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I N T R O D U C T I O N

The common thread of this thesis are Parton Distribution Functions (PDF)
and their ecosystem, half-way between theoretical and experimental High
Energy Physics (HEP): being strongly data-driven, they greatly depend on

experiments precision and results availability. But theory is also crucial for the
extraction, since PDFs are determined to best fit data with theoretical predictions.

As it is possible to infer from the thesis structure, the main subject consists
in constructing suitable predictions, in order to allow some new studies in the
NNPDF Collaboration, and creating a consistent and improved framework, by
designing extensible tools, that will simplify the inclusion of new physical ob-
servables and improved theory calculations. This will be discussed extensively in
the first part of the thesis, and it will include a package dedicated to the solution
of DGLAP equations chapter 2, another providing Deep Inelastic Scattering (DIS)
predictions and grids chapter 1, and the discussion of the full framework cited
chapter 3, where the two packages are integrated in. Finally, a discussion about
the impact of Missing Higher Order Uncertainties in PDF is presented in chap-
ter 4, together with present techniques to consume their estimate in a NNPDF fit.
Indeed, they will be one of the first important applications of the framework as a
whole, even if .

While this has been the main focus for a long time, when me and my collabo-
rators started approaching the completion of the first prototype framework, and
the integration in the main NNPDF workflow, some new options for dedicated
studies became immediately available. These applications are collected and dis-
cussed in the second part of the thesis. Most of them are connected not only to the
availability of the tools we created, but also to the many achievements and past
works of NNPDF, that created a unique foundation for many studies, given the
flexibility of its novel methodology and the unparalleled precision reached with
its extensive datasets, including experiments spanning multiple decades, and sev-
eral different processes, from lepton-hadron and hadron-hadron colliders and
fixed-target experiments.

Moreover, extracting PDFs is deeply connected to the statistical methods ap-
plied. This is more or less true for any analysis based on quantitative experi-
mental data, but it is particularly relevant for the case of PDFs, because of the
functional nature of the objected extracted, that exacerbates the dependency of
the result on the methodology. From this perspective, the NNPDF methodology
is already a novelty, since it required a suitable extension of the usual statistical
treatment, based on a given parametrization, in order to access more complex
model developed by the Machine Learning community, where direct control of
parameter space is difficult, and not very useful. The whole procedure has been
recently innovated, even if I have not taken part directly to this process, that

vii

http://nnpdf.mi.infn.it/


viii introduction

finally led to the release of NNPDF4.0 Ball et al. 2022a, I investigated some limi-
tations of the current approach, especially considering the perspective of the full
distribution, that in the NNPDF methodology is only arising at the end of the
whole fit, but not used in the individual optimization steps. This led to the pro-
posal of a new candidate methodology, described in chapter 8, that would replace
the current usage of a Neural Network (NN) with different techniques. Neverthe-
less, we currently conjecture the final result to be mostly compatible, but at the
time of writing the proposal is still at an early stage, so no full check has yet been
performed.

This topic is collected in the third part, together with an investigation about the
positivity of certain PDFs, described in chapter 7. The reason why the two things
are bundled together is that they both affect the final extraction methodology,
even if in two very different ways. In NNPDF itself, three main lines of develop-
ment have always been identified: data implementation, theory computation and
extension, and methodological improvements. If the first part is mainly devoted
to the theory, this one is instead connected to the methodology.

A final remark is required: software development has been a big share of the
main effort. While in the first part this is manifest, it is actually underlying
any work described, even though not always to the same extent. The whole
NNPDF architecture, and collaboration’s main results, are deeply connected to
the development of increasingly more reliable tools. Eventually, the main code
has been published Ball et al. 2021a, in order to support full transparency, and
to make it available for more studies. Potentially, even by authors external to
the collaboration. Following this philosophy, all the projects I took part in have
been developed open immediately, and they are available in the NNPDF GitHub
organization (a few minor ones still in the N3PDF organization), with special care
for usability and maintainability, to the best of our abilities.

 http://nnpdf.mi.infn.it/for-users/unpolarized-pdf-sets/#NNPDF4.0 
https://github.com/NNPDF
https://github.com/N3PDF


D E C L A R AT I O N

This thesis is a report of the research activity conducted during my PhD. Since
part of this has already been published in papers, proceedings, or even the doc-
umentation of the software developed, some of the material is already appeared
in those works.

Following, the description of the sources for each chapter.

chapter 1 content is adapted from the documentation of the yadism package,
Candido, Hekhorn, and Magni 2022b, available online at https://

yadism.readthedocs.io/, and section 1.4 in particular has been ini-
tially written for a yet unpublished work on low-energy neutrino
structure functions

chapter 2 mirrors the EKO paper, Candido, Hekhorn, and Magni 2022a, which
in turn contains material from the EKO documentation, https://eko.
readthedocs.io/, but some material in the docs has also been (and
will be) backported from the paper itself

chapter 3 is based on a proceeding appeared slightly before the thesis itself,
Barontini et al. 2022, that is an early presentation of a work that will
be discussed in a dedicated publication

chapter 4 has no public source, because the work is based on the toolchain
exposed in the previous chapters, and the study itself has not yet
reached its final stage; still, part of the material contained was orig-
inally authored as an internal note, for the NNPDF collaboration’s
members, and adapted here for a (possibly) more generic audience

chapter 5 reviews the content of a collaboration’s result, Ball, Candido, Cruz-
Martinez, et al. 2022, based on NNPDF4.0 release and EKO’s features

chapter 6 is based on an NNPDF work, Ball, Candido, Forte, et al. 2022, based
on NNPDF4.0, prompted by interaction with experimental users

chapter 7 collects the material appeared in Candido, Forte, et al. 2020

chapter 8 presents a new work-in-progress methodology candidate, thus has
no public reference at the moment, even though a likewise work-in-
progress report exists online, Petrillo 2022, but it is rather orthogonal
to the content of the chapter, since focused on the technical imple-
mentation, while chapter 8 introduces just the gist of the idea, and
sets the context

ix

https://yadism.readthedocs.io/
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0 Q U A N T U M C H R O M O DY N A M I C S &
PA R TO N D I S T R I B U T I O N S

0.1 Deep Inelastic Scattering 3
0.2 Double hadronic & other processes 4
0.3 DGLAP equations 5

Quantum Chromodynamics (QCD) is the theory of strong interactions among
colored particles. It is a fundamental constituent of the Standard Model (SM) of
particle physics, together with the Electroweak (EW) interaction.

The fundamental feature of QCD is its asymptotic freedom, that makes the cou-
pling perturbative at high enough energies, but non-perturbative at low energies,
where the relevant scale to compare with is the intrinsic ΛQCD, whose order of
magnitude is roughly the same of the mass of the proton (Mp). This generates a
large amount of composite particles, named hadrons, whose constituents are col-
ored particles, i.e. quarks, who are determining main quantum numbers on the
hadrons, and gluons, the interaction-carrying bosons, arising in the correspond-
ing Yang–Mills (YM) theory, and acting as the binding glue between quarks.

The discovery of hadrons beyond proton and neutron has driven particle physics
experiments advancements and theoretical progress in the second half of the
twentieth century, resulting in the successful framework of QCD as a Quantum
Field Theory following the YM pattern. But other interesting theories has been
investigated during the quest for a theory of hadrons, and some of them still have
relevant consequences, extending beyond hadrons (e.g. string theory).

Despite the success of the framework, the nature of hadrons is still being inten-
sively investigated, since it would require the solution of non-perturbative QCD
dynamics. Different tools are available for this investigation, one of them being
the extremely powerful formulation of QCD on a discretized lattice Wilson 1974,
but it has not yet been possible to describe the nature of hadrons from first prin-
ciples, with a sufficiently accurate lattice determination. However, hadrons are
ubiquitous in HEP experiments, both as products of high-energy collisions, and
as scattering particles at hadronic and semihadronic machines. Therefore a better
understanding of the hadronic structure is necessary to formulate precise enough
theoretical predictions for collision events, confirming in this way the SM theory,
and investigating possible signals of Beyond the Standard Model (BSM) physics.

To circumvent the current limitations about non-perturbative QFT, a different
approach has been pursued, whose origin dates even before the discovery of QCD.
In order to analyze collisions of composite particles, it was proposed to describe
them as packets of collinear point-like constituents, collectively named partons,
each one carrying a fraction of the measured momentum of the scattering particle,
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2 quantum chromodynamics & parton distributions

Feynman 1969. This partonic picture was successfully applied to predict the high-
energy electron-proton collisions, a process called Deep Inelastic Scattering (DIS),
resulting in the discovery of Bjorken scaling Bjorken 1967, i.e. the statement that
DIS structure functions (cf. section 0.1) do not depend on the exchanged photon
virtuality, setting the energy scale of the process.

Bjorken scaling is then violated by QCD corrections, but it is still possible to
remain in the framework established by the parton model, because of a funda-
mental QCD property: factorization, J. C. Collins, Soper, and Sterman 1989. This
feature ensures that, up to highly suppressed corrections in the scale ratio, the
hadronic cross-sections factorize in a perturbative hard partonic cross-sections,
that can be computed in perturbation theory with pQFT calculations, and a uni-
versal matrix element, describing the probability that a certain parton constituent
from the original hadron enters the hard event.

It is in this framework that Parton Distribution Functions (PDF) are defined,
as the non-perturbative matrix element, completing the hadronic cross-section.
PDFs universality, granted by factorization (i.e. PDFs being independent from
the process considered), makes possible to have a unique set of functions describ-
ing the hadronic structure, bridging the gap from the partonic to the hadronic
cross-sections. In this context, it is possible to avoid the complexity of a non-
perturbative calculation, resorting on a determination of the PDFs from experi-
mental data. Hence, a set of data used to determine the PDFs can constrain the
predictions on other events, including different processes.

While the procedure is completely analogue to the determination of other SM
model parameters, in the case of PDFs there are two critical differences:

1. the object determined is not an actual parameter of the theory, but we need
it because of the complexity of a first principles determination - thus the-
ory first principles theory calculation, able to unfold the non-perturbative
dynamics, like lattice, can contribute to the PDFs determination;

2. the unknown parameter is not scalar, but a full function (actually a finite set
of them) over the (0, 1) domain, resulting in an infinite amount of degrees
of freedom to be determined.

The second point will be further discussed in the context of chapter 8.
PDFs are not the only hadronic object arising from factorization, since also fi-

nal products observed in semi-inclusive measurements can be described by close
analogue, called Fragmentation Functions (FF). More complex object can describe
the transverse (non-collinear) dynamics of partons, like Generalized Parton Distri-
butions (GPD) and Transverse Momentum Distributions (TMD). Including more
degrees of freedom, and requiring the measurement of more differential observ-
ables, the state of this objects is still very raw, compared to collinear PDFs. The
research is actively ongoing in this field, but they will not be further described
here.

Moreover, other non-perturbative processes are involved in the predictions for
observables resulting from high-energy collisions. In particular, the colored scat-
tering products have to be grouped together in hadrons, since no colored particle
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Figure 0.1: The LO Feynman diagram associated to the scattering of a lepton (electron in
picture) against an hadron component, mediated by an EW boson.

is eventually detected, because of QCD confinement, another key property of the
theory. This mechanism is known as hadronization, and it has a close interplay
with Parton Shower (PS) and QCD jets observables. Also this material is not
treated in this thesis, but can be found in the documentation of modern Parton
Showers Bellm et al. 2016; Bierlich et al. 2022.

PDFs extraction is therefore essential for HEP research, especially for hadronic
machines like LHC. The methodology has been greatly improved in the past few
years, and many more processes are now contributing to their determination, to-
gether with increasingly accurate theoretical predictions. In the rest of this chap-
ter, some of the main elements related to the PDF theoretical environment will
be described. QCD Lagrangian and other fundamental properties are textbook
material now, consequently they will not be explicitly described, and instead the
interested reader should refer to well-known resources Campbell et al. 2017; J.
Collins 2013; R. K. Ellis et al. 2011; Peskin and Schroeder 1995.

0.1 Deep Inelastic Scattering
The Deep Inelastic Scattering process is the scattering of a lepton over an

hadron component, mediated by an EW boson fig. 0.11. Since the scattering
happens directly on a constituent of the incoming hadron, isolating it from the
composite particle (and thus destroying the latter), it is called deep inelastic. The
leptonic part does not couple directly to QCD, thus the αs corrections do apply
only to the hadronic side (at LO EW), and the EW boson can be seen as emitted
from the incoming lepton and absorbed into the hadron. In this picture the pro-

1This and the other Feynman diagrams in this chapter are taken from the related CMS wiki page
of the Zurich University.

https://wiki.physik.uzh.ch/cms/latex:feynman
https://wiki.physik.uzh.ch/cms/latex:feynman


4 quantum chromodynamics & parton distributions

cess can be interpreted as the scattering of an off-shell EW boson over an hadron,
probing the hadron composition.

As discussed in the former section, the history of the DIS process is deeply con-
nected to the parton model before, and PDFs determination afterwards, since data
from several DIS experiments has been used to provide the main constraints on
the PDFs. Multiple old and more recent DIS experiments are still giving a relevant
contribution to modern datasets used to extract PDFs, including: Stanford Lin-
ear Accelerator Center (SLAC), Bologna-Cern-Dubna-Munich-Saclay (BCDMS),
CERN Hybrid Oscillation Research ApparatUS (CHORUS), New Muon Collab-
oration (NMC), and the more recent NuTev. But the DIS data that mostly con-
strained PDFs have been the results from H1 and ZEUS experiments at HERA.

The entire chapter 1 will be dedicated to the review of the theory predictions
for this process, and to present a software package, yadism, dedicated to the
calculation of them, with all relevant variants and options.

0.2 double hadronic & other processes

Until very recently, DIS has been the one process mostly determining PDFs on
its own, even though a non-negligible fraction of Fixed Target Drell–Yan (FTDY)
data was already included in the main fits. With the advent of the Large Hadron
Collider (LHC), this started changing, since the incredible amount of data gen-
erated (and those that will be produced in the future) are compensating the in-
directness of the probe. The NNPDF4.0 release shown for the first time how the
LHC data are not only giving sizeable contribution to the PDFs determination,
but also able to constraint the PDFs shape on their own Ball et al. 2021b, to a
remarkable degree of accuracy.

For this reason, double hadronic initiated processes, like pp at LHC, or pp̄ at
Tevatron, are now a relevant part of the global QCD dataset used in PDFs ex-
traction. But while for the DIS process analytical calculations are available, most
double hadronic processes require the usage of Monte Carlo (MC) integrators,
since the resulting integrals are not known analytically, and they quickly extend
to many dimensions. Then, in order to obtain the theory predictions required in
PDF fits, many different codes are required, since no one implements all possible
processes at the state-of-the-art perturbative order (usually NNLO by now, but
only for more common processes), and no one is optimal for all of them.

This wide landscape of theoretical predictions, involving increasingly more de-
manding software tools, is a challenge for a global QCD fits, like PDF ones, since
they will need to interface with a variety of codes constantly evolving, and find
an effective way to decouple the fit itself from the computational costs involved.
This is why interpolation grids have been introduced, to store the results of MC
computations and offer a unique and fast interface for their consumption. Grids
will be described in more details in chapter 3, where a new grid layout, PineAPPL
S. Carrazza et al. 2020a, initially motivated by the extension of existing formats

https://h1.desy.de/
https://www-zeus.desy.de/
https://www.home.cern/science/accelerators/large-hadron-collider
https://www.home.cern/science/accelerators/large-hadron-collider
 http://nnpdf.mi.infn.it/for-users/unpolarized-pdf-sets/#NNPDF4.0 
https://www.fnal.gov/pub/tevatron/tevatron-accelerator.html
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Figure 0.2: The LO Feynman diagram associated to the scattering of two quark compo-
nents of the proton in the s-channel, generating a virtual EW boson, eventually
decaying leptonically.

to allow EW corrections, has been used to construct a full pipeline to streamline
the process of producing predictions for PDF and similar fits.

New processes and observables are being observed at the LHC, possibly in-
cluding new particles and new physics, stressing the need for a more precise
determination of the proton structure. The Higgs production, whose main chan-
nel is represented in fig. 0.3, that has been first detected by the LHC collabora-
tions ATLAS Aad et al. 2012 and CMS Chatrchyan et al. 2012, is an extremely
well-known example of new particle discovery, which heavily involved a proton
initiated process, thus depending critically on the PDFs knowledge.

0.3 Dokshitzer–Gribov–Lipatov–Altarelli–Parisi
evolution equations

PDFs are a set of functions of two variables (i.e. a function of three variables, of
which one is discrete):

fi(z,µ
2
F) (0.1)

The three variables are:

• the flavor i of the chosen parton (usually a PID in practice)

• the momentum fraction z ∈ (0, 1] carried by the parton

• the factorization scale µ2F ∈ R
+

where the last one is required, since PDFs are defined through the factorization
theorem, and the factorization scheme used usually involves an unphysical scale,
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Figure 0.3: The LO Feynman diagram associated to the scattering of two gluon compo-
nents of the proton, coupling to a virtual quark loop, that finally generates an
Higgs boson. This is the Higgs production via gluon fusion, the main channel
for Higgs production at LHC.

µ
2
F, in a very similar way to what happens for renormalization schemes R. K. Ellis

et al. 2011.
The role of the PDF fits is to determine a border condition at a given value

for the unphysical scale, let it be µ2F,0, since the dependence on the scale is
fully encoded in perturbative QCD. Indeed, the various schemes, correspond-
ing to different choices of the unphysical scale µ2F, are related by the analogue
of Callan-Symanzik equations for factorization, obtained asserting that physical
observables must not depend on the choice of the unphysical scale. In such man-
ner, for choices of the scale in the perturbative regime for QCD, some terms are
factorized either in the PDF, or in the hard partonic cross section. Moving this
scale, the terms are swapped, but thus the PDF values in two different schemes,
corresponding to two different values of the scale, should compensate for the dif-
ference in the partonic cross sections, both obtained by a perturbative calculation,
thus the difference is also determined by perturbative physics.

This relation between PDFs defined at different scales takes the shape of a set
of integro-differential equations, called the Dokshitzer–Gribov–Lipatov–Altarelli
–Parisi evolution equations (DGLAP) Altarelli and Parisi 1977; Dokshitzer 1977;
Gribov and Lipatov 1972:

µ
2
F

df

dµ2F
(x,µ2F) = P(as(µ

2),µ2F)⊗ f(µ2F) (0.2)

The equations establish the anomalous scaling of the PDFs, and the kernels P are
called Altarelli–Parisi splitting functions.

The equation and its solution is discussed further in chapter 2, where another
software package is presented, EKO, automating the solution of the associated
operator equation. Indeed, any linear equation (as DGLAP) can be solved by
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a linear operator, that is actually producing the solution given any boundary
condition, thus independently of the boundary condition itself:

fi(z,µ
2
F) = Eij(µ

2
F ← µ

2
F,0)⊗ fj(µ2F,0) (0.3)

We call such an operator, for DGLAP, Evolution Kernel Operators (EKO).
This is another central ingredient in PDF fits, since the data set span different

scales, over multiple order of magnitudes, so the PDF determined by the fit has
to be evolved first to the suitable scale, to be folded with the partonic calculation
at that scale, resulting in the hadronic predictions for the measured observable.
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The Deep Inelastic Scattering (DIS) process has been introduced in section 0.1,
briefly outlining its relevance in the PDF determination, and enumerating the
various experimental source of DIS data for PDF fits.

In this chapter, the theory of DIS will be described in more details in section 1.1,
defining the related kinematics and physical observables, in a wide variety of
variants. Then, in section 1.2, it will follow a brief review of the analytic ingre-
dients that is possible to compute in perturbation theory, the so-called coefficients
functions, with a focus on their analytic properties, since they are crucial to stan-
dardize the presentation, in order to allow fully automated numerical integration.
It follows a summary of Flavor Number Scheme in section 1.3, since the treat-
ment of quark mass effects is crucial to predict the outcome of DIS experiments,
traditionally operating at not-so-high energies (for which charm and bottom mass
effects are most relevant).

Finally, yadism will be presented, a new program to compute DIS grids and
predictions, that implements all the elements discussed in the preceding sections,
and a range of further features, including extremely relevant ones, like scale vari-
ations (that will be described in more details in chapter 4, but not specifically
in the context of DIS), and many other, e.g. TMC and alternative quark mass
definitions schemes.

This chapter is not a full review of yadism development, since it is partly still
work in progress, despite the feature parity with predecessors has already been
reached. The online documentation, intended to be a living document, it is al-
ready publicly available at:

11



12 deep inelastic scattering

Figure 1.1: The LO Feynman diagram of the DIS process, including the original hadron.
Kinematic variables indicated. Notice that, contrary to what is shown in the
figure, in the text x will be reserved for the hadronic Bjorken-x, while the
partonic momentum fraction will usually be represented by z (the two of them
coincide at this perturbative order).

https://yadism.readthedocs.io/

and contains a superset of (almost) all the material in this chapter. Together
with the other authors, we hope to present the full set of features in a future
publications, Candido, Hekhorn, et al. n.d.

1.1 definitions

1.1.1 Kinematics

The following variables are widely used to describe the kinematic of the DIS
process (cf. fig. 1.1 for momenta definition):

• Q2 = −q2 is the EW boson virtuality (photon in the EM process)

• M2
h = p2 the mass of the scattered hadron

• ν = q · p, mainly used in the definition of the following

• x = Q
2

2ν , y = q·p
k·p the Bjorken variables

hadronic vs partonic Notice that the variables listed here are all hadronic,
so x is not the partonic momentum fraction (it is only at LO, because the coeffi-
cient function is a Dirac δ). In order to avoid confusion the coefficient function
variable will be called z, and thus the partonic momentum fraction will be x/z.

https://yadism.readthedocs.io/
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Figure 1.2: In blue the leptonic coupling, the corresponding green one, close to the blob,
is instead the hadronic coupling. The blob itself is the hadronic contribution.

It is possible to cut the DIS diagram on the exchanged boson, and compute
separately the two sides (cf. fig. 1.2). Since the boson is a Lorentz vector, it carries
a space-time index, so the two sides, once squared, will have two indices each,
and for this reason they are called the leptonic and the hadronic tensors. At LO in
EW corrections, the leptonic side does not couple to QCD, so the higher order
corrections in the strong coupling are all on the side of the hadronic tensor. The
fully inclusive DIS cross section σ is thus given by

dσ
i

dxdy
=
2πyα

2

Q
4

∑
b

ηbL
µν
b W

b
µν (1.1)

where i ∈ {NC, CC} corresponds to the NC or CC processes, respectively. For NC
processes, the summation is over b ∈ {γγ,γZ,ZZ}, whereas for CC interactions
there is only W exchange b = {W}. The normalization factors ηb denote the ratios
of the corresponding propagators and couplings to the photon propagator and
coupling squared:

ηγγ = 1 (1.2)

ηγZ =
4 sin2(θw)

1− sin2(θw)
· Q

2

Q
2 +M2

Z

(1.3)

ηZZ = η2γZ (1.4)

ηW =

(
ηγZ

2

1+Q2
/M

2
Z

1+Q2
/M

2
W

)2

(1.5)
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Based on symmetries and momenta involved, it is possible to characterize the
hadronic tensor with three scalar functions1:

Wµν =

(
−gµν +

qµqν

q
2

)
F1(x,Q2)

+
P̂µP̂ν

P · q F2(x,Q2)

− iεµναβ

q
α
P
β

2P · q F3(x,Q2) (1.6)

with P̂µ = Pµ − (P · q/q2)qµ, P the 4-momentum of the hadron and q the 4-
momentum of the scattered boson.

These scalar functions are known as DIS structure functions.
Instead, the leptonic tensors Lµν

b can all be written in terms of the photonic
lepton tensor, because the lepton is assumed massless:

L
γγ
µν = 2

(
kµk

′
ν + kνk

′
µ − (k · k ′)gµν − iλϵµναβk

α
k
′β
)

(1.7)

L
b
µν = κb L

γ
µν (1.8)

κγZ = (geV + eλgeA) (1.9)

κZZ = (geV + eλgeA)2 (1.10)

κW = (1+ eλ)2 (1.11)

with geV = −1
2 + 2 sin2(θw) and geA = −1

2 the vectorial and axial-vectorial cou-
pling between the Z boson and the lepton with charge e = ±1 and helicity λ = ±1.

Inserting the leptonic and the hadronic tensors into the cross section we obtain

dσ
i

dxdy
=
4πα

2

xyQ
2
η
i

{(
1− y−

x
2
y
2
M

2

Q
2

)
F
i
2 + y2xFi1 ±

(
y−

y
2

2

)
xF

i
3

}
(1.12)

where the − sign in front of F3 is taken for an incoming e+ or ν̄ and the + sign
for an incoming e− or ν. The normalization factor ηi are given by ηNC = 1

and ηCC = κWηW . So unlike in the NC process, in the CC process the leptonic
couplings and the propagator corrections are not inside the structure functions
but enter only on a cross section level. This is possible because in CC there are
no interferences between different bosons. The structure functions are given by

F
CC
k = FWk (1.13)

F
NC
k = Fγγk − (geV ± λgeA)ηγZF

γZ
k

+
(
(geV )2 + (geA)2 ± 2λgeVgeA

)
ηZZF

ZZ
k k ∈ {1, 2,L} (1.14)

xF
NC
3 = −(geA ± geV )ηγZxF

γZ
3 +

(
2g

e
Vg

e
A ± λ((geV )2 + (geA)2)

)
xF

ZZ
3 (1.15)

1This is true in the case of unpolarized DIS, while a few more functions have to be taken into
account in the polarized case.



1.1 definitions 15

1.1.2 Structure Functions

As noted above, there are three different structure functions, which we refer
to as different kinds. Usually, we actually use a different choice for the basis of
independent kinds, with respect to what is shown above in eq. (1.6):

F2, FL = F2 − 2xF1, xF3 (1.16)

Indeed, computing FL instead of F1 is advantageous due to the Callan-Gross
relation Callan and Gross 1969 FL = 0 in the naive parton model. Notice that
the FL definition it is not always the one above, but it may be corrected, since the
actual FL is the object involved in Callan-Gross relation. Even with this basis, F1
is still available, but it is treated as a derived quantity, as well as the total cross
sections, that is coming from the combination of all the structure functions in the
hadronic tensor.

Moreover, the value of xF3 is often preferred to the bare F3 structure function,
to better represent the way it appears in the full cross section (its “native scaling”).

Many experiments either quote the values of the computed structure functions,
as resolved by the reconstructed kinematics, or they prefer to report the value
of a reduced cross-section, but there is not a unique definition for it. Several re-
duced cross-sections definitions, as defined by experimental collaborations, are
implemented and documented in yadism.

1.1.3 Process / Currents

DIS is thought as a single process, but it can be drastically different according
to which EW boson is actually exchanges. It is actually possible to consistently
define three different types of possible processes, which correspond to a given
set of scattering bosons:

• Electromagnetic Current (EC): the only boson allowed to be exchanged is
the photon

• Neutral Current (NC): in addition to the photon, the Z boson is also in-
cluded, so this is a superset of EC. Since now two bosons are allowed also
interference terms appear. The Z boson has an axial coupling to the leptons
and thus it introduces the problems related to γ5 Gnendiger et al. 2017. It is
relevant to note that there are no Flavor Changing Neutral Currents (FCNC)
in the SM, thus NC will always conserve the incoming flavor

• Charged Current (CC): only the W+ or W− are allowed to be exchanged.
The actual boson is determined by the incoming scattering lepton and charge
conservation. As the W± are flavor changing additional care is needed in
the calculation.

The qualitative behavior of the three processes is drastically different, especially
CC concerning flavor structure. But at high energy also NC predictions might be
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significantly different from EC, while at low scale the Z contribution is mostly
irrelevant.

1.1.4 Heavyness

Another level at which it is possible to split the DIS cross-section is the fla-
vor content of the diagrams involved. By excluding different set of flavors it is
possible to obtain what we call different heavynesses for structure functions:

total this is the name we give, intuitively, to structure functions in which all
possible contributions are taken into account (according to the chosen Flavor
Number Scheme)

light for these observables we deny all contributions by heavy quarks (exactly
which quarks have to be considered massive depends once more on the
FNS)

<heavy> e.g. charm, contains the contributions in which the heavy quark of
selected flavor couples directly to the EW boson (as if only the charge of the
given flavor is non-zero, while all the other couplings are set to zero)

All the heavynesses are defined tuning parameters at Lagrangian level, e.g. by
imposing that the only the charm quark couples to EW boson, setting to 0 all
the other couplings. Because of this all the observables are potential physical
observables, since they are well-defined and free of divergences.

Notice that, as a consequence, the contributions in which the heavy quark is
present, but does not couple to the EW boson, are not included nor in light neither
in <heavy>, but they are of course present in total, thus:

Ototal ̸= Olight +
∑

h∈heavy

Oh (1.17)

1.2 coefficient functions
Using the collinear factorization theorem of DIS, J. C. Collins, Soper, and Ster-

man 1989, we can write any hadronic structure function Fk in terms of PDF
fj(ξ,µ2F) and the coefficient functions cj,k(z,Q

2,µ2F,µ2R) (acting as partonic struc-
ture functions) using a convolution over the first argument:

F
bb

′
k (x,Q2,µ2F,µ2R) =

∑
p

fp(µ
2
F)⊗x c

bb
′

k,p (Q2,µ2F,µ2R) (1.18)

where the sum runs over all contributing partons p ∈ {g,q, q̄}. In the following we
will assume that a quark q̂ is hit by the boson. Note that this is independent of the
incoming parton p. The dependency on the renormalization and factorization
scales has to be propagated consistently, in order to be able to use them as an
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estimate for MHOU (cf. chapter 4). For those cases in which scale variations are
not relevant, it is safe to consider µ2R = µ2F = Q2.

Using pQCD, it is possible to expand the coefficient functions in powers of the

strong coupling as(µ
2
R) =

αs(µ
2
R)

4π :

c
bb

′
k,p (z,Q2,µ2F,µ2R) =

∑
l=0

a
l
s(µ

2
R)c

bb
′,(l)

k,p (z,Q2,µ2F,µ2R) (1.19)

In practice, different normalization might be used.
Similar to the splitting on the leptonic side we have to split on the partonic side

again:

c
bb

′
k,p = gVq̂,bg

V
q̂,b ′c

VV
k,p + gAq̂,bg

A
q̂,b ′c

AA
k,p k ∈ {1, 2,L} (1.20)

c
bb

′
3,p = gVq̂,bg

A
q̂,b ′c

VA
3,p (1.21)

The main categories for coefficients the same of Structure Functions, i.e.:

• the process (EM/NC/CC)

• the kind (F2/L/3)

• the heavyness involved; it slightly differ from that of structure functions,
since it is referred to individual contributions

– light, when no mass is involved

– heavy, when mass effects are accounted for, with a single quark mass
(two mass effects are rather negligible, and very complex to include),
since (it is the same for every flavor, just depending on the numerical
value of the mass as a parameter)

– asymptotic, that are the limit of heavy contributions, to subtract the
double counting in GM-VFNS schemes, like FONLL

– intrinsic, in which the incoming parton is a massive one (can also com-
bine with asymptotic)

• but there is a new one: the channel (ns/ps/g), and it is related to the
incoming parton:

– if the EW boson it is coupling to a quark line connected to the incoming
one, than each PDF it’s contributing proportionally to his charge (e.g.:
electric charge for the photon); this is called non-singlet (ns)

– otherwise the line to which the EW boson is coupling it will be de-
tached from the incoming by gluonic lines, and the gluon is flavor blind,
so all the charges are summed and all the PDF are contributing the
same way; this is called pure singlet (ps)

– eventually: if a gluon is entering all the quarks will couple to the EW
boson (if no further restrictions are imposed by the observable, e.g.
F2charm), as in the singlet case, and so the charges are summed over;
this is called the gluon (g) (because it is the gluon...)
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NLO light heavy intrinsic asymptotic

NC ✓ ✓ ✓ ✓

CC ✓ ✓ ✓ ✓

NNLO

NC ✓ ✓ ✗ ✓

CC ✓ tabulated* ✗ ✓

N3LO

NC ✓ ✗
†

✗ ✗
‡

CC ✓ ✗
†

✗ ✗

∗ Already available as K-factors Gao:2017kkx, now being integrated in the grid format.
† Full calculation not available but an approximated expression can be constructed from

partial results.
‡ Calculation available, to be implemented.

