = (r, −λ, s) and thus

ch(A) = chB(U) · ch−B(U∨) = (r2, 0, 2rs− λ2), hence c2(A) = −2rs + λ2 .

On the other hand, vB(U) = chB(U)
√

td(K) = (r, λ, r + s), hence vB(U)2 = −2r(r +
s) + λ2. �

As a consequence, if U is stable then the moduli space of deformations of U has 
dimension vB(U)2 + 2 = c2(A) − 6, which agrees with [29, Thm 3.6]. In the ‘extreme’ 
case that vB(U)2 = −2 (equivalently, c2(U ⊗ U∨) = 6), the following proposition shows 
that the stability of U is automatic and thus U is rigid.

Proposition 2.5. Let (K, h) be a polarized K3 surface of degree h2 = 2d and assume that 
Pic(K) = Zh. Let U be a locally free α-twisted sheaf of rank two with non-trivial Brauer 
class α ∈ Br2(K) represented by a B-field B and assume that vB(U)2 ≤ 0. Then U is 
stable.

Proof. First we show that U is simple, that is, dim Hom(U , U) = h0(K, U∨ ⊗ U) =
h0(K, A) = 1 where A := U ⊗U∨ is the Azumaya algebra associated to the P1-fibration 
p : E := P(U) → K. Since A = O ⊕ A0 this is equivalent to h0(K, A0) = 0. As 
A0 = p∗ω

−1
E/K and ωE/K = ωK , we get h0(K, A0) = h0(E, −KE) = 0, by Proposition 1.2. 

By assumption, v(U)2 ≤ 0 so it now follows from [68, Prop. 3.12] that U is stable. �
We recall that the non-trivial elements in Br(K)2 come in three types. For α ∈ Br(K)2, 

α 
= 0, choose a representative B-field B. Then first of all, we have the invariant 2Bh ∈
Z/2Z. If 4Bh + h2 ≡ 0 mod 4, then α has the additional invariant 2B2 ∈ Z/2Z.

We now show that in case 4Bh + h2 ≡ 0 mod 4 and B2 ∈ Z there exists no locally 
free rank two α-twisted sheaf U with vB(U)2 = −2. Thus only two of the three classes 
of elements in Br(K)2 have an associated rank four Azumaya algebra A with c2(A) = 6. 
In Proposition 2.7 we show that in case 4Bh + h2 ≡ 2 mod 4 such a sheaf U is unique 
up to twisting by line bundles.

Proposition 2.6. Let (K, h) be a polarized K3 surface of degree h2 = 2d and assume that 
Pic(K) = Zh. Let α ∈ Br(K)2 with B-field representative B. There exists a semistable 
α-twisted sheaf U of rank two on K with vB(U)2 = −2 only in one of the following three 
cases:

i) α = 0 and h2 ≡ 2 mod 4,
ii) 4Bh + h2 ≡ 2 mod 4 (in this case B2 is not an invariant of α),
iii) 4Bh + h2 ≡ 0 mod 4 and B2 /∈ Z.
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Proof. In case α = 0, the Mukai vector of U should be v = (2, kh, s) for some integers 
k, s and thus v2 = −4s + k2h2. To have v2 = −2 one needs h2 ≡ 2 mod 4 and then, 
for any odd k and s = (2 + k2h2)/4, the moduli space Mv(K) consists of one point, this 
sheaf U satisfies all the conditions.

In case B 
= 0, NS(K, B) is generated by (2, 2B, 0), h and H4(K, Z) = Z. The Mukai 
vector of U should thus be vB = (2, 2B + kh, s) and

(vB)2 = (2, 2B + kh, s)2 = −4s + 4B2 + 4kBh + k2h2 .

If 4Bh + h2 ≡ 2 mod 4 then one can take k even so that 4kBh + k2h2 ≡ 0 mod 4 and 
choose the B-field B representative of α to have B2 = 1/2 and let s := 1 + (4kBh +
k2h2)/4. Alternatively, take k odd and choose B with B2 = 0 and s := (2 + 4kBh +
k2h2)/4.

In case 4Bh + h2 ≡ 0 mod 4, also 4kBh + k2h2 ≡ 0 mod 4 and one needs B2 ∈
(1/2)Z, B2 /∈ Z. �

A final result concerns the uniqueness of certain twisted sheaves for one of the three 
types of Brauer classes.

Proposition 2.7. Let (K, h) be a polarized K3 surface of degree h2 = 2d and assume that 
Pic(K) = Zh. Let α ∈ Br(K)2, α 
= 0, have B-field representative B and assume that 
4Bh + h2 ≡ 2 mod 4.

Let U , U ′ be locally free rank two α-twisted sheaves on K with vB(U)2 = vB(U ′)2 = −2.
Then there exists a line bundle L on K such that U ∼= U ′ ⊗ L. Moreover, if B2 = 1/2
then there is a line bundle M on K such that vB(U ⊗M) = (2, 2B, 1).

Proof. Since α has order two, NS(K, B) is generated by (2, 2B, 0), h and H4(K, Z) = Z. 
As U has rank two, we find chB(U) = (2, 2B + kh, s) for some integers k, s. Let L be the 
line bundle on K with class −mh, for some integer m, then ch(L) = 1 −mh + m2h2/2. 
Using [34, Prop. 1.2(iii)] we get

chB(U ⊗ L) = chB(U)ch(L) = (2, 2B + kh, ∗)(1,−mh, ∗) = (2, 2B + (k − 2m)h, ∗).

Hence choosing m suitably and replacing U by U ⊗ L we may assume that chB(U) =
(2, 2B, t) or chB(U) = (2, 2B + h, t) for some integer t. Then we have vB(U) =
chB(U)

√
td(K) = (2, 2B, t + 2) or vB(U) = (2, 2B + h, t + 2). Computing vB(U)2 we 

find:

−2 = −4(t + 2) + 4B2, or − 2 = −4(t + 2) + 4B2 + 4Bh + h2 .

Since 4Bh + h2 ≡ 2 mod 4, the value of B2 mod Z is not an invariant. If we assume 
that B is chosen such that B2 /∈ Z, then 4B2 ≡ 2 mod 4, hence the second equation 
has no solutions. The first equation shows that U has Mukai vector v := (2, 2B, t + 2)
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with v2 = −2 (so with t = (4B2 − 6)/4). Assuming B2 = 1/2 we find t = −1 and 
v = (2, 2B, 1).

(If instead we assume that B2 ∈ Z then the first equation has no solution and the 
second one shows that U has Mukai vector v := (2, 2B + h, t + 2) with v2 = −2.) Given 
U , U ′ as in the proposition, there is thus a line bundle, again denoted by L, such that 
v = vB(U) = vB(U ′ ⊗ L). By Proposition 2.5, U , U ′ are stable and thus also after 
tensoring by a line bundle. Since Mv(K, B) is a point, it follows that U ∼= U ′ ⊗ L. �
2.5. Brauer classes of degree two K3’s

In the case of a general K3 surface (K, h) of degree two and a Brauer class α ∈ Br(K)2
that corresponds to a point of order two (cf. [21], [39]) one has h2 = 2, Bh ≡ 0 mod Z, 
so 4Bh + h2 ≡ 2 mod 4. Thus there is a unique P1-fibration E = P(U) with Brauer 
class α having vB(U)2 = −2, equivalently, with K3

E = 12. We exhibited this conic bundle 
in (the proof of) Proposition 1.4, see also §5.1.

A Brauer class α ∈ Br(K)2 that corresponds to an odd theta characteristic has Bh ≡
1/2 mod Z, so 4Bh +h2 ≡ 0 mod 4, and extra invariant B2 /∈ Z. A P1-fibration E → K

with this Brauer class was given in Corollary 1.6 and it has K3
E = 12, so E = P(U) with 

vB(U)2 = −2.
Finally, a Brauer class α ∈ Br(K)2 that corresponds to an even theta characteristic 

has Bh ≡ 1/2 mod Z, so 4Bh + h2 ≡ 0 mod 4, and extra invariant B2 ∈ Z. In this 
case there does not exist a P1-fibration E → K with Brauer class α which has K3

E = 12, 
equivalently, with c2(A) = 6 where A is the Azumaya algebra defined by E. Ingalls and 
Khalid [40, Theorem 4.3] found a two dimensional family of Azumaya algebras of rank 
four, each with c2 = 8, representing this Brauer class. This is thus ‘the best possible 
result’.

3. Contractions and Heegner divisors

3.1. Contractions and Heegner divisors

In this section we follow Debarre and Macrì [15] to classify all divisorial contractions 
on a hyper-Kähler fourfold X of K3[2]-type (with Picard rank two) in terms of sublattices 
of H2(X, Z), or equivalently, in terms of Heegner divisors in certain period spaces.

The following theorem collects the general results on certain −2-classes on X cf. [27]. 
We write (·, ·) for the bilinear form associated to the BBF-form on H2(X, Z). Recall that 
the base of a general divisorial contraction on a hyper-Kähler fourfold is a symplectic 
surface, so it is a K3 surface or an abelian surface ([57, Prop. 1.6]). In the case of K3[2]

type hyper-Kähler fourfolds it is always a K3 surface ([2], see also Section 4).

Theorem 3.1. Let X be a hyper-Kähler fourfold of K3[2]-type, L ∈ Pic(X), e = c1(L), 
(e, e) = −2 and (e, h) > 0 for some Kähler class h ∈ H2(X, R). Suppose that (X, L)
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is general in the locus of deformations of X which keep e of type (1, 1). Let k be the 
divisibility of e in H2(X, Z), so

k =
{

2 if (e,H2(X,Z)) = 2Z,
1 if (e,H2(X,Z)) = Z.

Then h0(L⊗k) = 1 and the unique effective divisor E ∈ |L⊗k| is reduced and irreducible 
([52]).

Moreover, let F ⊂ X be an effective, reduced and irreducible divisor with class f such 
that (f, f) < 0. Then by [16] there exists a sequence of flops from (X, F ) to (X ′, F ′) such 
that F ′ is contractible through a projective birational morphism.

Definition 3.2. Let E and k be as above. Then E is called a Brill-Noether (BN) excep-
tional divisor if k = 1 (so E2 = −2) and a Hilbert-Chow (HC) exceptional divisor if 
k = 2 (so E2 = −8).

We now consider exceptional divisors E and the divisor classes on X inducing the 
contraction. Let H2d be a big and nef divisor on X, whose class in Pic(X) is primitive 
with BBF degree H2

2d = 2d and divisibility γ ∈ {1, 2}, which contracts a prime divisor 
E2d with E2

2d = −2. The Picard group of X thus contains the lattice

Pic(X) ⊃ ZH2d ⊕ ZE2d ∼= < 2d > ⊕ < −2 > .

Notice that the same sublattice appears for a HC contraction, where E2d is not effective 
but 2E2d is the class of the exceptional divisor.

A general deformation (X ′, H ′
2d) of (X, H2d) has Pic(X ′) = ZH ′

2d and H ′
2d is then 

an ample divisor class with square 2d with the same divisibility γ. Thus (X ′, H ′
2d) is 

an element of the (irreducible, quasi-projective, 20 dimensional) moduli space M(γ)
2d of 

hyper-Kähler fourfolds of K3[n]-type with a polarization of BBF-square 2d and divisibility 
γ, where in case γ = 2 one has d ≡ 3 mod 4 (see [15, §3]).

The lattice H2(X, Z), with the BBF-form, is isometric to the lattice

Λ := U3 ⊕ E8(−1)2 ⊕ < −2 > .

We denote by δ the generator of the last summand of Λ, so δ2 = −2 and the divisibility 
of δ is two since (δ, Λ) = 2Z.

The orthogonal group O(Λ) acts transitively on the set of primitive elements with 
fixed BBF-square 2n and fixed divisibility γ, we fix such an element hγ

2d ∈ Λ. It defines 
a complex variety

Ωγ
2d := {x ∈ P(Λ ⊗ C) : q(x, hγ

2d) = 0, q(x, x) = 0, q(x, x̄) = 0 }.
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Given (X ′, H ′) ∈ M(γ)
2d , an isometry H2(X ′, Z) ∼= Λ which maps H ′ to hγ

2d will map 
H2,0(X) to an element, its period, in Ωγ

2d. In this way we obtain the period map

℘γ
2d : M(γ)

2d −→ P(γ)
2d := O(Λ, hγ

2d)\Ω
γ
2d,

where O(Λ, hγ
2d) := {g ∈ O(Λ) : g(hγ

2d) = hγ
2d} and the period space P(γ)

2d is a quasi-
projective variety.

