

# **STUDY OF ISOSTERIC SUBSTITUTION OF THE 1,4-BENZODIOXANE OXYGEN ATOMS IN BENZAMIDES FTSZ INHIBITORS.**



Lorenzo Suigo, Valentina Straniero, Andrea Casiraghi, Ermanno Valoti

lorenzo.suigo@unimi.it

Department of Pharmaceutical Sciences, Università degli Studi di Milano, via Luigi Mangiagalli 25, 20133 Milano

# **FtsZ & STATE OF THE ART**

Antibiotic resistance is rising to dangerously high levels in all parts of the world. Thence there is the urgent need of efficient antibiotics with innovative mechanisms of action. An interesting promising target is the cell division process, together with its essential proteins.<sup>[1]</sup>

Among them **FtsZ** plays a crucial role; <sup>[2]</sup> it is:

- A self-assembling GTPase;
- A β-tubulin homologue;
- Widely conserved among bacteria;

#### **SAR STUDY**

The SAR study started considering the mandatory features pointed out in our previous results; specifically the maintenance of the primary amide, as well of a **defined distance** between **Scaffold A** and **Scaffold B**.

SCAFFOLD B SCAFFOLD A



- Able to polymerize forming the Z-ring, a membrane-associated structure recruiting a protein complex that enables cell constriction, formation of the mesosome and of the two daughter cells.<sup>[3]</sup>

Starting from **3-MBA**, which proved to modestly interfere with the GTPasic activity of FtsZ, and from its more potent analogs PC190723 and DFNB, [4-6] we recently prepared a series of benzodioxanes,<sup>[7-9]</sup> linked by a methylenoxy bridge to a 2,6-difluorobenzamide (Compounds I-III). They have interesting antimicrobial activity vs S. aureus (Sa), E. faecalis and M. *tuberculosis*. Here we report our recent updates on the SAR of these bactericides.

Specifically, we designed **Compounds 1-9** reported here aside, modifying the Scaffold A of I, substituting the benzodioxane O(1) and/or O(4) with:

- **Sulfur**, an interesting heteroatom with peculiar lipophilicity, HBA potency and steric hindrance (Compounds 1-3);
- **Carbon**, in order to evaluate the importance of the HBA property of both ٠ Oxygen atoms (Compounds 4-6);
- Tertiary Nitrogen, keeping the HBA nature while slightly increasing the steric hindrance of the substituent. (Compounds 7-9).



### **BIOLOGICAL EVALUATION**

Compounds 1-9 and I, III and DNFB as references, were tested on Gram positive S. aureus, both methicillin-sensitive (MSSA) and methicillin-resistant (MRSA) strains. The most promising derivatives were also assessed for their cytotoxicity in human MRC-5 cells; all the results are shown below.

|          | MSSA ATCC 29213 |             |         | MRSA ATCC 43300 |             |         | MRC-5         |
|----------|-----------------|-------------|---------|-----------------|-------------|---------|---------------|
| Compound | MIC (µg/mL)     | MBC (µg/mL) | ТІ      | MIC (µg/mL)     | MBC (µg/mL) | TI      | TD 90 (μg/mL) |
| DNFB     | 1               | 1           | >200    | 1               | 1           | /       | >200          |
| I        | 5               | 80          | n.d.    | 3.1             | 6.3         | /       | n.d.          |
| Ш        | 0.6             | 0.6         | >1280   | n.d             | n.d.        | /       | >800          |
| 1        | 1               | 1           | >800    | 1               | 1           | >800    | >800          |
| 2        | 20              | 20          | 10      | 20              | 20          | 10      | 200 ± 4.3     |
| 3        | 5               | 10          | 20      | 5               | 10          | 20      | 200 ± 23.2    |
| 4        | 100             | 100         | /       | 100             | 100         | /       | /             |
| 5        | 5               | 5           | ongoing | 5               | 5           | ongoing | ongoing       |
| 6        | >100            | >100        | /       | >100            | >100        | /       | /             |
| 7        | 100             | 100         | /       | 100             | 100         | /       | /             |
| 8        | 100             | 100         | /       | 10              | 20          | /       | /             |
| 9        | >100            | >100        | /       | >100            | >100        | /       | /             |

LiAIH<sub>4</sub>, THF, RT; c) MsCI, TEA, DCM, RT; d) 2,6-difuoro-3-hydroxybenzamide, K<sub>2</sub>CO<sub>3</sub>, 80°C e) Ethyl 2,3-dibromopropionate, TEA, DMF, 60°C; f) MeOH, H<sub>2</sub>SO<sub>4</sub>, reflux; g) Diethyl oxalate, EtONa, EtOH, reflux; h) H<sub>2</sub>, Pd/C, AcOH; i) Epichlorohydrin, aq. NaOH, RT; I) Fe, AcOH, MeOH, RT; m) MeI, K<sub>2</sub>CO<sub>3</sub>, DMF, RT; n) Ethyl 2,3-dibromopropionate, TEA, Toluene, 80°C.

DISCUSSION

| Promising MICs and MBCs of   | The loss of antibacterial           |  |  |
|------------------------------|-------------------------------------|--|--|
| 1 and 3 points out a         | activity of 7, 8 and 9 indicates    |  |  |
| productive substitution of   | how the steric hindrance in         |  |  |
| benzodioxane O(4) with       | <b>both positions</b> of the        |  |  |
| Sulfur;                      | benzodioxane ring is <b>poorly</b>  |  |  |
| The differences in           | tolerated;                          |  |  |
| antimicrobial activities     | Considering the impressive          |  |  |
| strengthened the             | bactericidal potency of <b>1</b> ,  |  |  |
| importance of keeping        | compared to its reference           |  |  |
| benzodioxane O(1) to allow   | compound I <b>, Sulfur</b> could be |  |  |
| a strong target interaction; | an effective bioisoster of the      |  |  |
|                              | benzodioxane O(4).                  |  |  |

#### **REFERENCES**

[1] Nature Reviews Drug Discovery 2008, 7, 324-338; [2] Journal of Molecular Biology 2004, 342, 953–970; [3] Nature Reviews Molecular Cell Biology **2005**, *6*, 862-872; **[4]** Science **2008**, 321, 1673-1675; [5] BMCL 2009, 19, 524-527; [6] BMCL 2014, 24, 353-359; [7] EJMC 2015, 89, 252-265; [8] EJMC **2016**, 120, 227-243; [9] ChemMedChem **2017**, 12, 1303 –1318; [10] Journal of Biological Chemistry **2010**, 285, 14239–14246; **[11]** Journal of Biological *Chemistry* **2005**, *280*, 39709–39715.



## UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI

