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13 Abstract

14

15 Clustering approaches are pivotal to handle the many sequence variants obtained in DNA 

16 metabarcoding datasets, therefore they have become a key step of metabarcoding analysis 

17 pipelines. Clustering often relies on a sequence similarity threshold to gather sequences in 

18 Molecular Operational Taxonomic Units (MOTUs) that ideally each represent a homogeneous 

19 taxonomic entity, e.g. a species or a genus. However, the choice of the clustering threshold is 

20 rarely justified, and its impact on MOTU over-splitting or over-merging even less tested. 

21 Here, we evaluated clustering threshold values for several metabarcoding markers under 

22 different criteria: limitation of MOTU over-merging, limitation of MOTU over-splitting, and 

23 trade-off between over-merging and over-splitting. We extracted sequences from a public 

24 database for eight markers, ranging from generalist markers targeting Bacteria or Eukaryota, 

25 to more specific markers targeting a class or a subclass (e.g. Insecta, Oligochaeta). Based on 

26 the distributions of pairwise sequence similarities within species and within genera and on the 

27 rates of over-splitting and over-merging across different clustering thresholds, we were able 

28 to propose threshold values minimizing the risk of over-splitting, that of over-merging, or 

29 offering a trade-off between the two risks. For generalist markers, high similarity thresholds 

30 (0.96-0.99) are generally appropriate, while more specific markers require lower values (0.85-

31 0.96). These results do not support the use of a fixed clustering threshold (e.g. 0.97). Instead, 

32 we advocate a careful examination of the most appropriate threshold based on the research 

33 objectives, the potential costs of over-splitting and over-merging, and the features of the 

34 studied markers.

35

36
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41 Introduction

42

43 DNA metabarcoding studies are typically based on a succession of experimental steps 

44 governed by important methodological choices (Zinger et al. 2019). These include a) the 

45 definition of sampling design and selection of sampling sites (Dickie et al. 2018), b) the 

46 approach used for the preservation of the starting material (Tatangelo et al. 2014, Guerrieri et 

47 al. 2021), c) the protocol used for DNA extraction (Taberlet et al. 2012, Eichmiller et al. 

48 2016, Zinger et al. 2016, Lear et al. 2018, Capo et al. 2021), d) the selection of appropriate 

49 primers to amplify a taxonomically-informative genomic region (Elbrecht et al. 2016, Fahner 

50 et al. 2016, Ficetola et al. 2021), e) the strategy adopted for DNA amplification and high-

51 throughput sequencing of amplicons (Nichols et al. 2018, Taberlet et al. 2018, Bohmann et al. 

52 2022), f) the pipeline selected for bioinformatics analyses (Boyer et al. 2016, Calderón-Sanou 

53 et al. 2020, Capo et al. 2021, Couton et al. 2021, Macher et al. 2021, Mächler et al. 2021), and 

54 g) the statistical approach used to translate metabarcoding data into ecological information 

55 (Paliy and Shankar 2016, Chen and Ficetola 2020). Each of these methodological choices can 

56 heavily influence the reliability and interpretation of results (Alberdi et al. 2018, Zinger et al. 

57 2019), and there is thus a critical need for the development, proper assessment and 

58 optimization of methods specially dedicated to DNA metabarcoding.

59 When analyzing metabarcoding data, bioinformatic pipelines generally produce a list 

60 of detected sequences, that can be assigned to a given taxon with a more or less precise 

61 taxonomic resolution. However, the number of unique sequences obtained after bioinformatic 

62 treatment is generally much higher than the number of taxa actually present in the sample 

63 (Calderón-Sanou et al. 2020, Mächler et al. 2021). This stems from multiple reasons including 

64 genuine intraspecific diversity of the selected markers and errors occurring during the 
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65 amplification or sequencing steps. Consequently, sequence clustering approaches are often 

66 used to collapse very similar sequences into one single Molecular Operational Taxonomic 

67 Unit (MOTU), which does not necessarily correspond to a species in the traditional sense 

68 (Kopylova et al. 2016, Froslev et al. 2017, Bhat et al. 2019, Antich et al. 2021). Sequence 

69 clustering can be performed using similarity thresholds, Bayesian approaches, or through 