Since H2d contracts a divisor, it is not ample and thus (X, H2d) does not define a 
point in M(γ)

2d . That is, its period point in P(γ)
2d does not lie in the image of the period 

map. Notice that the rank of Pic(X) is at least two.
Let K ⊂ Λ be a rank two primitive sublattice with signature (1, 1), containing hγ

2d. 
Let

ΩK := {x ∈ Ωγ
2d : q(x, k) = 0 ∀k ∈ K }, D(γ)

2n,K := im(ΩK ↪→ Ωγ
2d → P(γ)

2d ) ,

then D(γ)
2n,K is a divisor, called a Heegner divisor, in the period space P(γ)

2d . If (X ′, H ′) ∈
M(γ)

2d maps to a point in D(γ)
2n,K , then the Picard lattice of X ′ contains a copy of K. The 

(finite) union over such Heegner divisors, where K⊥ has fixed discriminant −2e, is

D(γ)
2d,2e :=

⋃
disc(K⊥)=−2e

D(γ)
2n,K (⊂ P(γ)

2d ) .

Since the period map for smooth compact (not necessarily projective) hyper-Kähler 
fourfolds is surjective [30, Theorem 8.1], there exists a fourfold of K3[2]-type for any given 
point in the period domain P(γ)

2d . This fourfold is unique up to flops by the ‘Standard 
Global Torelli theorem’ for fourfolds of K3[2]-type, see [33, Corollary 6.5], based on [65], 
[49,50].

It was proven in [15, Thm. 6.1] that the period point of (X, H) is contained in a divisor 
of the type listed below (notice that we omit D(1)

2d,10d, D
(1)
2d,2d/5 since then the non-ample 

divisor gives a small contraction of a −10-class, cf. [15], proof of Theorem 6.1):
If γ = 1

(1) for any d in an irreducible component of D(1)
2d,2d (which parametrizes HC contrac-

tions), we denote it by D(1)
2d,2d,α (and D(1)

2d,2d = D(1)
2d,2d,α if d 
≡ 0, 1 mod 4),

(2) in case d ≡ 0, 1 mod 4 in a unique other irreducible component of D(1)
2d,2d denoted 

by D(1)
2d,2d,β ,

(3) in one irreducible component of D(1)
2d,8d ⊂ P(1)

2d denoted by D(1)
2d,8d,α.

If γ = 2 in one irreducible component of D(2)
2d,2d ⊂ P(2)

2d (such components occur iff 

d ≡ 3 mod 4). This component is denoted by D(2)
2d,2d,α.
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Table 1
Heegner divisors, Brauer classes and moduli spaces.

D(1)
2d,2d,α D(1)

8k,8k,β D(1)
2d,8d,α D(1)

8k+2,8k+2,β D(2)
8k+6,8k+6,α

Type HC BN BN BN BN
divΛ(E) 2 1 1 1 1
divH⊥ (E) 2 2 1 2 1
h2
T 2d 2k 2d 8k + 2 8k + 6

B-field 0 hTB = 1
2 , B2 = 1

2 hTB = 0, B2 = 1
2 0 0

v (1, 0,−1) (2, 2B, 0) (2, 2B, 0) (2, hT , 2k) (2, hT , 2k + 1)
H (0, hT , 0) (0, 2hT , 1) (0, hT , 0) (0, hT , 4k + 1) (0, hT , 4k + 3)
s = E (2, 0, 2) (2, 2B, 1) (2, 2B, 1) (2, hT , 2k + 1) (2, hT , 2k + 2)
Ref. Proposition 3.4 Proposition 3.5 Proposition 3.6 Proposition 3.7 Proposition 3.8

3.2. Description of the five Heegner divisors

We are going to show in Theorem 3.3 that the general point in each irreducible 
component listed in §3.1 is represented by a hyper-Kähler fourfold which is a moduli 
space of twisted sheaves Mv(T, B) on a polarized K3 surface (T, hT ). The Mukai vector 
v ∈ H̃(T, Z), the type of the B-field B and the degree h2

T are given in Table 1.
The classes of the big and nef divisor H ∈ Pic(Mv(T, B)) = NS(T, B) and of the ex-

ceptional divisor E ∈ NS(T, B) are also given in Table 1. Moreover, certain divisibilities 
which are essential for identifying the (irreducible components of the) Heegner divisors, 
equivalently, to describe the embedding of lattices Pic(X) ↪→ Λ, are given as well.

Theorem 3.3. A general hyper-Kähler fourfold on one of the five Heegner divisors in 
Table 1 is birationally isomorphic to a moduli space of twisted sheaves Mv(T, B), where 
(T, hT ) is a general polarized K3 surface of degree h2

T , with Mukai vector v ∈ H̃(T, Z), 
B-field B ∈ 1

2H
2(T, Z), big and nef divisor class H ∈ NS(Mv(T, B)) and exceptional 

divisor class s = E ∈ NS(Mv(T, B)) as in Table 1.

Proof. The proof is given case by case, see the proposition listed in the last row of 
Table 1. �

Notice that all non-trivial B-fields B on T in Table 1 have B2 /∈ Z. In case 4BhT +h2
T 
≡

0 mod 4, there is only one class of B-fields, so the value of B2 is not important, even if 
the table lists only the case of B-fields with B2 /∈ Z.

The next five propositions describe the lattices and some properties of the correspond-
ing hyper-Kähler fourfolds parametrized by the Heegner divisors in Table 1.

Proposition 3.4. A general point in the irreducible component D(1)
2d,2d,α corresponds to a 

hyper-Kähler fourfold X with Picard lattice isomorphic to

Pic(X) ∼= ZH2d ⊕ ZE2d =< 2d > ⊕ < −2 >

and the embedding Pic(X) ↪→ Λ can be chosen as
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H2d = (1, d)1, E2d := δ, hence divΛ(H2d) = 1, divΛ(E2d) = divH⊥
2d

(E2d) = 2 .

The transcendental lattice of X is isomorphic to

TX
∼=< −2d > ⊕U2 ⊕ E8(−1)2 , |det(TX)| = 2d .

The general X is isomorphic to the Hilbert square K [2], where (K, h2d) is a general 
K3 surface of degree 2d. Moreover, H2d is induced by h2d and 2E2d is the class of the 
exceptional divisor of the Hilbert-Chow map K [2] → Sym2(K), where Sym2(K) = (K ×
K)/ι and ι is the involution that permutes the factors.

Proof. Obviously, for any K3 surface K of degree 2d, the Hilbert-Chow map K [2] →
Sym2(K) is an example of the contractions we consider and it corresponds to the first 
column of Table 1. For dimension reasons, the general point of an irreducible component 
of the Heegner divisor D(1)

2d,2d parametrizes these contractions. �
The second irreducible component D(1)

2d,2d,β of D(1)
2d,2d exists only for d ≡ 0, 1 mod 4

and we discuss it in Proposition 3.5 and 3.7 respectively.

Proposition 3.5. Let d ≡ 0 mod 4, then a general point in the irreducible component of 
D(1)

2d,2d,β corresponds to a hyper-Kähler fourfold X with Picard lattice isomorphic to

Pic(X) ∼= ZH2d ⊕ ZE2d =< 2d > ⊕ < −2 >

and the embedding Pic(X) ↪→ Λ can be chosen as

H2d = (1, d)1, E2d := (1,−d)1 + 2(1, 1
4d)2 + δ, hence divΛ(H2d) = 1,

divΛ(E2d) = 1 ,

and divH⊥
2d

(E2d) = 2. The transcendental lattice of X is isomorphic to

TX
∼= (Z3,M) ⊕ U ⊕ E8(−1)2 , M =

⎛
⎜⎝ 0 0 2

0 −1
2d 1

2 1 −2

⎞
⎟⎠ .

In case d ≡ 0 mod 8, one has an isomorphism of lattices TX
∼= TS, where (S, h2d) is a 

general K3 surface of degree 2d.
The general X ∈ D(1)

8k,8k,β (with d = 4k) is birationally isomorphic to a moduli space 
of sheaves Mv(T, B), where (T, hT ) is a polarized K3 surface of degree h2

T = 2k = d/2 (∈
2Z), the B-field B ∈ 1

2H
2(T, Z) satisfies

h2
T = d/2, hTB = 1 , B2 = 1 ,
2 2
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and one can choose

v := (2, 2B, 0), H2d := (0, 2hT , 1), E2d := (2, 2B, 1) (∈ H̃2(T,Z)) .

Proof. The Picard lattice is embedded in Λ with the correct divisibilities to obtain the 
second component in D(1)

2d,2d according to [15].
Notice that TX = Pic(X)⊥ ⊂ Λ is generated by 3 vectors and the ‘rest’ of Λ:

g1 := (−1, 4e)1 + 2(1, e)2, g2 := (1,−e)2, g3 := (0, 1)2 − δ, U ⊕ E8(−1)2 .

One easily computes the Gram matrix M = (gi ·gj) and verifies that det(TX) = detM =
2d.

In case d/4 is even, the vectors (d/4, 1, 0), (d/8, 1, 1) ∈ 〈g1, g2, g3〉 span a copy of U (but 
they are not the standard basis) hence, comparing determinants, (Z3, M) ∼=< −2d > ⊕ U
and TX

∼=< −2d > ⊕ U2 ⊕ E8(−1)2 which is also the transcendental lattice of general 
K3 surface of degree 2d.

To prove that X is isomorphic to the moduli space of sheaves Mv(T, B) we recall from 
§2.3 that

NS(T,B) =< (2, 2B, 0), (0, h, 0), (0, 0, 1) > so v,H2d, E2d ∈ NS(T,B) .

Since v2 = 2, the moduli space Mv(T, B) is indeed four dimensional and one easily 
verifies that H2d, E2d ∈ v⊥ = H2(Mv(T, B), Z). Moreover, H2

2d = 4h2
T = 2d, E2

2d = −2
and H2dE2d = 0.

Next we verify the divisibilities. Since (1, 0, 0) ∈ v⊥ and H2d(1, 0, 0) = 1 we have 
indeed γ := divΛ(H2d) = 1. Moreover, E2d(1, 0, 0) = 1, so divΛ(E2d) = 1. Next we notice 
that (in Λ = v⊥)

H⊥Λ
2d = v⊥ ∩H⊥

2d = {(2hη, η,Bη) : η ∈ H2(T,Z), Bη ∈ H4(T,Z) } .

As E2d(2hη, η, Bη) = −2hη ∈ 2Z, we find divH⊥
2d

(E2d) = 2.
Hence the moduli space Mv(T, B) is indeed a general point in D(1)

8k,8k,β and the Torelli 
theorem implies that X and Mv(T, B) are birational for some (general) K3 surface (T, hT )
of degree d/2. �

The cases d = 4, 8 of Proposition 3.5, so the K3 surface T has degree d/2 = 2, 4
respectively, will be discussed in §5.2 and §5.3.

Proposition 3.6. A general point in D(1)
2d,8d,α corresponds to a hyper-Kähler fourfold X

with Picard lattice isomorphic to

Pic(X) ∼= ZH2d ⊕ ZE2d =< 2d > ⊕ < −2 >
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and the embedding Pic(X) ↪→ Λ can be chosen as

H2d = (1, d)1, E2d := (1,−1)2, so divΛ(H2d) = 1,

divH⊥
2d

(E2d) = divΛ(E2d) = 1 .

The transcendental lattice of X is isomorphic to

TX
∼=< −2d > ⊕ < 2 > ⊕ < −2 > ⊕U ⊕ E8(−1)2 .

The general X ∈ D(1)
2d,8d,α is birationally isomorphic to a moduli space of sheaves 

Mv(T, B) where (T, hT ) is a polarized K3 surface of degree h2
T = 2d, the B-field B ∈

1
2H

2(T, Z) satisfies

h2
T = 2d, hTB = 0, B2 = 1

2 ,

and one can choose

v := (2, 2B, 0), H2d := (0, hT , 0), E2d := (2, 2B, 1) (∈ H̃2(T,Z)) .