Table 1.1: Overview of the different types and accuracy of the DIS coefficient functions
currently implemented in yadism. For each perturbative order (NLO, NLO, and
N3LO) we indicate the light-to-light (“light”), light-to-heavy (“heavy”), heavy-
to-light and heavy-to-heavy (“intrinsic”) and “asymptotic” (Q2 ≫ m

2
h limit)

coefficients functions which have been implemented and benchmarked. The
NNLO heavy quark coefficient functions for CC scattering are available in K-
factor format and are being implemented into the yadism grid formalism.

– the parity structure (vectorial-vectorial/axial-axial/vectorial-axial), it
is relevant only for the NC, and should be taken into account

Of course, there the coefficient functions also depends on the perturbative order
they are computed at.

A recap of the status of coefficient functions as implemented in yadism (cf.
section 1.4), is contained in table 1.1.

Notice that the concept of heavyness in coefficient functions loosely corresponds
to the same one in structure functions. In particular, a light structure functions
is only expressed in terms of light coefficient functions. About the massive con-
tributions instead, the idea would be similar, but here there are a few more com-
plications: the contributions to the observable computed in a massive scheme are
just divided in two categories, i.e. the massive coefficients for massless PDFs and
the intrinsic contributions. When instead a GM-VFNS is being constructed, the
need for asymptotic limit of massive observables arises, and they would come
with their own asymptotic coefficient functions. However, according to the spe-
cific scheme some additional terms related to the matching conditions might be
included in the coefficient functions. Moreover, GM-VFNS might construct com-
posite observables, assembling other “elementary” observables. In this cases, the
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connection between the heavyness of coefficient functions and observables is com-
pletely lost, but it still exists at the level of the single components.

1.2.1 Treatment of distributions

Coefficient functions are not always pure functions of the partonic variables,
since in absence of masses, regulating all divergences, the regularization itself
can generate distributions. All distributions disappears once convoluted with the
PDF (or a suitable interpolation basis, as a placeholder for a generic PDF):

σ =
∑
j

fj ⊗ cj =
∑
j

1∫
x

dz

z
fj(x/z)cj(z) (1.22)

so they never survive in physical observables.
A generic coefficient function will allow for three ingredients:

• Regular functions r(z) that are well behaving, i.e. integrable, for all z ∈ (0, 1];
these typically contain polynomials, logarithms and dilogarithms

• Dirac-δ distributions: δ(1− z)

• Plus distributions: [g(z)]+ which have a regulated singularity at z → 1 and
are defined by

1∫
0

dz f(z) [g(z)]+ =

1∫
0

dz (f(z) − f(1))g(z) (1.23)

The “plused” function can be a generic function, but in practice will almost
always be logk(1 − z)/(1 − z). The “plused” function has to be regular at z =

0. These contributions are related to soft and/or collinear singularities in the
physical process.

In order to do the convolution in a generic way we adopt the Regular-Singular-
Local (RSL) scheme: i.e. we categorize them by their behavior under the con-
volution internal. This is needed because of the mismatch in the definitions of
the convolution and the plus prescription. Any coefficient function c(z) can be
written in the following way:

f⊗ c =
1∫
x

dz

z
f(x/z)cR(z) +

1∫
x

dz

(
f(x/z)

z
− f(x)

)
c
S(z) + f(x)cL(x) (1.24)

The remapping of the coefficient function ingredients on to the RSL elements
is done in the following way:

• Regular functions c(z) = r(z) contribute only to the regular bit:

c
R(z) = r(z) , c

S(z) = 0 = cL(x) (1.25)
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• Dirac delta distributions c(z) = δ(1− z) only contribute to the local bit:

c
R(z) = 0 = cS(z) , c

L(x) = 1 (1.26)

• "Raw" plus distributions c(z) = [g(z)]+ contribute to both the singular and
the local bit:

c
R(z) = 0 , c

S(z) = g(z) , c
L(x) = −

x∫
0

dz g(z) (1.27)

derivation

f⊗ [g]+ =

1∫
x

dz

z
f(x/z) · [g(z)]+ (1.28)

=

1∫
0

dz

z
f(x/z) · [g(z)]+ −

x∫
0

dz

z
f(x/z) · [g(z)]+ (1.29)

=

1∫
0

dz

(
f(x/z)

z
− f(x)

)
· g(z) −

x∫
0

dz
f(x/z)

z
· g(z) (1.30)

=

1∫
x

dz

(
f(x/z)

z
− f(x)

)
· g(z) − f(x)

x∫
0

dz g(z) (1.31)

⇒


c
R(z) = 0

c
S(z) = g(z)

c
L(x) = −

x∫
0

dz g(z)

(1.32)

• A product of a regular function and a plus distribution c(z) = r(z) [g(z)]+
contributes to all three bits:

c
R(z) = (r(z) − r(1))g(z) , c

S(z) = r(1)g(z) , c
L(x) = −r(1)

x∫
0

dz g(z)

(1.33)
derivation

f⊗ c =
1∫
x

dz

z
f(x/z)r(z) · [g(z)]+ (1.34)

=

1∫
0

dz

z
f(x/z)r(z) · [g(z)]+ −

x∫
0

dz

z
f(x/z)r(z) · [g(z)]+ (1.35)
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=

1∫
0

dz

(
f(x/z)r(z)

z
− f(x)r(1)

)
· g(z) −

x∫
0

dz
f(x/z)r(z)

z
· g(z) (1.36)

=

1∫
x

dz

(
f(x/z)r(z)

z
− f(x)r(1)

)
· g(z) − f(x)r(1)

x∫
0

dz g(z) (1.37)

=

1∫
x

dz

(
f(x/z)(r(z) + r(1) − r(1))

z
− f(x)r(1)

)
· g(z) − f(x)r(1)

x∫
0

dz g(z)

(1.38)

=

1∫
x

dz

(
f(x/z)

z
− f(x)

)
r(1) · g(z) +

1∫
x

dz
f(x/z)(r(z) − r(1)))

z
g(z)

− f(x)r(1)

x∫
0

dz g(z) (1.39)

=

1∫
x

dz

z
f(x/z)r(1) · [g(z)]+ +

1∫
x

dz
f(x/z)(r(z) − r(1)))

z
g(z) (1.40)

⇒


c
S(z) = r(1)g(z)

c
R(z) = (r(z) − r(1))g(z)

c
L(x) = −r(1)

x∫
0

dz g(z)

(1.41)

Also consider that a plus distribution that contains a regular and a singular
function c(z) = [r(z)g(z)]+ can be simplified by

[r(z)g(z)]+ = r(z) [g(z)]+ − δ(1− z)

1∫
0

dy r(y) [g(y)]+ (1.42)

derivation;

1∫
0

dz f(z) [r(z)g(z)]+ =

1∫
0

dz (f(z) − f(1)) r(z)g(z) (1.43)

=

1∫
0

(f(z)r(z) − f(1)r(1))g(z) dz− f(1)

1∫
0

dz(r(z) − r(1))g(z)

(1.44)

=

1∫
0

dz f(z)
(
r(z) [g(z)]+

)
− f(z)


δ(1− z)

1∫
0

dy r(y) [g(y)]+




(1.45)
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1.3 flavor number schemes
FNS or Heavy Quark Matching Schemes are dealing with the ambiguity of

including massive quark contributions to physical cross sections. In general, it
is possible to consider two different kinematic regimes that require a different
handling of the massive contributions: for Q2 ≲ m

2 the heavy quark should be
treated with the full mass dependence. Q2 ≫ m

2 however the quark should be
considered massless, because otherwise a resummation of the occurring terms

log
(
m

2
/Q

2
)

would be required.

1.3.1 Fixed Flavor Number Scheme

As the name FFNS suggests, we are considering a fixed number of flavors
nf = nl + 1 with nl light flavors and one (and only one) heavy flavor with a finite
mass m. The number of light quarks nl is arbitrary but fixed and can range
between 3 and 6. Except for intrinsic contributions we are not allowing the heavy
PDF to contribute (and those corresponding to flavors not in the scheme as well).
This scheme is adequate for Q2

∼ m
2.

• the light structure functions corresponds to the interaction of the purely
light partons, i.e. the coefficient functions may only be a function of z, Q2

(and unphysical scales); in particular they can not depend on any quark
mass. This may be consistently obtained computing contributions for a
Lagrangian with all masses set to 0.

– this definition is consistent with Moch, Rogal, et al. 2008; Moch and
Vermaseren 2000; Moch, Vermaseren, and Vogt 2005, 2009; Vermaseren,
Vogt, et al. 2005, and QCDNUM, M. Botje 2011

– but is not consistent with APFEL, Bertone, Stefano Carrazza, and Rojo
2014, which instead is calling light the sum of contributions in which a
light quark is coupled to the EW boson

• as noted in section 1.1, the total structure functions are not the sum of light
and the single heavy ones, but contains additional terms Fmissing such as
the Compton diagrams in Hekhorn 2019; this is the proper physical object,
accounting for all contributions coming from the full Lagrangian.

• the heavy structure functions are defined by having in the Lagrangian only
the EW charges that are associated to the specific coupling quark (the only
massive one). In NC this corresponds to the electric and weak charges of
the quarks but in CC the situation is bit more involved: we divide the CKM-
matrix into several parts:

VCKM =



Vud Vus Vub

Vcd Vcs Vcb
Vtd Vts Vtb


 (1.46)
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and associate the blue couplings to the charm structure functions, green to
bottom and purple to top. For Fν,p

2,c this in effect amounts to

F
ν,p
2,c = 2x

{
C2,q ⊗

[
Vcd

2(d+ c) + Vcs
2(s+ c)

]

+ 2
(
Vcd

2 + Vcs
2
)
C2,g ⊗ g

}
(1.47)

Note that even heavier contributions are not available. E.g.:

– there is no contributions coming from either bottom or top to F2,c

– while charm would contribute to F2,b, but only as a massless flavor.

1.3.2 Zero-Mass Variable Flavor Number Scheme

As the name ZM-VFNS suggests, this scheme takes into account a variable
number of light flavors nf with nf = nf(Q

2). There is an activation scale Q2
thr,i

associated to each potentially “heavy” quark (i.e. charm, bottom, and top) and
whenever Q2 ⩾ Q

2
thr,i this quark is considered massless, otherwise infinitely

massive.
This scheme is adequate for Q2 ≫ m

2.

• the heavy structure functions are not defined, as quark masses are either 0
or ∞ (so no massive correction is available at all)

• total ones thus are equal to light

• light structure functions corresponds to the interaction of the purely light
partons, i.e. the coefficient functions may only be a function of z,Q2 and
eventually unphysical scales; so they can not depend on any quark mass

ZM-VFNS dependence on thresholds is simple, they just define the Q2 patches
in which nf is constant (and they are of course different from the quark masses,
that are always considered to be zero or infinite). Also note that Q2

thr,i are not
necessarily, but usually chosen to be, the quarks’ masses.

1.3.3 Fixed Order Next-to-Leading Log (FONLL)

FONLL Forte, Laenen, et al. 2010 is a GM-VFNS that includes parts of the
DGLAP equations into the matching conditions. That is: two different schemes
are considered, and they are matched at a given scale, accounting for the resum-
mation of collinear logarithms, but also for power suppressed terms from mas-
sive corrections at the same time. In the original paper the prescription is only
presented for the charm contributions, but just as a placeholder of an arbitrary
massive quark. The prescription defines two separate regimes, below and above
the next heavy quark threshold: Qthr,nf+2. As in the case of ZM-VFNS, these
matching thresholds are not necessarily, but usually chosen to be, the quarks’
masses.
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• for Q2
< Q

2
thr,nf+2: the general expression, eqs. (14-15) of Forte, Laenen,

et al. 2010, is:

F
FONLL(x,Q2) = F(d)(x,Q2) + F(nf)(x,Q2) (1.48)

F
(d)(x,Q2) = F(nf+1)(x,Q2) − F(nf,0)(x,Q2) (1.49)

Here the scheme change between the schemes with nf (i.e. the FFNS scheme
in which the coupling flavor is the only one considered to be massive) and
(nf + 1) flavors (i.e. the FFNS scheme with only massless quarks, including
the formerly massive one) is explicitly included.

This scheme change is related to the DGLAP matching conditions: in par-
ticular the massive corrections are only coming from the nf scheme, but the
collinear contribution is present in both:

– the nf scheme includes the logarithms of the involved mass, while the
PDF of the massive object are scale-independent by definition (since
the factorization terms are kept in the matrix element)

– the (nf+1) scheme does not account for them in them in the coefficient
function, but instead they are resummed in the PDF evolution through
the DGLAP equation

By matching the two schemes a GM-VFNS is obtained, accounting for both
the massive corrections and the resummation of collinear logarithms. The
matching is obtained subtracting the asymptotic massless limit of the mas-
sive expression, namely F(nf,0)(x,Q2), while adding the (nf+ 1) expression,
such that for large Q2 the massive nf contribution cancels with the asymp-
totic one, and only the truly light contribution survives. Actually below the
former threshold, so Q2

< Q
2
thr,nf+1, FNS with nf flavors is employed, i.e.

a θ(Q2 −Q2
thr,nf+1) is prepended to F(d).

• above this threshold: the ZM-VFNS is employed and this leads to an incon-
sistency at thisQthr,nf+2 threshold, but a good approximation nevertheless.
This amounts to simply make an hard cut to the original smooth decay of
massive contributions, and to add the subsequent thresholds for the follow-
ing massive quarks.

Damping

Up to NLO the scheme change (from nf − 1 flavors to nf) is continuous, but
in general it is not. In order to recover the continuous transition a damping
procedure may be adopted, turning the scheme in the so called damp FONLL.

Continuity on its own is not an issue, but it is one symptom of a feature of
F
(d) eq. (1.49): while it improves the behavior at large Q2 it is unreliable for
Q

2
∼ Q

2
thr,nf+1. For this reason might be a good idea to suppress F(d) near
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threshold, and then this restore continuity. The generic shape of this suppression
is written in eq. (17) of Forte, Laenen, et al. 2010, and it is:

F
(d,th)(x,Q2) = fthr(x,Q2)F(d)(x,Q2) (1.50)

In particular the following conditions are needed for fthr(x,Q2) to fit the task:

• be such that F(d,th)(x,Q2) and F
(d)(x,Q2) is power suppressed for large

Q
2

• enforce the vanishing of F(d,th)(x,Q2) at and below threshold

A common shape for fthr(x,Q2) is then:

fthr(x,Q2) = θ(Q2 −m2)

(
1−

Q
2

m
2

)2

(1.51)

The power used here is 2, but in general this is arbitrary, and thus it is a user
choice in yadism.

Threshold different from heavy quark mass

The threshold in FONLL plays a relevant role, since it is deciding where (in Q2)
the match should happen. A typical choice is to put the threshold on top of the
relevant quark mass (also in ZM-VFNS, mimicking the opening of a new channel).
This is not mandatory, as the threshold is just an FNS parameter it can be freely
chosen. If the threshold is then chosen different from the quark mass, a new scale
ratio appears, and the expressions might depend also on this one. Notice that the
threshold is only a parameter of FONLL, so it can not affect the FFNS ingredients
of the scheme (which can only depend on the real quark masses, through massive
propagators). Then only the massless limit (the double counting preventing bit)
might include a threshold dependency, and in practice it will only change the
relevant logarithm, that:

• instead of being the logarithm of the ratio between the process scale and the
mass

• is a logarithm of the ratio with the threshold

as it is discussed in Forte, Napoletano, et al. 2018.

1.4 yadism: dis grids provider
Deep-inelastic structure functions can be evaluated with several public codes

such as APFEL Bertone, Stefano Carrazza, and Rojo 2014 and QCDNUM M. Botje
2011. These various available DIS codes differ in the accuracy with which struc-
ture functions can be computed, whether they are based on the x-space or the
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N-space formalism, the treatment of heavy quark mass effects and of target mass
corrections, the availability of polarised and time-like coefficient functions, and
the inclusion of QED corrections among other considerations.
yadism is a new actor on this scene, being created as a framework for the

evaluation of DIS structure functions from the same family as the EKO Candido,
Hekhorn, and Magni 2022a DGLAP evolution code (cf. chapter 2). The open
source yadism code can be obtained from its GitHub repository

NNPDF/yadism

together with a detailed documentation, tutorials, and user-friendly examples

https://yadism.readthedocs.io/

One of the main advantages of yadism is that it is integrated with the fast inter-
polation grid toolbox PineAPPL S. Carrazza et al. 2020a, and hence DIS struc-
ture functions can be treated on the same footing as hadronic observables from
the point of view of PDF fitting and related applications. PineAPPL provides a
unique grid format, with application programming interfaces (APIs) for different
programming languages and a user-friendly command-line interface to manage
the grid files (cf. chapter 3). Furthermore, yadism implements the available N3LO
DIS coefficient functions, which combined with (approximate) N3LO evolution
and heavy quark matching conditions available in EKO provide theoretical calcula-
tions required to carry out a N3LO PDF determination. yadism will be described
in detail in an upcoming publication Candido, Hekhorn, et al. n.d., and here we
summarise its main features, in particular those relevant to the present study, and
highlight benchmarking studies carried out.

grid formalism. As already indicated in eq. (1.18), in the perturbative regime
DIS structure functions are given by the factorised convolution of process-dependent
partonic scattering cross-sections and of process-independent parton distribution
functions,

Fi(x,Q2) =
∑
j

∫1
x

dz

z
Ci,j(z,αs(Q

2))fj

(x
z

,Q2
)
≡ Cj;i ⊗ fj (1.52)

where j is an index that runs over all possible partonic initial states and Ci,j is
the process-dependent, but target-independent, coefficient function, given by an
expansion in the QCD coupling αs(Q

2). In the third term of eq. (1.52) and in the
following, sum over repeated indices is implicit.

As standard for fast interpolation techniques developed in the context of PDF
fits Bertone, Rikkert Frederix, et al. 2014; Carli et al. 2010; S. Carrazza et al. 2020a;
Wobisch et al. 2011, the PDFs can be expanded over an interpolation basis

fj(ξ) =
∑
α

pα(ξ)f(ξα) ≡ pα(ξ)fα , ξ =
x

z
, (1.53)

https://github.com/NNPDF/yadism
https://yadism.readthedocs.io/
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with pα(x) some suitable polynomial basis. This way the convolution in eq. (1.52)
can be replaced by a simple contraction

Fi = Cj;i ⊗ fj = Cjα;i · fα , Cjα;i = Cj;i ⊗ pα , (1.54)

in terms of PDFs evaluated at fixed grid points ξα and precomputed coefficients
Cjα;i. In yadism the polynomial interpolation basis is provided by EKO. The same
grid structure can be generalised to accomodate extensions of the basic structure
function calculation in eq. (1.52) such as heavy quark mass effects, renormaliza-
tion and factorization scale variations Abdul Khalek et al. 2019a,b, and target
mass corrections, among other effects. Isospin modifications, required to evalu-
ate the neutron, deuteron, or heavy nuclear structure functions, can be accounted
for either at the coefficient function level or at the input PDF level.

The grid formalism summarised schematically in eq. (1.54) requires as input
the corresponding DIS coefficient functions (cf. section 1.2). table 1.1 provides
an overview of the different types and accuracy of the DIS coefficient functions
currently implemented in yadism. For each perturbative order (NLO, NLO, and
N3LO) we indicate the neutral-current and charged-current light-to-light (light),
light-to-heavy (heavy), heavy-to-light and heavy-to-heavy (intrinsic) and asymp-
totic (Q2 ≫ m

2
h limit) coefficients functions which have been implemented and

benchmarked. The NNLO heavy quark coefficient functions for CC scattering
are available in K-factor format and are being implemented into the yadism grid
formalism. We note that the full calculation of the N3LO NC massive coefficient
functions is not available but an approximated expression can be constructed
from partial results. Heavy quark structure functions can be evaluated in the
FONLL GM-VFNS Forte, Laenen, et al. 2010, as well as in the FFNS and ZM-
VFNS. We point out that the list in table 1.1 is going to be updated as new fea-
tures are added, and therefore the interested user is encouraged to consult the
online documentation for an up-to-date states of available coefficient functions.

scale variations. As done by other public DIS tools, yadism also provides
the option of varying the renormalization and factorization scales in the calcula-
tion. The code follows the definitions of scale variations from W. L. van Neerven
and Vogt 2000, 2001, which are consistent with the broader picture of scale varia-
tions relevant for PDF fits from Abdul Khalek et al. 2019b where they also affect
the DGLAP evolution. There are two kinds of scale variations: renormalization
scale µR dependence, related to the ultraviolet renormalization scheme, and fac-
torization scale µF dependence, related to the subtraction of collinear logarithms
in the adopted factorization scheme. The factorization scale µF sets the bound-
ary between the coefficient functions and the DGLAP-evolved PDFs. Scale vari-
ations at a given perturbative order can be constructed from combining ingredi-
ents already present at the previous perturbative order, and hence for this reason
they represent a suitable predictor of potentially unknown missing higher orders.
Within yadism, the scale variation contributions to the DIS structure functions are
stored in separate grids such that the values of the scale ratios ξ2F = µ

2
F/Q

2 and
ξ
2
R = µ2R/Q

2 can be evaluated a posteriori.
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The calculation of scale variations provided by yadism and the subsequent de-
termination of the MHOU theory covariance matrix has been benchmarked with
the results of Abdul Khalek et al. 2019b, finding good agreement.

benchmarking. The DIS structure functions predictions provided by yadism

have been thoroughly benchmarked with those from APFEL and QCDNUM. Specifi-
cally, we have verified that we can reproduce the APFEL predictions for those coeffi-
cient functions listed in table 1.1 which are available in APFEL. Excellent agreement
is found in all cases considered, with some residual differences well understood
as will be discussed in more detail in Candido, Hekhorn, et al. n.d. To illustrate
this good agreement, fig. 1.3 displays the comparison of the yadism predictions
for DIS structure functions at NNLO with the corresponding ones from APFEL.
The same input theory settings are used in both calculations, in particular the
PDFs (in this case NNPDF4.0 NNLO), strong coupling constant (αs(mZ) = 0.118),
and GM-VFNS (FONLL-C). We display results for four bins of representative DIS
datasets included in the NNPDF4.0 global analysis: fixed-target Neutral Current
DIS on a deuteron target from BCDMS, fixed-target Charged Current DIS on
a lead target from CHORUS, collider neutral-current positron-proton DIS from
HERA, and collider Charged Current electron-proton DIS from HERA. A similar
level of agreement is obtained for other bins of DIS datasets.

 http://nnpdf.mi.infn.it/for-users/unpolarized-pdf-sets/#NNPDF4.0 
 http://nnpdf.mi.infn.it/for-users/unpolarized-pdf-sets/#NNPDF4.0 
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Figure 1.3: Comparison of the yadism predictions for DIS structure functions and reduced
cross-sections at NNLO with the corresponding ones from APFEL for the same
choice of input settings. We display predictions for four x bins of represen-
tative DIS datasets included in the NNPDF4.0 global analysis: fixed-target
neutral-current DIS on a deuteron target from BCDMS, fixed-target charged-
current DIS on a lead target from CHORUS, collider neutral-current positron-
proton DIS from HERA, and collider charged-current electron-proton DIS from
HERA.
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As briefly introduced in section 0.3, a central element of a PDF fit consists in
DGLAP evolution. During a fit, this will be used in two contexts:

i. upgrading grids to the so called FK tables (cf. chapter 3), to obtain theory
predictions at many different scales (matching the experimental results),
starting from the PDF candidate being minimized at a single fitting scale1

ii. evolving the result of the fit, to distribute PDF grids for the users already at
all the potentially useful scales (interpolating among a finite sets of values)

1Or, equivalently, evolving online (i.e. during the fit) at all those scales.
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While working on new PDF fits and related issues, a certain set of limitations
of the existing DGLAP evolution libraries has been collected, and for this reason
we decided to write a new QCD evolution library that matches the requirements
of a PDF fitting collaboration, and similar fits as well.

We called it Evolution Kernel Operators (EKO), because the main focus is to
compute such operators, which are independent of the initial boundary condi-
tions, and only depend on the selected theory parameters. In such manner, the
operators can be computed only once, stored on disk and then reused in the ac-
tual application. This method can lead to a significant speed-up when PDFs are
repeatedly being evolved, as it is customary in PDF fits. This approach has been
introduced by FastKernel Ball, Del Debbio, Forte, Guffanti, Latorre, Piccione, et
al. 2009; Ball, Del Debbio, Forte, Guffanti, Latorre, Rojo, et al. 2010; Del Debbio,
Forte, et al. 2007 and it is further developed here (with FK tables cited above
being the output of FastKernel). Furthermore, we decided to solve the evolu-
tion equations in Mellin space (cf. section 2.1.1) to allow for simpler solution
algorithms (both iterative and approximated). Yet, results are provided in mo-
mentum fraction space (cf. section 2.1.2) to allow an easy interface with existing
codes.
EKO currently implements the leading order (LO), next-to-leading order (NLO)

and next-to-next-to-leading order (NNLO) solutions J. Blümlein et al. 2021; Moch,
Vermaseren, and Vogt 2004; Vogt, Moch, and Vermaseren 2004. However, it is
organized in such a way that the addition of higher order corrections, such as the
approximate next-to-next-to-next-to-leading order (N3LO) Moch, Ruijl, et al. 2022,
can be achieved with relative ease. This accuracy is needed to match the precision
in the determination of the short-distance cross sections for several processes at
LHC (see e.g. Duhr and Mistlberger 2022 and references therein). We also expose
the associated variations of the various scales (their role in PDFs is exposed in
chapter 4, and specifically in section 4.2).

The correct treatment of intrinsic heavy quark distributions is also properly
taken into account. While the role of these distributions in the evolution equa-
tions is mathematically simple, as they decouple in a specific basis, their inte-
gration into the full solution, including matching conditions, is non-trivial. We
implement backward evolution too, again including the non-trivial handling of
all matching conditions. Both have been already used for studies of the heavy
quark content of the nucleon Ball, Candido, Cruz-Martinez, et al. 2022, that is
exposed in details in chapter 5.

It is also relevant to remark that EKO is another corner stone in a suite of tools
that aims to provide new handles to the theory predictions in the PDF fitting
procedure. This consists exactly in the calculation of those FK tables mentioned
above, and described in chapter 3. But it is worth explicitly mentioning that EKO is
also powering yadism Candido, Hekhorn, et al. n.d., the DIS coefficient function
library described in chapter 1.

We adopted Python as the main development language, opting for a high-level
one, which is easy to understand and learn for newcomers. In particular, with
the advent of Data Science and Machine Learning, Python has become the lan-
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guage of choice for many scientific applications, mainly driven by the large avail-
ability of packages and frameworks, and in particular some high-quality and
widespread ones. We decided to write a code that can be used by everyone
who needs QCD evolution, and to make it possible for applications that are not
supported yet to be built on top of the shipped tools and ingredients. For this
reason the code is developed mainly as a library, that contains physics, math, and
algorithmic tools, such as those needed for managing or storing the computed
operators. As an example we also expose a runner, making use of the built li-
brary to deliver an actual evolution application.

EKO is open-source, allowing easy interaction with users and developers. The
project comes with a clean, modular, and maintainable codebase that guarantees
easy inspection and ensures it is future-proof. The repository is publicly available,
and located at:

https://github.com/N3PDF/eko

The EKO documentation contains the full API reference, tutorials to get started
with EKO calculations, and far more complete discussion about the underlying
theory and numerical techniques adopted. It can be accessed at:

https://eko.readthedocs.io/en/latest/

This document is also regularly updated and extended upon the implementation
of new features.

2.1 theory overview
The central equations that EKO is solving are the Dokshitzer–Gribov–Lipatov

–Altarelli–Parisi evolution equations (DGLAP) evolution equations, whose full
expression is:

µ
2
F

df

dµ2F
(x,µ2F) = P

(
as(µ

2),
µ
2
F

µ
2

)
⊗ f(µ2F) (2.1)

where f(x,µ2F) is a vector of PDFs over flavor space with x the momentum fraction
and µ2F the factorization scale. The further scale µ2 is the one associated to the
running of the strong coupling, that can be displaced with respect to µ2F, usually
keeping a constant ratio of the two scales. For this reason, it is directly involved
in the solution of the differential equation (cf. section 2.1.3)2.

The main ingredients to eq. (2.1) are the Altarelli-Parisi splitting functions

P
(
as(µ

2), x, µ
2
F

µ
2

)
Moch, Vermaseren, and Vogt 2004; Vogt, Moch, and Vermaseren

2004, which are matrices over the flavor space, and actually distributions in x (de-
spite the name). Finally, ⊗ denotes the multiplicative (or Mellin) convolution.

2If µ2 ̸= µ
2
F an explicit dependency also appears in the expressions for the splitting functions.

https://github.com/N3PDF/eko
https://eko.readthedocs.io/en/latest/
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The splitting functions P
(
as(µ

2), x, µ
2
F

µ
2

)
admit a perturbative expansion in the

strong coupling as(µ
2):

P

(
as(µ

2), x,
µ
2
F

µ
2

)
= as(µ

2)P(0)

(
x,
µ
2
F

µ
2

)

+
[
as(µ

2)
]2

P(1)

(
x,
µ
2
F

µ
2

)

+
[
as(µ

2)
]3

P(2)

(
x,
µ
2
F

µ
2

)

+O

([
as(µ

2)
]4)

(2.2)

which is currently known at NNLO J. Blümlein et al. 2021; Moch, Vermaseren,
and Vogt 2004; Vogt, Moch, and Vermaseren 2004 and is under investigation for
N3LO Moch, Ruijl, et al. 2022. In a first step, the scale µ, at which the running
coupling as is evaluated, and the factorization scale µF can be assumed to be
equal µ = µF. The variation of the ratio µ/µF can be considered as an estimate
to Missing Higher Order Uncertainties (MHOU) Abdul Khalek et al. 2019c, as
it quantifies the dependence of the physical observable value on the unphysical
factorization scale (cf. chapter 4).

In order to solve eq. (2.1) a series of steps has to be taken, and we highlight
these steps in the following sections.

2.1.1 Mellin space

The presence of the derivative on the left-hand-side and the convolution on the
right-hand-side turns eq. (2.1) into a set of coupled integro-differential equations
which are non-trivial to solve.

A possible strategy in solving eq. (2.1) is by tackling the problem head-on and
iteratively solve the integrals and the derivative by taking small steps: we refer
to this as “x-space solution”, as the solution uses directly momentum space and
this approach is adopted, e.g., by APFEL Bertone, Stefano Carrazza, and Rojo 2014,
HOPPET Salam and Rojo 2009, and QCDNUM M. Botje 2011. However, this approach
becomes quite cumbersome when dealing with higher-order corrections, as the
solutions becomes more and more involved.