70 single-linkage (Antich et al. 2021). Approaches based on similarity thresholds can have 

71 excellent performance and they display several advantages such as flexibility and easy 

72 implementation (Kopylova et al. 2016, Wei et al. 2021). However, two key parameters have 

73 to be determined a priori when performing clustering based on sequence similarity. The first 

74 one is the sequence to be selected as representative of the cluster. In the case of 

75 metabarcoding studies, keeping the most abundant sequence of the cluster as the cluster 

76 representative is a convenient way of merging sequence variants generated during the PCR or 

77 sequencing steps with the original sequence they derive from (Mercier et al. 2013). The 

78 second parameter is the similarity threshold (clustering threshold) used to build MOTUS 

79 (Clare et al. 2016, Calderón-Sanou et al. 2020, Wei et al. 2021). Choosing this threshold is 

80 delicate without prior knowledge of the maker and its intrinsic level of diversity. A too low 

81 threshold can collapse different taxa into the same MOTU (over-merging), while a too high 

82 threshold can create too many MOTUs (over-splitting) compared to the actual diversity levels 

83 (Clare et al. 2016, Roy et al. 2019, Schloss 2021).

84 Some works suggest that the ecological interpretation of metabarcoding data can be 

85 relatively robust to the threshold selected for sequence clustering. For instance, Botnen et al. 

86 (2018) used thresholds ranging from 0.87 to 0.99 of sequence similarity to analyze multiple 

87 microbial communities, and they obtained community structures highly coherent across 

88 thresholds. Nevertheless, levels of alpha diversity can be heavily impacted by the threshold 
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89 selection. Ideally, the threshold used for clustering would depend on a trade-off between 

90 MOTU over-splitting and MOTU over-merging. A growing number of markers are currently 

91 being used in metabarcoding studies (Taberlet et al. 2018), with some allowing broad-scale 

92 biodiversity assessment but having limited taxonomic resolution (e.g. 18S rDNA primers 

93 amplifying all eukaryotes; Guardiola et al. 2015) and others being highly specific to one 

94 single class or even family (e.g. Baamrane et al. 2012, Ficetola et al. 2021). Biodiversity 

95 surveys generally aim to generate a set of MOTUs that are each associated with a unique 

96 taxon, and with all taxa situated at the same level in the taxonomic tree, to facilitate 

97 comparisons. In these conditions, optimal clustering thresholds probably strongly differ across 

98 markers. One can for example expect high similarity thresholds for highly conserved markers, 

99 and lower clustering thresholds for markers showing high intraspecific variability (Kunin et 

100 al. 2010, Brown et al. 2015). However, there is limited quantitative assessment of how 

101 optimal clustering thresholds vary across markers (but see Alberdi et al. 2018).

102 In this study, we analyzed sequences from a public database (EMBL) to identify 

103 clustering thresholds for different markers and under different criteria. We considered eight 

104 metabarcoding markers (Table 1), ranging from generalist ones (e.g. a 16S rDNA-based 

105 marker targeting Bacteria and a 18S rDNA-based marker targeting Eukaryota) to more 

106 specific markers (e.g. markers specific of earthworms, insects or springtails). We evaluated 

107 how clustering thresholds can change for each taxonomic group, depending on the criterion 

108 adopted to set the threshold. We used two alternative strategies to identify thresholds, each 

109 time with different objectives in mind. First, following a procedure similar to the one adopted 

110 in barcoding studies (Meyer and Paulay 2005), we compared the distribution probabilities of 

111 sequence similarities among different individuals of the same species and among different 

112 species of the same genus to identify thresholds: i) minimizing the risk that different 
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113 sequences of the same species are split in different MOTUs (i.e. risk of over-splitting); ii) 

114 minimizing the risk that distinct but related species are clustered in the same MOTU (i.e. risk 

115 of over-merging); iii) balancing the risk of over-splitting and over-merging (Figure 1A). 

116 Second, we calculated the over-splitting and over-merging rates of the studied markers for a 

117 range of clustering thresholds, to identify values that minimize the two error rates (Figure 

118 1B). We expect that, if researchers want to minimize over-splitting, they should select lower 

119 clustering thresholds than if they want to minimize over-merging. Furthermore, we expect 

120 higher clustering threshold values for generalist markers compared to markers targeting one 

121 class or more restricted taxonomic groups, because of the lower taxonomic resolution and 

122 slower evolutionary rate of the former.