Proof. We follow [15]. Since γ = 1 we may assume that H2d = (1, d)1, so H2d is in the 
first component U of Λ, and since H⊥

2d is generated by (1, −d)1 ∈ U1, we have

L := H⊥
2d =< −2d > ⊕U2 ⊕ E8(−1)2 ⊕ < −2 > .

We choose E2d ∈ L to be the

E2d := (1,−1)2, hence divL(E2d) = divΛ(E2d) = 1

(since for example E2d · (0, 1)2 = 1). With these definitions, ZH2d ⊕ZE2d is a primitive 
sublattice of Λ and thus we may identify

Pic(X) := ZH2d ⊕ ZE2d ∼=< 2d > ⊕ < −2 >

for a general hyper-Kähler fourfold X with period point in D(1)
2d,8d. The transcendental 

lattice of X is Pic(X)⊥, which is generated by (1, −d)1, (1, 1)2 and the ‘rest’ of Λ:

Pic(X)⊥ =< −2d > ⊕ < 2 > ⊕U ⊕ E8(−1)2 ⊕ < −2 > .

Thus | det(Pic(X)⊥)| = 8d and therefore the period point of these hyper-Kähler fourfolds 
indeed lies in D(1)

2d,8d.
To prove that X is birationally isomorphic to the moduli space of sheaves Mv(T, B)

we recall from §2.3 that

NS(T,B) =< (2, 2B, 0), (0, h, 0), (0, 0, 1) > so v,H2d, E2d ∈ NS(T,B) .
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Since v2 = 2, the moduli space Mv(T, B) is indeed four dimensional and one easily 
verifies that H2d, E2d ∈ v⊥ = H2(Mv(T, B), Z). Moreover, H2

2d = 4h2
T = 2d, E2

2d = −2
and H2dE2d = 0.

Next we verify the divisibilities. Since (2B)2 = 2, 2B ∈ H2(T, Z) is primitive and 
BH = Bh = 0 and the embedding of < h, 2B > in the K3 lattice is unique up to isometry. 
One easily finds a class t ∈ H2(T, Z) such that th = 1, tB = 0. Then (0, t, 0) ∈ v⊥ and 
H(0, t, 0) = 1, so H has divisibility γ = 1 in v⊥ = Λ. Moreover, w := (−1, 0, 0) ∈ v⊥ and 
E2dw = 1, so divΛ(E2d) = 1. Since w ∈ v⊥ ∩H⊥

2d = H⊥Λ
2d we also get divH⊥

2d
(E2d) = 1.

Therefore the moduli space Mv(T, B) is indeed a general point in D(1)
2d,8d,α and the 

Torelli theorem implies that X and Mv(T, B) are birational for some (general) K3 surface 
(T, hT ) of degree 2d. �

See Section 5.1 for the relation with double EPW sextics in the case d = 1.

Proposition 3.7. Let d ≡ 1 mod 4, we will write d = 4k + 1. A general point in the 
second component of D(1)

2d,2d,β corresponds to a hyper-Kähler fourfold X with Picard lattice 
isomorphic to

Pic(X) ∼= ZH2d ⊕ ZE′
2d =

(
Z2,

[
8k + 2 4k + 1
4k + 1 2k

])
∼=

(
Z2,

[
−2 1
1 2k

])
,

where E′
2d = (H2d + E2d)/2 and in the isomorphism we replaced the basis e1, e2 by 

e1 − 2e2, e2. One has | det(Pic(X))| = 4k + 1 = d. The embedding Pic(X) ↪→ Λ can be 
chosen as

H2d = (1, d)1, E′
2d := (1, 0)1 + (1, k)2 .

The transcendental lattice of X is isomorphic to

TX
∼=< −2d > ⊕U2 ⊕E8(−1)2 ,

thus TX is isometric to the transcendental lattice of general K3 surface of degree 2d.
The general X ∈ D(1)

2d,2d,β is birationally isomorphic to a moduli space of sheaves 
Mv(T ) (so B = 0) where (T, hT ) is a general K3 surface of degree h2

T = 2d and:

v := (2, h, 2k), H2d = (0, h, 4k + 1), E2d = (2, h, 2k + 1) (∈ H̃(T,Z)) .

Proof. The Picard lattice is embedded in Λ with the correct divisibilities to obtain the 
second component D(1)

2d,2d,β of D(1)
2d,2d according to [15]:

divΛ(H2d) = divΛ(E2d) = 1, divH⊥
2d

(E2d) = 2 .

Notice that TX = Pic(X)⊥ ⊂ Λ is generated by

g1 := (−1, 4k + 1)1 + (2, 2k + 1)2, g2 := (1,−k)2, U ⊕E8(−1)2 ⊕ < −2 > .
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The sublattice of TX that is generated by g1, g2, g3, where Zg3 =< −2 > is the last 
summand of TX above, has Gram matrix M and with the change of basis provided by 
S one has:

M =

⎛
⎜⎝ 2 1 0

1 −2k 0
0 0 −2

⎞
⎟⎠ , S =

⎛
⎜⎝ 1 0 1

k 1 k

4k 2 4k + 1

⎞
⎟⎠ , SM(tS) =

⎛
⎜⎝ 0 1 0

1 0 0
0 0 −2d

⎞
⎟⎠ ,

hence TX
∼=< −2d > ⊕ U2 ⊕ E8(−1)2.

To prove that X is birationally isomorphic to the moduli space of sheaves Mv(T ) with 
B = 0 we observe that

NS(T, 0) =< (1, 0, 0), (0, h, 0), (0, 0, 1) > so v,H2d, E2d ∈ NS(T, 0) .

Since v2 = 2, the moduli space Mv(T ) is indeed four dimensional and since vH2d =
vE2d = 0 we see that H2d, E2d ∈ v⊥ = H2(Mv(T ), Z). Moreover, H2

2d = 2d, E2
2d = −2

and H2dE2d = 0.
To verify the divisibilities, we choose t ∈ H2(T, Z) such that th = 1 (this is possible 

since H2(T, Z) is unimodular and h is primitive). One verifies that

t1 := (1, 2kt, 0), t2 = (0, 2t, 1) ∈ v⊥, v⊥ = Zt1 ⊕ Zt2 ⊕ {(0, κ, 0) : κh = 0 } .

Since H2d(t1 + 2kt2) = 1 we have indeed γ := divΛ(H2d) = 1. Moreover, E2dt1 = 1, so 
divΛ(E2d) = 1. Next we notice that (in Λ = v⊥)

H⊥Λ
2d = v⊥ ∩H⊥

2d =< 2t1 + (2k + 1)t2 > ⊕{(0, κ, 0) ∈ H̃(T,Z) : κh = 0 } .

As E2d(2t1 + (2k + 1)t2) ∈ 2Z, we find divH⊥
2d

(E2d) = 2.
Hence the moduli space Mv(T ) is indeed a general point in D(1)

2d,2d,β and the Torelli 
theorem implies that X is birational to Mv(T ) for some (general) K3 surface (T, hT ) of 
degree 2d. �

The case d = 1 (so k = 0) in Proposition 3.7 was briefly described by O’Grady in [61, 
§5.2], his divisor S′′

2 is D(1)
2,2,β . See also [12, Example 3.4, §7,8].

Proposition 3.8. Let d ≡ 3 mod 4 and write d = 4k + 3. A general point in D(2)
2d,2d,α

corresponds to a hyper-Kähler fourfold X with Picard lattice

Pic(X) = ZH2d ⊕ ZE2d ∼=< 2d > ⊕ < −2 >

and the embedding Pic(X) ↪→ Λ can be chosen as

H2d = 2(1, k + 1)1 + η, E2d := (1,−1)2 .
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The transcendental lattice of X is isomorphic to

TX
∼=< −2d > ⊕U2 ⊕ E8(−1)2 ,

thus TX is isometric to the transcendental lattice of general K3 surface S of degree 2d.
The general X ∈ D(2)

2d,2d,α is birationally isomorphic to a moduli space of sheaves 
Mv(T ) (so B = 0) where (T, hT ) is a general K3 surface of degree h2

T = 2d and:

v := (2, h, 2k+ 1), H2d = (0, h, 4k + 3), E2d = (2, h, 2k + 2) (∈ H̃(T,Z)) .

Proof. We follow [15]. Since γ = 2 we may assume that H2d = 2(1, k+1)1+η and choosing 
E2d = (1, −1)2 we obtain the correct divisibilities for this irreducible component of the 
Heegner divisor:

divΛ(H2d) = 2, divH⊥
2d

(E2d) = divΛ(E2d) = 1 .

The sublattice generated by H2d, E2d is primitive in Λ and hence it is Pic(X).
Consider the following vectors in Pic(X)⊥:

g1 := (1,−k − 1)1, g2 := (0, 1)1 + η, g3 := (1, 1)2,

together with the remaining U ⊕ E8(−1)2 they span Pic(X)⊥ = TX . Notice that f1 :=
g2 + g3 and f2 := g1 +(k+1)(g2 + g3) span a hyperbolic plane and with f3 := g3 − (2k+
2)f1 − 2f2 we get:

TX = Zf3 ⊕ Zf1 ⊕ Zf2 ⊕ (U ⊕E8(−1)2) ∼=< −2d > ⊕U2 ⊕ E8(−1)2 .

To prove that X is birationally isomorphic to the moduli space of sheaves Mv(T ) with 
B = 0 we observe that

NS(T, 0) =< (1, 0, 0), (0, h, 0), (0, 0, 1) > so v,H2d, E2d ∈ NS(T, 0) .

Since v2 = 2, the moduli space Mv(T ) is indeed four dimensional and since vH2d =
vE2d = 0 we see that H2d, E2d ∈ v⊥ = H2(Mv(T ), Z). Moreover, H2

2d = 2d, E2
2d = −2

and H2dE2d = 0. To verify the divisibilities, we choose t ∈ H2(T, Z) such that th = 1
(this is possible since H2(T, Z) is unimodular and h is primitive). One verifies that

t1 := (1, (2k+1)t, 0), t2 = (0, 2t, 1) ∈ v⊥, v⊥ = Zt1⊕Zt2 ⊕{(0, κ, 0) : κh = 0 } .

From this one finds that H2dw ∈ 2Z for all w ∈ v⊥ so that indeed γ := divΛ(H2d) = 2
and E2dt1 = −(2k + 2) + 2k + 1 = −1, hence divΛ(E2d) = 1. Finally we observe that 
t1 + (k + 1)t2 ∈ H⊥

2d and that E2d(t1 + (k + 1)t2) = −1 so that divH⊥
2d

(E2d) = 1. Thus 
Mv(T ) is indeed a general point in D(2)

2d,2d,α and the Torelli theorem implies that X is 
birational to Mv(T ) for some (general) K3 surface (T, hT ) of degree 2d. �
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The Heegner divisor D(2)
2d,2d lies in the period space P(2)

2d which is non-empty only 
for d ≡ 3 mod 4. The general hyper-Kähler fourfolds classified by these spaces are the 
Fano varieties of cubic fourfolds in case 2d = 6, they are Debarre-Voisin hyper-Kähler 
fourfolds in case 2d = 22 and the Iliev-Ranestad hyper-Kähler fourfolds in case 2d = 38. 
We discuss these cases in Sections 5.4, 5.5 and 5.6.

3.3. Hilbert squares

An isometry of lattices TX
∼= TS does not imply that X is birational to R[2] for some 

K3 surface R. In fact, for this to be true, one needs that Pic(X) = T⊥
X contains a −2-class 

δ with δ2 = −2 and divΛ(δ) = 2, see [15, Rem. 5.2]. We now discuss some cases where 
we have an isometry TX

∼= TS . In case X is birationally isomorphic to S[2] one can study 
the geometry of the BN divisors also using [43].

If X ∈ D(1)
2d,2d,β , cf. Proposition 3.5, and d ≡ 0 mod 8, there is such an isometry. 

Notice that whereas E2d ∈ T⊥
X does have E2

2d = −2, it has divΛ(E2d) = 1. From 
the description of T⊥

X = Pic(X) =< H2d, E2d >⊂ Λ it is easy to see that a class 
δ = aH2d + bE2d has divisibility 2 in Λ iff a ≡ b mod 2. If also −2 = δ2 = 2a2d − 2b2, 
that is, b2 − da2 = 1, it follows that a ≡ b ≡ 1 mod 2.