We follow a different strategy and apply the Mellin transformation M

g̃(N) = M[g(x)] (N) =

1∫
0

dx xN−1
g(x) (2.3)

where, as well here as in the following, we denote objects in Mellin space by a
tilde. This approach is also adopted by PEGASUS Vogt 2005 and FastKernel Ball,
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Del Debbio, Forte, Guffanti, Latorre, Piccione, et al. 2009; Ball, Del Debbio, Forte,
Guffanti, Latorre, Rojo, et al. 2010; Del Debbio, Forte, et al. 2007. The numerically
challenging step is then shifted to the treatment of the Mellin inverse M

−1, as we
eventually seek for results in x-space (cf. section 2.1.2).

2.1.2 Interpolation

Mellin space has the theoretical advantage that the analytical solution of the
equations becomes simpler, but the practical disadvantage that it requires PDFs
in Mellin space. This constraint is in practice a serious limitation since most
matrix element generators Buckley et al. 2011 as well as the various generated
coefficient function grids (e.g. PineAPPL S. Carrazza et al. 2020b; Schwan et al.
2022a, APPLgrid Carli et al. 2010 and FastNLO Daniel Britzger et al. 2012) are not
using Mellin space, but rather x-space.

This is bypassed in PEGASUS by parametrizing the initial boundary condition
with up to six parameters in terms of the Euler beta function. However, this is
not sufficiently flexible to accommodate more complex analytic forms, or even
parametrizations in form of neural networks.

We are bypassing this limitation by introducing a Lagrange-interpolation Ed-
ward 1779; Süli and Mayers 2003 of the PDFs in x-space on arbitrarily user-chosen
grids G:

f(x) ∼ f̄(x) =
∑
j

f(xj)pj(x), with xj ∈ G (2.4)

For the usage inside the library we do an analytic Mellin transformation of the
polynomials p̃j(N) = M

[
pj(x)

]
(N). For the interpolation polynomials pj we

are choosing a subset with Ndegree + 1 points of the interpolation grid G to
avoid Runge’s phenomenon Runge 1901; Süli and Mayers 2003 and to avoid large
cancellation in the Mellin transform.

2.1.3 Strong coupling

The evolution of the strong coupling as(µ
2) = αs(µ

2)/(4π) is given by its
renormalization group equation (RGE):

β(as) = µ
2 das(µ

2)

dµ2
= −

∑
n=0

βn

[
as(µ

2)
]2+n

(2.5)

and is currently known at 5-loop (β4) accuracy Baikov et al. 2017; K. G. Chetyrkin
et al. 2017; Herzog et al. 2017; Luthe, Maier, Marquard, and York Schroder 2017;
Luthe, Maier, Marquard, and Schröder 2016.

This is crucial for DGLAP solution, indeed, since the strong coupling as is a
monotonic function of the scale µ in the perturbative regime, we can actually
consider a transformation of eq. (2.1)

df̃
das

(N,as) = −
γ(N,as)
β(as)

f̃(N,as) (2.6)



36 evolution operators

with γ = −P̃ the anomalous dimension and β(as) the QCD beta function, where
the multiplicative convolution is reduced to an ordinary product.

2.1.4 Flavor space

Next, we address the separation in flavor space: formally we can define the
flavor space F as the linear span over all partons (which we consider to be the
canonical one):

F = Ffl = span
(
g,u, ū,d, d̄, s, s̄, c, c̄,b, b̄, t, t̄

)
(2.7)

The splitting functions P become block-diagonal in the “Evolution Basis”, a
suitable decomposition of the flavor space: the singlet sector PS remains the only
coupled sector over {Σ,g}, while the full valence combination Pns,v decouples
completely (i.e. it is only coupling to V), and the non-singlet singlet-like sector
Pns,+ is diagonal over {T3, T8, T15, T24, T35}, and the non-singlet valence-like sec-
tor Pns,− is diagonal over {V3,V8,V15,V24,V35}. The respective distributions are
given by their usual definition.

This Evolution Basis is isomorphic to our canonical choice

F ∼ Fev = span(g,Σ,V , T3, T8, T15, T24, T35,V3,V8,V15,V24,V35) (2.8)

but, it is not a normalized basis. When dealing with intrinsic evolution, i.e. the
evolution of PDFs below their respective mass scale, the Evolution Basis is not
sufficient. In fact, for example, T15 = u

+ + d+ + s+ − 3c+ below the charm
threshold µ

2
c contains both running and static distributions which need to be

further disentangled.
We are thus considering a set of “Intrinsic Evolution Bases” Fiev,nf

, where
we retain the intrinsic flavor distributions as basis vectors. The basis definition
depends on the number of light flavors nf and, e.g. for nf = 4, we find

F ∼ Fiev,4 = span(g,Σ(4),V(4), T3, T8, T15,V3,V8,V15,b+,b−, t+, t−) (2.9)

with Σ(4) =
4∑

j=1

q
+
j and V(4) =

4∑
j=1

q
−
j .

2.1.5 Solution Strategies

The formal solution of eq. (2.6) in terms of evolution kernel operators Ẽ is given
by

Ẽ(as ← a
0
s) = P exp


−

as∫
a
0
s

γ(a ′
s)

β(a ′
s)

da ′
s


 (2.10)

with P the path-ordering operator. If the anomalous dimension γ is diagonal in
flavor space, i.e. it is in the non-singlet sector, it is always possible to find an ana-
lytical solution to eq. (2.10). In the singlet sector sector, however, this is only true
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at LO and to obtain a solution beyond, we need to apply different approximations
and solution strategies, on which EKO offers currently eight implementations. For
an actual comparison of selected strategies, cf. section 2.2.2.

2.1.6 Matching at Thresholds

EKO can perform calculation in a Fixed Flavor Number Scheme (FFNS) where
the number of active or light flavors nf is constant. This means that both the
beta function β(nf)(as) and the anomalous dimension γ

(nf)(as) in eq. (2.6) are
constant with respect to nf. However, this approximation is likely to fail either in
the high energy region µ2F →∞ for a small number of active flavors, or to fail in
the low energy region µ2F → Λ

2
QCD for a large number of active flavors.

This can be overcome by using a Variable Flavor Number Scheme (VFNS) that
changes the number of active flavors when the scale µ2F crosses a threshold µ2h.
This then requires a matching procedure when changing the number of active
flavors, and for the PDFs we find

f̃(nf+1)(µ2F,1) = Ẽ(nf+1)(µ2F,1 ← µ
2
h)R

(nf)Ã(nf)(µ2h)Ẽ
(nf)(µ2h ← µ

2
F,0)

× f̃(nf)(µ2F,0) (2.11)

where the superscript refers to the number of active flavors and we split the
matching factor into two parts: the perturbative Operator Matrix Element (OME)
Ã(nf)(µ2h), currently implemented at NNLO Buza, Matiounine, Smith, and W. L.
van Neerven 1998a, and an algebraic rotation R(nf) acting only in the flavor space
F.

For backward evolution this matching has to be applied in the reversed order.
The inversion of the basis rotation matrices R(nf) is simple, whereas this is not
true for the OME Ã(nf) especially in case of NNLO or higher order evolution. In
EKO we have implemented two different strategies to perform the inverse match-
ing: the first one is a numerical inversion, where the OMEs are inverted exactly in
Mellin space, while in the second method, called expanded, the matching matrices
are inverted through a perturbative expansion in as, given by:

(
Ã(nf)

)−1

exp
(µ2h) = I − as(µ

2
h)Ã

(nf),(1)

+ a2s(µ
2
h)

[
Ã(nf),(2) −

(
Ã(nf),(1)

)2]

+O(a3s) (2.12)

with I the identity matrix in flavor space.

2.1.7 Running Quark Masses

In the context of PDF evolution, the most used treatment of heavy quarks
masses are the pole masses, where the physical values are specified as input
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and do not depend on any scale. However for specific applications, such as the
determination of MHOU due to heavy quarks contribution inside the proton Ball,
Bertone, Bonvini, Stefano Carrazza, et al. 2016, MS masses can also be used. In
particular, in S. Alekhin and Moch 2011 it is found that higher order corrections
on heavy quark production in DIS are more stable upon scale variation when
using the MS scheme. EKO allows for this option as it is discussed briefly in the
following paragraphs.

Whenever the initial condition for the mass is not given at a scale coinciding
with the mass itself (i.e. µh,0 ̸= mh,0, being mh,0 the given initial condition at the
scale µh,0), EKO computes the scale at which the running mass mh(µ

2
h) intersects

the identity function. Thus for each heavy quark h we solve:

mMS,h(m
2
h) = mh (2.13)

The value mh(mh) is then used as a reference to define the evolution thresholds.
The evolution of the MS mass is given by:

mMS,h(µ
2
h) = mh,0 exp


−

as(µ
2
h)∫

as(µ
2
h,0)

γm(a ′
s)

β(a ′
s)

da ′
s


 (2.14)

with γm(as) the QCD anomalous mass dimension available up to N3LO K. Chetyrkin
et al. 2006; Y. Schroder and Steinhauser 2006; Vermaseren, Larin, et al. 1997.

Note that to solve eq. (2.14) as(µ
2) must be evaluated in a FFNS until the

threshold scales are known. Thus it is important to start computing the MS
masses of the quarks which are closer to the the scale µ0 at which the initial
reference value as(µ

2
0) is given.

Furthermore, to find consistent solutions the boundary condition of the MS
masses must satisfy mh(µh) ⩾ µh for heavy quarks involving a number of active
flavors greater than the number of quark flavors nf,0 at µ0, implying that we
find the intercept between the RGE and the identity in the forward direction
(mMS,h ⩾ µh). The opposite holds for scales related to fewer active flavors.

2.2 benchmarking and validation
Although EKO is totally PDF independent, for the sake of plotting we choose

NNPDF4.0 Ball et al. 2022a as a default choice for our plots, but for section 2.2.1
where we choose the toy PDF of the Les Houches Benchmarks Dittmar et al. 2005;
Giele et al. 2002. We show the gluon distribution g(x) as a representative member
of the singlet sector and the valence distribution V(x) as a representative member
of the non-singlet sector. Note that PDFs in the same sector have mostly the same
behavior, apart from some specific regions (e.g. the T15 distribution right after
charm matching).
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2.2.1 Benchmarks

In this section we present the outcome of the benchmarks between EKO and
similar available tools assuming different theoretical settings.

Les Houches Benchmarks

EKO has been compared with the benchmark tables given in Dittmar et al. 2005;
Giele et al. 2002. We find a good match except for a list of typos which we list
here:

• in table head in Giele et al. 2002 should be 2xL+ = 2x(ū+ d̄)

• in the head of table 1: the value for αs in FFNS is wrong (as pointed out
and corrected in Dittmar et al. 2005)

• in table 3, part 3 of Giele et al. 2002: xL−(x = 10
−4,µ2F = 10

4 GeV2) =

1.0121 · 10−4 (wrong exponent) and xL−(x = 0.1,µ2F = 104 GeV2) = 9.8435 ·
10

−3 (wrong exponent)

• in table 15, part 1 of Dittmar et al. 2005: xdv(x = 10
−4,µ2F = 10

4 GeV2) =

1.0699 · 10−4 (wrong exponent) and xg(x = 10−4,µ2F = 104 GeV2) = 9.9694 ·
10

2 (wrong exponent)

Some of these typos have been already reported in Diehl et al. 2022.
In fig. 2.1 we present the results of the VFNS benchmark at NNLO, where a toy

PDF is evolved from µ
2
F,0 = 2GeV2 up to µ2F = 104 GeV2 with equal values of the

factorization and process scales µF = µ. For completeness, we display the singlet
S(x) and gluon g(x) distribution (top), the singlet-like T3,8,15,24(x) (middle) and
the valence V(x), valence-like V3(x) (bottom) along with the results from APFEL

and PEGASUS. We find an overall agreement at the level of O(10−3).

APFEL

APFEL Bertone, Stefano Carrazza, and Rojo 2014 is one of the most extensive
tool aimed to PDF evolution and DIS observables calculation. It is provided
as a Fortran library, and it has been used by the NNPDF collaboration up to
NNPDF4.0 Ball et al. 2022a.
APFEL solves DGLAP numerically in x-space, sampling the evolution kernels

on a grid of points up to NNLO in QCD, with QED evolution also available at
LO. By construction this method is PDF dependent and the code is automatically
interfaced with LHAPDF Buckley et al. 2015. For specific application, the code offers
also the possibility to retrieve the evolution operators with a dedicated function.

The program supplies three different solution strategies, with various theory
setups, including scale variations and MS masses.

The stability of our benchmark at different perturbative orders is presented in
fig. 2.2, using the settings of the Les Houches PDF evolution benchmarks Dittmar
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Figure 2.1: Relative differences between the outcome of NNLO QCD evolution as im-
plemented in EKO and the corresponding results from Dittmar et al. 2005,
APFEL Bertone, Stefano Carrazza, and Rojo 2014 and PEGASUS Vogt 2005. We
adopt the settings of the Les Houches PDF evolution benchmarks Dittmar et al.
2005; Giele et al. 2002.



2.2 benchmarking and validation 41

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

x

−10−1

−10−2

−10−3

−10−4

−10−5

0

10−5

10−4

10−3

10−2

10−1

re
l.

d
is

ta
n

ce
to

E
K
O

xg(x)

Apfel LO

Apfel NLO

Apfel NNLO

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

x

−10−1

−10−2

−10−3

−10−4

−10−5

0

10−5

10−4

10−3

10−2

10−1

xV (x)

Apfel LO

Apfel NLO

Apfel NNLO

Figure 2.2: Relative differences between the outcome of evolution as implemented in EKO

and the corresponding results from APFEL at different perturbative orders. We
adopt the same settings of fig. 2.1.

et al. 2005; Giele et al. 2002. The accuracy of our comparison is not affected by
the increasing complexity of the calculation.

PEGASUS

PEGASUS Vogt 2005 is a Fortran program aimed for PDF evolution. The program
solves DGLAP numerically in N-space up to NNLO. PEGASUS can only deal with
PDFs given as a fixed functional form and is not interfaced with LHAPDF.

As shown in fig. 2.1, the agreement of EKO with this tool is better than with
APFEL, especially for valence-like quantities, for which an exact solution is possi-
ble, where we reach O(10−6) relative accuracy. This is expected and can be traced
back to the same DGLAP solution strategy in Mellin space.

Similarly to the APFEL benchmark, we assert that the precision of our bench-
mark with PEGASUS is not affected by the different QCD perturbative orders, as
visible in fig. 2.3. As both, APFEL and PEGASUS, have been benchmarked against
HOPPET Salam and Rojo 2009 and QCDNUM M. Botje 2011 we conclude to agree also
with these programs.

2.2.2 Solution Strategies

As already mentioned in section 2.1.5, due to the coupled integro-differential
structure of eq. (2.1), solving the equations requires in practice some approxima-
tions to which we refer as different solution strategies. EKO currently implements
8 different strategies, corresponding to different approximations. Note that they
may differ only by the strategy in a specific sector, such as the singlet or non-
singlet sector. All the strategies provided agree at fixed order, but differ by higher
order terms.
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Figure 2.3: Same of fig. 2.2, now comparing to PEGASUS Vogt 2005.

In fig. 2.4 we show a comparison of a selected list of solution strategies3:

• iterate-exact: In the non-singlet sector we take the analytical solution of
eq. (2.6) up to the order specified. In the singlet sector we split the evolution
path into segments and linearize the exponential in each segment Bonvini
2012. This provides effectively a straight numerical solution of eq. (2.6). In
fig. 2.4 we adopt this strategy as a reference.

• perturbative-exact: In the non-singlet sector it coincides with iterate-exact.
In the singlet sector we make an ansatz to determine the solution as a trans-
formation U(as) of the LO solution Vogt 2005. We then iteratively deter-
mine the perturbative coefficients of U.

• iterate-expanded: In the singlet sector we follow the strategy of iterate-exact.
In the non-singlet sector we expand eq. (2.6) first to the order specified, be-
fore solving the equations.

• truncated: In both sectors, singlet and non-singlet, we make an ansatz to
determine the solution as a transformation U(as) of the LO solution and
then expand the transformation U up to the order specified. Note that for
programs using x-space this strategy is difficult to pursue as the LO solution
is kept exact and only the transformation U is expanded.

The strategies differ most in the small-x region where the PDF evolution is
enhanced and the treatment of sub-leading corrections become relevant. This
feature is seen most prominently in the singlet sector between iterate-exact

(the reference strategy) and truncated. In the non-singlet sector the distributions
also vanish for small-x and so the difference gets artificially enhanced. This is
eventually the source of the spread for the valence distribution V(x) making it
more sensitive to the initial PDF.

3For the full list of available solutions and a detailed descriptions see the online documentation.

https://eko.readthedocs.io/en/latest
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Figure 2.4: Compare selected solutions strategies, with respect to the iterated-exact

(called exa in label) one. In particular: perturbative-exact (pexa) (match-
ing the reference in the non-singlet sector), iterated-expanded (exp), and
truncated (trn). The distributions are evolved in µ2F = 1.652 → 10

4 GeV2.

pdf plots The PDF plot shown in fig. 2.4 contains multiple elements, and its
layout is in common with figs. 2.5 and 2.7.

All the different entries corresponds to different theory settings, and they are
normalized with respect to a reference theory setup (e.g. in fig. 2.4 the iterative

-exact strategy) and the lines correspond to the relative difference.
Furthermore, an envelope and dashed lines are displayed. To obtain them, the

full PDF set is evolved, replica by replica, for each configuration (corresponding
to a single evolution operator, that is applied to each replica in turn). Then ratios
are taken between corresponding evolved replicas, to highlight the PDF indepen-
dence of EKO rather then any specific set-related features. The upper and lower
borders of the envelope correspond respectively to the 0.16 and 0.84 quantiles of
the replicas set, while the dashed lines correspond to one standard deviation.

2.2.3 Interpolation

To bridge between the desired x-space input/output and the internal Mellin
representation, we do a Lagrange-Interpolation as sketched in section 2.1.2 (and
detailed in the online documentation). We recommend a grid of at least 50 points
with linear scaling in the large-x region (x ⪆ 0.1) and with logarithmic scaling in
the small-x region and an interpolation of degree four. Also the grids determined
by aMCfast Bertone, Rikkert Frederix, et al. 2014 perform sufficiently well for
specific processes.

For a first qualitative study we show in fig. 2.5 a comparison between an in-
creasing number of interpolation points distributed according to S. Carrazza et
al. 2020b, Eq. 2.12. The separate configurations are converging to the solution
with the largest number of points. Using 60 interpolation points is almost indis-
tinguishable from using 120 points (the reference configuration in the plot). In

https://eko.readthedocs.io/en/latest/
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Figure 2.5: Relative differences between the outcome of NNLO QCD evolution as imple-
mented in EKO with 20, 30, and 60 points to 120 interpolation points respec-
tively.

the singlet sector (gluon) the convergence is significantly slower due to the more
involved solution strategies and, specifically, the oscillating behavior is caused
due to these difficulties. The spikes for x→ 1 are not relevant since the PDFs are
intrinsically small in this region (f→ 0) and thus small numerical differences are
enhanced.

Also note that the results of section 2.2.1 (i.e. figs. 2.1, 2.2 and 2.3) confirm that
the interpolation error can be kept below the benchmark accuracy.

2.2.4 Matching

We refer to the specific value of the factorization scale at which the number
of active flavors is changing from nf to nf + 1 (or vice-versa) as the threshold
µh. Although this value usually coincides with the respective quark mass mh,
EKO implements the explicit expressions when the two scales do not match. This
variation can be used to estimate MHOU Abdul Khalek et al. 2019c.

In fig. 2.6 we show the strong coupling evolution as(µ
2) around the bottom

mass with the bottom threshold µ2b eventually not coinciding with the respective
bottom quark mass m2

b. The dependency on the LO evolution is only due to the
change of active flavor in the beta function (β0 = β0(nf)), which can be seen in
the ratio plot by the continuous connections of the lines. At NLO evolution the
matching condition already becomes discontinuous for µ2h ̸= m

2
h, represented

in the ratio plot by the offset for the matched evolution. The matching for the
NNLO evolution K. Chetyrkin et al. 2006; Y. Schroder and Steinhauser 2006 is in-
trinsically discontinuous, which is indicated in the ratio plot by the discrete jump
at the central scale µ2 = m2

b. For µ2 > 2m2
b the evolution is only determined by

the reference value as(m
2
Z) and the perturbative evolution order. For µ2 < m2

b/2

we can observe the perturbative convergence as the relative difference shrinks
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Figure 2.6: Strong coupling evolution as(µ
2) at LO, NLO and NNLO respectively with

the bottom matching µ2b at 1/2, 1, and 2 times the bottom mass m2
b indicated

by the band. In the left panel we show the absolute value, while on the right
we show the ratio towards the central scale choice.

with increasing orders. Since it is converging, the effect of the matching condi-
tion should cancel more and more exactly with the difference in running, but the
magnitude of both is increasing with the order, since the perturbative expansion
of the beta function β(as) is a same sign series.

In fig. 2.7 we show the relative difference for the PDF evolution with threshold
values µ2h that do not coincide with the respective heavy quark massesm2

h. When
matching at a lower scale the difference is significantly more pronounced as the
evolution includes a region where the strong coupling varies faster. When deal-
ing with µ2h ̸= m

2
h the PDF matching conditions become discontinuous already

at NLO Buza, Matiounine, Smith, and W. L. van Neerven 1998a. These contribu-
tions are also available in APFEL Bertone, Stefano Carrazza, and Rojo 2014, but
not in PEGASUS Vogt 2005 and although they are present in the code of QCDNUM M.
Botje 2011 they can not be accessed there. For the study in Ball, Candido, Cruz-
Martinez, et al. 2022 we also implemented the PDF matching at N3LO Ablinger,
Behring, J. Blümlein, De Freitas, Hasselhuhn, et al. 2014; Ablinger, Behring, J.
Blümlein, De Freitas, von Manteuffel, and Schneider 2015; Ablinger, Blumlein,
et al. 2011; Ablinger, J. Blümlein, De Freitas, Hasselhuhn, von Manteuffel, Round,
and Schneider 2014; Ablinger, J. Blümlein, De Freitas, Hasselhuhn, von Manteuf-
fel, Round, Schneider, and Wißbrock 2014; Behring et al. 2014; Bierenbaum et al.
2009a,b; Johannes Blümlein et al. 2017.
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Figure 2.7: Difference of PDF evolution with the bottom matching µ2b at 1/2, 2, and 5 times
the bottom mass m2

b relative to µ2b = m2
b. Note the different scale for the two

distributions. All evolved in µ2F = 1.652 → 10
4 GeV2.

2.2.5 Backward

As a consistency check we have performed a closure test verifying that after
applying two opposite EKOs to a custom initial condition we are able to recover
the initial PDF. Specifically, the product of the two kernels is an identity both
in flavor and momentum space up to the numerical precision. The results are
shown in fig. 2.8 in case of NNLO evolution crossing the bottom threshold scale
µF = mb. The differences between the two inversion methods are more visible for
singlet-like quantities, because of the non-commutativity of the matching matrix
Ã(nf)

S .
Special attention must be given to the heavy quark distributions which are

always treated as intrinsic, when performing backward evolution. In fact, if the
initial PDF (above the mass threshold) contains an intrinsic contribution, this
has to be evolved below the threshold otherwise momentum sum rules can be
violated. This intrinsic component is then scale independent and fully decoupled
from the evolving (light) PDFs. On the other hand, if the initial PDF is purely
perturbative, it vanishes naturally below the mass threshold scale after having
applied the inverse matching. In this context, EKO has been used in a recent study
to determine, for the first time, the intrinsic charm content of the proton Ball,
Candido, Cruz-Martinez, et al. 2022.

2.2.6 MS masses

In fig. 2.9 we investigate the effect of adopting a running mass scheme onto
the respective PDF sets. The left panel shows the T15(x) distribution obtained
from the NNPDF4.0 perturbative charm determination Ball et al. 2022a using the
pole mass scheme and the MS scheme, respectively. The distributions have been
evolved on µ2F = 1 → 10

4 GeV2. The mass reference values are taken from de
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Figure 2.8: Relative distance of the product of two opposite NNLO EKOs and the identity
matrix, in case of exact inverse and expanded matching (cf. eq. (2.12)) when
crossing the bottom threshold scale µ2b = 4.922 GeV2. In particular the lower
scale is chosen µ2F = 4.902 GeV2, while the upper is equal to µ2F = 4.942 GeV2,

Florian et al. 2016b, with the MS boundary condition on the charm mass given as
mc(µm = 3GeV) = 0.986GeV, leading to mc(mc) = 1.265GeV, while the charm
pole mass is mpole

c ≊ 1.51GeV Ball et al. 2022a. The major differences are visible
in the low-x region where the DGLAP evolution is faster and the differences
between the charm mass treatment are enhanced: an higher value of the charm
mass increases the singlet like distribution T15(x). For the sake of comparison, in
the right panel, we plot the relative distance to our result when comparing with
the APFEL Bertone, Stefano Carrazza, and Rojo 2014 implementation. As expected
the pole mass results are closer due to the same value of the charm mass, while
the MS results have a slightly bigger discrepancy which remains in all the x-range
around 1h accuracy.

In fig. 2.10 we show the evolution of the MS bottom mass mb(µ
2
m) using differ-

ent matching scales µ2b equal to 1/2, 1 and 2 times the massm2
b, for each perturba-

tive order (LO, NLO, and NNLO). The curve for µ2b = m2
b has been plotted as the

central one (bold), while the other two are used as the upper and lower borders
of the shaded area (according to their value, point by point). The reference value
mb(µ

2
b,0), has been chosen equal for the three curves, and it has been chosen at

mb(mb) = 4.92GeV. For this reason, above the central matching point µ2m ⩾ m2
b

two curves coincide (µ2b = m2
b and µ2b = m2

b/2) since they are both running with
the same number of flavors (nf = 5) and they have the same border condition.
The curve using µ2b = 2m

2
b, however, still runs with a smaller number of flavors

(nf = 4) and so does not match the former two. In the lower region µ2m < m
2
b

this is not happening, because even if the number of flavors is now the same,
the border condition is specified above matching for µ2b = m

2
b (in nf = 5). So,

starting from m
2
b and going downward, the central choice µ2b = m

2
b is matched
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Figure 2.9: (left) The NNPDF4.0 perturbative charm distribution T15(x) Ball et al.
2022a with MS and pole masses NNLO evolution when running on µ

2
F =

1 → 10
4 GeV2. (right) Relative difference to EKO for the same run with

APFEL Bertone, Stefano Carrazza, and Rojo 2014.
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Figure 2.10: Running of the bottom quark mass mb(µ
2
m) for different threshold ratios,

similar to fig. 2.6. The plot shows how the different choices of matching
scales affect the running in the matching region (and slightly beyond) at LO,
NLO, and NNLO. The border condition for the running has been chosen at
mb(mb) = 4.92GeV, as it is clear from the plot, since it is the intersection
point of all the curves shown.
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first and then evolved, while the higher scale choice µ2b = 2m2
b immediately runs

with four light flavors at m2
b. Thus the difference consists just in the matching.

2.3 technical overview
An EKO is effectively a rank 5 tensor Eµ,iαjβ, that evolves a PDF set from one

given scale to a user specified list of final scales µ:

fµ,iα = Eµ,iαjβf
(0)
jβ (2.15)

where i and j are indices on flavor, and α and β are indices on the x-grid.
The computation of each rank 4 tensor is almost independent: In a FFNS for

each target µ2F an operator Ẽ(µ2F,0 → µ
2
F) is computed separately. Instead, in

a VFNS first a set of operators is computed, to evolve from the initial scale to
any matching scales (we call these threshold operators). Then, for each target µ2F,
an operator is computed from the last intermediate matching scale to µ2F; finally
they are composed together.

2.3.1 Performance Motivations and Operator Specificity

Before diving into the details of EKO performances there is a fundamental point
that has to be taken into account: EKO is somehow unique as an evolution pro-
gram, because its main and only output consists in evolution operators.

For this reason, a close comparison on performances with other evolution codes
(whose main purpose is the evolution of individual PDFs) would be rather unfair:
evolving a single PDF is comparable to the generation of the transformation of a
single direction in the PDF space, while the operator acts on the whole function
space.

The motivation to primarily look for the operator itself relies on the specific
needs of a PDF fit itself. Indeed, a fit requires repeated usage of evolution for the
χ
2 evaluation for each fit candidate, and a final evolution step for the generation

of the PDF grids to deliver, as those used by LHAPDF Buckley et al. 2015. The first
step has been automated long ago, by the generation of the FastKernel tables
(formerly done with APFEL evolution, through APFELcomb, inspired to Bertone,
Stefano Carrazza, and N. P. Hartland 2017), that store PDF evolution into the
grids for predictions, while the second was repeated at any fit, since for each fit
is a one-time operation (even though it is actually repeated for the number of
Monte Carlo replicas, or Hessian eigenvectors, whose typical sizes are reported
in table 2.1).

Actually, both the operations of including evolution in theory grids and PDF
grids generation can be further optimized, considering that the evolution only
depends on a small number of theory parameters, and so the operator does, such
that it can be generated only once, and then used over and over.

https://github.com/NNPDF/apfelcomb
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PDF set name members
CT18NNLO Hou et al. 2021 59

MSHT20nnlo_as118 Bailey et al. 2021 65

NNPDF40_nnlo_as_01180 Ball et al. 2022a 101

Table 2.1: Selected PDF sets with their respective number of members

On top of replicas generation, the search towards an optimal fitting methodol-
ogy is an iterative process, that involves a large number number of fits. Moreover,
whatever program supports the generation of FastKernel tables has to create
some kind of evolution operator on its own (since the goal of FastKernel tables
is exactly to be PDF agnostic).

So, the EKO work-flow is not a complete novelty, since it was preceded by APFEL

in-memory operator generation, but it is a further and strong improvement in
that direction: being operator-oriented from the beginning, optimizations have
been performed for this specific task4, and maintaining an actual operator format,
the operators reuse is possible even across the boundary of FastKernel tables
generation, and applied with benefit, e.g., for the massive replicas set evolution
(consider NNPDF40_nnlo_as_01180_1000, that is a single set consisting of 1000

replicas, that can be evolved with a single operator instead of running 1000 times
an evolution program, like all the other similar sets), but even repeated fits.

While the benefit is limited for other use cases, any other highly iterative phe-
nomenological study, in which PDF evolution is repeatedly evaluated from differ-
ent border conditions, would benefit from being backed by EKO, since the cost of
DGLAP evaluation is paid only once (even though we are conscious that this is
mainly beneficial for PDF fitting).

2.3.2 Computation time

As we said above the computation almost happens independently for each
target µ2F and the amount of time required scales almost linearly with the number
of requested µ2F, except for the thresholds operators in VFNS that are computed
only once.

We call computing an operator with a fixed number of flavors “evolving in a
single patch”, since in a VFNS the evolution might span multiple patches. When
more than a single patch is involved, operators have to be joined at matching
scales µh with a non-trivial matching, that has to be computed separately (these
are part of the threshold operators).

Typical times required for these calculations in EKO are presented in table 2.2.
As expected the complexity of the calculation grows with perturbative order, and

4E.g. internally integrating the minimal amount of anomalous dimensions required for the op-
erator determination, while still providing a flexible delivery on all the output dimensions (re-
interpolating the x dependencies, or rotating into different flavor bases).
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so even the time taken increases. At LO no matching conditions are needed, while
for NLO and NNLO they are computed once for each matching scale.

patch matching
LO 10 s ∅
NLO 45 s 65 s
NNLO 60 s 75 s

Table 2.2: Rough estimates of times taken by EKO, with an average sized x-grid of 50 points
and single core.