123

124 Methods

125

126 Markers examined and construction of sequence datasets

127 We focused on a set of eight DNA metabarcoding markers (Bact02, Euka02, Fung02, Sper01, 

128 Arth02, Coll01, Inse01, Olig01) targeting different taxonomic groups (Table 1). Four of these 

129 markers can be considered as generalist, i.e. targeting entire superkingdoms or kingdoms: 

130 Bact02 targeting Bacteria; Euka02 targeting Eukaryota; Fung02 targeting Fungi; Sper01 

131 targeting Spermatophyta (vascular plants). One marker was intermediate (Arth02; targeting 

132 arthropods, i.e. the most species-rich phylum on Earth). Finally, three were more specific, i.e. 

133 targeting groups from classes to subclasses: Coll01 targeting Collembola (springtails); Inse01 

134 targeting Insecta; Olig01 targeting Oligochaeta (earthworms).

135 For each of these markers, a sequence database was built from EMBL release 140 as 

136 follows. An in silico PCR was first carried out by running the program ecoPCR (Ficetola et al. 
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137 2010) using the corresponding primers (Table S1). Three mismatches per primer were 

138 allowed (-e option), and the amplified amplicon length without primers was restricted (-l and -

139 L options) to the expected length interval (Table S1). The amplified sequences were further 

140 filtered by keeping only those belonging to the target taxonomic group, showing a taxonomic 

141 assignment (i.e. taxid) at the species and genus levels and having no ambiguous nucleotides. 

142 This allowed assembling a working dataset, from which we extracted two sub-datasets. The 

143 “within-species” dataset was built by keeping only species for which at least two sequences 

144 (identical or not) were available; if >2 sequences were available for a given species, we 

145 randomly selected two sequences for that species. The “within-genus” dataset was built by 

146 keeping only genera for which at least two sequences were available; if >2 sequences were 

147 available for a given genus, we randomly selected two sequences for that genus. For some 

148 markers (Bact02, Euka02, Fung02, Inse01, Sper01), the within-species dataset and sometimes 

149 the within-genus dataset still contained a very large number of sequences (>10,000). To limit 

150 computation time for these markers, we randomly selected a subset of 5000 different taxa, to 

151 reach a final number of sequences equal to 10,000. Table S2 summarizes the number of 

152 sequences in the different datasets.

153

154 Calculation of sequence similarities and probability distributions

155 As a measure of sequence similarity, we computed the pairwise LCS (Longest Common 

156 Subsequence) scores between pairs of sequences in the within-species and within-genus 

157 datasets using the sumatra program (Mercier et al. 2013). Methodological comparisons 

158 showed that this algorithm provides an excellent balance between performance and 

159 computation efficiency (Jackson et al. 2016, Kopylova et al. 2016, Bhat et al. 2019).As 

160 sumatra provides pairwise scores for all possible pairs of sequences, the similarity scores 
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161 resulting from the within-species dataset were filtered in R (R Core Team 2020) to keep only 

162 those representing similarities between sequences of the same species, while the scores 

163 resulting from the within-genus dataset were filtered to keep only those representing 

164 similarities between different species of the same genus. 

165

166 Approaches to identify clustering thresholds on the basis of within-species and within-

167 genus sequence similarities

168 We first examined within-species and within-genus sequence similarities to evaluate four 

169 different strategies and determine the corresponding appropriate clustering threshold (Figure 

170 1A) that: i) avoid over-splitting; ii) avoid over-merging; iii) find a balance between over-

171 splitting and over-merging, with two distinct procedures based on the intersection (iii-a) or on 

172 modes (iii-b) of the density probability distributions. These strategies are analogous to those 

173 adopted in traditional barcoding studies to set the limit between intra-specific and inter-

174 specific diversity (Meyer and Paulay 2005).

175 i) Avoid over-splitting

176 In this case, the aim is to avoid distributing different sequences belonging to the same species 

177 in different clusters (i.e. limiting the probability of generating additional spurious MOTUs). 