In case d = 16 the Pell equation b2 − 16a2 = 1 has no solutions with a ≡ b ≡ 1
mod 2, in fact one would obtain (b − 4a)(b + 4a) = 1 with a, b odd integers which is 
impossible, so in that case X is certainly not birational to the Hilbert square of a K3 of 
degree 2d = 32.

In case d = 8, 24, 32 we do find the solutions (a, b) = (1, 3), (1, 5), (3, 17) to b2−da2 = 1
with both a, b odd. It follows that in these cases there is a Hodge isometry H2(X, Z) ∼=
H2(S[2], Z) for some Hilbert square of a K3 surface S of degree 2d and thus X is birational 
to S[2].

Similarly, if X ∈ D(2)
2d,2d,α, cf. Proposition 3.8, there is an isometry TX

∼= TS where 
S is a K3 surface of degree 2d = 8k + 6. In that case, a class δ = aH2d + bE2d ∈
Pic(X) has divisibility 2 in Λ iff b ≡ 0 mod 2. This class is a −2-class iff −2 = δ2 =
2a2d − 2b2, that is, b2 − da2 = 1. In the cases d = 3, 11, 19 we do find the solutions 
(a, b) = (1, 2), (3, 10), (39, 170) with b even.

4. Brauer classes of exceptional BN divisors

4.1. Brauer classes of exceptional BN divisors

In this section we deduce from the work of Bayer and Macrì [2] that the exceptional di-
visor of a divisorial contraction on a hyper-Kähler fourfold of K3[2] type is a P1-fibration 
over a K3 surface. Next we determine the Brauer classes of these fibrations on the ex-
ceptional divisors of BN contractions. We conclude with some results on the relations 
between the second cohomology groups of the hyper-Kähler fourfold X admitting the 
BN contraction with exceptional divisor p : E → K, of the P1-fibration E and of the 
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K3 surface K. In particular, if the Brauer class α ∈ Br(K)2 of E is non-trivial, then we 
identify geometrically the sublattice Γα of index two in the transcendental lattice TK of 
K.

First we show that if E is a BN-exceptional divisor, then, remarkably, the canonical 
divisor of E always has self-intersection number K3

E = 12 (equivalently, c2(p∗ω−1
E/K) = 6).

Proposition 4.1. Let p : E → K be a divisorial contraction on a hyper-Kähler manifold 
X of K3[2] type with q(E) = −2. Then K3

E = 12 and thus c2(W) = 6, where W = ω−1
E/K . 

Moreover, we have the following intersection numbers:

E(H − E)3 = 12(d− 1), E2(H − E)2 = 4(3 − d), E3(H −E) = −12 ,

where H is the big and nef divisor on X with q(H) = 2d which contracts E. In particular, 
the degree of the linear system H − E on E is 12(d − 1).

Proof. By adjunction on X, which has KX = 0, we have KE = E|E hence K3
E =

E4. The Beauville-Bogomolov form on H2(X, Z) has the property x4 = 3(x, x)2, so 
K3

E = 3(E, E)2 = 12. From Proposition 1.1 we then find c2(W) = 6. We also have 
x3y = 3(x, x)(x, y) (this follows for example by considering x + y instead of x in the 
identity x4 = 3(x, x)2), so the degree of H − E on E is (H − E)3E = 3(H − E, H −
E)(H−E, E) = 3 ·(2d −2)(2) = 12(d −1). For the last intersection number, (H−E)2E2, 
use x2y2 = 2(x, y)2 + (x, x)(y, y). �

The next theorem shows that a BN divisor E on X is a P1-fibration p : E → K over a 
K3 surface and thus it naturally defines a Brauer class α ∈ Br(K)2. On the other hand, 
the twisted moduli space structure on X = Mv(T, B) (cf. Theorem 3.3) depends on a 
B-field B which defines a Brauer class β ∈ Br(T )2. The theorem also asserts that K ∼= T

and that we may identify α and β.

Theorem 4.2. Let X be a hyper-Kähler fourfold of K3[2] type with Picard rank two and 
with a BN divisorial contraction X ⊃ E → K ⊂ Y . Then p : E → K is a conic bundle 
over a K3 surface.

Let α ∈ Br(K)2 be the Brauer class defined by this conic bundle over K. Let T be a 
K3 surface such that X is birationally isomorphic with Mv(T, B) as in Theorem 3.3 and 
let β ∈ Br(T )2 be the Brauer class defined by the B-field B ∈ H2(T, Q). Then there is 
an isomorphism T ∼= K and any such isomorphism maps β to α.

Proof. Let s be as in Table 1 and let H :=< v, s >⊂ NS(T, B). Since v2 = 2, s2 = −2
and vs = 0, H ∼=< 2 > ⊕ < −2 > so H is an isotropic hyperbolic rank two sublattice. 
One easily verifies that H is a primitive sublattice (notice that v− s = (0, 0, −1)). Then, 
by [2, Thm. 5.7], there is a Bridgeland stability condition σ such that the corresponding 
moduli space Mv,σ(T, B) is isomorphic to X. The exceptional divisor E ⊂ Mv,σ(T, B) is 
described in the proof of [2, Lem. 8.8], it is a P1-fibration over K := Mst

v−s,σ (T, β). Since 

0
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v−s = (0, 0, −1), K = Mv−s(T, B) and K parametrizes skyscraper sheaves OP [−1] with 
P ∈ T , this gives an isomorphism T ∼= K.

The contraction E → K is described in [2, Lem. 8.7]. It involves the unique Gieseker 
semistable torsion free twisted sheaf such that Ms(K, B) = {S}, with s ∈ NS(T, B) as 
in Table 1. If S is not locally free, then Q := S∨∨/S has support in a finite number of 
points. Let s = vB(S) = (r, λ, t), then vB(S∨∨) = (r, λ, l + n) where n is the length of 
Q. Thus

vB(S∨∨)2 = vB(S)2 − 2rn.

Notice that vB(S)2 = −2 and that S∨∨ is also semistable, hence vB(S∨∨)2 ≥ −2. Thus 
Q = 0 and S is locally free. From Table 1 one finds that v(S) = (2, ∗, ∗) in all cases 
under consideration, hence S is a locally free β-twisted sheaf of rank 2. The P1 fiber in 
E ⊂ Mv,σ(K, B) over P ∈ K parametrizes the surjections S → OP . Thus we find that 
E = P(S) and p : E → K is induced by the bundle projection S → K.

The conic bundle E = P(S) → T ∼= K is defined by the β-twisted sheaf S on T . 
Hence the Brauer class defined by E is β ∈ Br(T )2. Thus β maps to α since both are 
determined by the P1-fibration E. �

We explicitly state the following corollary of Theorem 4.2, it implies Theorem 0.1.

Corollary 4.3. Let X be a hyper-Kähler fourfold of K3[2] type admitting a BN contraction 
with exceptional divisor E ⊂ X and let p : E → K be the induced P1-fibration on a K3 
surface K. Assume that Pic(K) = Zh and that h2 = 2d.

If the Brauer class α ∈ Br(K)2 of E is trivial then h2 ≡ 2 mod 4. Let h2 = 8k+2 or 
8k + 6, then X ∈ D(1)

8k+2,8k+2,β, X ∈ D(1)
8k+6,8k+6,α respectively. In both cases E ∼= P(U)

where the locally free rank sheaf U of rank two is a Mukai bundle, so it is stable with 
v(U)2 = −2, in fact we may assume v(U) = (2, h, m), with m = 2k+1, 2k+2 respectively.

If the Brauer class α ∈ Br(K)2 of E is non-trivial then X ∈ D(1)
2d,8d,α or X ∈ D(1)

8d,8d,β. 
The class α has a B-field representative with B2 = 1/2 and Bh = 0 in the first case and 
B2 = 1/2, Bh = 1/2 in the second case. In both cases E ∼= P(U) where the α-twisted 
locally free sheaf U of rank two is stable with vB(U)2 = −2.

Proof. If X admits a BN contraction and Pic(K) = Zh we see from the proof of The-
orem 4.2 that E = P(U) for a locally free rank two α-twisted sheaf U with vB(U) = s

with B and s as in Table 1.
In case α = 0, it is well-known (cf. [55, Thm. 3] and see [32, 10.3.1] for references 

and the proof) that there is a unique stable rank two bundle on K with Mukai vector 
s = [E] = (2, h, m) with m = 2k+1, 2k+2 respectively as in Table 1, so s2 = −2, called 
the Mukai bundle.

In case α is non-trivial, Table 1 shows that it has a B-field representative of α with 
B2 = 1/2 and Bh = 0, 1/2 respectively. The proof of Theorem 4.2 shows that vB(U)2 =
−2. The stability of U follows from Proposition 2.5. �
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4.2. The second cohomology groups

We consider again a general BN contraction of a hyper-Kähler fourfold X as in Table 1. 
Then there is a K3 surface T with B-field B and Mukai vector v ∈ NS(T, B) such that 
X = Mv(T, B) and the base of the associated P1-fibration p : E → K is the K3 surface 
K = Mv−s(T, B) ∼= T (see Theorem 4.2 and its proof). Recall that s = [E] ∈ H2(X, Z)
is the class of the exceptional divisor.

Since both X and K are moduli spaces of twisted sheaves on T , we can explicitly 
relate the Hodge structures on their second cohomology groups using a natural map r′, 
defined in the proof of the following Proposition 4.4,

r′ : s⊥ ∩H2(X,Z) −→ H2(K,Z) .

We will give a geometrical interpretation of r′ in §4.3.
We also show that the image of r′ is a sublattice of H2(K, Z) of index two. Since 

H2(K, Z) is selfdual, there is a B-field BX ∈ 1
2H

2(K, Z) such that

r′
(
s⊥ ∩H2(X,Z)

)
= {κ ∈ H2(K,Z) : BXκ ≡ 0 mod Z } .

The Brauer class αX ∈ Br(K)2 = Hom(TK , 12Z/Z) defined by BX ,

αX : TK −→ 1
2Z/Z, τ �−→ BXτ

is shown to be the same as the Brauer class α ∈ Br(K)2 defined by the conic bundle 
p : E → K. In particular, α = αX = 0 iff r′(TX) = TK .

Proposition 4.4. Let X = Mv(T, B) and K = Mv−s(T, B) as above, then the image of r′
is a sublattice of index two in H2(K, Z). Let BX ∈ 1

2H
2(X, Z) be the B-field that defines 

the image of r′ and let αX ∈ Br(K)2 be the Brauer class defined by BX . Then αX = α, 
where α is the Brauer class defined by the conic bundle p : E → K.

Proof. In H̃(T, B, Z) we have the Mukai vector v with v2 = 2 and the sublattice (and 
Hodge substructure) v⊥ ∼= H2(X, Z) which contains the class s of E with s2 = −2 (and 
vs = 0) (notice that we now consider s ∈ H̃(T, B, Z) rather than in H2(X, Z)). Thus 
(v− s)⊥ ⊂ H̃(T, B, Z) contains the isotropic vector v− s, and there is a Hodge isometry 
(v − s)⊥/ < v − s >∼= H2(K, Z). Notice that s⊥ ∩ v⊥ ⊂ (v − s)⊥. From this we get a 
Hodge isometry

r′ : s⊥ ∩H2(X,Z) = s⊥ ∩ v⊥ ↪→ (v − s)⊥ −→ (v − s)⊥/ < v − s >∼= H2(K,Z) .

For BN contractions, the sublattice of H̃(T, Z) generated by v and s, which is isometric 
to < 2 > ⊕ < −2 >, is primitive and we embed it in a sublattice U2 ⊂ H̃(T, Z) so that 
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v = (1, 1)1 and s = (1, −1)2. Next we define v∗ := (0, 1)1, s∗ := (0, 1)2 so that v, v∗ and 
s, s∗ span the two orthogonal copies of U and ss∗ = 1, vv∗ = 1. One verifies that

(v − s)⊥ =< v − s > ⊕ < s + 2s∗ > ⊕ < v∗ + s∗ > ⊕(U2)⊥ .

Hence we can, and will, identify (v − s)⊥/(v − s) with a sublattice of H̃(T, Z):

H2(K,Z) = (v − s)⊥/(v − s) ∼=< s + 2s∗ > ⊕ < v∗ + s∗ > ⊕(U2)⊥ ∼= U ⊕ (U2)⊥ .