We consider these time performances satisfactory, even though it is not straight-
forward to compare EKO with the other evolution codes, as mentioned in sec-
tion 2.3.1. As an example, NNLO evolution in µ

2
F = 1.652 Gev2 → 100GeV2

crossing the bottom matching at 4.922 Gev2 takes ∼ 60 s + 135 s in EKO (135 s for
the thresholds operators initialization, 60 s for the last patch). APFEL takes ∼ 25 s
on the same custom interpolation x-grid (APFEL is able to perform significantly
better on a pre-defined, built-in grid).

This comparison shows that on the evolution of a single PDF EKO is not really
competitive, but the ratio is limited to ∼ 7.5. However, we already pointed out that
the two programs perform a rather different task: computing a whole operator
against a single PDF evolution (on which the benchmarking is done, only because
both programs are able to perform this simple task, but it is a worthless task for
EKO usage).

The comparison is technically possible, but we do not encourage this kind
of benchmarks, because the typical task is actually different, and this motivates
the different performances. EKO perform bad in the case of the single task, but
with a perfect scaling (negligible work needed for repeated evolution, practically
constant), while any other program would perform better for the atomic task, but
with a linear scaling in the number of objects to be evolved.

Each program should be selected having in mind the specific usage. EKO is
recommended for PDF fitting, and repeated evolution in general.

The time measures in table 2.2 and the rest of this section have been obtained
on a regular consumer laptop:

OS: Linux 5.13 Ubuntu 21.10 21.10 (Impish Indri)

CPU: (4) x64 Intel(R) Core(TM) i5-6267U CPU @ 2.90GHz

Memory: 7.56 GB

No one of them is a careful benchmark, i.e. repeated multiple times, but is mainly
meant to show an order of magnitudes comparison.

2.3.3 Memory footprint

Memory usage is dominated by the size of the final object produced, since a
much smaller internal representation is used during the computation. The final
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object holds information about the rank 5 operator, so it is strictly dependent on
the size of the interpolation x-grid and the amount of target µ2F values.

For an average sized x-grid of 50 points, and a single target µ2F the size of the
object in memory is of ∼ 7.5MB, which scales linearly with the amount of µ2F
requested. The dependency on the size of the x-grid is roughly quadratic.

2.3.4 Storage

For permanent storage similar considerations applies with respect to the mem-
ory object. The main difference is that the object dumped by the EKO functions is
always compressed, leading to a size of ∼ 500kB for a single µ2F, which does not
necessarily scales linearly with the amount µ2F since the full rank 5 tensor is com-
pressed all-together (a linear scaling is just the worst case). Similar considerations
applies to the dependency on the size of the x-grid.

2.3.5 Possible Improvements

There are a few easy directions to boost the current performances of EKO, lever-
aging the µ2F splitting.

jobs To improve the speed of the computation, all the ingredients of the final
tensor (patches & matching) can be computed by separate jobs, and dispatched
to different processors. They just need to be joined at the very end in a simple
linear algebra step.

Notice that the time measures presented in section 2.3.2 are obtained with
a fully sequential computation on a single processor, the only one available at
present time.

memory Since both the computation and the consumption of an EKO can be
done one µ2F at a time, it is possible to store each rank 4 tensor on disk as soon as
it is computed, and to load them in memory only while applying them.

Both of these improvements are in the process of being implemented.

2.4 summary
Most of the work done to develop EKO has been devoted to reproduce known

results from other programs (and slightly extending or amending them to have a
consistent behavior), in order to have a more flexible framework where to imple-
ment new essential features for physics study (more on this in the Outlook at the
end of this section). Benchmarks with already existing and widely used codes are
shown in section 2.2.1, and demonstrated to be successful. Further, the multiple
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options and configurations available are presented in subsequent sections and
discussed, all leading to known and understood behaviors.

This does not mean that the current status of EKO does not expose any novelty.
table 2.3 summarizes a general comparison on specific features between several
evolution programs; we list only tools targeting the same scope of EKO, that is
unpolarized PDF fitting. It is exactly for this target (PDF fitting) that EKO is opti-
mized, and among the others three specific features are outstanding: the solution
in N-space, the backward VFNS evolution, and the operator-oriented nature.
EKO is the first code to solve DGLAP in Mellin space that has been explicitly

designed to be used for PDF fitting, and while this may seem irrelevant, it has
been explicitly picked as an improvement for EKO over the similar codes. There
are multiple solutions that are only available in x-space by applying numerical
approximated procedures, making the exact solution the most reliable one. In
N-space this is not required, and the choice of the solution is left completely up
to the user, with no numerical deterioration among the alternatives (as it was
already for PEGASUS), and thus it can be based on theory considerations. More-
over, the perturbative QCD ingredients used in the evolution (like anomalous
dimensions) are often first computed in N-space, making them available for EKO

immediately, while a further complex transformation is needed for usage in the
other codes.

All the programs listed are able to perform backward evolution in FFNS, that
consists in swapping the integral evolution bounds, but the VFNS backward evo-
lution is a unique feature of EKO, which involves the non-trivial inversion of the
matching matrix, as outlined in section 2.1.6.

The reason why EKO is an operator-first framework is discussed in detail in sec-
tion 2.3.1, but essentially it makes EKO particularly suited for our target: repeated
evaluation of evolution for PDF fitting. Producing only operators makes EKO less
competitive for single one-shot applications, but the optimal scaling with the size
of the task (practically constant, since the time consumed is dominated by the
operator calculation) makes it extremely good for massive evolution (and already
good when evolving O(10) elements). Two special examples where a massive evo-
lution is required are the post-fit evolution, since it is shared by all the members of
the fitted PDF set, and the evolution involved in the comparison of theoretical pre-
dictions with experimental data during the fit itself, where evolution is required
for each PDF member for each fit step (here the operator is usually embedded in
the so-called FK table, discussed in more details in chapter 3).

It should be observed that while the choice of Python as programming lan-
guage particularly stands out among the other programs (all written in Fortran,
either 77 or 95), this is only a benefit from the point of view of project manage-
ment (being Python much expressive) and third parties contributions (since its
syntax is familiar to many). Indeed, we make sure not to experience Python in-
famous performances, when it comes to the most demanding tasks (like complex
kernels evaluation, or Mellin inverse integration) as they either use compiled ex-
tensions (e.g. those available in scipy Virtanen et al. 2020) or they are compiled
Just In Time (JIT), using the numba Lam et al. 2015 package.

https://scipy.org/
https://numba.pydata.org/
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Feature EKO APFEL PEGASUS HOPPET QCDNUM

input space x x N, x∗ x x

solution space N x N x x

delivery space x x N, x x x

delivery E fa f̃, f fa f
backward FFNS D D D D D
backward VFNS D (D)b

intrinsic evolution D
prog. language Python F77 F77 F95 F77

LHAPDF grids D D
interpolation grids D D

F77 = Fortan 77 F95 = Fortran 95

Table 2.3: Comparison between several evolution programs. The upper part of refers to
some physical features: by x we mean the momentum fraction, N the Mellin
variables, x∗ denotes that PEGASUS is able to deal with x-space input, but only
for fixed PDF parametrization (cf. Vogt 2005). E and f stands for evolution
operators and PDFs respectively. The lower part refers to program aspects,
such as program language and interface with LHAPDF.

While the main purpose of EKO is to evolve PDFs, other QCD ingredients are
required to perform the main task, like evolving the strong coupling αs, running
quark masses, or dealing with different flavor bases: they are all provided to the
end user.
EKO is an open and living framework, providing all ingredients as a public

library, and accepting community contributions, bug reports and feature requests,
available through the public EKO repository.

ongoing developments As outlined above EKO implements mostly well-known
physics, but we expect a series of upcoming project to build on the provided
framework that will extend the current knowledge on PDFs. Several features are
already being implemented, and a few of them are already at an advanced stage:
the N3LO solution will be included as soon as it becomes available Moch, Ruijl,
et al. 2022, while N3LO matching conditions and strong coupling are already im-
plemented and used in the recent determination of the intrinsic charm content of
the proton Ball, Candido, Cruz-Martinez, et al. 2022.

Another main goal of EKO is to provide a backbone in the determination of
MHOU (cf. chapter 4), in the first place by allowing the variation of the various
scales used in the determination of evolved PDFs, that can be considered as an

aBoth, APFEL and HOPPET, have an interface to access an evolution operator, but no one of the two
can be used to store it and reuse it later on (this would require a dedicated interface).

bHOPPET is able by default to do backward VFNS, but is not implementing intrinsic matching
conditions (i.e. the contributions associated with the presence of an heavy flavor PDF) nor the shifted
matching scale.

https://github.com/N3PDF/eko/
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approximation to higher orders, implementing the strategies described in Abdul
Khalek et al. 2019c. The variation of matching scales involved in VFNS is already
implemented and available.

Other planned features, for which development has not yet began, include:
polarized evolution J. Blümlein et al. 2022; Vogt, Moch, Rogal, et al. 2008; Vogt,
Moch, and Vermaseren 2014, evolution of fragmentation functions Almasy et al.
2012; Mitov et al. 2006; Moch and Vogt 2008, and the QED ⊗QCD evolution of
the photon-in-hadron distribution Bertone, Stefano Carrazza, N. P. Hartland, and
Rojo 2018; Cridge et al. 2022; Xie et al. 2022, to estimate the impact of electro-weak
corrections onto precision predictions.
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Performing a PDF fit requires to integrate several elements to be gathered from
many different sources: data from several experiments, ranging over multiple
decades and formats, and competitive theory predictions, coming from different
providers. Finally, a fitting methodology has to be selected and engineered to
implement theory constraints, and to limit not physically motivated bias.

While data are a static component in the fit, the theory predictions depend
on the candidate PDF, since they are the map that connect the unobserved PDF
space, to the observed data space. During the fit, this map will be used a large
number of times (at least once for every minimization step), so it is paramount to
have an efficient way to evaluate it, otherwise it can become a serious bottleneck.

For this reason, a few interfaces to PDF independent theory predictions have
already been implemented D. Britzger et al. 2022; Daniel Britzger et al. 2012; Carli
et al. 2010; S. Carrazza et al. 2020a, and they are used in different contexts. They
propose different file formats to store the output of a Monte Carlo generator, split-
ting them by luminosity component, perturbative order, and observables binning.
This output can be optimized as an interpolation grid, leveraging the fact that the
PDF itself is only defined over a finite set of points, and thus including the inter-
polation basis in the factorized cross-section. Essentially, this recast the partonic
cross sections predictions as a theory array, for which the Mellin convolution is re-
placed by a linear algebra contraction over a single or multiple PDF set. This idea
can be broadened to apply to any factorized function, describing the structure of
an external hadron (both incoming and outgoing).

However, this picture does not exhaust the needs of a PDF fit (or any other
hadronic one), because, while the PDF dependence on flavor and x value is folded
on the grid, that on factorization scale has to be fixed to the process dependent
value. This dependence is not fitted, since it is only determined by perturba-
tive QCD. In order to obtain it, it is required to solve the DGLAP equation with
the border condition provided by the fit. But being DGLAP a set of integro-
differential equations linear in the PDF, this can be converted in the application
of a suitable evolution operator, solving the same equation, as discussed in sec-
tion 0.3 and chapter 2. Since the evolution operator can also be computed ahead
of time, it is possible to combine the two ingredients (the operator and the grid)
in a single fast array interface, that will directly produce the required theory pre-
dictions once contracted with the PDF candidate. Thus, the map from PDF space

57
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to data space discussed above, is reduced to a linear algebra product (or more
than one, when multiple hadrons are involved). During this operation, there is
no loss of generality, since the interpolation basis used for the conversion of the
analytic convolutions is already present in many PDF applications due to their
non-perturbative nature. Such an interface is called a “Fast Kernel table” (short-
ened to FK table) in the context of the NNPDF collaboration.

To produce the FK tables an evolution operator provider is required, and needs
to be interfaced with the grids. This was originally done in NNPDF by an inter-
nal tool (FKgenerator), and then systematized in the APFELgrid Bertone, Stefano
Carrazza, and N. P. Hartland 2017 package (leveraging the APFEL Bertone, Stefano
Carrazza, and Rojo 2014 evolution library), later reworked once more taking the
name of APFELcomb Bertone, Stefano Carrazza, and N. Hartland n.d.

An array interface is extremely useful, since it allows to treat the theory map
in the context of many software frameworks, just relying on the data structure of
an array. Especially relevant for machine learning software frameworks, but not
limited to them, e.g. it allows to create a Bayesian inference-based methodology
(cf. chapter 8), without the need of the treatment of further complex functions.

3.1 architecture
As it has been explained in the previous section, a theory map, i.e. an FK table,

is made of two main components: a PDF independent interpolation grid and an
evolution operator.

For the second one, we just need a single provider, able to compute the DGLAP
solving operator for a variety of theory settings (corresponding to different PDF
fits, e.g. NLO and NNLO QCD evolution), able to perform the operator compu-
tation as efficient as possible, and to smoothly interface with the grid for convo-
lution. For this reason, the software package EKO Candido, Hekhorn, and Magni
2022a has been created, described in details in chapter 2, in order to optimize for
this specific task.
EKO is very different from APFEL, the tool on which the NNPDF framework

has until now relied. For instance APFELgrid (then APFELcomb), the tool which
generates APFEL-based FK table, introduces an explicit dependency on APFEL itself
(and thus its internals). EKO instead not only exposes a restricted public API
(making all the dependent projects decoupled from its very internals), but the
dependency is not required at all to consume the EKO output, consisting of float
arrays stored in a very common tar archive, and standard YAML metadata. On
the other side, the observable grids have to be produced by different generators,
in order to cover the full variety of available processes. For this reason, we need
an interface to them, with the following targets: standardizing the output and
making it reproducible.

The solution we propose is thus based on the concept of interpolation grid, and
specifically on PineAPPL as an interface. In particular, PineAPPL exposes APIs
to different languages: it is natively written in Rust, but has an API to C/C++,

https://en.wikipedia.org/wiki/Tar_(computing)
https://yaml.org/
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Figure 3.1: Updated version of the flow diagram already appeared in Amoroso et al. 2022,
showing the overall pipeline architecture. Arrows in the picture indicate the
flow of information (together with the execution order), and the orange insets
on other elements indicate an interface to PineAPPL (notice EKO not having
it). In particular, magenta blocks above pinefarm are the providers Anastasiou
et al. 2004; Daniel Britzger et al. 2012; Candido, Hekhorn, and Magni 2022b;
Carli et al. 2010; R. Frederix et al. 2018; Grazzini et al. 2018.

that can be consumed also by a Fortran application (examples provided for all of
them), and a Python API, mostly dedicated to scripting and integration with the
rest of the pipeline, but there are providers (essentially yadism Candido, Hekhorn,
and Magni 2022b, used for DIS at NNLO) already using it to fill grids.

Since different generators require different inputs, we are trying to standard-
ize them into a common format for which other cards can be generated, called
pinecard. This is still work in progress, nevertheless, it is useful to speak of
pinecards, since they are used as inputs for pinefarm, that is the unique Python
package working as a front-end for the various generators. Essentially, each gen-
erator needs dedicated code to run, but this interface has to be written once, and
then is part of pinefarm, standardizing the input for that generator, and part of
the input across all of them (e.g. metadata, like references and observable details,
or theory parameters). In fig. 3.1 we summarize our architecture: the generators
are directly interfaced with the PineAPPL library, and the output is thus stan-
dardized to an interpolation grid (for one or two colliding hadrons), the input
instead consists of a pinecard.

Once the grid is available, pineko (a package dedicated to the final construc-
tion of FK tables) can extract the details of the operator needed for the FK table
generation from the grid, generate the EKO input, and then combine the grid and
the operator into the final FK table.

All the components of the pipeline are open source and the code is available in
the NNPDF GitHub organization:

• PineAPPL: https://github.com/NNPDF/pineappl

https://github.com/NNPDF/pineappl
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• EKO: https://github.com/NNPDF/eko

• pineko: https://github.com/NNPDF/pineko

• pinefarm: https://github.com/NNPDF/runcards (including the relevant pinecards,
required for NNPDF fits)

The set of tools does not depend on the NNPDF fitting methodology and can
be used in general for any hadronic function fitting1.

We dubbed this pipeline our theory pineline, that has its own dedicated reposi-
tory (https://github.com/NNPDF/pinealine), providing a single Python package,
acting as a meta-package, in the sense that it does not have any content, but its
own version, and it is used as a single front-end for the user of the whole pipeline,
reconciling the versions of the individual components. Installation instructions
and tutorials are provided on the pineline web-page, that is intended to provide a
useful introduction and resources for all kind of users:

https://nnpdf.github.io/pineline/

3.2 applications
Components have applications on their own, and part of them have already

been used (or are being used) to support other works. Even though here it ap-
pears incidental, this is an important design feature: we are building a framework,
not just a “pipeline application”. The various components should be focused on
dedicated tasks and easy to integrate in different architecture (or, more realisti-
cally, stand-alone projects), for similar but different goals.

A first example is the study on evidence for an intrinsic charm component
in the proton Ball, Candido, Cruz-Martinez, et al. 2022 (cf. chapter 5), based on
the NNPDF 4.0 PDF set, latest release of the NNPDF family, and EKO Candido,
Hekhorn, and Magni 2022a, the evolution code described in the previous sec-
tion 3.1. The role of EKO has been to unfold the intrinsic component from the
so-called fitted charm, in the 4 flavor number scheme (default scheme at fitting
scale for NNPDF), by backward evolving with DGLAP equation in a 3 flavor num-
ber scheme PDF set at a lower scale. On top of the required backward evolution,
and the proper treatment of intrinsic components, EKO implemented the N3LO
matching conditions between the 4 and 3 flavor schemes, that have been relevant
to estimate the perturbative stability of the result obtained.

Another application is the study of the forward backward asymmetry in the
Drell–Yan process with a high cut in the invariant mass of the lepton pair Ball,
Candido, Forte, et al. 2022 (cf. chapter 6). In particular, the work focuses on
the comparison between results obtained with the NNPDF 4.0 PDF set and other
contemporary PDF sets from different collaborations. We find that a certain shape

1Generalization of PineAPPL to support fragmentation functions and polarized PDFs is work in
progress.

https://github.com/NNPDF/eko
https://github.com/NNPDF/pineko
https://github.com/NNPDF/runcards
https://github.com/NNPDF/pinealine
https://nnpdf.github.io/pineline/
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in the high cut setting is related to the specific shape of the PDFs in the large-
x extrapolation region, and so very sensitive to the possible bias of extending
behaviors typical of the central data region. In this context, it has been crucial to
have PineAPPL S. Carrazza et al. 2020a Schwan et al. 2022c grids pre-computed
to reproduce the results, iterating on the PDF set to investigate different features
of the PDF, and trying to trace back the distribution behavior to PDF features.

Finally, a study of the low energy neutrino structure functions is ongoing,
where the low Q

2 experimental data is reconciled to the known perturbative
calculation at higher energies, based on the PDFs. Here, we use yadism, a general
inclusive DIS provider interfaced with PineAPPL, to produce perturbative QCD
calculation for the structure functions that get matched to experimental data.
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The first fundamental application of the integrated pineline (cf. chapter 3) will
actually the inclusion of Missing Higher Order Uncertainties (MHOU) at NNLO
in the NNPDF4.0 fit.

PDFs are non-perturbative objects, so it may seem counter-intuitive that their
accuracy depends on perturbative series truncation. This is a direct consequence
of extracting them from high energy collisions data: they are completely deter-
mined by physics that happens in the perturbative regime, and the map discussed
at the beginning of chapter 3 (the one that connects data to PDFs) is completely
determined by pQFT calculations. So, the origin of the perturbative order of PDF
sets is exactly determined by the theory predictions used during the extraction:
a NNLO set is a PDF set that has been fitted using theory predictions at NNLO.
A PDF set directly computed with non-perturbative methods would have no per-
turbative order associated, even when used in a perturbative calculation 12.

The perturbative series enters in the PDF in two different places: the partonic
cross section calculations (those encoded in grids) and the DGLAP evolution3.
In principle, these are two different perturbative orders, thus there is not a single
truncation, but two of them, and they can happen at two different orders. Still, the
two objects are not completely decoupled: DGLAP evolution arise from collinear
divergences, subtracted by the chosen factorization scheme. These collinear loga-
rithms appear as well in the partonic cross sections, so it is important to properly

1From that point of view would be an all-order object, even though it might be subject to other
kinds of approximations.

2Also consider that DGLAP evolution is perturbative, so, once evolved, it acquires again a depen-
dency on the perturbative truncation.

3That technically is used twice: during the fit, to bridge data with the boundary condition candi-
date, and to evolve the final boundary condition to all scales. But considering the PDF a function of
two variables (z and µ

2
F) consistently, the abstract evolution flow used is a single one.
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account for them, avoiding double counting. The whole picture of collinear sub-
tractions is deeply connected to treatment of quark masses, better discussed in
chapter 1, since a finite value of the mass regulates the collinear divergence on
its own. Therefore, the double perturbative order already appears in the par-
tonic cross sections calculations, where the FNS chosen can account for light and
heavy quarks at two distinct orders (cf. Forte, Laenen, et al. 2010, in particular the
FONLL-B scheme).

4.1 estimates
The goal of MHOU studies is to give an estimate of the impact of the missing

part of the perturbative series, in order to assess the size theory uncertainty prop-
agated on physical observables. There are two categories of possible approaches:

• use all-order information coming from theoretical knowledge of the pertur-
bative series (or properties that applies to the all-order result)

• and extrapolating from the behavior of the known orders.

The first category makes use of a similar information of that exploited in resum-
mation, with a different goal: resumming the perturbative series produces a new
expansion with a better convergence, while in MHOU studies the goal is to esti-
mate the missing part of the initial truncated series. The prominent example of
this category is the widespread adoption of scale variations as theory uncertainties
estimates for perturbative calculations. The physical motivation relies in Callan-
Symanzik equations, the same used to obtain DGLAP (cf. section 0.3). These
equations encode a property of physical observables: they can not depend on
unphysical scales. But this property holds only for the all-order physical observ-
ables, and it is spoilt by the perturbative truncation. Therefore, measuring the
dependence of the final result on the variation of unphysical scales, it is possible
to extract the magnitude of this violation. It is not possible to reconstruct the
exact value of an observable from this information alone, since there is no unique
solution to the equations, not even conditioning on the known orders, so solving
the equations is not a sufficient condition to identify the missing orders and exact
observable. Nevertheless, as said before the goal of MHOU investigations is not
to upgrade a truncated result to a full one, so capturing the order of magnitude
is sufficient. There are cases in which the scale variations approach is known to
fail, giving an unreliable estimate also of the order of magnitude. However, most
of these cases can be predicted by simple enough properties of the perturbative
series. E.g. at low enough orders some partonic channels might not be present
yet, like DIS at LO has no gluon channel (and at NLO no quark singlet contribu-
tion). There is not a single scale to be varied, but two: the renormalization and
the factorization scales, they have been briefly introduced in section 0.3, and they
also appeared in chapters 1 and 2. They are linked to the two perturbative trunca-
tions described above, so the two of them have to be varied to obtain a complete
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estimate. The way the two variations are coordinated is called a scale variations
prescription and it is illustrated in more details in section 4.4.

The main criticism to scale variations is not to capture only a subset of missing
terms, that is mostly common to all approaches since the available information is
coming from the finite amount of computed terms. Instead, it is the arbitrariness
connected to the prescriptions themselves. Even for single scale variation there
is already a completely free parameter: the amount of the variation. The con-
ventional solution, based on the logarithmic nature of the scale dependence, is to
double and halve the value of the scale, usually set to a process scale, to minimize
“spurious” contributions (but the chosen scale is also somewhat arbitrary, for the
same reason). This does not solve the arbitrariness that remains in the connection
between the estimate and the real value, but it gives a way to compare the impact
on different calculations, since the two estimates will share the same arbitrary
value.

The second category began with Cacciari and Houdeau 2011, that formulated a
Bayesian model to extrapolate the prediction value for unknown orders, updating
it with the known ones. There are two main goals for this kind of approaches:
getting rid of the scale variations arbitrariness, and extract more information than
a single shift estimate. Indeed, the result of Bayesian inference is always a poste-
rior distribution of some quantities, or something derived from it. The probabil-
ity density in principle contains more information, and it does not have to rely
on some Gaussian assumption (as will be done for example in section 4.2), that
while reasonable in most situations, can drastically fail for some edge cases. But
in order to infer these quantities, two inputs are required: a prior distribution
and a conditional likelihood, and unless some theoretical knowledge about the
perturbative series is embedded in their definition, they are arbitrary as well.

In that work in particular, the authors assume that the one and only link be-
tween different perturbative orders is a common upper bound, dubbed c̄. They
assume a certain distribution for the orders, dependent uniquely on this parame-
ter, and motivated only by its simplicity (admittedly forced because of the simpli-
fication of the result), and assume a flat non-normalizable prior in log(c̄), and try
to estimate the unknown orders passing through the distribution of the c̄ param-
eter. An entire section is spent motivating the various choices, but the guiding
principles are just simplicity and technical benefits. So they avoid the choice of
quantitative arbitrary parameters, but trading for the choice of qualitatively ar-
bitrary functions. This approach has been further investigated by other authors,
proposing empirical Bayes methods to set the optimal scale of the parameter c̄
Forte, Isgrò, et al. 2014, considering different models, with more constraining
assumptions, or consuming the same information contained in scale variations
approach Bonvini 2020. Another option is always to increase the number of
parameters Duhr, Huss, et al. 2021, to obtain a different compromise between
flexibility and simplicity.

All these approaches are designed to be applied on observables predictions,
but they need some further methodological developments to be propagated on
the PDF determination. In the following, I will focus on the theory covariance
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matrix method, introduced by the NNPDF collaboration, but this is not the only
option available, since recently other approaches have been proposed, based on
probabilistic reweighting and post-fit selection Kassabov et al. 2022 or the intro-
duction of nuisance parameters in the fit McGowan et al. 2022.

4.2 theory uncertainties in PDF fits
All the methods outlined in section 4.1 are suitable to provide an uncertainty

estimate on the theoretical prediction of an observable value. With more or less
extra assumptions, the exact definition of this uncertainty actually corresponds
to probability distribution over the value predicted.

During a PDF fit, probability distributions are already involved, but they only
appears on the experimental data side. So, the normal workflow consist to com-
pare a probability distribution coming from data with the individual value pro-
vided by theoretical predictions, and minimize the χ2 distance (defined thanks to
presence of said data distribution, approximately assumed to be Gaussian). This
is already not the whole story, since the NNPDF methodology accounts also for
the PDF distribution, that generates a distribution for theory predictions through
the theory map of FK tables (cf. chapter 3), i.e. its push-forward. But NNPDF, with
its MC approach, accounts for this distribution one PDF replica at a time, reduc-
ing the problem to minimize the χ2 distance, with the probability distributions
only on experimental side, again.

However, the introduction of theory uncertainties generates once more a distri-
bution for the theoretical prediction values, this time not stemming from the PDF
one, but directly from the distribution of the theory map itself4. In order to deal
with these distributions, another approach is required.

This problem has been faced for the first time by the NNPDF Collaboration in
Abdul Khalek et al. 2019b. The strategy adopted is described in section 2 of the
reference, and basically consists in assuming a Gaussian distribution for the the-
ory predictions (for a single PDF candidate), finding that this will modify to usual
probability distribution for the shifts between theory predictions and experimen-
tal data only in the covariance matrix. Essentially, the probability distribution
is still a Gaussian, as it is in absence of theory uncertainties, but the full covari-
ance matrix turns out to be simply the sum of the experimental and theoretical
covariance matrices.

4To get a feeling of what is happening, consider that the theory predictions are the convolution
of the PDF f with a theory calculation FK, and taking both of them to depend on some parameters,
say respectively ξ and ζ, so σ(ζ,ξ) = FK(ζ)⊗ f(ξ), and then the distribution on the observable
prediction σ can be generated from both the distribution on ξ, the PDF distribution, and one on ζ,
the theory map one.

http://nnpdf.mi.infn.it/
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Figure 4.1: Comparison between the experimental covariance matrix and the theoretical

one, generated by the 9 point prescriptions, both normalized to central values.

In fig. 4.1 the two matrices are shown for the NNPDF3.1 dataset, using colors
to represent the entries as percentages of the central values5. The theoretical one
is computed using the 9 points prescription, that is explained, together with the
other point prescriptions in section 4.4. The sum of the two matrices, i.e. the
actual covariance matrix used in the NNPDF3.1th fit, is shown in fig. 4.2.

In Abdul Khalek et al. 2019b the MHOU study stops at NLO, but since NNLO
central values are already available (used in the baseline for NNPDF3.1) it is pos-
sible to compare the size of the estimated uncertainties (variances of individual
observables, i.e. diagonal entries of the combined covariance matrix) to the ac-
tual shift between the NLO and NNLO central values for the central value of
NNPDF3.1 PDF set. This comparison plot is shown in fig. 4.3, still using the same
9 points prescription adopted for the theory covariance matrices used in previ-
ous figures. It is important to note that the NNLO in the PDF is not included
in the very same way of NLO, apart for DIS values (still the most part in the
NNPDF3.1 dataset). Indeed, in order to produce NNLO values for a generic PDF
candidate a NLO interpolation grid (cf. chapter 3) is upgraded to an approximate
NNLO one by means of K-factors, i.e. under the hypothesis that the only differ-
ence between the two orders is only the global normalization, that is obtained by
the ratio of predictions computed with an already available PDF set (usually the
former release of NNPDF itself, making the process iterative).

The final result for a fit including the combined covariance matrix is shown in
fig. 4.4. This set is the NNPDF3.1th release, and it is available on the NNPDF

5These plots, and the following ones in this section, are all taken from Abdul Khalek et al. 2019b
and used to illustrate the readers the concept discussed. Cf. the reference for further details about the
plots themselves.

 http://nnpdf.mi.infn.it/for-users/unpolarized-pdf-sets/#NNPDF3.1 
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Figure 4.2: Combined covariance matrix (experimental plus theoretical), the actual one
used in the NNPDF3.1th fit.
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Figure 4.3: The diagonal uncertainties σi (red) symmetrized about zero, compared to the
shift δi for each data-point (black). Values are shown as percentage of the
central theory prediction
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Figure 4.4: NNPDF3.1th NLO sets, gluon and anti-down distributions at 10GeV, the first
PDF determination to include MHOU estimates in the fit.
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Figure 4.5: Gluon and anti-down distributions comparison, in which it is shown the effect
of using the theory covariance matrix in the χ2 or in the pseudo-data genera-
tion only.

website and as an LHAPDF website, on the respective website, https://lhapdf.

hepforge.org/pdfsets.
It is important to remark that the combined covariance matrix has to be used

in all the places in which the experimental covariance matrix was used, i.e. all the
places in which the distribution enters. Indeed, the effect of the theory distribu-
tion, under the assumptions in Abdul Khalek et al. 2019b discussed above, is to
modify the covariance matrix in the distribution, and so in all its instances in the
PDF fit. In particular, the distribution (and so the covariance matrix) is used in
two places:

i. the definition of the χ2 to be minimized

ii. the generation of pseudo-data, part of the NNPDF methodology (better
explained in chapter 8, or in NNPDF literature, such as Ball, Del Debbio,
Forte, Guffanti, Latorre, Piccione, et al. 2009)

The effect of using the combined covariance in a single instance, while keeping
the experimental one for the other (as in the baseline), is shown in fig. 4.5.

 http://nnpdf.mi.infn.it/for-users/unpolarized-pdf-sets/#NNPDF3.1th+ 
https://lhapdf.hepforge.org/pdfsets
https://lhapdf.hepforge.org/pdfsets
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Another appropriate remark is about the inclusion of factorization scale varia-
tions. They play with the value of the scale involved in the factorization scheme,
that controls which collinear terms factorized in the PDFs. Being the PDFs uni-
versal object, by virtue of the factorization theorem, these terms are universal
themselves. It is customary, at this point, deciding to include them in partonic
cross-sections for each process, or to include them only in the running of DGLAP
evolution. Moreover, even when it has been decided to include the variation
inside the evolution, it is still possible to expand out the factorization scale de-
pendence, or to resum it as well. These alternatives, together with the choice of
refitting or not the border condition for different scales, generates the so-called
“schemes” for factorization scale variations, described in section 3.3 of Abdul
Khalek et al. 2019b.