178 For this approach, we selected as clustering threshold the 10% quantile of the distribution of 

179 similarities between sequences from the same species (within-species dataset). With this 

180 approach, the sequences belonging to the same species according to EMBL are gathered in 

181 the same cluster in 90% of the cases.

182 ii) Avoid over-merging

183 In this case, the aim is to avoid gathering sequences attributed to different species of the same 

184 genus in the same cluster (i.e. limiting the probability of merging related species in the same 
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185 MOTU). For this approach, we selected as clustering threshold the 90% quantile of the 

186 distribution of similarities between different species belonging to the same genus. With this 

187 approach, the sequences attributed to different species belonging to the same genus are 

188 assigned to different clusters in 90% of the cases.

189 iii) Find a balance between over-splitting and over-merging

190 In this case, the aim was to minimize both over-splitting and over-merging. We considered 

191 two distinct approaches. First, we obtained the probability distribution of within-species and 

192 within-genus sequence pairwise similarities using the density function from R, with biased 

193 cross-validation (bw=“bcv”) as smoothing bandwidth selector and a Gaussian smoothing 

194 kernel (kernel=“gaussian”; Venables and Ripley 2002). Other possible smoothing bandwidth 

195 selectors were tested, but biased cross-validation was the approach best fitting the score 

196 histograms for all markers and all datasets (data not shown). The balance threshold iii-a was 

197 then identified as the intersection between the probability distributions of the within-species 

198 and within-genus similarities. As an alternative approach to balance over-merging and over-

199 splitting (iii-b), we calculated the midpoint between the modes of the within-species and 

200 within-genus probability distributions.

201

202 Rates of over-merging and over-splitting

203 For each marker, over-merging and over-splitting rates were evaluated at different clustering 

204 thresholds using the within-species dataset described in the paragraph “Markers examined and 

205 construction of sequences datasets”. This dataset contains two sequences at random, identical 

206 or not, for a number of species belonging to the taxonomic group of interest. 

207 For each within-species dataset, clustering was performed using the sumaclust 

208 program (Mercier et al. 2013) with the -n option (normalization by alignment length) based 
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209 on the sequence similarities first calculated using the sumatra program (see above; Mercier et 

210 al. 2013). Threshold values (-t option) ranging from 0.90 to 1 at 0.01 steps were tested for all 

211 markers except Coll01 and Olig01 for which wider ranges ([0.70 – 1] and [0.80 – 1], 

212 respectively) were selected based on the within-genus and within-species sequence similarity 

213 probability distributions determined previously (see Figure 2). Clustered datasets were then 

214 explored to calculate five different variables at each clustering threshold: 1) the number of 

215 clusters; 2) the percentage of MOTUs containing one single species; 3) the percentage of 

216 MOTUs containing one single genus; 4) the percentage of species gathered in one single 

217 MOTU; 5) the percentage of genera gathered in one single MOTU. Variables 2 and 3 are 

218 indicative of appropriate MOTU merging of sequences at the species and genus levels, 

219 respectively, while variables 4 and 5 are indicative of appropriate MOTU splitting at the 

220 species and genus levels, respectively.

221 These values were also used to calculate three measures of error. We defined the over-

222 merging rate as 1 - the percentage of MOTUs containing one single species; and the over-

223 splitting rate as 1 - the percentage of species gathered in one single MOTU. The summed 

224 error rate was then calculated as the sum of the over-merging and over-splitting rates. It 

225 should be noted that for this estimate, we assigned the same weight to over-splitting and over-

226 merging.

227

228 Results

229

230 Our in-silico PCRs amplified between 17,000 (Coll01) and 3,2000,000 (Bact02) sequences 

231 per marker (Table S2). After data filtering, we retained between 510 (Coll01) and 708,000 

232 (Bact02) sequences per marker. The within-species dataset comprised between 118 (Coll01) 
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233 and 10,000 (Bact02, Euka02, Fung02, Sper01, Inse01) sequences, while the within-genus 

234 dataset comprised between 74 (Coll01) and 10,000 (Euka02 and Sper01) sequences per 

235 marker.