In particular, H2(K, Z) is identified with this sublattice.
Since

s⊥ ∩H2(X,Z) = s⊥ ∩ v⊥ =< v − 2v∗ > ⊕ < s + 2s∗ > ⊕(U2)⊥ ,

the generator v − 2v∗ = (v − s) + (s + 2s∗) + 2(v∗ + s∗) ∈ s⊥ ∩ v⊥ maps to

r′(v − 2v∗) = (s + 2s∗) + 2(v∗ + s∗) ∈ (v − s)⊥/(v − s) ,

whereas r′(s + 2s∗) = s + 2s∗. Hence

r′
(
s⊥ ∩H2(X,Z)

)
=< s + 2s∗ > ⊕ < 2(v∗ + s∗) > ⊕(U2)⊥ ⊂ (v − s)⊥/(v − s) ,

showing that we indeed get a sublattice of index two.
Since s + 2s∗ ∈ (v − s)⊥ and

1
2 (s + 2s∗)(s + 2s∗) = 1, 1

2 (s + 2s∗)(v∗ + s∗)) = 1
2 ,

we see that the intersection product with 1
2r

′(s + 2s∗) takes integral values on the index 
two sublattice, but not on all of H2(K, Z) and thus we can take BX = 1

2r
′(s + 2s∗).

In view of Theorem 4.2, αX = α follows from αX = β. Recall that β has B-field 
representative B ∈ H2(T, Q) listed in Table 1 and also s, v ∈ H̃(T, Z) are given there. 
We explicitly give s∗ for each column. Since < s, v, s∗ > is isometric to U⊕ < 2 >, we 
can also find a v∗, but we won’t need it.

We determine the class of BX mod H2(K, Z) + 1
2 Pic(K), with BX = 1

2r
′(s + 2s∗). 

Notice that in all four columns we have v − s = (0, 0, −1) so that

(v − s)⊥ = H2(T,Z) ⊕H4(T,Z), (v − s)⊥/(v − s) = H2(T,Z) ∼= H2(K,Z) .

For the first two columns, we choose s∗ = (−1, 0, 0), then s + 2s∗ = (0, 2B, 1). Under 
the effective Hodge isometry H2(T, Z) ∼= H2(K, Z) the B-field BX = 1

2r
′(s + 2s∗) thus 

maps to B ∈ 1
2H

2(K, Z) and so the Brauer classes αX , β (defined by BX , B respectively) 
are the same.

For the last two columns we choose a t ∈ H2(T, Z) such that ht = 1 and moreover 
t2 = 0. Then h, t generate a copy of U in H2(T, Z).
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For the case of D(1)
8k+2,8k+2,β , let s∗ = (−1, −2kt, 0) ∈ H̃(T, Z) then < s, s∗ > is 

a copy of U which is orthogonal to v. Since v − s = (0, 0, −1) we can again identify 
(v − s)⊥/(v − s) = H2(T, Z) = H2(K, Z) and denoting r′(h), r′(t) by h, t, we get:

1
2r

′(s + 2s∗) = 1
2r

′(0, h− 4kt, 2k + 1) = 1
2h− 2kt ∈ Pic(K)Q + H2(K,Z) .

Thus BX ≡ 0 ∈ Br(K)2.
For the last column, the case D(2)

8k+6,8k+6,α, we choose s∗ = (−1, −(2k + 1)t, 0) ∈
H̃(T, Z) and as for the previous column we find

1
2r

′(s + 2s∗) = 1
2r

′(0, h− (4k + 2)t, 2k + 2) = 1
2h− (2k + 1)t ∈ Pic(K)Q + H2(K,Z) .

Thus again BX ≡ 0 ∈ Br(K)2. �
4.3. O’Grady’s map r

We recall some results on the relation between the integral cohomology of the three 
manifolds X, E and K, following O’Grady [61, 3.9, 4.7]. The conic bundle p : E → K

does not have a section in general and the restriction map Pic(E) → Pic(Eq) = Z where 
Eq := p−1(q) ∼= P1 is the fiber of p : E → K over q ∈ K, has image 2Z. However, since 
we can deform (X, E) to the case that E = P(V) for a rank two vector bundle V on K, 
there is a class in H2(E, Z) that restricts to a generator of H2(Eq, Z) = Pic(Eq). Choose 
ηp ∈ Hp(E, Z) such that i∗ηp generates Hj(P1, Z) for j = 0, 2 where i : P1 = Eq → E

is the inclusion of a(ny) fiber in E.
The Leray-Hirsch theorem (see [28, Theorem 4D.1], [67, Theorem 7.33]) states that 

there is an isomorphism, where η is a linear combination of the ηj :

H∗(K,Z) ⊗H∗(P1,Z) −→ H∗(E,Z), ξ ⊗ i∗η �−→ p∗ξ ∧ η .

In particular, the Betti numbers of E are hi(E) = 1, 0, 1 + 22 = 23, 0 for 0, . . . , 3. Notice 
that in general this isomorphism does not respect the Hodge structures since a general 
P1-fibration over K does not have a section. Using the injectivity of p∗ one can still 
determine the Hodge numbers of E:

h0,0(E) = 1, h1,0(E) = 0, h2,0(E) = 1, h1,1(E) = 21, h3,0(E) = h2,1(E) = 0 .

Using deformations and Hodge theory, [61, Cor. 3.25.3] shows that i∗ : H2(X, Z) →
H2(E, Z) is injective, notice that both groups have rank 23. Moreover,

s⊥
∼=−→ i∗(s⊥) ⊂ c⊥ := {γ ∈ H2(E,Z) : c · γ = 0 } = p∗H2(K,Z) ,

where s ∈ H2(X, Z) is the class of E, and c ∈ H4(E, Z) is the class of a fiber of p, [61, 
Cor. 3.25.2], the last equality follows from the Leray-Hirsch theorem. Thus one obtains an 
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injective homomorphism r which is shown to preserve the quadratic forms, so τ2 = r(τ)2
for all τ ∈ s⊥, [61, Claim 3.26]:

r : s⊥ −→ H2(K,Z) .

Finally, using that s is a class with s2 = −2, one finds that s⊥ is a lattice with discrim-
inant 4 whereas H2(K, Z) is unimodular and hence [61, (449)]:

[H2(K,Z) : r(s⊥)] = 2 .

We will now show that r = r′ and thus we obtain a more geometrical description of 
the map r′ in the proof of Proposition 4.4.

Proposition 4.5. The natural isometry r(s⊥) → r′(s⊥) extends uniquely to an isometry 
H2(K, Z) → H2(K, Z), hence the maps r and r′ may be identified.

Proof. Since both r and r′ are isometries between s⊥ and its image, there is a natural 
isometry r(s⊥) → r′(s⊥). Using the correspondence between isotropic subgroups of the 
discriminant group and even overlattices of s⊥, O’Grady [61, Claim 4.6] showed that 
there is a unique even unimodular overlattice of s⊥. Using the maps r, r′ that overlattice 
can then be identified with H2(K, Z). �
5. Examples of Heegner divisors and BN contractions

5.1. The Heegner divisor D(1)
2,8 and double EPW sextics

A general element of D(1)
2,8 corresponds to a hyper-Kähler fourfold which is birational 

to a moduli space M(2,2B,0)(K2, B) for a K3 surface (K2, h2) of degree two with Picard 
group Pic(K2) = Zh2, as in Table 1. The B-field B is non-trivial and satisfies Bh2 = 0, 
B2 = 1/2, since 4Bh2+h2

2 = 2 is not divisible by four, the value of B2 is not an invariant. 
Equivalently, the Brauer class α = αB ∈ Br(K2)2 defined by B has aα = 0, λ2

α = 2. 
Since h2

2 = 2, there are 220 − 1 such Brauer classes (see Theorem 2.3.1b).
The Brauer class α corresponds to a line bundle L = Lα ∈ Pic(C)2 of order two on 

the sextic branch curve C ⊂ P2 of the double cover K2 → P2 (see §2.5, [21], [39]). In 
Proposition 1.4 we constructed a conic bundle p : E = Eα → K2 with this Brauer class 
and with K3

E = 12. We recall that the push-forward L to P2 = P2
y has a resolution which 

determines a symmetric 3 × 3 matrix M(y) whose entries are homogeneous polynomials 
of degree two as in the proof of Proposition 1.4. This matrix defines a Verra threefold, a 
conic bundle V ′

K over P2 (with singular fibers over C):

V ′
K := {(x, y) ∈ P2

x × P2
y : txM(y)x = 0 } .
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The pull-back of this conic bundle along g to K2 is birationally isomorphic by contracting 
one of the irreducible divisors over C to the conic bundle p : E → K2 whose Brauer class 
is α.

There is another description of these hyper-Kähler fourfolds, as resolutions of singular 
double EPW sextics, and the conic bundles due to O’Grady in [61].

Let V be a six dimensional complex vector space and let LG(∧3V ) be the Lagrangian 
Grassmannian parametrizing maximally isotropic (for the wedge product) subspaces in 
∧3V . A general A ∈ LG(∧3V ) defines an EPW sextic hypersurface YA ⊂ PV which is 
singular along a surface of degree 40. There is natural double cover XA → YA which is 
a hyper-Kähler fourfold of K3[2] type, called an EPW sextic. In general has Pic(XA) =
ZHA and H2

A = 2.
Let Σ ⊂ LG(∧3V ) be the divisor of those A which for which there exists a three 

dimensional subspace W ⊂ V such that ∧3W ⊂ A. For a general A ∈ Σ there is a 
unique such W . In [61, Cor. 3.17] it is shown that for general A ∈ Σ the EPW sextic 
YA is singular along a K3 surface K2 (denoted by SA in [61]) and that XA has a hyper-
Kähler desingularization X̃A with a big and nef divisor H̃A which is a deformation of a 
general (XA, HA) ([61, Corollary 3.21]). The map ϕH̃ : X̃A → PV defined by H̃A is the 
composition of a BN contraction X̃A → XA and a degree two map XA → YA. In the 
diagram below U1 is the unique three dimensional subspace of V with ∧3U1 ∈ A.

ϕH̃ : X̃A −→ XA
2:1−→ YA ⊂ PV ∼= P5

∪ ∪ ∪
E2 −→ K2

g−→ PU1 ∼= P2 .

The map g : K2 → PU1 ⊂ PV ∼= P5 is induced by the degree two map XA → YA ⊂ PV

and (K2, h2) is a K3 surface of degree 2 where h2 = g∗OPU1(1). The double cover g is 
branched along a sextic curve C = CA ⊂ PU1 which is smooth in general.

Proposition 5.1. Let B be a B-field representative of the Brauer class of the conic bundle 
E2 → K2 and let α = αB ∈ Br(K2)2 be the corresponding Brauer class.

If rk Pic(K2) = 1 then the conic bundles E = Eα and E2 on K2 are isomorphic. 
Moreover, the hyper-Kähler fourfolds X̃A and M(2,2B,0)(K2, B) are isomorphic.

Proof. From O’Grady’s description of the Picard lattice of X̃A in Λ in [61, section 4.2]
one finds that his divisor S∗

2 (see [61, Proposition 4.12], it is a covering of degree 220−1 of 
the moduli space of degree two K3 surfaces by the map that forgets the Brauer class), is 
the Heegner divisor D(1)

2,8. Hence by Table 1 we have Bh = 0, B2 = 1/2. By Theorem 3.3, 
X̃A is birationally isomorphic to M(2,2B,0)(K2, B), but actually there is an isomorphism 
since there are no −10 classes of divisibility 2 in their Kähler cones.

By Proposition 2.4, E ∼= P(U) and E2 ∼= P(U2) for locally free rank two α-twisted 
sheaves on K2. Since K3

E = 12 we have vB(U)2 = −2. From Proposition 4.1 we get that 
K3

E2
= 12, hence also vB(U2)2 = −2. Proposition 2.7 implies that U2 ∼= U ⊗ L for some 

line bundle L on K, hence E ∼= P(U) ∼= P(U ⊗ L) ∼= P(U2) ∼= E2. �
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5.1.1. Remark
Let VK be the double cover of P2 × P2 branched along V ′

K . Similarly as in [40, 
Thm. 4.5] one can now show that P1-fibration E2 → K2 is isomorphic to the relative 
Hilbert scheme of lines Hilb(1,0) VK → K, where Hilb(1,0) VK is the Hilbert scheme of 
curves in the fibers of the quadric fibration π : VK → PW of bidegree (1, 0) with respect 
to the two projections of VK ⊂ C(P2 ×P2) to P2 (cf. [46, §4], [7, §2]). Moreover, we can 
show that VK isomorphic to VA, the Verra fourfold defined from A as in [42, (2.18)].