The schemes main feature are:

A. including and resumming factorization scale variations in DGLAP evolu-
tion, refitting the border condition

B. including them in DGLAP evolution, but expanding them out

C. keeping the variations in the partonic cross-sections, together with renor-
malization ones

The main disadvantage of scheme A is refitting the border condition, that is a
computationally expensive operation (and possibly a delicate one, because of the
interplay with fit machinery). But both scheme A and B have the advantage of
being on the universal side of factorization, the PDF side, while the other one is
process dependent. Indeed, applying scheme C might require to implement scale
variations consistently in all the MC generators used to obtain predictions. The
default choice of NNPDF has been scheme B, since it has the same advantages of
scheme A, concerning universality, but includes expanded scale variations, that
should be almost equivalent to scheme C ones, because the expanded corrections
are the same, applied on one or the other side of the convolution (PDF or partonic
cross-section).

4.3 new developments
The investigation in Abdul Khalek et al. 2019b stopped at NLO, because of

various technical limitations, and the lack of a proper benchmark to assess the
reliability of available implementations. An NNLO fit based on the theory covari-
ance matrix formalism is still missing, and this specific target will be achieved
with the tools offered by the new theory pineline (cf. chapter 3).

A first update regards the actual implementation of scheme B, introduced in
section 4.2. Indeed, scale variations in scheme A-like fashion has been the first
and default way they appeared in the evolution programs, starting with programs
like PEGASUS. In order to apply them, the PDF anomalous dimensions have to be
evaluated at a scale shifted from the usual one, and a few extra terms appears.
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But, being implemented at the anomalous dimensions level, these contributions
are resummed by the solution of the differential equations, and essentially expo-
nentiated (the solution of a linear differential equation is a path ordered exponen-
tial of the associated kernel). But this is not the contribution required by scheme
B, and violates the scheme C equivalence. To get the expanded result, an extra
piece has to be multiplied to the evolved PDF, so after solving the differential
equation. For this reason, EKO ships both the kind of factorization scale varia-
tions (the only scale variations on the evolution side), dubbed exponentiated and
expanded, and the user can choose an actual solution conformal to the scheme B
prescriptions. Since EKO does not produce evolved PDFs, but evolution operators,
the extra piece appearing in the expanded case is also implemented at the anoma-
lous dimensions level, Mellin inverted, and included as an extra factor in the final
operator returned as output (i.e. it is not returned individually).

Another delicate point is the role of the strong coupling αs in the computation
of factorization scale variations. Indeed αs appears in two places: as the param-
eter of the perturbative series, evaluated at the scale of the process, and in the
solution of DGLAP equations. Indeed, the running coupling αs(Q

2) is a mono-
tonically decreasing function of the scale, and contains the only scale dependence
in the anomalous dimensions. Therefore, it is convenient to change variable, and
solve DGLAP as function of αs, instead of the factorization scale. This usage
might suggest a relation between the strong coupling and the factorization scale,
and then the value used should be affected by the related variations. Instead, this
is only used as a monotonic function, so for its mathematical properties and the
role in the equation (stemming from anomalous dimensions perturbative expan-
sion), and there is no implication about a physical relation. Essentially, αs value
is only sensitive to renormalization scale variations, that does not affect evolution
at all, but it is used there as a function of factorization scale. This usage led to a
clash in the options used, and a slightly wrong result when both variations were
applied, and it has been fixed in the current pineline.

Moreover, both renormalization scales variations (always coming from the par-
tonic cross-sections) and full scheme C (i.e. including also factorization) can also
be accomplished without requiring any information about scale variations from
the generators used. The structure of the scale variations contributions consists
substantially in scale ratios logarithms multiplying lower order cross-sections,
and the coefficients of the perturbative expansion of the beta function of the
strong coupling β(αs) (renormalization) or the splitting functions/anomalous di-
mensions P(x,αs). If the interpolation grid is stored separately by order, it is then
possible to reconstruct the missing dependence on the two scales, as described in
section 2.3 of Carli et al. 2010. However, the reconstruction of factorization scale
dependence requires convolutions with increasingly complex distributions (with
the perturbative order), i.e. more or less the same complexity of a DIS coefficient
functions integration, as it is performed by yadism. But they are also the universal
ingredient. So, we decided for a mixed approach: keep using scheme B there is
no need for factorization scale dependence to be stored in or computed from the
grids (the original reason to advocate for this scheme, over the C option), but we
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can reconstruct the renormalization scale dependence, just relying on a fixed set
of numerical coefficients (β function expansion), completely removing the need
to obtain scale variations from external providers.

Finally, using both the ingredients provided by the EKO and yadism libraries,
we benchmarked our implementations of scale variations with some analytical
results, based on the expressions for some specific DIS contributions, order by
order and for specific partonic channels. This already allowed us to resolve the
small differences between scheme B and C, and confirm that they are always
higher order contributions, even though the difference in the actual values is only
negligible in most of the cases, but not all of them, becoming sizeable in specific
kinematic corners (from few percent up to ∼ 20%). A few channels are still miss-
ing at NNLO, and the full benchmark will be presented in a separate publication
about the MHOU treatment with the new pineline, possibly the release of the
first NNLO NNPDF set accounting for MHOU.

4.4 scale variations – point prescriptions
As introduced in section 4.1, in the scale variations approach the scales to be

varied are actually two: the renormalization and the factorization scales.
More precisely, only the kind of scales to be varied are two, but there is one

renormalization scale associated to each process6, so the amount of scales is essen-
tially p+ 1, where p is the amount of processes in the dataset. This is because the
factorization scale is the scale associated with the PDF factorization, that, because
of universality, it is common to all data. On the other hand, the renormalization
scales are associated with the scales arising in renormalization conditions, and
this is common for each process, but not unique for all processes.

A consistent way of varying together all these scales is required in a global QCD
fit, like those for collinear PDFs, because the amount of processes might quickly
scale, and rough choices for prescriptions might result in undesirable features for
the theory covariance matrix generated. Also consider that, while dealing with a
large number of data points (even for a small amount of processes), covariances

become crucial, since they scale as O
(
n
2
data

)
, while the variances are just ndata.

The specific choices for a coordinated choices of scale values is called a point
prescriptions, because consist in the selection of a finite set of points (and related
weights) in the space of possible values for the unphysical scales, use to estimate
the whole observable dependence.

In the following, we present the derivation of suitable point prescriptions, that
can be used in the construction of a positive semi-definite theory covariance ma-

6Unfortunately, also the process definition is not unambiguous, being essentially a way to gather
in groups experimental data point. An indication is given by the theory predictions associated, and
the intuitive idea is that each group is identified by a different LO Feynman diagram. Because of this,
it might happen that some processes correspond to NLO or further contributions to other simpler
processes.
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trix. It turns out that two classes of prescriptions are possible, both requiring
milder or stronger generalization of equations in Abdul Khalek et al. 2019b. The
actual result claimed in the reference can be obtained within the broader gener-
alization, ensuring the positive semi-definiteness of the covariance matrix com-
puted with that class of prescriptions.

There are two conditions that we want to satisfy in constructing the theory
covariance matrix, in order to support the interpretation as the covariance matrix
of our theory prior distribution.

A. We want the theory covariance to be generated by some shift vectors ∆i(κ⃗); the
vectors should be proportional to the difference of predictions obtained by
a theory variation Ti(κ⃗) and the default theory in which κ⃗ = κ⃗0

∆i(κ⃗) = ci(κ⃗) (Ti(κ⃗) − Ti(κ⃗0)) (4.1)

Sij =
∑

κ⃗∈Vij

∆i(κ⃗)∆j(κ⃗) (4.2)

B. We want it to be positive semi-definite, as required for any covariance matrix

viSijvj > 0 ∀v ∈ R
ndata (4.3)

4.4.1 Derivation

Once all the elements in eqs. (4.1) and (4.2) are spelled out, we have a clear
recipe on how to compute the covariance matrix Sij.

For this reason, we are going to exploit all the properties that are required
or desirable (advantageous), in order to limit the available degrees of freedom:
anything left, it has to be regarded as being part of the prescription.

The current degrees of freedom are:

1. the choice of the p+ 1 dimensional space Vij of all the accounted variations
(p renormalization scales, 1 factorization scale)

2. the choice of normalization coefficients ci(κ⃗) ∈ R
7

3. the choice of the default value κ⃗0

The last element is trivial: it’s going to be part of the prescription, but in the
following we will always write κ⃗0 = 0⃗ for definiteness (it’s simple to replace this
in the final result with κ⃗0 in any case).

7Not all values of R make sense, but there is quite a wide range of interesting variations: N for
repeated points, or Q

+ for normalizations (possibly coming from repeated points), or 0 for masking.
At this level, we are just not excluding anything that has no special reason to be excluded.
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extra scales We know that the predictions for each data point only depend
on two scales: the common factorization scale, and the related renormalization
scale, but not the others. For this reason, it makes no sense to pick the nor-
malization for point i dependent on the other scales, since it would introduce a
dependency of the shifts on those scales that was not present in the unnormalized
shifts. Thus:

ci(κ⃗) ≡ ci(κF, κR,i) (4.4)

per-pair space Next, we claim that the space Vij can not actually depend
on the element ij of the covariance matrix been constructed. Indeed this stems
directly for the necessity to prove eq. (4.3) that is done in the following way:

∑
i,j

viSijvj =
∑
i,j

∑
κ⃗∈Vij

vi∆i(κ⃗)∆j(κ⃗)vj = (4.5)

=
∑
κ⃗∈V

∑
i,j

vi∆i(κ⃗)∆j(κ⃗)vj = (4.6)

=
∑
κ⃗∈V

(∑
i

vi∆i(κ⃗)

)2

> 0 (4.7)

If the space V were actually dependent on ij, it would have not been possible
to swap the two sums in the second step.

space choice On the other hand, it is desirable to define the prescription only
on the space of relevant scales for the given point ij. This means the factorization
scale κF and

off-diagonal two renormalization scales κR,i and κR,j, or

diagonal even a single one, if the two points are related to the same process,
i.e.

κR,i = κR,j

We would like our expressions not to depend on the number of scales present,
and only account for the scale relevant for the pair ij being considered. The easiest
choice is to pick the space V to be fully factorized in the various dimensions of κ⃗.
This means that it can be written as

V =

p+1∏
i=1

vi, (4.8)

with vi the one-dimensional space representing the variation of the single scale
labeled with i.
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But this is not the only choice available, it is just the simplest. There is only one
more option that guarantees the independence of the projection on the pair ij, i.e.
factorize the space for each possible value of κF. This option will be explored in
section 4.4.3.

In the case of a fully factorized space, the complex choice of the space is re-
duced on p+ 1 choices for one dimensional spaces. But if there is no reason to
distinguish processes at this level, it is reasonable to pick the same space for each
renormalization scale.

In practice, the basic one dimensional space will be always the same8:

v = {− log(2), 0, log(2)} ≡ {−, 0,+} (4.9)

and the overall space will be just the product:

V = vp+1 (4.10)

normalization At this point, all the arbitrariness left for the prescription is en-
coded in the normalization coefficients. With our simple choice of the space there
is no reason to choose complex coefficients, thus we will define the following
prescriptions:

ci(κ⃗) =

{
1/
√
Nm κ ∈ V

i
m

0 else
(4.11)

The spaces V
i
m now defines our point prescription, together with the overall

normalization Nm, since the ci(κ⃗) are acting as masks on the points κ⃗ not belong-
ing to the space. For the former we’ll choose:

V
i
m = vim × {−, 0,+}

p−1 (4.12)

where the two dimensional spaces vim are always the same space vm, but for the
scales (κF, κR,i), while the other scales are free to assume any possible value.

For the normalizations instead, there is no strict nor reasonable way to fix it
completely, but it is possible to fix the scaling in the case of a space vm and v with
an hypothetically large number of point: since we don’t want the normalization
of the theory covariance matrix to depend on the number of points being in the
prescription, we’ll choose

Nm ∝ |vm| · |v| = m · 3p−1 (4.13)

4.4.2 Examples of full space prescriptions

Since the presence of many processes have been reconciled at a theoretical (even
though abstract) level, here we will focus on fully spelled out examples, in the
simplest case of only two data points (1 and 2) belonging to two distinct processes.

8The one spelled out is only an option, any other space would work equally well.
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Again, the following is in no way a proof, which has been spelled out in de-
tails in section 4.4.1, for which considering more than two processes is extremely
relevant.

We will show the actual results of the obtained prescriptions for the on-diagonal,
S11, and off-diagonal, S12 cases.

Notice that, with respect to Abdul Khalek et al. 2019b, here we have not yet
introduced the factor s, but it would still be allowed by eq. (4.13). In order to
make the comparison with Abdul Khalek et al. 2019b easier, in this section we’ll
define the actual normalization including this factor, so:

Nm =
m · 3p−1

sm
(4.14)

For convenience, the unnormalized shifts will be called δ, i.e.:

δi(κ⃗) ≡ ∆i(κ⃗) ·
√
Nm (4.15)

In general, the expressions for the diagonal and off-diagonal cases with only two
process, p = 2, are the following:

diagonal effectively two-dimensional, since both the shifts depend only on
two scales

S11 =
∑
κ⃗∈V

∆1(κ⃗)∆1(κ⃗) = (4.16)

=
sm
3 ·m

∑
κ⃗∈V

1
m

δ1(κ⃗)
2 = (4.17)

=
sm
m

∑
(κF,κR,1)∈v

1
m

δ1(κF, κR,1, 0)2 (4.18)

where in the last step a single value has been chosen for κR,2, since δ1 does
not depend on this scale.

off-diagonal effectively three-dimensional, that only for this specific problem
coincide with the whole space (for a greater number of processes, would be
itself a projection)

S12 =
∑
κ⃗∈V

∆1(κ⃗)∆2(κ⃗) = (4.19)

=
sm
3 ·m

∑
κ⃗∈V

1
m∩V

2
m

δ1(κ⃗)δ2(κ⃗) (4.20)

=
sm
3 ·m

∑
κ⃗∈V

1
m∩V

2
m

δ12(κ⃗) (4.21)

where in the last step we defined δ12(κ⃗) ≡ δ1(κ⃗)δ2(κ⃗).
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9 points

The easiest prescription is the so-called 9 points prescription, because it corre-
sponds to consider the whole two dimensional space as Vi

9, thus the two elements
to be fixed are:

v9 = {−, 0,+}
2 (4.22)

N9 =
8 · 3
2

= 12 (4.23)

with s9 = 2 (naïvely because two scales are involved).

In the following, the expressions for the diagonal and off-diagonal cases are for-
matted in order to stress the connection with the various pictures in this section.
Concerning the diagonal expressions they are formatted on three lines, with three
terms each, such that each term correspond to one point in the two-dimensional
diagram. Since off-diagonal would correspond to a three-dimensional picture, this
picture is ideally sliced in two-dimensional planes, and each plane is displayed
in the equation as a block of terms in square brackets, and slightly indented with
respect to previous blocks. In order to preserve the shape, and to stress the effect
of zero values in the ci(κ⃗), missing terms are explicitly marked with zeros.

diagonal for this prescription, we effectively have only 8 shifts, since out of
the 9 theory predictions, one shift vanishes, just because it is used as the
reference

S11 =
1

4

[
δ1(−,−, 0)2 + δ1(−, 0, 0)2 + δ1(−,+, 0)2 +

δ1(0,−, 0)2 + 0 + δ1(0,+, 0)2 + (4.24)

δ1(+,−, 0)2 + δ1(+, 0, 0)2 + δ1(+,+, 0)2
]

off-diagonal the two ∆i combine in three dimensions: each one contains 3

zero elements (relative to the two dimensional central value), but the two
are overlapping over the central point (κF, κR,1, κR,2) = (0, 0, 0), leading to
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κr

κf

Figure 4.6: Visualization of the 9 points prescription for the diagonal (2 dimensional) and
off-diagonal (3 dimensional) elements.

only 5 zero elements out of 33 = 27 total elements, see section 4.4.2; thus
the 22 non-vanishing elements are the following:

S12 =
1

12

{[
δ12(−,−,−)+ δ12(−,−, 0) + δ12(−,−,+) +

δ12(−, 0,−) + δ12(−, 0, 0) + δ12(−, 0,+) +

δ12(−,+,−)+ δ12(−,+, 0) + δ12(−,+,+)

]
+

[
δ12(0,−,−)+ 0 + δ12(0,−,+) +

0 + 0 + 0 +

δ12(0,+,−)+ 0 + δ12(0,+,+)

]
+

(4.25)

[
δ12(+,−,−)+ δ12(+,−, 0) + δ12(+,−,+) +

δ12(+, 0,−) + δ12(+, 0, 0) + δ12(+, 0,+) +

δ12(+,+,−)+ δ12(+,+, 0) + δ12(+,+,+)

]}

5 points

Another interesting prescription is the 5 points one, since it is a rather minimal
prescription involving both renormalization and factorization scale.

v5 = {(−, 0), (0,−), (+, 0), (0,+)} (4.26)

N5 =
4 · 3
2

= 6 (4.27)
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with s5 = 2 (same reason of eq. (4.22)).

diagonal for this prescription, we effectively have only 4 shifts, since only 5

theory predictions are taken into account9, and, as for the 9 points, one is
used as reference

S11 =
1

2

[
0 + δ1(−, 0, 0)2 + 0 +

δ1(0,−, 0)2 + 0 + δ1(0,+, 0)2+ (4.28)

0 + δ1(+, 0, 0)2 + 0

]

off-diagonal in this case the two two-dimensional normalizations combine
into one three-dimensional pattern, where non-zero elements are arranged
in the shape of a double square pyramid: only central value is allowed for
κF ̸= 0, while the four corners are left for κF = 0 (same as the 9 points in
this case), see section 4.4.2

S12 =
1

6

{[
0 + 0 + 0 +

0 + δ12(−, 0, 0) + 0 +

0 + 0 + 0

]
+

[
δ12(0,−,−)+ 0 + δ12(0,−,+) +

0 + 0 + 0 +

δ12(0,+,−)+ 0 + δ12(0,+,+)

]
+

(4.29)

[
0 + 0 + 0 +

0 + δ12(+, 0, 0) + 0 +

0 + 0 + 0

]}

9with the shape of a Greek cross, as the + symbol
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κr

κf

Figure 4.7: Visualization of the 5 points prescription for the diagonal (2 dimensional) and
off-diagonal (3 dimensional) elements.

5̄ points

Just another option with renormalization and factorization scale, with same
two dimensional volume, but a different geometry.

v5 = {(−,−), (−,+), (+,−), (+,+)} (4.30)

N5 =
4 · 3
2

= 6 (4.31)

with s5̄ = 2 (same reason of eq. (4.22)).

diagonal for this prescription, we effectively have only 4 shifts, since only 5

theory predictions are taken into account10, and, as for the 9 points, one is
used as reference

S11 =
1

2

[
δ1(−,−, 0)2 + 0 + δ1(−,+, 0)2 +

0 + 0 + 0 + (4.32)

δ1(+,−, 0)2 + 0 + δ1(+,+, 0)2
]

off-diagonal also in this case the two two-dimensional normalizations ci(κ⃗)
have the combined effect of setting to zero a lot of elements in the three

10with the shape of St. Andrew’s cross, as the × symbol
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κr

κf

Figure 4.8: Visualization of the 5̄ points prescription for the diagonal (2 dimensional) and
off-diagonal (3 dimensional) elements.

dimensional space, this leaving the shape of an empty cube: the four corners
are now left for κF ̸= 0, and no point is left for κF = 0

S12 =
1

6

{[
δ12(−,−,−)+ 0 + δ12(−,−,+) +

0 + 0 + 0 +

δ12(−,+,−)+ 0 + δ12(−,+,+)

]
+

[
0 + 0 + 0 +

0 + 0 + 0 +

0 + 0 + 0

]
+

(4.33)

[
δ12(+,−,−)+ 0 + δ12(+,−,+) +

0 + 0 + 0 +

δ12(+,+,−)+ 0 + δ12(+,+,+)

]}

4.4.3 Alternative space: κF slices

In section 4.4.1 we made a set choices for the degrees of arbitrariness exposed
at the beginning. All of them were yield by a strict requirement (needed to obtain
a property, like Sij ⩾ 0) or by a reasonable request (e.g. not adding further depen-
dencies with normalizations, which led to eq. (4.4)). Only in one single case we
made an assumption based on an unneeded simplicity: the choice of the space as
fully factorized.
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This choice is sensible for the renormalization scales: why should the space
look different seen from the perspective of different processes? Why different
processes should be correlated by the space? On the other hand, it is completely
arbitrary for the factorization scale. Since factorization scale κF is treated sepa-
rately from renormalization scales κR,i, no surprise if even the space symmetry
somehow is broken on κF

11.
Thus, we can have a different factorized space for each different value of κF:

V =
⊔

κF∈vF

V(κF) (4.34)

V(κF) ≡ v(κF)p (4.35)

where vF is the space of possible values of κF (usually it will be just v of eq. (4.9)),
and v(κF) is instead the space of renormalization scales related to that single
value of the factorization scale.

In this case also the definition of the normalizations ci(κ⃗) should change with
respect to those defined in eq. (4.11) in order to account for this, since the different
spaces contain different numbers of points. We decide to normalize the elements
such that once the full space is projected over each of the two dimensional spaces
(κF, κR,i), the coefficients of the various shifts are equal to one, thus:

ci(κ⃗)
2 ∝ 1∑

κ
′
F
v(κ ′F)

|v(κF)|

|V(κF)|
=

1

m · |v(κF)|p−1
(4.36)

since the scales projected are all renormalization scales but a single one, that is
the relevant one for the given i, and together with κF make the two dimensional
space, whose volume is

∑
κ
′
F
v(κ ′F) = m.

4.4.4 Examples of sliced space prescriptions

In this case as well, for better comparison with Abdul Khalek et al. 2019b, we
introduce the factor of s in the normalization of eq. (4.36), thus

ci(κ⃗)
2 =

sm

m · |v(κF)|p−1
(4.37)

Furthermore, same as in section 4.4.2 (on purpose, to stress comparison) we
consider the case of only two data points (1 and 2) belonging to two distinct
processes. With this limited case it is harder to appreciate the difference in the
constructions of section 4.4.1 and section 4.4.3, since it actually lies in the way the
different three dimensional shapes for pair of processes are reconciled in the full
p+ 1-dimensional space. However, this difference has already been stressed in
the abstract construction of the two classes of prescriptions, thus the purpose of

11For the κR,i, choosing them factorized and uniform as argued, a permutation invariance is
present, and makes sense. No reason to extend it to κF.
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this examples is different: to showcase the different expressions obtained fully ex-
plicitly. For this aim the choice of considering just two points is fully satisfactory.

For this second set of examples there is no need to rewrite the full set of terms:
they are the exact same of section 4.4.2, the only difference will be in the coeffi-
cients, that now might depend on the value of κF because of the space structure
(and they will always depend on it).

Thus, the expressions for the diagonal and off-diagonal cases with only two pro-
cess, p = 2, in this second class of prescriptions are the following:

diagonal effectively two-dimensional, since both the shifts depend only on
two scales

S11 =
∑
κ⃗∈V

∆1(κ⃗)∆1(κ⃗) = (4.38)

=
∑

κF∈vF

sm
|v(κF)| ·m

∑
κ⃗R∈V(κF)

δ1(κ⃗)
2 = (4.39)

=
sm
m

∑
κF∈vF

∑
κR,1∈v(κF)

δ1(κF, κR,1, 0)2. (4.40)

where in the last step a single value has been chosen for κR,2, since δ1 does
not depend on this scale (this trivial sum cancels with the factor of |v(κF)|
in the denominator).

Notice that the last sum
∑

κF∈vF

∑
κR,1

=
∑

(κF,κR,1)∈v
1
m

, thus the finally

formula for the diagonal case is the same of eq. (4.18). While this is not a
proof of the general case, it is simple to show (in essentially the same way
of above) that this is the formula obtained for any number of processes p.

off-diagonal effectively three-dimensional, that only for this specific problem
coincide with the whole space

S12 =
∑
κ⃗∈V

∆1(κ⃗)∆2(κ⃗) = (4.41)

=
∑

κF∈vF

sm
|v(κF)| ·m

∑
κ⃗R∈V(κF)

δ1(κ⃗)δ2(κ⃗) (4.42)

=
sm
m

∑
κF∈vF

1

|v(κF)|

∑
κ⃗R∈V(κF)

δ12(κF, κR,1, κR,2). (4.43)

Since the space of this second class is engineered to give the same terms of
the first one (both diagonal and off-diagonal), and the normalizations are chosen
such to obtain uniform coefficients for the diagonal case (and then they are the
exact same of the first class, as noted above), the only difference will be in the
coefficients of the off-diagonal case, and they can only depend on the factorization
scale κF. For this reason, we will not repeat the full construction of the previous
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section, but just adopt a concise notation to make the different coefficients explicit
in the off-diagonal expressions:

S12 =
sm

m · km
(cm(−)δ12(−, . . . ) + cm(0)δ12(0, . . . ) + cm(+)δ12(+, . . . ))

(4.44)
where:

• km is the least common multiple of the |v(κF)|, in order to leave integer
coefficients in the sum

• cm(κF) is the leftover the 1/|v(κF)| once 1/km has been factored out

• δ12(κF, . . . ) is a placeholder for all the terms with that value of κF, as they
have been spelled out in the corresponding prescription in section 4.4.2

9 points

The specification of this prescription is almost the same of the corresponding
one for the first class:

v9(−) = v9(+) = {−, 0,+} (4.45)

v9(0) = {−,+} (4.46)

(4.47)

Therefore, the resulting off-diagonal expression is:

S12 =
2

8 · 6 (2 δ12(+, . . . ) + 2 δ12(−, . . . ) + 3 δ12(0, . . . )) (4.48)

=
1

24
(2 δ12(+, . . . ) + 2 δ12(−, . . . ) + 3 δ12(0, . . . )) (4.49)

5 points

For this prescription, the difference is a bit more relevant, mainly in terms of
the overall factor, since no one of the v5(κF) spaces has the maximal allowed
cardinality, i.e. 312

v5(−) = v9(+) = {0} (4.50)

v5(0) = {−,+} (4.51)

(4.52)

Therefore, the resulting off-diagonal expression is:

S12 =
2

4 · 2 (2 δ12(+, . . . ) + 2 δ12(−, . . . ) + δ12(0, . . . )) (4.53)

=
1

4
(2 δ12(+, . . . ) + 2 δ12(−, . . . ) + δ12(0, . . . )) (4.54)

12Of course even 3 is completely arbitrary, as explained in eq. (4.9), and the related note, but both
classes of prescriptions are perfectly adaptive w.r.t. this value, i.e. their definitions work perfectly fine
in the general case.



4.4 scale variations – point prescriptions 85

5̄ points

It is worth to analyze separately also this prescription: the former two are
enough to exemplify the regular cases, but this one is slightly degenerate. Indeed,
one of the spaces is actually empty.

v5(−) = v9(+) = {−,+} (4.55)

v5(0) = {} (4.56)

(4.57)

We need to generalize a bit the definition given above: km is chosen to be the least
common multiple of all non-zero coefficients. Finally, the off-diagonal expression
for this prescription is:

S12 =
2

4 · 2 (δ12(+, . . . ) + δ12(−, . . . )) (4.58)

=
1

4
(δ12(+, . . . ) + δ12(−, . . . )) (4.59)

4.4.5 Summary and final remarks

Two classes of possible prescriptions consistent with the imposed requirements
have been identified:

1. full space, with some zero coefficients

2. sliced space, with factorization scale dependent normalizations

No one of the two is strictly allowed by eqs. (4.1) and (4.2) of Abdul Khalek et
al. 2019b, since both require the usage of non-trivial normalizations ci(κ⃗), while
the only normalization allowed by eq. (4.2) of the paper is a global one for the
whole matrix.

Moreover, eqs. (4.1) and (4.2) of the paper themselves does not coincide with
the correct and general eqs. (4.1) and (4.2) in this thesis, because eq. (4.2) in the
paper is already defined at the level of a subspace Vm of the large space V, and
while this is described in the following, no proof is given of the compatibility of
these subspaces as projections of the full one.

Finally, the notation used in Abdul Khalek et al. 2019b is confusing, since eq.
(4.2) of the paper gives the impression that the first shift ∆i and the second shift
∆j are potentially evaluated on different points, while the point has to be always
the same, simply the actual dependence of the shifts is on two different scales.
We advocate for a more explicit and transparent syntax, at least while defining
the general landscape for prescriptions (while at the individual prescription level
a more concise syntax might even be useful, if properly introduced in relation to
the general one).
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It is unclear whether heavy quarks also exist as a part of the proton wave-
function, which is determined by non-perturbative dynamics and accordingly
unknown: so-called intrinsic heavy quarks, S. J. Brodsky, Hoyer, et al. 1980. It
has been argued for a long time that the proton could have a sizable intrinsic
component of the lightest heavy quark, the charm quark. Innumerable efforts to
establish intrinsic charm in the proton (cf. S. J. Brodsky, Kusina, et al. 2015) have
remained inconclusive. The study conducted in this work provided evidence
for intrinsic charm by exploiting a high-precision determination of the quark-
gluon content of the nucleon, Ball et al. 2021b, based on machine learning and a
large experimental dataset. We disentangled the intrinsic charm component from
charm-anticharm pairs arising from high-energy radiation, Ball, Bertone, Bonvini,
Forte, et al. 2016. We established the existence of intrinsic charm at the 3σ level,
with a momentum distribution in remarkable agreement with model predictions,
S. J. Brodsky, Hoyer, et al. 1980; Hobbs et al. 2014. We also confirmed these
findings by comparing to very recent data on Z-boson production with charm
jets from the LHCb experiment, Aaij et al. 2021.

5.1 the intrinsic charm evidence
While the successful framework of PDFs has by now been worked through

in great detail, several key open questions remain open. One of the most con-
troversial of these concerns the treatment of so-called heavy quarks, i.e. those
whose mass is greater than that of the proton (mp = 0.94 GeV). Indeed, vir-
tual quantum effects and energy-mass considerations suggest that the three light

89
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quarks and antiquarks (up, down, and strange) should all be present in the pro-
ton wave-function. Their PDFs are therefore surely determined by the low-energy
dynamics that controls the nature of the proton as a bound state. However, it is
a well-known fact, A. De Roeck and Thorne 2011; Gao et al. 2018; Kovařık et al.
2020; Rojo 2019, that in high enough energy collisions all species of quarks can be
excited and hence observed inside the proton, so their PDFs are nonzero. This ex-
citation follows from standard QCD radiation and it can be computed accurately
in perturbation theory.