236

237 Clustering thresholds determined from probability distributions of within-species and 

238 within-genus sequence similarities 

239 The probability distributions of within-species and within-genus sequence similarities 

240 showed very contrasting patterns between the generalist and the specific markers (Figure 2). 

241 For the five markers targeting a phylum or broader taxonomic groups (Bact02, Euka02, 

242 Fung02, Sper01, and Arth02), the distributions of within-species and within-genus similarities 

243 were rather similar, both showing a mode at very high similarity values (Figure 2). Fung02 

244 showed a slightly different pattern, as the within-genus similarities had a very broad 

245 distribution. Conversely, for the more specific markers, the distributions of sequence 

246 similarities were very different, with two clearly distinct peaks. Within-species similarities 

247 remained very high (mostly above 0.95), while within-genus similarities generally showed 

248 lower values (mode around 0.90 for Inse01, and below 0.80 for Olig01 and Coll01).

249 For all markers, criterion i (avoid over-splitting) yielded the lowest thresholds (Figure 

250 3, Table S3), with very low levels for Coll01 and Olig01. Conversely, criterion ii (avoid over-

251 merging) yielded extremely high values, except for Coll01. For all generalist markers, 

252 avoiding over-merging would require setting clustering thresholds at 0.99 or higher. For 

253 Coll01, criterion ii resulted in a rather low threshold (0.765), because many within-genus 

254 comparisons showed very low similarity values.

255 Criteria iii-a and iii-b searching a balance between over-merging and over-splitting 

256 yielded somehow contrasting results across markers. For the three specific markers (Coll01, 
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257 Inse01, and Olig01), the within-genus and within-species similarities showed clearly distinct 

258 peaks (Figure 2). As a consequence, the intersection between the two curves could effectively 

259 represent the point minimizing both over-merging and over-splitting (see discussion), and the 

260 midpoint between the modes also identified rather similar threshold values. On the contrary, 

261 for the generalist markers, the within-species and within-genus similarities showed very high 

262 overlap and similar modes, and the density distributions actually intersected at values lower 

263 than both modes. The midpoint between the modes continued to identify threshold values 

264 intermediate between the peaks of within-species and within-genus similarities.

265

266 Rates of over-splitting and over-merging

267 For all markers, whatever the clustering threshold examined (values ≥ 0.70 for Coll01, ≥ 0.80 

268 for Olig01 and ≥ 0.90 for the other markers), the percentage of MOTUs containing one single 

269 species was higher than 50%, and that of MOTUs containing one single genus was higher or 

270 close to 70% (Figure 4). Overall, for the generalist and intermediate markers, these two 

271 percentages showed a regular increase with the clustering threshold, and for the specific 

272 markers, they tended to values close to 100% for high thresholds. Unsurprisingly, the two 

273 percentages tended to be lower for the generalist markers than for the specific markers at a 

274 given threshold, indicating that the former are more sensitive to over-merging. Fung02 was a 

275 notable exception, since about 87% and 97% of MOTUs contained one single species and one 

276 single genus, respectively, at the 0.97 threshold, which is a frequently adopted clustering 

277 threshold for fungal ITS sequences. These values were comparable to those observed for the 

278 specific markers, for which > 85% and > 98% of MOTUs contained one single species or one 

279 single genus, respectively, for thresholds ≥ 0.95.
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280 For all markers, the percentages of species and genera gathered in one single MOTU 

281 decrease both at a similar rate with the clustering threshold, with generally a sharp drop at 

282 high thresholds (≥ 0.98; Figure 4). However, the pattern of MOTU splitting was less 

283 characteristic of generalist vs. specific markers. For some markers (Euka02, Sper01, Arth02, 

284 Inse01), the percentage of species or genera gathered in a single MOTU remained higher or 

285 close to 50% up to high thresholds (0.98). On the contrary, for Bact02, Fung02, Coll01, 

286 Olig01, these percentages dropped quickly when the clustering threshold increased, indicating 

287 that these markers are susceptible to over-splitting.

288 For all markers, the number of clusters generally increased regularly with the clustering 

289 threshold up to 0.97-0.98 (Figure 4), followed by a sharp rise up to 1 (which was however less 

290 obvious for Euka02 and Olig01). For example, for Bact02, the number of clusters more than 

291 doubled between 0.97 (2862 clusters) and 1 (6461 clusters).