5.2. The Heegner divisor D(1)
8,8,β and Fano’s of cubic fourfolds with a plane

The Fano fourfold F of lines in a smooth cubic fourfold X is a hyper-Kähler fourfold 
with an ample class g ∈ Pic(F ) defined by the Plücker map which has BB-square g2 = 6.

Let now X be a smooth cubic fourfold with a plane T ⊂ X, such fourfolds are 
parametrized by the Hassett divisor C8. Then T defines a divisor (class) τ = α(T ) ∈
Pic(F ) where α : H4(X, Z) → H2(F, Z) is the Abel-Jacobi map (which only changes the 
sign on the primitive part). The Abel-Jacobi map is induced by the incidence correspon-
dence Z in X × F , so Z = {(x, [l]) ∈ X × F : x ∈ l} (and l is a line in X). One has 
τ2 = −2 and gτ = 2 ([26, Example 7.5]). Thus Pic(F ) has the sublattice (which is equal 
to Pic(F ) for general cubics with a plane):

K8 :=< g + τ, τ > =< 8 > ⊕ < −2 > .

From the incidence correspondence one finds that the support τ , denoted by E, con-
sists of the classes [l] ∈ F of lines l ⊂ X which meet T :

E = {[l] ∈ F : l ∩ T 
= ∅}, τ = [E] .

The divisor E ⊂ F is well known to be a conic bundle over a K3 surface K of degree 
two. Choose a plane T ′ ⊂ P5 disjoint from T . For t ∈ T ′ let Pt :=< T, t >⊂ P5 be the 
P3 spanned by T and t. Then Pt ∩ X = Qt ∪ T where Qt is a quadric in Pt. In other 
words, let π : X̄ → X be the blow up of X along T . Then π is a quadric bundle over 
P2 = T ′, the fiber of π over t is isomorphic to Qt.

Any line in Qt meets T and conversely any line l ⊂ X meeting T is contained in a Qt. 
Hence the (one or two) rulings of Qt give one or two rational curves in E ⊂ F and these 
curves can be mapped to t. This map E → T ′ factors over a K3 double cover K → T ′

branched over sextic curve in T ′, cf. [66].

E
p−→ K

2:1−→ T ′ ∼= P2 .

The map p is a P1-fibration. See Corollary 1.6 (and its proof) for this conic bundle, as 
well as [46, §4], and [48] for relations between the associated twisted derived category of 
K and F . We summarize the discussion above in the following proposition.
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Proposition 5.2. A general point in the Heegner divisor D(1)
8,8,β is given by (F, K8), where 

F is the Fano fourfold of a general cubic 4-fold with a plane and K8 =< g + τ, τ >.
The conic bundle p : E → K is a BN contraction on F induced by H := g + τ . The 

type of the Brauer class of this conic bundle is characterized by hB = B2 = 1
2 and it 

corresponds to an odd theta characteristic on the sextic branch curve of K → T ′ ∼= P2.

Proof. The divisibilities of g, τ in H2(F, Z) are 2 and 1 respectively. Hence the divisibility 
γ of g+τ in H2(F, Z) is equal to one and thus (F, K8) defines a point in D(1)

8,2e. To find e, 
we need to determine | det(K⊥

8 )|. As H := g+τ has divisibility 1, we have | det(H⊥)| = 16
and since τ has divisibility 1 we get, using [15, (4)], that 2e = 2| det(H⊥)|/1 = 16, hence 
(F, g + τ) ∈ D(1)

8,8.
From Table 1 we indeed obtain that the base of the conic bundle K has a polarization 

hK of degree two, as we also described above, and that the Brauer class α ∈ Br(K)2
defined by E has a B-field representative with hB = B2 = 1/2. The proof of Corollary 1.6
gives the relation with the odd theta characteristic on the branch curve, see also [66, 
Prop. 4]. �
5.3. The Heegner divisor D(1)

16,16,β and the BOSS bundle

In case d = 8, the Heegner divisor D(1)
2d,2d has a unique irreducible component 

parametrizing fourfolds with a BN contraction denoted by D(1)
16,16,β . As we observed 

in §3.3, a general X in D(1)
16,16,β is birationally isomorphic to the Hilbert square S[2] of a 

K3 surface S of degree 16. From Table 1 we find that the contraction of the exceptional 
divisor, which we now denote by Z instead of E, p : Z → K is a conic bundle with non-
trivial Brauer class α ∈ Br(K)2 over a quartic K3 surface (K, h). Moreover, any B-field B
representing α has Bh = 1

2 (modulo the integers). Since 4Bh +h2 = 2 /∈ 4Z, B2 does not 
give an extra invariant and we may assume B2 = 1/2. There are 220 such Brauer classes 
in Br(K)2 (cf. Theorem 2.3(2)). The conic bundle is uniquely determined by these data, 
it is P(U) → K where U is the unique α-twisted stable sheaf with vB(U) = (2, 2B, 1) by 
Proposition 2.7.

In [21, Corollary 9.4], the index 2 sublattice Γα of the transcendental lattice TK of K
is shown to be the transcendental lattice of a K3 surface and it is in fact TS, with S as 
above, cf. Proposition 3.5. Alternatively, from the description of the K3 surface K as a 
moduli space of certain sheaves on S ([37, Thm. 3.4.8], [1]) one can also deduce that TS

is isomorphic to an index two sublattice of TK . In particular, S determines K uniquely, 
but for a general quartic K3 surface K there are 220 choices for S.

The BOSS bundles are degree 12 threefolds Z ⊂ P5 that are conic bundles over 
quartic surfaces in P3. These conic bundles were discovered in [8] and further studied 
in [37], which we follow (see also [1], [46], [18], [53]). We will explicitly construct an 
embedding Z ↪→ S[2] for a K3 surface S degree 16 in P4. We show in Proposition 5.3
that this implies that the BOSS P1-fibrations are isomorphic to exceptional divisors in 
hyper-Kähler fourfolds.
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5.3.1. An incidence correspondence
Let V6 be a six dimensional complex vector space with a symplectic form. There is 

natural decomposition ∧3V6 = V14 ⊕ V6 as representations of the symplectic group of 
V6. Let Σ = LG(3, V6) be the Grassmannian of Lagrangian (i.e. maximally isotropic) 
subspaces in V6. There is a (Plücker) embedding Σ ↪→ PV14. For p ∈ PV6 we denote 
by Qp ⊂ Σ the subvariety of Lagrangian subspaces containing p. Then Qp is isomorphic 
to a smooth 3-dimensional quadric and it is cut out in Σ by a four dimensional linear 
subspace P4

p ⊂ PV14, so Qp = P4
p ∩ Σ ([37, §2.4]).

We consider the incidence variety (see [37, p. 394])

J := {(p, ω) ∈ PV6 × PV ∗
14 : P4

p ⊂ P12
ω } ,

here P12
ω ⊂ PV14 is the hyperplane defined by ω ∈ V ∗

14. The image of J under the 
projection π to PV ∗

14 is a quartic hypersurface F = π(J) ⊂ PV ∗
14. The singular locus Ω

of F is 9-dimensional variety and the fiber of π over a point in F − Ω is a smooth conic 
([37, Prop. 2.5.5]).

5.3.2. The K3 surfaces S and K
Let S be a K3 surface of degree 16 with Picard rank one. Mukai proved that there 

is, up to projective equivalence, a unique P9 = P9
S ⊂ PV14 such that S = P9

S ∩ Σ. The 
Mukai dual of S is the quartic K3 surface K = P3

K ∩ F , where P3
K ⊂ PV ∗

14 is the dual 
of P9

S .
The BOSS conic bundle over K defined by S is the restriction of π to Z := π−1(K) →

K.

π : J −→ π(J) = F ⊂ PV ∗
14

∪ ∪
Z −→ K = P3

K ∩ F .

For (p, ω) ∈ Z ⊂ J , we have ω ∈ K ⊂ P3
K and P4

p ⊂ P12
ω . Dualizing {ω} ⊂ P3

K we get 
P9

S ⊂ P12
ω and thus P4

p ∩ P9
S ⊂ P12

ω . In particular dimP4
p ∩ P9

S ≥ 1.
There is an embedding Z ⊂ PV6 given by Z = {p ∈ PV6 : dim(P4

p ∩ P9
S) ≥ 1 } ([1, 

Remark 3]) and the ideal of the image, a threefold of degree 12, is generated by ten 
quintics. This is the classical description of the BOSS bundle ([8]).

5.3.3. The BOSS bundle as divisor on a Hilbert square
Let (p, ω) ∈ Z ⊂ J , so dimP4

p∩P9
S ≥ 1. As S = Σ ∩P9

S and Σ ∩P4
p = Qp we see that

S ∩ (P4
p ∩ P9

S) = Qp ∩ (P4
p ∩ P9

S) .

If dimP4
p∩P9

S > 1 then, since Qp is a quadric threefold in P4
p, the surface S will contain 

a conic which contradicts our assumption that Pic(S) has rank one. Hence P4
p ∩ P9

S is 
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a line. This line is not contained in S since Pic(S) has rank one. Thus the line P4
p ∩P9

S

intersects Qp and hence S in a zero cycle of degree two. This gives a map

ψ : Z −→ S[2], (p, ω) �−→ S ∩ P4
p ∩ P9

S .

This map is an embedding and there is a BN contraction on S[2] which induces π : Z →
K.

Proposition 5.3. A general point in the Heegner divisor D(1)
16,16,β is given by (S[2], K16)

where (S, h) is a general K3 surface of degree 16, K16 = 〈3H − 8ξ, H − 3ξ〉 with H ∈
Pic(S[2]) the divisor class defined by h and 2ξ the class of the divisor parametrizing 
non-reduced subschemes.

The map ψ : Z → S[2] is an embedding and its image is the exceptional divisor E of the 
corresponding BN contraction. The P1-fibration Z → K is over the Mukai dual quartic 
K3 surface (K, h) of S. The Brauer class of the BOSS bundle has (unique) invariant 
Bh = 1/2.

Proof. As in [15, Example 5.3] we compute the nef cone of S[2]. The Picard group of S[2]

is generated by H, ξ, and H2 = 16, Hξ = 0 and ξ2 = −2. Since the Pell-type equation 
a2 − 32b2 = 5 has no solutions mod 5, hence has no solutions at all, the nef cone and 
the movable cone coincide and thus S[2] has a unique birational hyper-Kähler model (cf. 
[15, §5]) and in particular it does not admit any flops.

The movable cone has extremal rays H and H−8(b/a)ξ where (a, b) is the solution of 
a2 − 8b2 = 1, with a, b > 0 and a minimal. This minimal solution is (a, b) = (3, 1), so the 
nef cone has extremal rays H and 3H−8ξ. The (−2)-classes perpendicular to these rays 
are ξ and H−3ξ. Notice that indeed (H−3ξ)(3H−8ξ) = 3h2 +24ξ2 = 3 ·16 −24 ·2 = 0
and (H − 3ξ)2 = 16 − 9 · 2 = −2.

In particular, the divisor with class H − 3ξ is contracted by the big and nef class 
H16 = 3H − 8ξ. Notice that H2

16 = 9 · 16 − 64 · 2 = 16(9 − 8) = 16, as we know should 
be the case for (S[2], H16) to be in D(1)

16,16,β .
If ψ is not injective, there are distinct p, q ∈ PV6 such that the lines lp := P4

p∩P9
S and 

lq := P4
q ∩ P9

S are the same. Hence Qp ∩ Qq is not empty. As the quadrics Qp, Qq ⊂ Σ
are either disjoint or intersect along a line, they must then intersect along a line l. As l
contains the degree two 0-cycle cut out by lp on S, we have l = lp. But l ⊂ Qp ∩Qq ⊂ Σ
hence l ⊂ S, which again contradicts that the rank of Pic(S) is one. Finally, ψ is an 
embedding because the map PV6 � p → P4

p ∈ G(5, 14) is an embedding.
To prove that the P1-bundle Z ⊂ S[2] can be contracted we use [61, Prop. 3.24], which 

asserts that h0(S[2], Z) = 1 and Z2 < 0 for the BB-form. From Theorem 3.1 we then 
deduce that Z can be contracted after a series of flops. But we already observed that 
S[2] does not admit flops and hence Z can be contracted, so its class is on an extremal 
ray.