But then the question arises: do heavy quarks also contribute to the proton
wave-function? Such a contribution is called “intrinsic”, to distinguish it from
that computable in perturbation theory, which originates from QCD radiation.
Already since the dawn of QCD, it was argued that all kinds of intrinsic heavy
quarks must be present in the proton wave-function, Stanley J. Brodsky, J. C.
Collins, et al. 1984. In particular, it was suggested, S. J. Brodsky, Hoyer, et al.
1980, that the intrinsic component could be non-negligible for the charm quark,
whose mass (mc ≃ 1.51 GeV) is of the same order of magnitude as the mass of
the proton.

This question has remained highly controversial, and indeed recent dedicated
studies have resulted in disparate claims, from excluding momentum fractions
carried by intrinsic charm larger than 0.5% at the 4σ level, Jimenez-Delgado et
al. 2015, to allowing up to a 2% charm momentum fraction, Hou et al. 2018.
A particularly delicate issue in this context is that of separating the radiative
component: finding that the charm PDF is nonzero at a low scale is not sufficient
to argue that intrinsic charm has been identified.

Here we present a resolution of this four-decades-long conundrum by provid-
ing unambiguous evidence for intrinsic charm in the proton. This is achieved
by means of a determination of the charm PDF, Ball et al. 2021b, from the most
extensive hard-scattering global dataset analyzed to date, using state-of-the-art
perturbative QCD calculations, Heinrich 2021, adapted to accommodate the pos-
sibility of massive quarks inside the proton, Ball, Bertone, Bonvini, Forte, et al.
2016; Ball, Bonvini, et al. 2015; Forte, Laenen, et al. 2010, and sophisticated Ma-
chine Learning (ML) techniques, Ball et al. 2017b, 2021b; Ball, Bertone, Bonvini,
Stefano Carrazza, et al. 2016. This determination is performed at Next-to-Next-
to-Leading Order (NNLO) in an expansion in powers of the strong coupling, αs,
which represents the precision frontier for collider phenomenology.

The charm PDF determined in this manner includes a radiative component,
and indeed it depends on the resolution scale: it is given in a four-flavor-number
scheme (4FNS), in which up, down, strange and charm quarks are subject to per-
turbative radiative corrections and mix with each other and the gluon as the res-
olution is increased. The intrinsic charm component can be disentangled from it
as follows. First, we note that in the absence of an intrinsic component, the initial
condition for the charm PDF is determined using perturbative matching condi-
tions, J. C. Collins and Tung 1986, computed up to NNLO in Buza, Matiounine,
Smith, and W. L. van Neerven 1998b, and recently (partly) extended up to N3LO,
Ablinger, Behring, J. Blümlein, De Freitas, Hasselhuhn, et al. 2014; Ablinger,
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Behring, J. Blümlein, De Freitas, von Manteuffel, et al. 2014; Ablinger, Blumlein,
et al. 2011; Ablinger, J. Blümlein, De Freitas, Hasselhuhn, von Manteuffel, Round,
and Schneider 2014; Ablinger, J. Blümlein, De Freitas, Hasselhuhn, von Manteuf-
fel, Round, Schneider, and Wißbrock 2014; Behring et al. 2014; Bierenbaum et al.
2009a,b; Johannes Blümlein et al. 2017. These matching conditions determine the
charm PDF in terms of the PDFs of the three-flavor-number-scheme (3FNS), in
which only the three lightest quark flavors are radiatively corrected. Hence this
perturbative charm PDF is entirely determined in terms of the three light quarks
and antiquarks and the gluon. However, the 3FNS charm quark PDF needs not
vanish: in fact, if the charm quark PDF in the 4FNS is freely parametrized and
thus determined from the data, Ball, Bertone, Bonvini, Forte, et al. 2016, the
matching conditions can be inverted. The 3FNS charm PDF thus obtained is then
by definition the intrinsic charm PDF: indeed, in the absence of intrinsic charm it
would vanish, Ball, Bonvini, et al. 2015. Thus unlike the 4FNS charm PDF, that in-
cludes both an intrinsic and a radiative component, the 3FNS charm PDF is purely
intrinsic. In this work we have performed this inversion at NNLO, Buza, Matiou-
nine, Smith, and W. L. van Neerven 1998b, as well as at N3LO, Ablinger, Behring,
J. Blümlein, De Freitas, Hasselhuhn, et al. 2014; Ablinger, Behring, J. Blümlein,
De Freitas, von Manteuffel, et al. 2014; Ablinger, Blumlein, et al. 2011; Ablinger,
J. Blümlein, De Freitas, Hasselhuhn, von Manteuffel, Round, and Schneider 2014;
Ablinger, J. Blümlein, De Freitas, Hasselhuhn, von Manteuffel, Round, Schnei-
der, and Wißbrock 2014; Behring et al. 2014; Bierenbaum et al. 2009a,b; Johannes
Blümlein et al. 2017, which as we shall see provides a handle on the perturbative
uncertainty of the NNLO result.

Our starting point is the NNPDF4.0 global analysis, Ball et al. 2021b, which
provides a determination of the sum of the charm and anticharm PDFs, namely
c
+(x,Q) ≡ c(x,Q) + c̄(x,Q), in the 4FNS. This can be viewed as a probability

density in x, the fraction of the proton momentum carried by charm, in the sense
that the integral over all values of 0 ⩽ x ⩽ 1 of xc+(x) is equal to the fraction of the
proton momentum carried by charm quarks, though note that PDFs are generally
not necessarily positive-definite. Our result for the 4FNS xc+(x,Q) at the charm
mass scale,Q = mc withmc = 1.51 GeV, is displayed in fig. 5.1 (left). The ensuing
intrinsic charm is determined from it by transforming to the 3FNS using NNLO
matching. This result is also shown in fig. 5.1 (left). The bands indicate the 68%
Confidence Level (CL) interval associated with the PDF uncertainties (PDFU) in
each case. Henceforth, we will refer to the 3FNS xc+(x,Q) PDF as the intrinsic
charm PDF.

The intrinsic (3FNS) charm PDF displays a characteristic valence-like structure
at large-x peaking at x ≃ 0.4. While intrinsic charm is found to be small in
absolute terms (it contributes less than 1% to the proton total momentum), it
is significantly different from zero. Note that the transformation to the 3FNS
has little effect on the peak region, because there is almost no charm radiatively
generated at such large values of x: in fact, a very similar valence-like peak is
already found in the 4FNS calculation.
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Figure 5.1: The intrinsic charm PDF and comparison with models. Left: the purely
intrinsic (3FNS) result (blue) with PDF uncertainties only, compared to the
4FNS PDF, that includes both an intrinsic and radiative component, at Q =

mc = 1.51 GeV (orange). The purely intrinsic (3FNS) result obtained using
N3LO matching is also shown (green). Right: the purely intrinsic (3FNS) final
result with total uncertainty (PDF +MHOU), with the PDF uncertainty indi-
cated as a dark shaded band; the predictions from the original BHPS model,
S. J. Brodsky, Hoyer, et al. 1980, and from the more recent meson/baryon
cloud model, Hobbs et al. 2014, are also shown for comparison (dotted and
dot-dashed curves respectively).

Because at the charm mass scale the strong coupling αs is rather large, the per-
turbative expansion converges slowly. In order to estimate the effect of Missing
Higher Order Uncertainties (MHOU), we have also performed the transformation
from the 4FNS NNLO charm PDF determined from the data to the 3FNS (intrin-
sic) charm PDF at one order higher, namely at N3LO. The result is also shown
fig. 5.1 (left). Reassuringly, the intrinsic valence-like structure is unchanged. On
the other hand, it is clear that for x ∼

< 0.2 perturbative uncertainties become very
large. We can estimate the total uncertainty on our determination of intrinsic
charm by adding in quadrature the PDF uncertainty and a MHOU estimated
from the shift between the result found using NNLO and N3LO matching.

This procedure leads to our final result for intrinsic charm and its total uncer-
tainty, shown in fig. 5.1 (right). The intrinsic charm PDF is found to be compatible
with zero for x ∼

< 0.2: the negative trend seen in fig. 5.1 with PDF uncertainties
only becomes compatible with zero upon inclusion of theoretical uncertainties.
However, at larger x even with theoretical uncertainties the intrinsic charm PDF
differs from zero by about 2.5 standard deviations (2.5σ) in the peak region. This
result is stable upon variations of dataset, methodology (in particular the PDF
parametrization basis) and Standard Model parameters (specifically the charm
mass), as demonstrated in sections 5.4 and 5.5.

Our determination of intrinsic charm can be compared to theoretical expecta-
tions. Subsequent to the original intrinsic charm model of S. J. Brodsky, Hoyer,
et al. 1980 (BHPS model), a variety of other models were proposed, Hobbs et al.
2014; Hoffmann and Moore 1983; Paiva et al. 1998; Pumplin 2006; Steffens et al.
1999, cf. S. J. Brodsky, Kusina, et al. 2015 for a review. Irrespective of their specific
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details, most models predict a valence-like structure at large x with a maximum
located between x ≃ 0.2 and x ≃ 0.5, and a vanishing intrinsic component for
x ∼
< 0.1. In fig. 5.1 (right) we compare our result to the original BHPS model and

to the more recent meson/baryon cloud model of Hobbs et al. 2014.
As these models predict only the shape of the intrinsic charm distribution, but

not its overall normalization, we have normalized them by requiring that they
reproduce the same charm momentum fraction as our determination. We find
remarkable agreement between the shape of our determination and the model
predictions. In particular, we reproduce the presence and location of the large-x
valence-like peak structure (with better agreement, of marginal statistical signif-
icance, with the meson/baryon cloud calculation), and the vanishing of intrin-
sic charm at small-x. The fraction of the proton momentum carried by charm
quarks that we obtain from our analysis, used in this comparison to models, is
(0.62± 0.28)% including PDF uncertainties only (cf. section 5.6 for details). How-
ever, the uncertainty upon inclusion of MHOU greatly increases, and we obtain
(0.62± 0.61)%, due to the contribution from the small-x region, x ∼

< 0.2, where
the MHOU is very large, see fig. 5.1 (right). Note that in most previous analyses,
Hou et al. 2018 (cf. section 5.7) intrinsic charm models (such as the BHPS model)
are fitted to the data, with only the momentum fraction left as a free parameter.

We emphasize that in our analysis the charm PDF is entirely determined by
the experimental data included in the PDF determination. The data with the
most impact on charm are from recently measured LHC processes, which are
both accurate and precise. Since these measurements are made at high scales, the
corresponding hard cross-sections can be reliably computed in QCD perturbation
theory.

Independent evidence for intrinsic charm is provided by the very recent LHCb
measurements of Z-boson production in association with charm-tagged jets in
the forward region, Aaij et al. 2021, which were not included in our baseline
dataset. This process, and specifically the ratio R

c
j of charm-tagged jets normal-

ized to flavor-inclusive jets, is directly sensitive to the charm PDF, Boettcher et al.
2016, and with LHCb kinematics also in the kinematic region where the intrinsic
component is relevant. Following Aaij et al. 2021; Boettcher et al. 2016, we have
evaluated R

c
j at NLO, Alioli et al. 2010; Sjostrand et al. 2008 (cf. section 5.8 for de-

tails), both with our default PDFs that include intrinsic charm, and also with an
independent PDF determination in which intrinsic charm is constrained to vanish
identically, so charm is determined by perturbative matching (cf. section 5.3).

In fig. 5.2 (top left) we compare the LHCb measurements of R
c
j , provided in

three bins of the Z-boson rapidity yZ, with the theoretical predictions based on
both our default PDFs as well as the PDF set in which we impose the vanishing of
intrinsic charm. In fig. 5.2 (top right) we also display the correlation coefficient be-
tween the charm PDF at Q = 100 GeV and the observable R

c
j , demonstrating how

this observable is highly correlated to charm in a localized x region that depends
on the rapidity bin. It is clear that our prediction is in excellent agreement with
the LHCb measurements, while in the highest rapidity bin, which is highly corre-
lated to the charm PDF in the region of the observed valence peak x ≃ 0.45, the
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Figure 5.2: Intrinsic charm and Z+charm production at LHCb. Top left: the LHCb mea-
surements of Z boson production in association with charm-tagged jets, Rc

j , at√
s = 13 TeV, compared with our default prediction which includes an intrinsic

charm component, as well as with a variant in which we impose the vanishing
of the intrinsic charm component. The thicker (thinner) bands in the LHCb
data indicate the statistical (total) uncertainty, while the theory predictions in-
clude both PDF and MHOU. Top right: the correlation coefficient between the
charm PDF at Q = 100 GeV in NNPDF4.0 and the LHCb measurements of Rc

j

for the three yZ bins. Center: the charm PDF in the 4FNS (right) and the intrin-
sic (3FNS) charm PDF (left) before and after inclusion of the LHCb Z+charm
data. Results are shown for both experimental correlation models discussed in
the text. Bottom left: the intrinsic charm PDF before and after inclusion of the
EMC charm structure function data. Bottom right: the statistical significance
of the intrinsic charm PDF in our baseline analysis, compared to the results
obtained also including either the LHCb Z+charm (with uncorrelated system-
atics) or the EMC structure function data, or both.
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prediction obtained by imposing the vanishing of intrinsic charm undershoots
the data at the 3σ level. Hence this measurement provides independent direct
evidence in support of our result.

We have also determined the impact of these LHCb Z+charm measurements
on the charm PDF. Since the experimental covariance matrix is not available, we
have considered two limiting scenarios in which the total systematic uncertainty
is either completely uncorrelated (ρ sys = 0) or fully correlated (ρ sys = 1) between
rapidity bins. The charm PDF in the 4FNS before and after inclusion of the LHCb
data (with either correlation model), and the intrinsic charm PDF obtained from it,
are displayed in fig. 5.2 (center left and right respectively). The bands account for
both PDF and MHO uncertainties. The results show full consistency: inclusion of
the LHCb R

c
j data leaves the intrinsic charm PDF unchanged, while moderately

reducing the uncertainty on it.
In the past, the main indication for intrinsic charm came from EMC data,

Aubert et al. 1983 on deep inelastic scattering with charm in the final state, Harris
et al. 1996. These data are relatively imprecise, their accuracy has often been ques-
tioned, and they were taken at relatively low scales where radiative corrections
are large. For these reasons, we have not included them in our baseline analy-
sis. However, it is interesting to assess the impact of their inclusion. Results are
shown in fig. 5.2 (bottom left), where we display the intrinsic charm PDF before
and after inclusion of the EMC data. Just like in the case of the LHCb data we find
full consistency: unchanged shape and a moderate reduction of uncertainties.

We can summarize our results through their so-called local statistical signifi-
cance, namely, the size of the intrinsic charm PDF in units of its total uncertainty.
This displayed in fig. 5.2 (bottom right) for our default determination of intrinsic
charm, as well as after inclusion of either the LHCb Z+charm or the EMC data,
or both. We find a local significance for intrinsic charm at the 2.5σ level in the
region 0.3 ∼

< x ∼
< 0.6. This is increased to about 3σ by the inclusion of either the

EMC or the LHCb data, and above if they are both included. The similarity of the
impact of the EMC and LHCb measurements is especially remarkable in view of
the fact that they involve very different physical processes and energies.

5.2 methods
The strategy adopted in this work in order to determine the intrinsic charm

content of the proton is based on the following observation. The assumption that
there is no intrinsic charm amounts to the assumption that all 4FNS PDFs are
determined, J. C. Collins and Tung 1986, using perturbative matching conditions,
Buza, Matiounine, Smith, and W. L. van Neerven 1998b, in terms of 3FNS PDFs
that do not include a charm PDF. However, these perturbative matching condi-
tions are actually given by a square matrix that also includes a 3FNS charm PDF.
So the assumption of no intrinsic charm amounts to the assumption that if the
4FNS PDFs are transformed back to the 3FNS, the 3FNS charm PDF is found to
vanish. Hence, intrinsic charm is by definition the deviation from zero of the



96 intrinsic charm

3FNS charm PDF, Ball, Bonvini, et al. 2015. Note that whereas the 3FNS charm
PDF is purely intrinsic, while the 4FNS charm PDF includes both an intrinsic and
a perturbative radiative component, the 4FNS intrinsic component is not equal to
the 3FNS charm PDF, since matching conditions reshuffle all PDFs among each
other.

Intrinsic charm can then be determined through the following two steps, sum-
marized in fig. 5.3. First, all the PDFs, including the charm PDF, are parametrized
in the 4FNS at an input scale Q0 and evolved using NNLO perturbative QCD to
Q ̸= Q0. These evolved PDFs can be used to compute physical cross-sections,
also at NNLO, which then are compared to a global dataset of experimental
measurements. The result of this first step in our procedure is a Monte Carlo
(MC) representation of the probability distribution for the 4FNS PDFs at the in-
put parametrization scale Q0.

Next, this 4FNS charm PDF is transformed to the 3FNS at some scale matching
scale Qc. Note that the choice of both Q0 and Qc are immaterial. The former be-
cause perturbative evolution is invertible, so results for the PDFs do not depend
on the choice of parametrization scale Q0. The latter because the 3FNS charm is
scale independent, so it does not depend on the value of Qc. Both statements of
course hold up to fixed perturbative accuracy, and are violated by MHO correc-
tions. In practice, we parametrize PDFs at the scale Q0 = 1.65 GeV and perform
the inversion at a scale chosen equal to the charm mass Qc = mc = 1.51 GeV.

The scale-independent 3FNS charm PDF is then the sought-for intrinsic charm.

4FNS Charm PDF constrained by experimental data for Q > Q0

• NNPDF4.0 dataset • NNLO QCD calculations

4FNS Charm PDF parametrised at Q0

• Deep-learning parametrisation • Monte Carlo representation of uncertainties

4FNS to 3FNS transformation

NNLO or N3LO matching conditions

Intrinsic (3FNS) Charm

• Scale-independent • PDF and MHO uncertainties

QCD evolution

QCD evolution

1

Figure 5.3: The 4FNS charm PDF is parametrized at Q0 and evolved to all Q, where it is
constrained by the NNPDF4.0 global dataset. Subsequently, it is transformed to
the 3FNS where (if nonzero) it provides the intrinsic charm component.
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Figure 5.4: The kinematic coverage in the (x,Q) plane covered by the 4618 cross-sections
used for the determination of the charm PDF in the present work. These cross-
sections have been classified into the main different types of processes entering
the global analysis.

global QCD analysis. The 4FNS charm PDF and its associated uncertainties
is determined by means of a global QCD analysis within the NNPDF4.0 framework.
All PDFs, including the charm PDF, are parametrized at Q0 = 1.65 GeV in a
model-independent manner using a neural network, which is fitted to data using
supervised machine learning techniques. The Monte Carlo replica method is
deployed to ensure a faithful uncertainty estimate. Specifically, we express the
4FNS total charm PDF (c+ = c + c̄) in terms of the output neurons associated
to the quark singlet Σ and non-singlet T15 distributions, cf. Sect. 3.1 of Ball et al.
2021b, as

xc
+(x,Q0;θ) =

(
x
αΣ(1− x)βΣ NNΣ(x,θ) − xαT15 (1− x)

βT15 NNT15
(x,θ)

)
/4 ,
(5.1)

where NNi(x,θ) is the i-th output neuron of a neural network with input x and
parameters θ, and (αi,βi) are preprocessing exponents. A crucial feature of
eq. (5.1) is that no ad hoc specific model assumptions are used: the shape and
size of xc+(x,Q0) are entirely determined from experimental data. Hence, our
determination of the 4FNS fitted charm PDF, and thus of the intrinsic charm, is
unbiased.

The neural network parameters θ in eq. (5.1) are determined by fitting an ex-
tensive global dataset that consists of 4618 cross-sections from a wide range of
different processes, measured over the years in a variety of fixed-target and col-
lider experiments (cf. Ball et al. 2021b for a complete list). Figure 5.4 displays the
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kinematic coverage in the (x,Q) plane covered by these cross-sections, where Q
is the scale, and x is the parton momentum fraction that correspond to leading-
order kinematics. Many of these processes provide direct or indirect sensitivity
to the charm content of the proton. Particularly important constraints come from
W and Z production from ATLAS, CMS, and LHCb as well as from neutral and
charged current Deep Inelastic Scattering (DIS) structure functions from HERA.
The 4FNS PDFs at the input scaleQ0 are related to experimental measurements at
Q ̸= Q0 by means of NNLO QCD calculations, including the FONLL-C general-
mass scheme for DIS, Forte, Laenen, et al. 2010, generalized to allow for fitted
charm, Ball, Bertone, Bonvini, Forte, et al. 2016.

We have verified (cf. sections 5.4 and 5.5) that the determination of 4FNS charm
PDF eq. (5.1) and the ensuing 3FNS intrinsic charm PDF are stable upon varia-
tions of methodology (PDF parametrization basis), input dataset, and values of
Standard Model parameters (the charm mass). We have also studied the stability
of our results upon replacing the current NNPDF4.0 methodology Ball et al. 2021b
with the previous NNPDF3.1 methodology, Ball et al. 2017a. It turns out that re-
sults are perfectly consistent. Indeed, the old methodology leads to somewhat
larger uncertainties, corresponding to a moderate reduction of the local statistical
significance for intrinsic charm, and to a central value which is within the smaller
error band of our current result.

A determination in which the vanishing of intrinsic charm is imposed has also
been performed. In this case, the fit quality significantly deteriorates: the values
of the χ2 per data point of 1.162, 1.26, and 1.22 for total, Drell-Yan, and neutral-
current DIS data respectively, found when fitting charm, are increased to 1.198,
1.31, 1.28 when the vanishing of intrinsic charm is imposed. The absolute worsen-
ing of the total χ2 when the vanishing of intrinsic charm is imposed is therefore
of 166 units, corresponding to a 2σ effects in units of σ

χ
2 =

√
2n dat.

calculation of the 3FNS charm PDF. The Monte Carlo representation
of the probability distribution associated to the 4FNS charm PDF determined by
the global analysis contains an intrinsic component mixed with a perturbatively
generated contribution, with the latter becoming larger in the x ∼

< 0.1 region as
the scale Q is increased. In order to extract the intrinsic component, we transform
PDFs to the 3FNS at the scale Qc = mc = 1.51 GeV using EKO, a novel Python

open source PDF evolution framework (cf. chapter 2). In its current implementa-
tion, EKO performs QCD evolution of PDFs to any scale up to NNLO. For the sake
of the current analysis, N3LO matching conditions have also been implemented,
by using the results of Ablinger, Behring, J. Blümlein, De Freitas, Hasselhuhn,
et al. 2014; Ablinger, Behring, J. Blümlein, De Freitas, von Manteuffel, et al. 2014;
Ablinger, Blumlein, et al. 2011; Ablinger, J. Blümlein, De Freitas, Hasselhuhn, von
Manteuffel, Round, and Schneider 2014; Ablinger, J. Blümlein, De Freitas, Has-
selhuhn, von Manteuffel, Round, Schneider, and Wißbrock 2014; Behring et al.
2014; Bierenbaum et al. 2009a,b; Johannes Blümlein et al. 2017 for O(α3s) operator
matrix elements so that the direct and inverse transformations from the 3FNS to
the 4FNS can be performed at one order higher. The N3LO contributions to the
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matching conditions are a subset of the full N3LO terms that would be required to
perform a PDF determination to one higher perturbative order, and would also
include currently unknown N3LO contributions to QCD evolution. Therefore,
our results have NNLO accuracy and we can only use the N3LO contributions
to the O(α3s) corrections to the heavy quark matching matching conditions as a
way to estimate the the size of the missing higher orders. Indeed, these correc-
tions have a very significant impact on the perturbatively generated component,
see section 5.3. They become large for x ∼

< 0.1, which coincides with the region
dominated by the perturbative component of the charm PDF, and are relatively
small for the valence region where intrinsic charm dominates.

Z production in association with charm-tagged jets. The production
of Z bosons in association with charm-tagged jets (or alternatively, with identified
D mesons) at the LHC is directly sensitive to the charm content of the proton via
the dominant gc→ Zc partonic scattering process. Measurements of this process
at the forward rapidities covered by the LHCb acceptance provide access to the
large-x region where the intrinsic contribution is expected to dominate. This is
in contrast with the corresponding measurements from ATLAS and CMS, which
only become sensitive to intrinsic charm at rather larger values of pZT than those
currently accessible experimentally.

We have obtained theoretical predictions for Z+charm production at LHCb
with NNPDF4.0, based on NLO QCD calculations using POWHEG-BOX interfaced
to Pythia8 with the Monash 2013 tune for showering, hadronization, and underly-
ing event. Acceptance requirements and event selection follow the LHCb analysis,
where in particular charm jets are defined as those anti-kT R = 0.5 jets containing
a reconstructed charmed hadron. The ratio between c-tagged and untagged Z+jet
events can then be compared with the LHCb measurements

R
c
j (yZ) ≡

N(c tagged jets;yZ)
N( jets;yZ)

=
σ(pp→ Z+ charm jet;yZ)

σ(pp→ Z+ jet;yZ)
, (5.2)

as a function of the Z boson rapidity yZ (see section 5.8 for details). The more
forward the rapidity yZ, the higher the values of the charm momentum x being
probed. Furthermore, we have also included the LHCb measurements in the
global PDF determination by means of the Bayesian reweighting (cf. section 5.8).

5.3 the perturbative charm PDF
In the absence of intrinsic charm, the charm PDF is fully determined by per-

turbative matching conditions, i.e. by the matrix A(nf)(Q2
c) in eq. (2.11). We will

denote the charm PDF thus obtained “perturbative charm PDF”, for short. The
PDF uncertainty on the perturbative charm PDF is directly related to that of the
light quarks and especially the gluon, and is typically much smaller than the un-
certainty on our default charm PDF, that includes intrinsic charm. Here and in

 http://nnpdf.mi.infn.it/for-users/unpolarized-pdf-sets/#NNPDF4.0 


100 intrinsic charm

the following we will refer to our final result, as shown in fig. 5.1 (right) as “de-
fault”. It should be noticed that the matching conditions for charm are nontrivial
starting at NNLO: at NLO the perturbative charm PDF vanishes at threshold.
Hence, having implemented in EKO also the N3LO matching conditions, we are
able to assess the MHOU of the perturbative charm at the matching scale Qc, by
comparing results obtained at the first two nonvanishing perturbative orders.

As already mentioned, see also fig. 5.2 (top left) in section 5.1, we have con-
structed a PDF set with perturbative charm, in which the full PDF determination
from the global dataset leading to the NNPDF4.0 PDF set is repeated, but now with
the assumption of vanishing intrinsic charm, i.e. with a perturbative charm PDF.
This perturbative charm PDF is compared to our default result in fig. 5.5 (left),
where the 4FNS perturbative charm PDF at scale Qc = mc obtained using either
NNLO or N3LO under the assumption of no intrinsic charm are shown, together
with our result allowing for intrinsic charm. It is clear that while on the one
hand, the PDF uncertainty on the perturbative charm PDF is indeed tiny, on the
other hand the difference between the result for perturbative charm obtained us-
ing NNLO or N3LO matching is large, and in fact larger at small x than the
difference between perturbative charm and our default (intrinsic) result.
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Figure 5.5: Left: the perturbative charm PDF at Q = 1.51 GeV obtained from NNLO PDFs
using NNLO and N3LO matching conditions. Right: the NNLO perturbative
charm PDF including the MHOU computed as the difference between NNLO
and N3LO matching. In both plots our default (intrinsic) charm PDF is also
shown for comparison.

In the same manner as we used the difference between the results obtained
from inversion of NNLO and N3LO matching as an estimate of the MHOU on
intrinsic charm, we may use the difference between the 4FNS perturbative charm
obtained from NNLO and N3LO matching as an estimate of the MHOU on per-
turbative charm at the scale Qc. The total uncertainty is found by adding this
in quadrature to the PDF uncertainty (which however in practice is negligible).
The result is shown in fig. 5.5 (right). Within this total uncertainty there is now
good agreement between our intrinsic charm result and perturbative charm for
all x ∼

< 0.2. On the other hand, there is a clear deviation for larger x. We may view
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the difference between the 4FNS default result and the 4FNS perturbative charm
as the intrinsic component in the 4FNS, and indeed it is clear from fig. 5.5 that
the 4FNS intrinsic component is sizable and positive at large x. This is of course
consistent with our main finding that we only see evidence of intrinsic charm for
large x ∼

> 0.2, while for smaller x our result for the charm PDF is compatible with
zero, as demonstrated by fig. 5.1 (right) in section 5.1.

5.4 stability of the 4FNS charm PDF
The main input to our determination of intrinsic charm is the 4FNS charm

PDF extracted from high-energy data. While this determination comes with an
uncertainty estimate, it is important to verify that this adequately reflects the
various sources of uncertainty, and that there are no further sources of uncertainty
that may be unaccounted for. To this purpose, here we assess the stability of
our results first, upon the choice of underlying dataset, next upon changes in
methodology, and finally, upon variation of standard model parameters. In each
case we verify stability upon the most important possible source of instability:
respectively, the use of collider vs. fixed target and deep-inelastic vs. hadronic
data (dataset); the choice of parametrization basis (methodology); and the value
of the charm quark mass (standard model parameters). As a final consistency
check, we compare our result with that which we would have obtained by using
the same input dataset, but the previous NNPDF3.1 fitting methodology. Because
we are interested in intrinsic charm, in all comparisons we focus on the large-x
region in which the intrinsic valence-like peak is found. In this section, the 4FNS
charm PDF is displayed at the scaleQ = 1.65 GeV so that results for all fit variants,
including those with with different mc values, can be shown at a common scale.

dependence on the choice of dataset. We now study the stability of
the 4FNS charm determination upon variation of the underlying data, which
also allows us to identify the datasets or groups of processes that provide the
leading constraints on intrinsic charm. To this purpose, we have repeated our
PDF determination using a variety of subsets of the global dataset used for our
default determination. Results are shown in fig. 5.6, where we compare the result
using the baseline dataset to determinations performed by adding to the baseline
the EMC charm structure function data (already discussed in the main text); by
only including DIS data; by only including collider data (HERA, Tevatron and
LHC); and by removing the LHCb W and Z production data.

As already noted in the main text in the case of the 3FNS result, we find that
the extra information provided by the EMC F

c
2 data is subdominant in compar-

ison to that from the global dataset. The result is stable and only a moderate
uncertainty reduction at the peak is observed. It is interesting to contrast this
with the previous NNPDF study Ball, Bertone, Bonvini, Stefano Carrazza, et al.
2016, in which the global fit provided only very loose constraints on the charm
PDF, which was then determined mostly by the EMC data. Indeed, a DIS-only fit

 http://nnpdf.mi.infn.it/for-users/unpolarized-pdf-sets/#NNPDF3.1 
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Figure 5.6: The dependence of the 4FNS charm PDF at Q = 1.65 GeV on the input dataset.
We compare the baseline result with that obtained by also including EMC F

c
2

data (top left), only including DIS data (top right), only including collider data
(bottom left) and removing LHCb gauge boson production data (bottom right).

(for which most data were already available at the time of the previous determi-
nation) determines charm with very large uncertainties. On the other hand, both
the central value and uncertainty found in the collider-only fit are quite similar to
the baseline result. This shows that the dominant constraint is now coming from
collider, and specifically hadron collider data (indeed, as we have seen constraints
from DIS data are quite loose). Among these, LHCb data (which are taken at large
rapidity and thus impact PDFs at large and small x) are especially important, as
demonstrated by the increase in uncertainty when they are removed.