292 Our results showed clear patterns for over-merging and over-splitting rates, with over-

293 splitting quickly increasing and over-merging quickly decreasing at high clustering thresholds 

294 (Figure 5). For several markers, the summed error showed a relatively clear minimum at 

295 specific clustering thresholds (Figure 5): 0.96-0.99 for Bact02 and Euka02, 0.97-0.99 for 

296 Arth02, 0.94-0.96 for Inse01, and 0.96-0.98 for Sper01. The minimum was much less evident 

297 for Fung02, Coll01 and Oligo01, these markers showing relatively similar summed error rates 

298 over a broad range of clustering thresholds (Fung02: 0.91-0.98; Coll01: 0.82-0.96, with 

299 multiple minima; Oligo01: 0.84-0.96, with multiple minima).

300

301

302 DISCUSSION

303
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304 Sequence clustering approaches are routinely used for the identification of MOTUs in 

305 metabarcoding studies, and they often resort to methods based on similarity values. Still, 

306 selecting a clustering threshold for a given marker more than often relies on common 

307 practices and rules of thumb rather than on proper scientific argument. By analyzing extensive 

308 sequence data deposited in public databases for a range of generalist and specialist markers, 

309 we showed that different threshold values can be selected depending on the marker and on the 

310 criterion favored by researchers. All the markers we examined are situated in non-protein 

311 coding genes (Table S1), and this has an influence on levels of sequence intraspecific 

312 diversity. The 10% quantile of the within-species similarity probability distribution was 

313 almost always lower than the 0.97 clustering threshold traditionally used in barcoding for 

314 markers targeting protein-coding genes like COI (Hebert et al. 2003), or for microbial MOTU 

315 delimitation (Bálint et al. 2016), indicating that some level of over-splitting can occur at this 

316 threshold.

317 Although for all the markers the within-genus similarity values were generally lower 

318 than the within-species similarities, the overlap between the two distributions was dependent 

319 on the generalist vs. specific nature of the marker. For some specific markers (e.g. Coll01 and 

320 Olig01), distinct peaks were visible for the two similarity metrics (Figure 2). Within-species 

321 similarities generally were >0.90, while within-genus values were lower, frequently below 

322 0.80. Such a pattern is not unexpected for markers with an excellent taxonomic resolution and 

323 designed to identify taxa at the species level. Conversely for the generalist markers, within-

324 species and within-genus similarity probability distributions largely overlapped and the 

325 differences between the peaks were minimal. Nevertheless, even for these markers, the 

326 density of within-species similarity was consistently higher than that of within-genus 

327 similarity at high clustering thresholds, indicating that the probability of observing the 
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328 corresponding similarity value is higher within species than within genera. In other words, at 

329 high clustering thresholds, a MOTU is more likely to represent a species than a genus. This 

330 result is confirmed by the fact that the percentage of MOTUs containing a single species is 

331 always higher than 50%, whatever the clustering threshold or the marker considered (Figure 

332 4).

333 The sequences used as a primary source of information in this study were downloaded 

334 from EMBL, and our results are thus highly dependent on the quality of the data deposited in 

335 this public database. Even though broad-scale analyses suggest that these data are generally 

336 reliable (Leray et al. 2019), errors in the sequence itself (e.g. wrong nucleotide, or more 

337 complex errors like insertions, deletions, inversions, duplications or pseudogene sequences) 

338 and taxonomic mislabeling can occur in public sequence databases, especially for organisms 

339 which are difficult to identify based on morphology (Bridge et al. 2003, Bidartondo 2008, 

340 Valkiūnas et al. 2008, Mioduchowska et al. 2018). While the first type of error will affect 

341 within-species sequence similarity negatively, sometimes substantially, the effect of the 

342 second type is more diffuse. For example, in a group like springtails where species 

343 delimitation is tricky (Porco et al. 2012), the existence of cryptic species will decrease within-

344 species sequence similarity while increasing over-splitting rates. In a group like Bacteria, type 

345 strains are sometimes entered at the species level in the NCBI (EMBL) taxonomy (Federhen 

346 2015), leading to an inflation of within-genus similarity and over-merging rates. In every case 

347 though, database errors will make within-species and within-genus similarities distributions 

348 more difficult to distinguish and clustering thresholds trickier to identify, thus the over-

349 splitting or over-merging rates reported here could be artificially higher than in reality.