The extremal ray defined by ξ defines the HC contraction PTS → S and since Z is 
contracted to K, a K3 of degree four, it must define the other extremal ray. From [8] we 
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know that K3
Z = 12. Hence, as in the proof of Proposition 4.1, Z2 = −2, so Z defines 

a BN contraction and Z has class H − 3ξ ∈ Pic(S[2]). From Table 1 it follows that the 
period point lies in D(1)

16,16,β and the B-field representative for β ∈ Br(T )2 given there is 
also the representative for α ∈ Br(K)2 by Theorem 4.2. �
5.4. The Heegner divisor D(2)

6,6 and nodal cubic fourfolds

For 2d = 6, a general point of the Heegner divisor D(2)
2d,2d is isomorphic to S[2] where 

(S, h) is a general K3 surface of degree 6. These K3 surfaces and their Hilbert squares 
are related to nodal cubic fourfolds and their Fano varieties cf. [25, 4.2, Lemma 6.3.1], 
[15, Example 6.4], [22, 4.3].

Such a Hilbert square admits two divisorial contractions, one is HC and the other is 
BN. From Corollary 4.3 the BN divisor is the projectivization of the rank two, stable, 
Mukai bundle V with v(V) = s = (2, h, 2) and s2 = −2 (see Table 1). In particular, the 
associated Brauer class is trivial.

The K3 surface S ⊂ P4 is the complete intersection of a smooth quadric and a 
cubic hypersurface. Taking this quadric to be a hyperplane section of the Grassmannian 
Gr(2, 4) ⊂ P5, in [22, Lemma 4.5] it is shown that the Mukai bundle V can be chosen 
to be the restriction of the dual of the universal bundle on Gr(2, 4) to S.

5.5. The Heegner divisor D(2)
22,22 and Debarre-Voisin fourfolds

Let (K, h) be a K3 surface of degree 22 and denote by h, 2ξ ∈ Pic(K [2]) the classes 
corresponding to h and the class of the divisor parametrizing non-reduced subschemes 
respectively. In [17], Debarre and Voisin show that the general hyper-Kähler fourfold 
with period in P(2)

22 is the zero locus of a section of ∧3E6, where E6 is the tautological 
rank 6 vector bundle on the Grassmannian Gr(6, 10). Moreover, these varieties are shown 
to be deformations of (K [2], H), where

H = 10h − 33ξ, so H2 = 102 · 22 + 332 · (−2) = 22(100 − 99) = 22 .

Note that HD ≡ 0 mod 2 for all D ∈ H2(K [2], Z), hence the divisibility γ of H is indeed 
2.

In [17, Lemma 3.6] it is shown that φH is birationally a contraction of a divisor D′ to 
a K3 surface Y 3

σ of degree 22 (cf. [17, Prop. 3.2]). In view of the divisibility of H, Table 1
shows that this contraction gives a point in D(2)

22,22,α.
In [17, Claim, p. 79] it is shown that D′ is not reduced, but has multiplicity two and 

combining with [17, Lemma 3.5] one finds that D′ = 2E and the class of E ∈ H2(S[2], Z)
is

E := 3h− 10ξ, so E2 = −2, HE = 0 .
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By Corollary 4.3 the BN divisor E is the projectivization of the rank two, stable, Mukai 
bundle V with v(V) = s = (2, h, 6) and s2 = −2.

The Hilbert square S[2] does admit flops, in fact it has the −10 class 2h − 7ξ, and the 
moving cone is divided in two chambers. Let S[2] be the flop of S[2] along this −10 class. 
It follows that H induces a BN contraction on S[2]. See also [13] for polarized Hilbert 
squares that are Debarre-Voisin fourfolds.

5.6. The Heegner divisor D(2)
38,38 and Iliev-Ranestad fourfolds

The general hyper-Kähler fourfold with period in P(2)
38 is a variety of sums of powers 

V SP (F, 10) where F is a cubic threefold in P5 and points of V SP (F, 10) correspond to 
the ways of writing the equation of F as a sum of ten cubes of linear forms ([36] and 
[38]).

In [62, §5] it is shown that for a general F ∈ VV−ap, where VV−ap is the divisor in 
the moduli space of cubic fourfolds consisting of cubics apolar to a Veronese surface, the 
variety V SP (F, 10) is actually singular along a K3 surface S and its desingularization

X = ˜V SP (F, 10) −→ Y = V SP (F, 10)

is a divisorial contraction and the exceptional divisor E is a P1-fibration over S. From our 
results we deduce the following which implies that a general point in D(2)

38,38,α corresponds, 
birationally, to the contraction above.

Proposition 5.4. For a general F ∈ VV−ap, the desingularization X → Y is a BN con-
traction and X = ˜V SP (F, 10) is birational to S[2] where S = Sing(Y ) is a K3 surface 
of degree 38. The Brauer class of the conic bundle E → S is trivial and E is isomorphic 
to the projectivization of the Mukai bundle on S with Mukai vector s = (2, h, 10) where 
h2 = 38.

The Picard lattice of S[2], which is isomorphic to Zh ⊕ Zξ =< 38 > ⊕ < −2 >, 
contains the −10 class 2h − 9δ of divisibility 2 that defines a Mukai flop from S[2] to 
S[2]. On S[2] the BN class E = 39h − 170ξ is contracted by the morphism associated to 
the divisor H = 170h − 741δ of degree 38.

Proof. Since the contraction is given by a movable divisor H with divisibility γ = 2 we 
conclude from Table 1, where all the possible divisorial contractions are listed, that we 
are in the case of D(2)

8k+6,8k+6 and k = 4. In Pic(S[2]) we must have H = ah + bξ, with h
the class induced by the polarization of degree 38 on S, and 38 = H2 = 38a2−2b2 and a
should be even (since γ = 2) whereas the exceptional divisor E should be perpendicular 
to H, with E2 = −2 and moreover the divisibility of E is one, so E = ch38 + dδ and 
c should be odd. Thus 38c2 − 2d2 = −2 and (c, d) is a solution of the Pell equation 
d2 − 19c2 = 1 whose solutions are generated by (c, d) = (39, 170). Then HE = 0 (with 
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H · h38 > 0) gives (a, b) = (170, ±19 · 39), so up to isometry, these are the classes of H
and E. �
5.7. Further examples

Recently Benedetti and Song described the contractions of the HK 4folds in D(1)
24,24,β. 

These are Debarre-Voisin fourfolds, denoted by Xσ
6 in their paper. They show in [5, 

Theorem 4.19] that they are twisted moduli spaces Mv(T, B) for a degree six K3 surface 
T with non-trivial B-field satisfying B2 = Bh = 1/2 [5, Lemma 4.15] and Mukai vector 
v = (2, 2B, 0). Moreover, they show that these fourfolds have a divisorial contraction [5, 
Proposition 4.7], recovering our results in a special case.

6. The Heegner divisor D(1)
4,16, EPW sextics and a special EPW sextic

6.1. The hyper-Kähler fourfolds in D(1)
4,16,α

Let (X, H) be a general hyper-Kähler fourfold of K3[2]-type with an ample divisor 
class H such that q(H) = 4. Then

ϕH : X −→ Y ⊂ P9

is a birational morphism as can be checked in the case where X = S
[2]
4 , where (S, h) is 

a degree 4 polarized K3 surface, and H is defined by h. Indeed, the map given by H
factorizes through the HC contraction S[2] → Sym2(S) and an embedding Sym2(S) ⊂
Sym2(P) ⊂ P9, so it is birational.

Now we assume that X has Picard rank two, that H is only big and nef and moreover 
that it induces a BN contraction. According to Table 1, the period point of (X, H) then 
lies in D(1)

4,16,α. Let the contraction be given by X ⊃ E → K ⊂ Y ⊂ P9, then K is a K3 
surface of degree 4.

The Brauer class of E in Br(K)2 is non-trivial for the general (X, H) (see Proposi-
tion 3.6).

We show in §6.2 that these hyper-Kähler fourfolds are also double EPW sextics. The 
natural involution on the fourfold X permutes two conic bundles, one of which is E, 
the other will be denoted by E′. Both conic bundles turn out to be birational to the 
complete intersection of the EPW sextic (in a P5) with a quadric, but this intersection 
is not a normal variety.

Since the general case remains somewhat mysterious, we study in §6.3 a codimension 
one subvariety of the divisor D(1)

4,16,α which parametrizes Hilbert squares of degree four 
K3 surfaces with a degree four rational curve. In that case E is a trivial conic bundle 
but certain aspects of the geometry are still interesting. Finally, in §6.4 we consider the 
concrete case of a certain rational quartic curve on the quartic Fermat surface in P3. 
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It turns out that then the singular surface of the EPW sextic (in P5, see [61]) has 60 
isolated singular points, which makes this EPW sextic rather special.

6.2. The divisor D(1)
4,16,α and double EPW sextics

In this section we provide some information on the −2-divisor E ⊂ X which is a conic 
bundle over a quartic surface K. Since the period point of X lies in D(1)

4,16,α, the Picard 
group is, with now Λ = H2(X, Z):

Pic(X) = ZH ⊕ ZE = < 4 > ⊕ < −2 > , γ := divΛ(H) = 1,

det(Pic(X)⊥Λ) = 16 .

The nef cone of X has extremal rays spanned by H and H ′ := 3H − 4E:

Nef(X) = R≥0H + R≥0H
′, H ′ := 3H − 4E, H2 = (H ′)2 = 4 ,

see [2, §13].
The perpendiculars of the extremal rays are

H⊥ = ZE, (H ′)⊥ = ZE′, E′ := 2H − 3E , E2 = (E′)2 = −2 .

Hence φH , φH′ contracts E, E′ respectively.
Notice that X has the ample class L := H − E of square two and thus φL : X → P5

exhibits X as a double EPW sextic. The covering involution ι induces an involution ι∗

on Pic(X) which is minus the reflection in the orthogonal complement of L.

φL : X −→ Y := X/ι ⊂ P5, L := H −E .

The involution ι∗ interchanges the two extremal rays, and also E, E′ are exchanged. 
Thus these two divisors, which are conic bundles over quartic surfaces, are mapped to 
the same threefold F = φL(E) = φL(2H − 3E) ⊂ P5, of degree 12 by Proposition 4.1.

Notice that the sum of the classes of the two −2-divisors is E + E′ = 2L. Since 
φL(X) = Y , an EPW sextic, Y is not contained in any quadric and thus the pull-back 
map φ∗

L : H0(OP5(2)) → H0(2L) is injective and also surjective for dimension reasons. 
Thus there is a quadric Q ⊂ P5 which cuts out the image F of the −2-divisors in Y . As 
this intersection is a threefold of degree 2 · 6 = 12 and also F has degree 12 we conclude 
that F = Q ∩Y . By adjunction we compute the canonical sheaf ωF = OF (2). Now since 
φL|E does not contract curves and the canonical divisor KE = E|E 
= 2L|E we conclude 
that the image F of E is not normal.

6.3. Example: Hilbert squares of certain degree four K3’s

We construct a more explicit example of fourfolds, actually Hilbert squares, in D(1)
4,16,α. 

Let (S, h) be a degree 4 K3 surface with a (−2)-curve n so that hn = 4. Notice that the 
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quartic curve n ⊂ P3 lies on a quadric surface and that the residual curve n′ is again a 
rational quartic with class n′ := 2h − n. The linear system h12 := h + 2n has degree

h2
12 = (h + 2n)2 = h2 + 4hn + 4n2 = 4 + 16 − 8 = 12, h12n = 4 − 4 = 0 .

So in general φh12 : S → S12 ⊂ P7 contracts the rational curve n and S12 is a nodal 
degree 12 K3 surface.

Let H12 be the divisor class on the Hilbert square S[2] defined by h12 on S and let

H := H12 − 2ξ, H2 = 12 − 8 = 4 .