In all these determinations, the charm PDF at x ≃ 0.4 remains consistently
nonzero and positive, thus emphasizing the stability of our results.

dependence on the parametrization basis. Among the various method-
ological choices, a possibly critical one is the choice of basis functions. Specifi-
cally, in our default analysis, the output of the neural network does not provide
the individual quark flavor and antiflavor PDFs, but rather linear combinations
corresponding to the so-called evolution basis Ball et al. 2021b. Indeed, our charm
PDF is given in eq. (5.1) as the linear combination of the two basis PDFs Σ and
T15. One may thus ask whether this choice may influence the final results for



5.4 stability of the 4FNS charm PDF 103

0.2 0.4 0.6 0.8

x

0.00

0.01

0.02

0.03

x
c+

(x
,Q

=
1.

65
G

eV
) Evolution PDF basis

Flavour PDF basis

Figure 5.7: The default 4FNS charm PDF at Q = 1.65 GeV compared to a result obtained
by parametrizing PDFs in the flavor basis instead of the evolution basis.

individual quark flavors, specifically charm. Given that physical results are ba-
sis independent, the outcome of a PDF determination should not depend on the
basis choice.

In order to check this, we have repeated the PDF determination, but now using
the flavor basis, see Sect. 3.1 of Ball et al. 2021b, in which each of the neural net-
work output neurons now correspond to individual quark flavors, so in particular,
instead of eq. (5.1), one has

xc
+(x,Q0;θ) = (1− x)βc

+ NN
c
+(x,θ) , (5.3)

where NN
c
+(x,θ) indicates the value of the output neuron associated to the

charm PDF c+. The 4FNS charm PDFs determined using either basis are com-
pared in fig. 5.7 at Q = 1.65 GeV. We find excellent consistency, and in particular
the valence-like structure at high-x is independent of the choice of parametriza-
tion basis.

dependence on the charm mass. The kinematic threshold for producing
charm perturbatively depends on the value of the charm mass. Therefore the
perturbative contribution to the 4FNS charm PDF, and thus the whole charm PDF
if one assumes perturbative charm, depends strongly on the value of the charm
mass. On the other hand, the intrinsic charm PDF is of nonperturbative origin,
so it should be essentially independent of the numerical value of the charm mass
that is used in perturbative computations employed in its determination (though
it will of course depend on the true underlying physical value of the charm mass).

In order to study this mass dependence, we have repeated our determination
using different values for the charm mass. The definition of the charm mass
which is relevant for kinematic thresholds is the pole mass, for which we adopt
the value recommended by the Higgs cross-section working group de Florian et
al. 2016a based on the study of Bauer et al. 2004, namely mc = 1.51± 0.13 GeV.
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Figure 5.8: The 4FNS charm PDF determined using three different values of the charm
mass. The absolute result (left) is shown at Q = 1.65 GeV, while the ratio to
the default value mc = 1.51 GeV (right) used elsewhere in this paper is shown
at Q = 100 GeV.

Results are shown in fig. 5.8, where our default charm PDF determination with
mc = 1.51 GeV is repeated with mc = 1.38 GeV and mc = 1.64 GeV. In order
to understand these results note that this is the 4FNS PDF, so it includes both a
nonperturbative and a perturbative component. The latter is strongly dependent
on the charm mass, but of course the data correspond to the unique true value
of the mass and the mass dependence of the perturbative component is present
only due to our ignorance of the actual true value. When determining the PDF
from the data, as we do, we expect this spurious dependence to be to some
extent reabsorbed into the fitted PDF. So we expect results to display a moderate
dependence on the charm mass — full independence should hold for the intrinsic
(3FNS) PDF and will be investigated in section 5.5.

In fig. 5.9 the same result is shown, but now for the perturbative charm PDF dis-
cussed in section 5.3, so the charm PDF is of purely perturbative origin and fully
determined by the strongly mass-dependent matching condition. This depen-
dence is clearly seen in the plots. Furthermore, comparison with fig. 5.8 shows
that indeed this spurious dependence is partly reabsorbed in the fit when the
charm PDF is determined from the data, so that the residual mass dependence
is moderate. In particular, the large-x valence peak, which is dominated by the
intrinsic component, is very stable.

comparison with NNPDF3.1. fig. 5.10 compares the baseline determination
of the 4FNS charm PDF based on NNPDF4.0 with that obtained from the same
input dataset but using instead the NNPDF3.1 fitting methodology and related
settings such those related to positivity and integrability. Results are fully con-
sistent between the two methodologies, with our default determination exhibit-
ing reduced uncertainties due to the various improvements implemented in the
NNPDF4.0 analysis framework.

 http://nnpdf.mi.infn.it/for-users/unpolarized-pdf-sets/#NNPDF3.1 
 http://nnpdf.mi.infn.it/for-users/unpolarized-pdf-sets/#NNPDF4.0 
 http://nnpdf.mi.infn.it/for-users/unpolarized-pdf-sets/#NNPDF3.1 
 http://nnpdf.mi.infn.it/for-users/unpolarized-pdf-sets/#NNPDF4.0 
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Figure 5.9: The same as fig. 5.8 but now for the perturbative charm PDF.
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Figure 5.10: Same as fig. 5.7, comparing the baseline determination of the 4FNS charm
PDF, based on NNPDF4.0, with that obtained from the same dataset using the
NNPDF3.1 fitting methodology.

5.5 stability of the 3FNS charm calculation
We now repeat the stability and uncertainty study of the previous section, but

for our final result, namely the intrinsic charm PDF. The main difference to be
kept in mind is that the uncertainty now also includes the dominant MHOU, due
to the matching condition required in order to determine the 3FNS PDF from
the 4FNS result. In order to get a complete picture, we now add a further set of
dataset variations.

dependence on the input dataset. fig. 5.11 displays the dataset variations
shown in fig. 5.6, now for the intrinsic (3FNS) charm PDF, but with the total
uncertainty now being the sum in quadrature of the PDF and Missing Higher
Order Uncertainties, with the latter determined as the difference between results

 http://nnpdf.mi.infn.it/for-users/unpolarized-pdf-sets/#NNPDF4.0 
 http://nnpdf.mi.infn.it/for-users/unpolarized-pdf-sets/#NNPDF3.1 
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obtained using NNLO and N3LO matching. Additionally, we also performed a
few extra dataset variations: a fit without any W,Z production data from ATLAS
and CMS, a fit without jet data, a fit without Z pT measurements, and a fit without
HERA structure function data. Note that the collider-only dataset includes both
HERA electron-proton collider data and Tevatron and LHC hadron collider data,
but not fixed-target Deep Inelastic Scattering and Drell–Yan production data.

Results are qualitatively very similar to those seen in the 4FNS, a consequence
of the fact that we are focusing on the large-x region where the effect of the
matching is moderate, though now the presence of a valence-like peak in all de-
terminations is even clearer, specifically for the DIS-only fit where it was less
pronounced in the 4FNS. Note however that the DIS-only determination exhibits
larger uncertainties (up to factor 2) and point-by-point fluctuations, and is domi-
nated by relatively old fixed-target measurements. Comparison of all the dataset
variations shows that, in terms of their impact on intrinsic charm, hadron col-
lider data are generally more important that deep-inelastic data, that among the
former the LHCb inclusive W,Z data are playing a dominant role, and that jet
observables also play a non-negligible role.

It should be stressed that the agreement between results found using DIS data
and hadron collider data is highly nontrivial, since in the region relevant for in-
trinsic charm these determinations are based on disjoint datasets and are affected
by very different theoretical and experimental uncertainties: in particular, poten-
tial higher-twist effects in the DIS observables are highly suppressed for collider
observables. this respect, a DIS-only determination of intrinsic charm is poten-
tially affected by sources of theory uncertainties, such as higher twists, which are
not accounted for in global PDF determinations.

We conclude that the characteristic valence-like peak structure at large-x pre-
dicted by non-perturbative intrinsic charm models (fig. 5.1 in section 5.1) is always
present even under very significant changes of the dataset.

dependence on the parametrization basis. Figure 5.12 displays the com-
parison between the intrinsic charm PDF determined with the default evolution
basis choice, and the flavor basis. Complete consistency of central values is found,
with somewhat larger uncertainties in the case of the flavor basis, due to the
more challenging fitting environment in this basis (see the discussion in Ball et al.
2021b).

dependence on the charm mass value. The study of the charm mass de-
pendence is particularly interesting, because the intrinsic component should be
independent of it, hence the residual dependence seen in fig. 5.8 in the 4FNS, due
to the mass dependence of the perturbative component that could not be reab-
sorbed in the fitting, should no longer be present. Results are shown in fig. 5.13,
and it is apparent that indeed the dependence on the charm mass has all but
disappeared.
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Figure 5.11: Same as fig. 5.6 for the intrinsic charm (3FNS) PDF (top four plots), now
also including four additional dataset variations: no ATLAS and CMS W,Z
production data (third row left), no jet data (third row right), no Z pT mea-
surements (bottom row left), no HERA DIS data (bottom row right). The
error band indicates the PDF uncertainties combined in quadrature with the
MHOUs.
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Figure 5.13: Same as fig. 5.8, now for the intrinsic (3FNS) charm PDF. Note that the intrin-
sic charm PDF is scale independent.

5.6 the charm momentum fraction
The fraction of the proton momentum carried by charm quarks is given by

[c] =

∫1
0
dx xc

+(x,Q2) . (5.4)

Model predictions, as mentioned, are typically provided up to an overall normal-
ization, which in turn determines the charm momentum fraction. Consequently,
the momentum fraction is often cited as a characteristic parameter of intrinsic
charm. It should however be borne in mind that, even in the absence of intrinsic
charm, this charm momentum fraction is nonzero due to the perturbative contri-
bution.

In table 5.1 we indicate the values of the charm momentum fraction in the 3FNS
for our default charm determination and in the 4FNS (at Q = 1.65 GeV) both for
the default result and for perturbative charm PDF (see section 5.3). We provide
results for three different values of the charm mass mc and indicate separately
the PDF and the MHO uncertainties. The 3FNS result is scale-independent, it cor-
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Scheme Q Charm PDF mc [c] (%)

3FNS – default 1.51 GeV 0.62± 0.28 pdf ± 0.54 mhou

3FNS – default 1.38 GeV 0.47± 0.27 pdf ± 0.62 mhou

3FNS – default 1.64 GeV 0.77± 0.28 pdf ± 0.48 mhou

4FNS 1.65 GeV default 1.51 GeV 0.87± 0.23 pdf

4FNS 1.65 GeV default 1.38 GeV 0.94± 0.22 pdf

4FNS 1.65 GeV default 1.64 GeV 0.84± 0.24 pdf

4FNS 1.65 GeV perturbative 1.51 GeV 0.346± 0.005 pdf ± 0.44 mhou

4FNS 1.65 GeV perturbative 1.38 GeV 0.536± 0.006 pdf ± 0.49 mhou

4FNS 1.65 GeV perturbative 1.64 GeV 0.172± 0.003 pdf ± 0.41 mhou

Table 5.1: The charm momentum fraction, eq. (5.4). We show results both in the 3FNS
and the 4FNS (at Q = 1.65 GeV) for our default charm, and also in the 4FNS for
perturbative charm. We provide results for three different values of the charm
mass mc and indicate separately the PDF and the MHO uncertainties.

responds to the momentum fraction carried by intrinsic charm, and it vanishes
identically by assumption in the perturbative charm case. The 4FNS result cor-
responds to the scale-dependent momentum fraction that combines the intrinsic
and perturbative contribution, while of course it contains only the perturbative
contribution in the case of perturbative charm. As discussed in section 5.3, the
large uncertainty associated to higher order corrections to the matching condi-
tions affects the 3FNS result (intrinsic charm) in the default case, in which the
charm PDF is determined from data in the 4FNS scheme, while it affects the
4FNS result for perturbative charm, that is determined assuming the vanishing
of the 3FNS result.

For our default determination, the charm momentum fraction in the 4FNS at
low scale differs from zero at the 3σ level. However, it is not possible to tell
whether this is of perturbative or intrinsic origin, because, due to the large MHOU
in the matching condition, the intrinsic (3FNS) charm momentum fraction is com-
patible with zero. This large uncertainty is entirely due to the small x ∼

< 0.2
region, see see fig. 5.1 (right). Accordingly, for perturbative charm the low-scale
4FNS momentum fraction is compatible with zero. Consistently with the results
of section 5.4, the 4FNS result is essentially independent of the value of the charm
mass, but it becomes strongly dependent on it if one assumes perturbative charm.

The 4FNS charm momentum fraction is plotted as a function of scale in fig. 5.14,
both in the default case and for perturbative charm, with the 3FNS values and
the detail of the low-Q 4FNS results shown in an inset. The dependence on the
value of the charm mass is shown in fig. 5.15. The large MHOUs on the 3FNS
result, and on the 4FNS result in the case of perturbative charm, are apparent.
The stability of the default result upon variation of the value of mc, and the
strong dependence of the perturbative charm result on mc, are also clear. Both
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Figure 5.14: The 4FNS charm momentum fraction in NNPDF4.0 as a function of scale Q,
both for the default and perturbative charm cases, for a charm mass value of
mc = 1.51 GeV. The inset zooms on the low-Q region and includes the 3FNS
(default) result from table 5.1. Note that the uncertainty includes the MHOU
for the 3FNS default and 4FNS perturbative charm cases, while it is the PDF
uncertainty for the 4FNS default charm case.

the large MHOU uncertainty, and the strong dependence on the value of mc for
perturbative charm are seen to persist up to large scales.

It is interesting to understand in detail the impact of the MHOU on the mo-
mentum fraction carried by intrinsic charm. To this purpose, we have computed
the truncated momentum integral, i.e. eq. (5.4) but only integrated down to some
lower integration limit x min:

[c] tr (x min) ≡
∫1
x min

dx xc
+(x,Q2) . (5.5)

Note than in the 3FNS xc+(x) does not depend on scale, so this becomes a scale-
independent quantity. The result for our default intrinsic charm determination
is displayed in fig. 5.16, as a function of of the lower integration limit x min. It is
clear that for x min ≳ 0.2 the truncated momentum fraction differs significantly
from zero, thereby providing evidence for intrinsic charm with similar statisti-
cal significance as the local pull shown in fig. 5.2 bottom left. For x ∼

< 0.2 this
significance is then washed out by the large MHOUs.

Hence, while the total momentum fraction has been traditionally adopted as a
measure of intrinsic charm, our analysis shows that, once MHOUs are accounted
for, the information provided by the total momentum fraction is limited, at least
with current data and theory.

 http://nnpdf.mi.infn.it/for-users/unpolarized-pdf-sets/#NNPDF4.0 
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Figure 5.15: Same as fig. 5.14 for different values of the charm mass. Note that the 3FNS
momentum fraction for perturbative charm vanishes identically by assump-
tion.
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Figure 5.16: The value of the truncated charm momentum integral, eq. (5.5), as a func-
tion of the lower integration limit x min for our baseline determination of the
3FNS intrinsic charm PDF. We display separately the PDF and the total (PDF
+MHOU) uncertainties.

5.7 comparison with ct14ic

The possibility of an intrinsic charm component was recently studied in Hou
et al. 2018, by modifying the CT14 PDF set, with the initial 4FNS charm PDF
taken equal to the BHPS model S. J. Brodsky, Hoyer, et al. 1980 form with the
normalization fitted as a free parameter. A 4FNS charm PDF with uncertainties
at Q = 1.3 GeV was then constructed by taking the BHPS model with best-fit
normalization as central value (called the ‘BHPS1 model’ in Hou et al. 2018); the
lower edge of the uncertainty band was taken to coincide with the standard CT14

charm PDF (i.e. the charm PDF determined by perturbative matching from the
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3FNS to the 4FNS); the upper edge of the uncertainty band was taken as the
BHPS model but with normalization fixed to the upper 90% CL limit (called the
‘BHPS2 model’ in Hou et al. 2018).
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Figure 5.17: The 4FNS charm PDF from Hou et al. 2018 compared to our result (also in
the 4FNS) at Q = 1.65 GeV on a linear (top left) and logarithmic (top right)
scale in x, and at Q = 100 GeV on a linear scale in x and as a ratio to our
result (bottom left). The momentum fraction corresponding to either case is
also shown as a function of Q (bottom right). Note that for our result the
uncertainty band is the 68%CL PDF uncertainty, while for Hou et al. 2018

the central curve (labeled CT14IC BHPS1) corresponds to the BHPS model
with best-fit normalization, the lower curve (labeled CT14) corresponds to the
default CT14 perturbative charm PDF and the upper curve (labeled CT14IC
BHPS2) corresponds to the BHPS model with normalization at the upper 90%
CL (see text). The value of the momentum fractions are also provided in each
case.

The CT14IC charm PDF is compared to our result in fig. 5.17, at Q = 1.65 GeV
and Q = 100 GeV, in the former case on both a logarithmic and linear scale in
x and in the latter case on a linear scale only, as a ratio to our default result.
Note that the uncertainty band has a different interpretation in the two curves
shown: for our result it is the 68% CL PDF uncertainty, while for Hou et al. 2018

it corresponds to the model uncertainty estimated as described above. In fig. 5.17

we also quote the charm momentum fraction in each case, at the corresponding
scale Q.
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As shown in fig. 5.1 (right), our result for the charm PDF is in good agree-
ment with the BHPS model at large x. Correspondingly, for x ∼

> 0.3 we find
reasonably good agreement between our result and the central curve of Hou et
al. 2018, which corresponds to a momentum fraction and thus a normalization
of the charm PDF not too different from our result (see table 5.1). Both the up-
per and lower curve from Hou et al. 2018 instead do not agree with our result
within uncertainties: indeed the lower edge corresponds to the absence of intrin-
sic charm (which we exclude) and the upper edge to a momentum fraction which
we exclude at more than the 5σ level (see table 5.1).

For intermediate values 3 · 10−3
∼
< x ∼

< 0.3 our result disagrees with that of
Hou et al. 2018, while at very small x all results agree, the intrinsic charm being
compatible with zero. The disagreement at intermediate x is mostly due to the
fact that in Hou et al. 2018 charm is assumed to take the BHPS form, which
vanishes for x ∼

< 0.1, in the 4FNS at the low scaleQ = 1.3 GeV. Due to perturbative
evolution from Q = 1.3 GeV to Q = 1.65 GeV the charm PDF then develops the
large bump that is seen in fig. 5.17, where we instead find that the 4FNS charm
PDF is quite small. This difference persists at large scales as seen in fig. 5.1
(bottom left).

In terms of momentum fractions, shown in fig. 5.1 (bottom right), as already
mentioned our result is compatible with the central value of Hou et al. 2018

within uncertainties; and also with the lower edge of Hou et al. 2018 that corre-
sponds to perturbative charm. The upper edge of the prediction from Hou et al.
2018 is instead ruled out at more than 5σ.

5.8 Z+charm production in the forward re-
gion

Here we provide full details on our computation of Z+charm production and
on the inclusion of the LHCb data for this process in the determination of the
charm PDF shown in fig. 5.2.

computational settings. Theoretical predictions for the Z+charm measure-
ments in the forward region by LHCb Aaij et al. 2021 follow the settings de-
scribed in Boettcher et al. 2016. Z+jet events at NLO QCD theory are generated
for
√
s = 13 TeV using the Zj package of the POWHEG-BOX Alioli et al. 2010.

The parton-level events produced by POWHEG are then interfaced to Pythia8 Sjos-
trand et al. 2008 with the Monash 2013 tune Skands et al. 2014 for showering,
hadronization, and simulation of the underlying event and multiple parton in-
teractions. Long-lived hadrons, including charmed hadrons, are assumed stable
and not decayed.

Selection criteria on these particle-level events are imposed to match the LHCb
acceptance Aaij et al. 2021. Z bosons are reconstructed in the dimuon final state by
requiring 60 GeV ⩽ mµµ ⩽ 120 GeV, and only events where these muons satisfy
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p
µ
T ⩾ 20 GeV and 2.0 ⩽ ηµ ⩽ 4.5 are retained. Stable visible hadrons within

the LHCb acceptance of 2.0 ⩽ η ⩽ 4.5 are clustered with the anti-kT algorithm
with radius parameter of R = 0.5 Cacciari, Salam, et al. 2008. Only events with
a hardest jet satisfying 20 GeV ⩽ p

jet
T ⩽ 100 GeV and 2.2 ⩽ η jet ⩽ 4.2 are

retained. Charm jets are defined as jets containing a charmed hadron, specifically
jets satisfying ∆R(j, c-hadron) ⩽ 0.5 for a charmed hadron with pT (c-hadron) ⩾
5 GeV. Jets and muons are required to be separated in rapidity and azimuthal
angle, so we require ∆R(j,µ) ⩾ 0.5. The resulting events are then binned in the Z
bosom rapidity yZ = yµµ.

The physical observable measured by LHCb is the ratio of the fraction of Z+jet
events with and without a charm tag,

R
c
j ≡

σ(pp→ Z+ charm jet)
σ(pp→ Z+ jet)

=
N(c -tag)
N( jets)

. (5.6)

Here N(c -tag) and N( jets) are, respectively, the number of charm-tagged and
un-tagged jets, for a Z boson rapidity interval that satisfies the selection and
acceptance criteria. The denominator of eq. (5.6) includes all jets, even those
containing heavy hadrons. The charm tagging efficiency is already accounted for
at the level of the experimental measurement, so it is not required in the theory
simulations.

Predictions for eq. (5.6) are produced using our default PDF determination (
NNPDF4.0 NNLO), as well as the corresponding PDF set with perturbative charm
(see section 5.3). We have explicitly checked that our results are essentially in-
dependent of the value of the charm mass. We have evaluated MHOUs and
PDF uncertainties using the output of the POWHEG+Pythia8 calculations. We
have checked that MHOUs, evaluated with the standard seven-point prescrip-
tion, essentially cancel in the ratio eq. (5.6). Note that this is not the case for PDF
uncertainties, because the dominant partonic subchannels in the numerator and
denominator are not the same.

χ
2
/N dat

default charm perturbative charm

ρ sys = 0 ρ sys = 1 ρ sys = 0 ρ sys = 1

Prior 1.85 3.33 3.54 3.85

Reweighted 1.81 3.14 − −

Table 5.2: The values of χ2/N dat for the LHCb Z+charm data before (prior) and after
(reweighted) their inclusion in the PDF fit. Results are given for two experimen-
tal correlation models, denoted as ρ sys = 0 and ρ sys = 1. We also report values
before inclusion for the perturbative charm PDFs.

inclusion of the LHCb data. We first compare the quality of the descrip-
tion of the LHCb data before their inclusion. In table 5.2 we show the values of

 http://nnpdf.mi.infn.it/for-users/unpolarized-pdf-sets/#NNPDF4.0 


5.9 parton luminosities 115

χ
2
/N dat for the LHCb Z+charm data both with default and perturbative charm.

Since the experimental covariance matrix is not available for the LHCb data we
determine the χ2 values assuming two limiting scenarios for the correlation of
experimental systematic uncertainties. Namely, we either add in quadrature sta-
tistical and systematic errors (ρ sys = 0), or alternatively we assume that the total
systematic uncertainty is fully correlated between yZ bins (ρ sys = 1). Fit quality
is always significantly better in our default intrinsic charm scenario than with
perturbative charm. As is clear from fig. 5.2 (top left), the somewhat poor fit qual-
ity is mostly due to the first rapidity bin, which is essentially uncorrelated to the
amount of intrinsic charm (see fig. 5.2, top right).

The LHCb Z+charm data are then included in the PDF determination through
Bayesian reweighting Ball et al. 2011; Ball, Bertone, Cerutti, et al. 2012. The
χ
2
/N dat values obtained using the PDFs found after their inclusion are given

in table 5.2. They are computed by combining the PDF and experimental covari-
ance matrix so both sources of uncertainty are included — as mentioned above,
MHOUs are negligible. The fit quality is seen to improve only mildly, and the
effective number of replicas Ball et al. 2011; Ball, Bertone, Cerutti, et al. 2012 after
reweighting is only moderately reduced, from the prior N rep = 100 to N eff = 92

or N eff = 84 in the ρ sys = 0 and ρ sys = 1 scenarios respectively. This demon-
strates that the inclusion of the LHCb Z+charm measurements affects the PDFs
only weakly. This agrees with the results shown in fig. 5.2 (center) in section 5.1,
where it is seen that the inclusion of the LHCb data has essentially no impact
on the shape of the charm PDF, but it moderately reduces its uncertainty in the
region of the valence peak.

5.9 parton luminosities

The impact of intrinsic charm on hadron collider observables can be assessed
by studying parton luminosities. Indeed, the cross-section for hadronic processes
at leading order is typically proportional to an individual parton luminosity or
linear combination of parton luminosities. Comparing parton luminosities deter-
mined using our default PDF set to those obtained imposing perturbative charm
(see section 5.3) provides a qualitative estimate of the measurable impact of in-
trinsic charm. Of course this is then modified by higher-order perturbative correc-
tions, which generally depend on more partonic subchannels and thus on more
luminosities. In this section we illustrate this by considering the parton luminosi-
ties that are relevant for the computation of the Z+charm process in the LHCb
kinematics, see section 5.8.

The parton luminosity without any restriction on the rapidity yX of the final
state is

Lab(mX) =
1

s

∫1
τ

dx

x
fa

(
x,m2

X

)
fb

(
τ/x,m2

X

)
, τ =

m
2
X

s
, (5.7)



116 intrinsic charm

where a,b label the species of incoming partons,
√
s is the center-of-mass energy

of the hadronic collision, and mX is the final state invariant mass. For the more
realistic situation where the final state rapidity is restricted, y min ⩽ yX ⩽ y max,
eq. (5.7) is modified as

Lab(mX) =
1

s

∫1
τ

dx

x
fa

(
x,m2

X

)
fb

(
τ/x,m2

X

)
θ (yX − y min) θ (y max − yX) ,

(5.8)
where yX =

(
ln x2/τ

)
/2.

We consider in particular the quark-gluon and the charm-gluon luminosities,
defined as

Lqg(mX) ≡
nf∑
i=1

(
Lqig

(mX) +Lq̄ig
(mX)

)

Lcg(mX) ≡
(
Lcg(mX) +Lc̄g(mX)

)
, (5.9)

where nf is the number of active quark flavors for a given value of Q = mX with
a maximum value of nf = 5. These are the combinations that provide the leading
contributions respectively to the numerator (Lcg) and the denominator (Lqg) of
R
c
j in eq. (5.6).

The luminosities are displayed in fig. 5.18, in the invariant mass region, 40 GeV ⩽
mX ⩽ 200 GeV which is most relevant for Z+charm production. Results are
shown for three different rapidity bins, −2.5 ⩽ yX ⩽ 2.5 (central production in
ATLAS and CMS), 2.0 ⩽ yX ⩽ 2.75 (forward production, corresponding to the
central bin in LHCb), and 3.5 ⩽ yX ⩽ 4.5 (highly boosted production, corre-
sponding to the most forward bin in the LHCb selection), as a ratio to our default
case.

For central production it is clear that both the quark-gluon and charm-gluon
luminosities with our without intrinsic charm are very similar. This means that
central Z+charm production in this invariant mass range is insensitive to intrinsic
charm. For forward production, corresponding to the central LHCb rapidity bin,
2.0 ⩽ yX ⩽ 2.75, in the invariant mass region mX ≃ 100 GeV again there is little
difference between results with or without intrinsic charm, but as the invariant
mass increases the charm-gluon luminosity with intrinsic charm is significantly
enhanced. For very forward production, such as the highest rapidity bin of LHCb,
3.5 ⩽ yX ⩽ 4.5, the charm-gluon luminosity at mX ≃ 100 GeV is enhanced
by a factor of about 4 in our default result in comparison to the perturbative
charm case, corresponding to a ≃ 3σ difference in units of the PDF uncertainty,
consistently with the behavior observed for the R

c
j observable in fig. 5.2 (top

left) in the most forward rapidity bin. This observation provides a qualitative
explanation of the results of section 5.8.
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Figure 5.18: The quark-gluon (left) and charm-gluon (right) parton luminosities in themX

region relevant for Z+charm production and three different rapidity bins (see
text). Results are shown both for our default charm PDFs and for the variant
with perturbative charm.
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5.10 summary
In this work, long-sought evidence for intrinsic charm quarks in the proton

has been presented. These findings close a fundamental open question in the
understanding of nucleon structure that has been hotly debated by particle and
nuclear physicists for the last 40 years. By carefully disentangling the perturbative
component, unambiguous evidence for intrinsic charm is obtained, which turns
out to be in qualitative agreement with the expectations from model calculations.
The determination of the charm PDF, driven by indirect constraints from the
latest high-precision LHC data, is perfectly consistent with direct constraints both
from EMC charm production data taken forty years ago, and with very recent
Z+charm production data in the forward region from LHCb. Combining all data,
local significance for intrinsic charm is found in the large-x region just above
the 3σ level. The results motivate further dedicated studies of intrinsic charm
through a wide range of nuclear, particle and astro-particle physics experiments,
from the high-luminosity LHC Azzi et al. 2019 and the fixed-target programs of
LHCb Aaij et al. 2019 and ALICE Dainese et al. 2019, to the Electron-Ion Collider,
AFTER Hadjidakis et al. 2021, the Forward Physics Facility Anchordoqui et al.
2021, and neutrino telescopes Halzen and Wille 2016.

Both the LHAPDF grids produced in this work and the version of EKO with the
respective run cards used are made available from http://nnpdf.mi.infn.it/

nnpdf4-0-charm-study/.

http://nnpdf.mi.infn.it/nnpdf4-0-charm-study/
http://nnpdf.mi.infn.it/nnpdf4-0-charm-study/
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An important direction for ongoing and future studies of new physics Beyond
the Standard Model (BSM) at the Large Hadron Collider (LHC) is the search for
novel heavy resonances. The LHC is uniquely suited to direct searches for these
resonances, thanks to its unparalleled center of mass energy,

√
s = 13.6TeV in the

recently started Run III, and the high statistics to be accumulated in the coming
years, especially in the high-luminosity (HL) phase. For instance, considering
representative benchmark BSM scenarios (cf. Cid Vidal et al. 2019), the HL-LHC
is sensitive to searches for sequential Standard Model (SM) W ′ gauge bosons up
to mW

′ = 7.8TeV, E6 model Z ′ gauge bosons up to mZ
′ = 5.7TeV, and Kaluza-

Klein resonances decaying into a tt̄ pair up to mKK = 6.6TeV.
The production of such high-mass states proceeds via partonic scattering that

involves large values of the momentum fractions x1 and x2 of the colliding par-
tons, because the center of mass energy of the partonic collision is ŝ = x1x2s.
For instance, the on-shell production of a state with invariant mass mX = 8TeV
requires x1x2 ∼

> 0.3, hence for central production at leading order x1 = x2 ≈ 0.6.
This is problematic because PDFs are poorly known for x ∼

> 0.4 (cf. Gao et al. 2018;
Kovařık et al. 2020), as there is limited data included in current PDF determina-
tions to constrain this kinematic region. Indeed, in the past, claims of possible
BSM signals, Abe et al. 1996, were subsequently traced to poor modeling of the
PDFs in the large-x region, Lai et al. 1997. The impact of lack of knowledge of the
PDFs on BSM searches is thus a delicate issue, Beenakker et al. 2016.