350 In this work, we came up with a global measure of the error associated with a given 

351 clustering threshold, that we called the “summed error”. We calculate it by summing over-
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352 splitting and over-merging rates, assuming both have the same cost for biodiversity studies. 

353 However, it is possible to assign a differential weight to over-splitting and over-merging. For 

354 instance, if the aim is to reach conservative estimated of alpha diversity (i.e. avoid over-

355 splitting), more weight can be assigned to over-splitting rate. Conversely, if the aim is to tease 

356 apart closely related species, that differ in their sensitivity to environmental stressors or in 

357 threat levels, one may prefer to avoid over-merging, particularly when extensive reference 

358 databases are available (Roy et al. 2019, Lopes et al. 2021).

359 For most of the markers we examined, the summed error approach provided relatively 

360 clear results, and identified a range of threshold values that minimized the summed error. For 

361 instance, for Euka02, the summed error was relatively low at thresholds between 0.96 and 

362 0.99 (Figure 5), indicating a good trade-off between over-merging and over-splitting. 

363 Interestingly, this range of values was also highlighted by the analysis of probability 

364 distributions (Figure 3, Table S3). Indeed, 0.96 is the threshold minimizing over-splitting for 

365 Euka02 while 0.99 is the balance (midpoint) threshold. The consistency of values obtained 

366 with very different approaches supports the robustness of our conclusions.

367 However, for a few markers, the threshold values minimizing summed error yielded 

368 somewhat less clear patterns. For Fung02, the summed error rate was rather constant (36-

369 37%) at all the thresholds between 0.91 and 0.98, while it quickly increased for higher 

370 clustering thresholds. For Coll01 and Oligo01, the summed error rate showed multiple 

371 minima, some of which at very low clustering thresholds (Figure 5). In principle, increasing 

372 the threshold value should determine a monotone decrease of over-merging, and a monotone 

373 increase of over-splitting (Figure 1B). However, at low similarity values this was not always 

374 the case (Figure 5). This probably occurs because a very large number of sequences have 

375 pairwise similarities of 0.80-0.85 for these markers (Figure 2), and this might affect the 
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376 identification of clusters, with some sequences clustering together e.g. at 0.85 but not at 0.86 

377 similarity values. We also note that these similarity values match the ones corresponding to 

378 the intersection between the within-genus and within-species similarities for these markers 

379 (Figure 3). It is also possible that, at this level of sequence similarity, there is strong 

380 uncertainty between MOTUs representing different hierarchical levels of taxonomy. 

381 Our results provide quantitative data that can help researchers set their optimal 

382 clustering thresholds, and understand the consequences of choosing low or high threshold 

383 values. If a clear minimum exists for the summed error rate, it probably represents an 

384 excellent trade-off between over-merging and over-splitting. In this sense, a threshold value 

385 ranging from 0.96 to 0.99 is probably appropriate for both Bact02 and Euka02, while Arth02 

386 should accommodate a slightly higher range (0.98-0.99) and a fixed threshold of 0.97 seems 

387 to be more suitable for Sper01. For Inse01, lower threshold values (0.94-0.96) are more 

388 judicious. All these values match with those obtained on the basis of within-species and 

389 within-genus similarities (Figure 3). However, for Coll01, Oligo01 and Fung02, the summed 

390 error rate does not provide clear indications, and within-species and within-genus similarity 

391 distributions (e.g. midpoint between modes) might be more informative to set the threshold 

392 value (Figures 2 and 3).