The divisor n on S defines the divisor E := n + S which is birational to P1 × S. The 
class of E is [E] = n = (n, 0) ∈ H2(S[2], Z) = H2(S, Z) ⊕ Zξ, where 2ξ is the divisor on 
S[2] parametrizing the non-reduced subschemes. Using the BB-form we have:

N := [E] = [n + S] , HN = 0, N2 = −2 .

Consider the subgroup

K := ZH ⊕ ZN (⊂ H2(S[2],Z)) ,

with the BB-form on K we find the lattice K ∼=< 4 > ⊕ < −2 >.

Lemma 6.1. The pairs (S[2], K) are parametrized by a codimension 1 subvariety of the 
irreducible component D(1)

4,16 of the Heegner divisor D(1)
4,16. The line bundle L on S[2] with 

L2 = 2 from §6.2 is given by

L = H − E = H10 − 2ξ ∈ Pic(S[2]) ,

where H10 is induced by h10 := h + n ∈ Pic(S).

Proof. We may assume that h, n ∈ H2(S, Z) = U3 ⊕ E8(−1)2 are in the first two 
components U2 and are given by

h = (1, 2)1, n = (0, 4)1 + (1,−1)2 (⊂ U3 ⊕E8(1)2) .

Then h12 = h +2n = (1, 10)1+(2, −2)2 and in Λ = H2(S, Z) ⊕Zξ we have K =< H, N >

with

H = H12 − 2ξ = (1, 10)1 + 2(1,−1)2 − 2ξ, N = (0, 4)1 + (1,−1)2 .

Since H2 = 4 and the divisibility of N in Λ is one (since N · (0, 1)2 = 1) we see from 
Table 1 that (S[2], K) lies in D(1)

4,16.
Recall that L = H −E = H12 −N − 2ξ in Pic(S[2]). Since H12 is induced by h +2n ∈

Pic(S), H12 −N is induced by h + n. �
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6.4. The Fermat quartic and a special EPW sextic

We consider the following smooth rational quartic curve n in P3:

n := { (s4 : st3 : s3t : t4) ∈ P3 : (s : t) ∈ P1 } .

This curve lies in the smooth quartic surface

S : f := z4
1 + z4

2 − z0z3(z2
0 + z2

3) = 0 .

Notice that S is (projectively) isomorphic to the quartic Fermat surface (substitute 
z0 := z0 + z3, z3 := z0 − z3).

The intersection of S with the quadric

Q : q := z0z3 − z1z2 = 0

consists of n and another smooth rational degree four curve n′ obtained by permuting 
the second and third coordinates (z1 ↔ z2) on n:

S4 ·Q = n + n′ , n′ := { (s4 : s3t : st3 : t4) ∈ P3 } .

Thus 2h4 = n +n′ and h10 = h +n = 3h −n′. So we see that h10 is given by the restriction 
to S of the cubics on P3 containing n′. Notice that these cubics are independent of S
and depend only on the choice of n′.

The ideal of n′ is generated by the quadratic polynomial q and three cubics:

f1 := −z2
0z2 + z3

1 , f2 := z0z
2
2 − z2

1z3, f3 := −z1z
2
3 + z3

2 .

Thus the map φh10 is defined as follows:

φh10 : S −→ S10 ⊂ P6, φh10 = (z0q : z1q : z2q : z3q : f1 : f2 : f3) .

Notice that φh10(n) is the conic Cn ⊂ S10 defined by y0 = . . . = y3 = y4y6 + y2
5 = 0.

6.4.1. The image Z of P3 in P6

The coordinate functions of the map φh10 do not depend on the quartic surface S4
but only on the quartic curve n′. The image of P3 under φh10 is (according to Magma) 
a smooth threefold Z of degree 5 in P6 which is the intersection of five quadrics defined 
by the polynomials:

F0 := −y0y5 + y2
1 − y2y4, F1 := y0y2 − y1y5 − y3y4, F2 := −y1y2 + y4y6 + y2

5 ,

F3 := −y0y6 + y1y3 + y2y5, F4 := −y1y6 + y2
2 + y3y5 .
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The birational inverse of φh10 : P3 → Z is the projection of Z given by

(y0 : . . . : y6) �→ (y0 : . . . : y3),

its base locus in Z is the conic CN .

6.4.2. The Del Pezzo quintic threefold
We recall the definition from [56] (cf. [47, Section 5.1]) of a quintic Fano threefold 

ZMU of index 2 in P6, known as the Del Pezzo quintic threefold, which is also a linear 
section of Gr(2, 5) ⊂ P9. We show that it is isomorphic to Z. (More intrinsically this 
could be done by studying the projection of ZMU from a conic to P3, the inverse map 
is then given by the cubics in the ideal of a degree four rational curve.)

The variety ZMU is defined by the following 5 quadratic polynomials ([56, p. 505]):

A0 := h0h4 − 4h1h3 + 3h2
2, A1 := h0h5 − 3h1h4 + 2h2h3, A2 := h0h6 − 9h2h4 + 8h2

3,

A3 := h1h6 − 3h2h5 + 2h3h4, A4 := h2h6 − 4h3h5 + 3h2
4 .

To verify that Z ∼= ZMU it suffices to verify that for j = 0, . . . , 4 one has:

Fj(18h1,−3r3h2,−3r4h4,−18r2h5, r
2h0, 12rh3, 18h6) = 324Aj(h0, . . . , h6) ,

(r5 = 18) .

6.4.3. The image S10 of S
The K3 surface S10 = φh10(S) ⊂ P6 is the intersection of Z = φh10(P3) with a sixth 

quadric. In the case we consider here, one can take the quadric defined by

F5 := y2
0 + y1y4 + y2y6 + y2

3 .

6.4.4. The map from S[2] to P5

From now on we identify the K3 surfaces S, S10. Recall the rational map

φL : S[2] −→ Y (⊂ P5)

given by the divisor class L = H10 − 2ξ, where H10 corresponds to h10 ∈ Pic(S), so 
H2

10 = 10, and 2ξ is the divisor parametrizing non-reduced subschemes. It is defined by 
H−2ξ is given by associating to p +q ∈ S[2] the hyperplane in the P5 of quadrics defining 
S which vanish on the line spanned by p and q. This map can be given explicitly as in 
the proof of Proposition 2.2 of [19]: if p, q ∈ S and F is a quadratic polynomial vanishing 
on S, then F (λp + μq) = 2λμB(p, q) for a bilinear form B. The bilinear forms defined 
by the six defining quadrics are the coordinate functions of a rational map S × S → P5

which factors over S[2] to give the map defined by L.
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6.4.5. The EPW sextic Y in P5

The map φL still defines a (rational) 2:1 map onto an EPW sextic in P5. We checked 
this explicitly by using the bilinear forms Bj associated to the following six quadratic 
forms Fj (notice the non-standard ordering):

F5, F0, F1, F2, F4, F3 .

We used Magma for the computations below. The image of S[2] under φL is indeed 
a sextic fourfold Y whose singular locus has dimension 2 and degree 40, as expected 
for an EPW sextic. The explicit equation has 53 terms (the coordinates on P5 are 
(x0 : . . . : x5)):

−4x3
0x1x3x4 + x3

0x1x
2
5 + x3

0x
2
2x4 + x3

0x2x3x5 + x3
0x

3
3 + 4x2

0x
3
1x4 − 3x2

0x
2
1x2x5

− 3x2
0x

2
1x

2
3 + 3x2

0x1x
2
2x3 + 4x2

0x1x
3
4 − x2

0x
4
2 − 3x2

0x2x
2
4x5 − 3x2

0x
2
3x

2
4 + 3x2

0x3x4x
2
5

−x2
0x

4
5 + 3x0x

4
1x3 − 2x0x

3
1x

2
2 + 6x0x

2
1x3x

2
4 − 6x0x

2
1x4x

2
5 − 6x0x1x

2
2x

2
4

− 12x0x1x2x3x4x5 + 8x0x1x2x
3
5 − 4x0x1x

3
3x4 + 3x0x1x

2
3x

2
5 + 8x0x

3
2x4x5

+ 3x0x
2
2x

2
3x4 + x0x2x

3
3x5 + 3x0x3x

4
4 − 2x0x

3
4x

2
5 − x6

1 − 3x4
1x

2
4 + 4x3

1x2x4x5
+ 4x3

1x
2
3x4 − 2x3

1x3x
2
5 − 6x2

1x
2
2x3x4 − 3x2

1x2x
2
3x5 − 3x2

1x
4
4 + 4x1x

4
2x4 + 8x1x

3
2x3x5

+x1x
2
2x

3
3 + 4x1x2x

3
4x5 + 4x1x

2
3x

3
4 − 6x1x3x

2
4x

2
5 + 4x1x4x

4
5 − 4x5

2x5 − x4
2x

2
3

− 2x2
2x3x

3
4 − 3x2x

2
3x

2
4x5 + 8x2x3x4x

3
5 − 4x2x

5
5 + x3

3x4x
2
5 − x2

3x
4
5 − x6

4 .

6.4.6. The trivial conic bundle
The divisor E = n +S ⊂ S[2] is the limit of a conic bundle in the general X ∈ D(1)

4,16,α. 
The image F = φL(E) is the image of Cn×S10 ⊂ (P6)2, notice that Cn×S10 ⊂ Cn×Z. 
We first computed the image of Cn × Z under the map given by the bilinear forms 
Bj(p, q), it is the quadric in P5 defined by:

Qn : qN = 0, with qn := x1x4 − x2x5 .

Thus we have an interpretation of the quadric that cuts out F = φL(E) in terms of the 
geometry of S10. The trivial conic bundle n × S ⊂ S2 maps first of all to a subvariety 
of S[2] that is birationally isomorphic to the trivial bundle P1-bundle over S, and the 
image of this subvariety under φL is F = Qn ∩ Y .

6.4.7. The singular surface of Y
The singular surface of Y is rather remarkable in that its singular locus consists of 

60 points, which we call the very singular points of Y . These points are rational over 
the splitting field L of the polynomial x4 − 2. Notice that the roots of this polynomial 
are αk := ik 4

√
2, k = 0, 1, 2, 3, and thus i = α1/α0 ∈ L, with i2 = −1, and also 

ζ8 := (1 + i)/
√

2 ∈ L, with ζ2
8 = i. Thus L contains the field Q(ζ8) of eight-roots of 

unity. Only two of the singular points are defined over Q, there are 11 other Galois 
orbits, one of length 2, six of length 4 and four of length 8.
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6.4.8. The very singular points
The lines on the Del Pezzo quintic threefold Z in P6 are parametrized by P2. The 

general line can be found as the image of a secant line to the rational curve n′ ⊂ P3

under the map φ. Since Z is defined by the last 5 quadrics of the six in the list given 
in Section 6.4.5 that define the K3 surface S ⊂ P6, the first quadric will intersect a line 
on Z, not contained in S10, in two points. This gives a rational map P2 → S[2]. Under 
the map S[2] → Y the image of this P2 is contracted to (1 : 0 : . . . : 0) ∈ Y , which is in 
fact one of the sixty very singular points of Y . See [59, section 3.2] and [6] for the map 
S[2] → Y .

Let C ⊂ S10 be a smooth conic and let PC ⊂ P6 be the plane it spans. Any quadric 
containing S10 either contains PC or intersects PC in C. If the quadric F = 0 contains 
PC , then for any two points p, q ∈ C one has B(p, q) = 0 where B is the associated 
bilinear form. Thus C [2] ∼= P2 ⊂ S[2] is contracted under φL : S[2] → Y and the image 
is a very singular point of Y (cf. [60, Section 4] but notice that S10 does contain lines, 
in fact there are 20 lines on S10, for example (is : it : ζ8t : s : ζ3

8 t : 0 : t) parametrizes a 
line on S10). Similarly, in case the conic C = l ∪m is reducible, the image of l×m ⊂ S2

in S[2] is contracted by φL.
In particular the plane y0 = . . . = y3 = 0 spanned by the conic Cn ⊂ S10 lies in the 

quadric Fi = 0 except if i = 2 and thus Sym2(Cn) is contracted to the very singular 
point (0 : 0 : 0 : 1 : 0 : 0). The other conics that are contracted are not defined over the 
rationals (there are 59 conics on S10, 34 of them are reducible).
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