393 The selection of clustering thresholds can have strong effect in the estimates of 

394 MOTUs richness (Figure 4), still it is important to remember that it often does not have a 

395 tremendous effect on the ecological message conveyed by metabarcoding data. For instance, 

396 Clare et al. (2016) examined different clustering thresholds to analyze dietary overlap 

397 between skinks and shrews in Mauritius. Although high clustering thresholds yielded a larger 

398 number of MOTUs, ecological conclusions remained rather consistent overall. Therefore, 

399 provided that appropriate parameters are considered (e.g. alpha diversity measured using 
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400 Hill’s numbers with q > 0 instead of richness, beta diversity estimates), the interpretation of 

401 data can be relatively robust (Clare et al. 2016, Roy et al. 2019, Calderón-Sanou et al. 2020, 

402 Mächler et al. 2021). Nevertheless, we discourage the blind application of one single 

403 clustering threshold like the classical 0.97, as it can have very different meaning across 

404 markers, and can inflate MOTU richness for fast-evolving markers. Instead, we advocate the 

405 ad-hoc definition of the most appropriate thresholds, on the basis of research aims, on the 

406 potential costs of over-splitting and over-merging, and on the features of the studied markers.
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584 Table 1. Target groups and taxonomic resolution of the eight studied markers.

585

586 * Estimated as the percentage of discriminated taxa among amplified taxa; reported from 

587 Taberlet et al. (2018).

588

Taxonomic resolution *Marker Target group Taxonomic level 

Species 

level

Genus 

level

Family 

level

Order 

level

Reference(s)

Bact02 Bacteria Superkingdom 19.6% 55.7% 55.1% 60.2% Taberlet et al. (2018)

Euka02 Eukaryota Superkingdom 47.0% 59.5% 68.3% 67.1% Guardiola et al. (2015)

Fung02 Fungi Kingdom 72.5% 90.2% 87.7% 85.5% Epp et al. (2012), 

Taberlet et al. (2018)

Sper01 Spermatophyta Clade < kingdom 21.5% 36.9% 77.4% 89.6% Taberlet et al. (2007)

Arth02 Arthropoda Phylum 68.6% 89.6% 97.5% 100.0% Taberlet et al. (2018)

Coll01 Collembola Class 80.5% 87.2% 75.0% NA Janssen et al. (2018)

Inse01 Insecta Class 87.8% 96.8% 95.4% 79.3% Taberlet et al. (2018)

Olig01 Oligochaeta Subclass 89.3% 95.7% 100.0% 100.0% Bienert et al. (2012), 

Taberlet et al. (2018)
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589 Figure captions

590

591 Figure 1. Different approaches to identify the most appropriate clustering thresholds. A): 

592 approaches based on similarities between sequences belonging to different individuals from 

593 the same species (blue curve), and similarities between sequences belonging to different 

594 species from the same genus (red curve). One can choose to minimize the risk that different 

595 sequences from the same species are split in different MOTUs (over-splitting risk; e.g. 10% 

596 quantile of the distribution of within-species similarities), the risk that sequences from 

597 different species belonging to the same genus are clustered in the same MOTU (over-merging 

598 risk; e.g. 90% quantile of within-genus similarities), or one can try to find a balance between 

599 the risks of over-splitting and over-merging (e.g. with the intersection between probability 

600 distributions, or the midpoint between the modes of both distributions). B) Approaches based 

601 on rates of over-splitting and over-merging. One can compare the over-splitting (blue) and the 

602 over-merging (red) rates, and/or one can identify the thresholds minimizing the sum of these 

603 rates (violet).

604

605 Figure 2. Density probability distributions of sequence pairwise similarities within species 

606 (blue lines) and within genera (red lines) for the eight studied markers. For each marker, 

607 dotted lines represent the 10% quantile of the within-species probability distribution (blue; 

608 threshold limiting over-splitting), the 90% quantile of the within-genus probability 

609 distribution (red; threshold limiting over-merging), the intersection of the within-species and 

610 within-genus probability distributions (green, balance-a) and the midpoint between modes 

611 (black, balance-b)

612
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613 Figure 3. Different possible clustering thresholds for the eight studied markers, depending on 

614 the selected criterion.

615

616 Figure 4. Evolution of over-splitting and over-merging rates for a range of clustering 

617 thresholds, for the eight studied markers. The left y-axes report percentage values; the right y-

618 axes indicate the number of obtained clusters.

619

620 Figure 5. Over-splitting (blue) and over-merging (red) rates, as well as the summed error rate 

621 (i.e. over-splitting rate + over-merging rate; violet), for the eight studied markers across a 

622 range of clustering thresholds.

623

624
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