Here we wish to further investigate this by specifically considering Neutral
Current (NC) Drell–Yan (DY) dilepton production and associated observables,
frequently used for BSM searches at the LHC. NC Drell–Yan production is one of

119
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the cleanest processes in the search for both narrow and broad heavy resonances
decaying into dileptons, pp → X → ℓ

+
ℓ
−, since the two charged leptons can

be detected with excellent energy and angular resolution. This also enables the
search for smooth, non-resonant distortions with respect to the SM backgrounds,
such as those arising in the context of contact interactions or, more generally,
induced by Effective Field Theory (EFT) higher-dimensional operators that lead
to direct couplings between quarks and leptons, Dawson et al. 2019; J. Ellis et al.
2021; Ethier, Magni, et al. 2021; Greljo et al. 2021. Indeed, both ATLAS and CMS
have extensively explored this channel in their BSM search program, Aad et al.
2014, 2019, 2020, 2021; Albert M Sirunyan et al. 2019, 2021. To this purpose, it
is mandatory to have a detailed understanding of the dominant SM background,
namely dilepton production from quark-antiquark annihilation mediated by a
virtual Electroweak (EW) boson, qq̄→ γ

∗
/Z→ ℓ

+
ℓ
−, with sub-leading processes

involving the quark-gluon and photon-photon initial states.

Drell–Yan production is one of the SM processes which is known to highest
perturbative accuracy: indeed, both N3LO QCD results, Duhr and Mistlberger
2022, and the full mixed QCD-EW corrections at NNLO, Armadillo et al. 2022;
Bonciani, Buccioni, et al. 2020; Bonciani, Buonocore, et al. 2022; Buccioni, Caola,
Chawdhry, et al. 2022; Buccioni, Caola, Delto, et al. 2020, have become available
recently. Therefore, the main uncertainty on theoretical predictions for this pro-
cess is mostly due to the PDFs, which, as mentioned, are poorly known at large
x. Experimentally, uncertainties are minimized when considering observables in
which several systematics cancel in part or entirely. An example relevant for the
DY process is the forward-backward asymmetry Afb of the angular distribution
of the dilepton pair in the center-of-mass frame of the partonic collision, i.e. the
asymmetry in the so-called Collins–Soper angle θ∗, recently measured from the
Run II dataset by ATLAS, Aaboud et al. 2017, and CMS, Tumasyan et al. 2022.
The sensitivity of this observable to both PDFs and BSM signals has been empha-
sized recently, Accomando et al. 2019, 2018; Fiaschi et al. 2021, 2022, as well as its
relevance to extractions of the weak mixing angle sin2

θW at the LHC, Albert M.
Sirunyan et al. 2018. These studies are mostly restricted to the vicinity of the
Z-boson peak, mℓℓ̄ ∼ mZ with mℓℓ̄ being the dilepton mass, though in a recent
study by CMS, Tumasyan et al. 2022, the forward-backward asymmetry has been
used to obtain a lower mass limit (of 4.4TeV) on a hypothetical Z ′ heavy gauge
boson.

In this work, we assess to which extent different assumptions on the large-x
behavior of PDFs, as well as different estimates of the PDF uncertainty in this re-
gion, may affect BSM searches, by specifically studying NC Drell–Yan production,
and the forward-backward asymmetry in particular. To this purpose, we explain
the dependence of the general qualitative features of the asymmetry on the be-
havior of PDFs, based on an understanding of the analytic dependence of the
asymmetry on the partonic luminosities. We then present detailed computations
of the forward-backward asymmetry at the LHC, with realistic experimental cuts,
using a variety of PDF sets.
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We find that first, the large-x PDF shape and uncertainty can differ consid-
erably between different PDF sets, with NNPDF4.0, Ball et al. 2021b, generally
displaying a more flexible shape and a wider uncertainty. And second, that all
PDF sets except NNPDF4.0 lead to a qualitative behavior of the asymmetry which
in the large-mass multi-TeV region reproduces the shape found around the Z-
peak region, even though there is no fundamental reason why this should be the
case. We will then trace the observed behavior of the asymmetry to that of the
underlying PDFs.

6.1 anatomy of drell-yan production
The aim of this section is to scrutinize the PDF dependence of the NC Drell–Yan

differential cross-section and of the associated forward-backward asymmetry by
reviewing the LO kinematics, determining LO analytic expressions, and finally
comparing these analytical calculations to the results of LO and NLO numerical
simulations obtained using MadGraph5_aMC@NLO, Alwall et al. 2014, interfaced to
PineAPPL, S. Carrazza et al. 2020a; Schwan et al. 2022b. Specifically, we will
relate the behavior of the differential distribution and asymmetry to the relevant
parton luminosities.

6.1.1 Drell–Yan kinematics and cross-sections at LO

We consider dilepton production via the exchange of an Electroweak neutral
gauge boson Z/γ∗ in proton-proton collisions:

p(k1) + p(k2)→ Z/γ
∗(q)→ ℓ(pℓ) + ℓ̄(pℓ̄) +X. (6.1)

The hadronic differential cross-section dσpp→ℓℓ̄ is factorized in terms of PDFs fi
and the partonic cross sections dσ̂ij for incoming partons of species i, j as

dσpp→ℓℓ̄ =
∑
ij

1∫
0

dx1dx2fi(x1,µ2F)fj(x2,µ2F)dσ̂ij(k̂1 = x1k1, k̂2 = x2k2). (6.2)

In the sequel we will set the factorization scale µF to the invariant mass of the
gauge boson, i.e. the dilepton invariant mass, so µ2F = m2

ℓℓ̄ = (pℓ+pℓ̄)
2. The kine-

matics and Feynman diagram of the LO partonic process in the quark-antiquark
channel are shown in fig. 6.1. We do not consider photon-initiated processes, as
they do not affect the qualitative features of our discussion.

At LO, the momentum fractions of the two incoming partons are fully fixed
by knowledge of the invariant mass and rapidity of the gauge boson, i.e. of the
dilepton pair yℓℓ̄ = (yℓ + yℓ̄)/2:

x1 =
mℓℓ̄√
s

exp(yℓℓ̄) , x2 =
mℓℓ̄√
s

exp(−yℓℓ̄) , (6.3)

 http://nnpdf.mi.infn.it/for-users/unpolarized-pdf-sets/#NNPDF4.0 
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122 forward-backward asymmetry

q

q̄

ℓ

ℓ̄

k̂1

k̂2

q

γ/Z

pℓ

pℓ̄

Figure 6.1: Neutral-current Drell–Yan production at LO in the quark-antiquark channel.

where the center of mass energy of the hadronic collision is s = (k1 + k2)
2 and

at LO m
2
ℓℓ̄ = ŝ = x1x2s. The absolute dilepton rapidity thus lies in the range

|yℓℓ̄| ⩽ ln
(√
s/mℓℓ̄

)
. Beyond LO there might be extra radiation in the final state,

so the LO kinematics provides a lower bound on the momentum fractions of the
incoming partons, and all values of the momentum fractions such that x1,2 ⩾
mℓℓ̄/

√
s are allowed.

It is useful to define the so-called Collins–Soper angle θ∗, J. C. Collins and
Soper 1977, which in the hadronic Center of Mass (CoM) frame is defined as

cos θ∗ = sign(yℓℓ̄) cos θ ,

cos θ ≡ p
+
ℓ p

−
ℓ̄ − p−ℓ p

+
ℓ̄

mℓℓ̄

√
m

2
ℓℓ̄ + p

2
T,ℓℓ̄

, p
± = p0 ± p3. (6.4)

It is easy to show that the Collins–Soper angle θ∗ coincides with the scattering
angle of the lepton in the partonic CoM frame, θ̄. The latter is defined in terms
of the lepton momentum as

cos θ̄ ≡ p
z
ℓ

mℓℓ̄

, (6.5)

where the z axis is along the direction of the incoming quark-antiquark pair. In
the partonic CoM frame, of course, pzℓ = −pzℓ̄ and yℓℓ̄ = 0, so

p
±
ℓ = p∓

ℓ̄
= mℓℓ̄

(
1± cos θ̄

)
, (6.6)

and substituting in eq. (6.4) it immediately follows that, taking the convention
sign(yℓℓ̄) = sign(0) = +1, cos θ∗ = cos θ = cos θ̄. The expression of cos θ in
eq. (6.4) is manifestly invariant upon boosts along the z axis, so the identification
of θ with the CoM scattering angle θ̄ remains true in any reference frame.

Note that the definition eq. (6.5) requires a choice for the positive direction of
the z axis, which is usually taken along the direction of the incoming fermion
(quark). This direction is not experimentally accessible in proton-proton colli-
sions, so the Collins–Soper angle is defined by always taking the positive z axis
in the direction of the boosted dilepton pair, i.e., at LO, along the direction of
the incoming quark with largest momentum fraction, i.e. by supplementing in
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the definition a factor sign(yℓℓ̄). Hence cosθ∗ = cos θ̄ (cos θ∗ = − cos θ̄) if the
momentum fraction of the incoming quark (antiquark) is the largest.

The hard scattering matrix elements that enter the partonic cross-section in
eq. (6.2) are the sum of a pure photon-exchange contribution, a photon-Z in-
terference term, and a pure Z-exchange contribution. Of course, in the region
mℓℓ̄ ≳ mZ these contributions are all of the same order. Standard arguments,
Peskin and Schroeder 1995, then imply that, because in the Standard Model the
photon coupling to leptons is vector while the Z coupling is chiral, the pure pho-
ton and pure Z contributions to the cross-section are necessarily even in cos θ∗

while the interference term is odd.
Specifically, at LO the fully differential hadronic cross-section can be obtained

from the well-known result, Peskin and Schroeder 1995, for e+e− → µ
+
µ
− by

replacing the incoming lepton charges with those of the quarks, and accounting
for the PDFs, with the result

d3
σ

dmℓℓ̄ dyℓℓ̄ d cos θ∗
=

πα
2

3mℓℓ̄s

(

(1+ cos2(θ∗))
∑
q

Sq

[
fq(x1,m2

ℓℓ̄)fq̄(x2,m2
ℓℓ̄) + fq(x2,m2

ℓℓ̄)fq̄(x1,m2
ℓℓ̄)
]

+ cos θ∗
∑
q

Aq sign(yℓℓ̄)
[
fq(x1,m2

ℓℓ̄)fq̄(x2,m2
ℓℓ̄) − fq(x2,m2

ℓℓ̄)fq̄(x1,m2
ℓℓ̄)
]

)
(6.7)

where α is the QED coupling and the even (symmetric) and odd (antisymmetric)
couplings are given by

Sq = e2l e
2
q + PγZ · elvleqvq + PZZ · (v2l + a2l )(v

2
q + a2q)

Aq = PγZ · 2elaleqaq + PZZ · 8vlalvqaq , (6.8)

in terms of the electric charges el, eq and the vector and axial couplings vl, vq
and al, aq of the leptons and quarks, and the propagator factors

PγZ(mℓℓ̄) =
2m

2
ℓℓ̄(m

2
ℓℓ̄ −m

2
Z)

sin2(θW) cos2(θW)
[
(m2

ℓℓ̄ −m
2
Z)

2 + Γ2Zm
2
Z

] (6.9)

PZZ(mℓℓ̄) =
m

4
ℓℓ̄

sin4(θW) cos4(θW)
[
(m2

ℓℓ̄ −m
2
Z)

2 + Γ2Zm
2
Z

] , (6.10)

with mZ and ΓZ respectively the Z mass and width and θW the weak mixing
angle. In fig. 6.2 we display the symmetric Sq (left) and antisymmetric Aq (right)
couplings, eq. (6.8), for up-like and down-like quarks, as a function of the dilepton
invariant massmℓℓ̄. Both couplings are around a factor 2 larger for up-like quarks
than for down-like quarks, and become mℓℓ̄-independent for mℓℓ̄ ∼

> 1TeV, where
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Figure 6.2: The symmetric Sq (left) and antisymmetric Aq (right) couplings, eq. (6.8), for
up-like and down-like quarks, as a function of the dilepton invariant mass
mℓℓ̄.

they take the asymptotic values S̄q, Āq obtained by substituting in eq. (6.8) the
large-mass expressions of the propagator factors

P̄γZ =
2

sin2(θW) cos2(θW)
, P̄ZZ =

1

sin4(θW) cos4(θW)
, (6.11)

to which PγZ and PZZ respectively reduce up to O(m2
Z/m

2
ℓℓ̄) corrections.

The interference term proportional to Aq is odd in the Collins–Soper angle
cos θ∗, leading to a forward-backward scattering asymmetry. In a proton-proton
collision the initial state is completely symmetric, so the quark and antiquark con-
tributions to the cross-section eq. (6.7) are necessarily symmetric upon the inter-
change of the incoming quark and antiquark, with the corresponding momentum
fractions fixed at LO by eq. (6.3). However, as mentioned, there is a sign change in
the relation between cos θ∗ and cos θ according to whether the incoming parton
with largest momentum fraction is a quark or an antiquark, i.e., when interchang-
ing x1 with x2 in the argument of the quark and antiquark PDFs, thereby leading
to the result of eq. (6.7). This leads to a forward-backward asymmetry whenever
the quark and antiquark PDFs have different x dependence.

In order to understand the relation of this forward-backward asymmetry in
terms of the behavior of the PDFs, it is convenient to rewrite the PDF combina-
tions that contribute to the differential cross-section eq. (6.7) in terms of symmet-
ric and antisymmetric parton luminosities, defined as

LS,q(mℓℓ̄,yℓℓ̄) ≡ fq(x1,m2
ℓℓ̄)fq̄(x2,m2

ℓℓ̄) + fq(x2,m2
ℓℓ̄)fq̄(x1,m2

ℓℓ̄) ,

LA,q(mℓℓ̄,yℓℓ̄) ≡ sign(yℓℓ̄)
[
fq(x1,m2

ℓℓ̄)fq̄(x2,m2
ℓℓ̄) − fq(x2,m2

ℓℓ̄)fq̄(x1,m2
ℓℓ̄)
]

,

(6.12)

where the momentum fractions x1 and x2 are given in terms of mℓℓ̄, yℓℓ̄, and√
s in eq. (6.3). Note that both parton luminosities are invariant under the inter-
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change x1 ↔ x2, upon which yℓℓ̄ → −yℓℓ̄. In terms of these luminosities, the
triple differential cross-section eq. (6.7) takes the compact form

d3
σ

dmℓℓ̄ dyℓℓ̄ d cos θ∗
=

πα
2

3mℓℓ̄s

(
(1+ cos2(θ∗))

∑
q

SqLS,q(mℓℓ̄,yℓℓ̄)

+ cos θ∗
∑
q

AqLA,q(mℓℓ̄,yℓℓ̄)

)
(6.13)

which explicitly displays its symmetry properties upon the transformation cos θ∗ →
− cos θ∗, equivalent to a charge conjugation transformation q↔ q̄ and ℓ↔ ℓ̄.

The symmetric and antisymmetric parton luminosities eq. (6.12) can also be
expressed in terms of the sum and difference of quark and antiquark PDFs,

f
±
q (x,Q) = fq (x,Q)± fq̄ (x,Q) , (6.14)

where f−q is usually called the valence PDF combination, and f+q the total quark
PDF . Note that at LO, and more generally in factorization schemes in which
PDFs are positive, such as MS (cf. Candido, Forte, et al. 2020), f+q is positive
while f−q in general is not, and f

+
q > |f

−
q |. We can write the symmetric and

antisymmetric parton luminosities in eq. (6.12) as

LS,q(mℓℓ̄,yℓℓ̄) =
1

2

(
f
+
q (x1,m2

ℓℓ̄)f
+
q (x2,m2

ℓℓ̄) − f
−
q (x2,m2

ℓℓ̄)f
−
q (x1,m2

ℓℓ̄)
)

(6.15)

LA,q(mℓℓ̄,yℓℓ̄) =
sign(yℓℓ̄)

2

(
f
−
q (x1,m2

ℓℓ̄)f
+
q (x2,m2

ℓℓ̄) − f
−
q (x2,m2

ℓℓ̄)f
+
q (x1,m2

ℓℓ̄)
)

.

(6.16)

The symmetric luminosity LS,q is of course positive, and it is dominated by the
f
+
q (x1,m2

ℓℓ̄)f
+
q (x2,m2

ℓℓ̄) term, which is always larger than the valence contribution
f
−
q (x2,m2

ℓℓ̄)f
−
q (x1,m2

ℓℓ̄). The sign of the antisymmetric combination, that in turn
drives the sign of the forward-backward asymmetry, is in general not determined
uniquely. If x1 is in the region of the valence peak, and x2 in the small x region,
then f

−(x1,m2
ℓℓ̄) ≫ f

−(x2,m2
ℓℓ̄), and the antisymmetric luminosity is positive

provided only that the valence PDF is positive. As we will discuss in section 6.2,
while this is indeed the case in the Z-peak region, it is actually not necessarily the
case in the high dilepton mass region relevant for BSM searches.

6.1.2 Single-differential distributions and the forward-backward asymmetry

Starting from the triple differential cross section, eq. (6.13), one can define sin-
gle differential distributions by integrating the other two kinematic variables over
the available phase space. In particular, the single-differential distribution in the
Collins–Soper angle θ∗ is given by

dσ
d cos θ∗

=

√
s∫

m
min
ℓℓ̄

dmℓℓ̄

ln(
√
s/mℓℓ̄)∫

ln(mℓℓ̄/
√
s)

dyℓℓ̄
d3
σ

dmℓℓ̄ dyℓℓ̄ d cos θ∗
, (6.17)
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wheremmin
ℓℓ̄ is a lower kinematic cut in the dilepton invariant mass. Since eq. (6.13)

falls off steeply with mℓℓ̄, the region with mℓℓ̄ ∼
> m

min
ℓℓ̄ will dominate the integral.

Given that the dependence of the fully differential cross-section eq. (6.13) on the
Collins–Soper angle factorizes with respect to the PDF dependence, the integra-
tion over rapidity and invariant mass does not affect the cos θ∗ dependence, and
the single-differential cross section eq. (6.17) takes the simple form

dσ
d cos θ∗

= (1+ cos2 θ∗)
∑
q

gS,q + cos θ∗
∑
q

gA,q , (6.18)

where the symmetric and antisymmetric coefficients gS,q and gA,q depend on the
quark flavor and on the invariant mass cut mmin

ℓℓ̄ , but not on the Collins–Soper
angle itself. The contributions relevant for the forward-backward asymmetry,
gA,q, are given at LO by

gA,q =
πα

2

3s

√
s∫

m
min
ℓℓ̄

dmℓℓ̄

mℓℓ̄

Aq(mℓℓ̄)

ln(
√
s/mℓℓ̄)∫

ln(mℓℓ̄/
√
s)

dyℓℓ̄ LA,q(mℓℓ̄,yℓℓ̄) , (6.19)

which in the large-mℓℓ̄ region, expressing the longitudinal momentum integration
in terms of x1 (assuming x1 ⩾ x2), becomes

gA,q =
πα

2
Āq

3s

√
s∫

m
min
ℓℓ̄

dmℓℓ̄

mℓℓ̄

1∫
mℓℓ̄/

√
s

dx1
x1

LA,q(mℓℓ̄, x1) +O

(
m

2
Z

m
2
ℓℓ̄

)
, (6.20)

where themℓℓ̄-independent effective couplings Āq are given substituting in eq. (6.8)
the expressions for the asymptotic propagator factors eq. (6.11).

Upon integration over the Collins–Soper angle, the antisymmetric contribution
vanishes: so for instance the rapidity distribution

dσ
dyℓℓ̄

=

√
s∫

m
min
ℓℓ̄

dmℓℓ̄

1∫
−1

d cos θ∗
d3
σ

dmℓℓ̄ dyℓℓ̄ d cos θ∗
, (6.21)

does not depend on terms proportional to Aq. Hence, for BSM searches in which
one is interested in the interference terms, as well as for PDF studies in which
one is interested in the valence-sea separation, the forward-backward asymmetry
is especially relevant. This observable is defined at the differential level as

Afb(cos θ∗) ≡
dσ

d cosθ∗ (cos θ∗) − dσ
d cosθ∗ (− cos θ∗)

dσ
d cosθ∗ (cos θ∗) + dσ

d cosθ∗ (− cos θ∗)
, cos θ∗ > 0 , (6.22)

which in terms of the coefficients introduced in eq. (6.18) is given at LO by

Afb(cos θ∗) =
cos θ∗

(1+ cos2(θ∗))

∑
q gA,q∑
q

′ gS,q ′
, cos θ∗ > 0 . (6.23)



6.1 anatomy of drell-yan production 127

4

6

8
dσ

d
co

sθ
∗

[p
b]

×10−8 LO DY @ 14 TeV with m`¯̀> 5 TeV
Analytic
mg5 aMC+PineAPPL

−1.0 −0.5 0.0 0.5 1.0
cos θ∗

10−4

10−3

re
l.

di
ff.

0.00

0.05

0.10

0.15

A
fb

(c
os
θ∗

)

LO DY @ 14 TeV with m`¯̀> 5 TeV

Analytic
mg5 aMC+PineAPPL

0.0 0.2 0.4 0.6 0.8 1.0
cos θ∗

10−3

10−2

re
l.

di
ff.

Figure 6.3: The single-inclusive differential distribution in the Collins–Soper angle cos θ∗,
eq. (6.17), and the corresponding forward-backward asymmetry computed at
LO, where the analytic calculation eq. (6.22) is compared with the numerical
simulation based on MadGraph5_aMC@NLO interfaced to PineAPPL. The bottom
panels display the relative difference between the analytic and numerical cal-
culations. One of the replicas of the NNPDF4.0 NNLO PDF set is used as input
to the calculation.

This shows that the dependence on cos θ∗ factorizes and the PDF dependence
only appears as an overall normalization factor depending on the ratio of

∑
q gA,q

and
∑

q gS,q, which in turn depend on the antisymmetric and symmetric partonic
luminosities LA,q and LS,q respectively. Note that the overall sign of Afb remains
in general undetermined.

In order to illustrate concretely these results, in fig. 6.3 we display the single-
inclusive differential distribution in cos θ∗, eq. (6.17), and the corresponding
forward-backward asymmetry, eq. (6.22) evaluated at LO for mmin

ℓℓ̄ = 5TeV. The
single-differential rapidity distribution eq. (6.21)) is also shown for reference in
fig. 6.4. We display both a numerical evaluation based on MadGraph5_aMC@NLO

interfaced to PineAPPL, as well as analytic results found using the form eq. (6.13)
of the triple differential luminosity, with all the values of the parameters entering
eqs. (6.8) to (6.10) set to the values used in the MadGraph5_aMC@NLO runcard, and
performing numerically the integrals in eqs. (6.17) and (6.21). For validation pur-
poses, no kinematic cuts are applied to the rapidities and transverse momenta of
final-state leptons. The PDF input is taken to be given, for illustrative purposes,
by one of the replicas of the NNPDF4.0 NNLO set. The relative difference between
the analytic and numerical calculation is shown in the bottom panels of fig. 6.3
and demonstrates perfect agreement.

While the discussion so far has been presented at LO, its qualitative features
are unaffected by higher-order corrections. To illustrate this, in fig. 6.5 we com-
pare the LO result from fig. 6.3 to the corresponding NLO QCD result. The bot-
tom panels display the NLO K-factor for the cos θ∗ distribution and the forward-
backward asymmetry. Whereas the NLO K-factor in the cos θ∗ distribution is
quite large (around 40%) it exhibits only a mild dependence on the Collins–Soper

 http://nnpdf.mi.infn.it/for-users/unpolarized-pdf-sets/#NNPDF4.0 
 http://nnpdf.mi.infn.it/for-users/unpolarized-pdf-sets/#NNPDF4.0 
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Figure 6.4: Same as fig. 6.3 but now for the absolute dilepton rapidity distribution |yℓℓ̄|
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Figure 6.5: Same as fig. 6.3 now comparing the LO result to the NLO QCD result obtained
using MadGraph5_aMC@NLO. The K-factor is shown in the lower panel.

angle. For Afb, the K-factor is at the 10% level and essentially independent of the
value of cos θ∗.

6.2 the forward-backward asymmetry and the
large-x PDFs

After our general discussion of the Drell–Yan process, we now investigate pro-
ton structure at large-x, focusing on its impact on the forward-backward asym-
metry Afb

(
cos θ∗

)
at large invariant masses. First, we discuss the dependence

of the qualitative features of the asymmetry, and specifically its sign, on the be-
havior of the underlying PDFs: we illustrate this in a toy model, and compare
results to a simple and commonly used approximation. Subsequently, we study
the large-x behavior of the PDFs from several recent PDF sets: we compare PDFs,
luminosities and the LO asymmetry Afb as a function of the dilepton invariant
mass mℓℓ̄.



6.2 the forward-backward asymmetry and the large-x PDFs 129

6.2.1 Qualitative features of Afb

In order to understand the main qualitative features of the cos θ∗ distribution
and of the asymmetry Afb and their dependence on the properties of the under-
lying PDFs, it is instructive to evaluate predictions based on the same computa-
tional setup adopted in section 6.1, namely LO matrix elements without kinematic
cuts, using toy PDFs as input. We consider toy quark and antiquark PDF with
the form

xfq(x) = Aqx
−aq(1− x)bq , xfq̄(x) = Aq̄x

−aq̄(1− x)bq̄ , (6.24)

where Aq and Aq̄ are normalization constants, irrelevant for this discussion. For
simplicity we neglect the scale dependence of the PDFs. We then compute the
single-differential distribution eq. (6.17) and the asymmetry eq. (6.22) with differ-
ent assumptions on the large x-behavior of these toy PDFs, i.e. different values of
the large-x exponents bq, bq̄.

Since the overall normalization does not affect the shape of the distribution,
we set Aq = Aq̄ = 1. Furthermore, since we are not interested in the small-x
behavior, we set aq = aq̄ = 1. Hence, we consider simple scenarios in which

xf
+
q (x;bq,bq̄) = xfq(x) + xfq̄(x) = x

−1
[
(1− x)bq + (1− x)bq̄

]
, (6.25)

xf
−
q (x;bq,bq̄) = xfq(x) − xfq̄(x) = x

−1
[
(1− x)bq − (1− x)bq̄

]
, (6.26)

with different choices of the parameters bq and bq̄. Specifically, we consider a
scenario with bq < bq̄, in particular (bq,bq̄) = (3, 5), which leads to a positive
valence combination xf

−
q for all values of x; a scenario with (bq,bq̄) = (3, 3)

so xf−q vanishes identically; and a third scenario in which the quark PDFs at
large-x fall off more rapidly than the antiquarks, (bq,bq̄) = (5, 3), so the valence
combination xf−q becomes negative.

In fig. 6.6 we display both the cos θ∗ single-inclusive distribution eq. (6.17) and
the asymmetry eq. (6.22). It is apparent that if the antiquark PDFs fall off at
large-x faster than the quarks, i.e. when bq < bq̄ the forward-backward asym-
metry is positive, while if the converse is true it is negative. Of course if the
quark and antiquark PDFs behave in the same way there is no asymmetry. In this
simple model, a negative asymmetry corresponds to a negative valence distribu-
tion, which conflicts with sum rules and appears to be unphysical. However, the
model should be only taken as illustrative of the large-x behavior: it is of course
easy to construct PDFs that reproduce this behavior at very large x, while leading
to a positive valence PDF as x decreases, consistent with sum rules. One could
then argue that Brodsky–Farrar counting rules (cf. Stanley J. Brodsky and Farrar
1973, 1975) imply that bq > bq̄ hence a positive asymmetry is favored. However,
counting rules are supposed to only hold asymptotically, so whether they apply
in any given region of x is a priori unclear. It is easy to construct generalizations
of the model in which the behavior leading to a negative asymmetry is repro-
duced at large enough x, yet the valence PDFs are positive at smaller x, and the
counting rules apply in the strict x→ 1 limit.



130 forward-backward asymmetry

−1.0 −0.5 0.0 0.5 1.0
cos θ∗

1

2

3

4

5

6

7
dσ

d
co

sθ
∗

[a
.u

.]

×10−5 LO DY @ 14 TeV with m`¯̀> 5 TeV
bq = bq̄ = 3
bq = 3, bq̄ = 5
bq = 5, bq̄ = 3

0.0 0.2 0.4 0.6 0.8 1.0
cos θ∗

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

A
fb

(c
os
θ∗

)

LO DY @ 14 TeV with m`¯̀> 5 TeV
bq = bq̄ = 3
bq = 3, bq̄ = 5
bq = 5, bq̄ = 3

Figure 6.6: The single-inclusive cos θ∗ distribution eq. (6.17) (left) and the corresponding
forward-backward asymmetry (right panel) eq. (6.22) evaluated using the toy
PDFs of eq. (6.24). No kinematic cuts are applied except for mmin

ℓℓ̄ = 5TeV.

In fact, whereas in the toy model a negative asymmetry is associated with
a negative valence eq. (6.26), the formal condition for a negative asymmetry is
(assuming x1 > x2)

sign
[
LA,q

]
= sign

[
f
+
q (x2)

f
+
q (x1)

−
f
−
q (x2)

f
−
q (x1)

]
= sign

[
fq(x2)

fq(x1)
−
fq̄(x2)

fq̄(x1)

]
, x1 > x2 .

(6.27)
Hence what determines the sign of the antisymmetric luminosity, and thus of the
forward-backward asymmetry, is the relative rate of decrease of the quark and
antiquark, or valence and total quark PDFs, rather than their sign. Again, it is
easy to construct generalizations of the toy model in which the condition eq. (6.27)
still holds, yet the valence PDF remains positive.

It is interesting to note that a different conclusion is reached using an approx-
imation to the asymmetry which is quite accurate in the Z peak region. This
approximation however turns out to fail at high invariant mass. Indeed, the ex-
pression eq. (6.16) of the antisymmetric luminosity in terms of the valence and
total PDF combinations f+q and f−q PDF combinations suggests an approximation
based on the expectation that the valence is dominant at large x and the sea is
dominant at small x. Assuming x1 > x2, one then expects that

LA,u(yℓℓ̄,mℓℓ̄) ≈
1

2
f
−
u (x1,m2

ℓℓ̄)f
+
u (x2,m2

ℓℓ̄) , x1 > x2. (6.28)

This is clearly true in the Z-peak region, which motivates the suggestion to use
the measurement of Afb as a means to constrain the valence quark combinations,
Accomando et al. 2019.

However, while eq. (6.28) provides a satisfactory approximation in the Z-peak
region, it fails at larger mℓℓ̄ values. Indeed, for on-shell Z production, with

√
s =

14TeV, for a dilepton rapidity with yℓℓ̄ ∼ 2.5, the limit of the acceptance region
of ATLAS and CMS, the colliding partons have x1 = 0.09 and x2 = 6× 10−4. So
indeed the contribution in which the valence PDF is evaluated at the smallest x
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Figure 6.7: The antisymmetric partonic luminosity LA,q, eq. (6.16), for the up and down
quarks compared to the approximation eq. (6.28) in the case of NNPDF4.0 at
mℓℓ̄ = mZ (top) and mℓℓ̄ = 5TeV (bottom panels).

value is highly suppressed. But for mℓℓ̄ = 5TeV, the smallest value of x2, attained
when x1 = 1, is x2 = 0.35: so both momentum fractions are large and in fact to
the right of the valence peak. In such case, there is no obvious hierarchy between
the different terms that contribute to to antisymmetric luminosity LA,q.

This is illustrated in fig. 6.7, where we compare the antisymmetric luminosity
LA,q for the up and down quarks to the approximation eq. (6.28), evaluated with
NNPDF4.0 NNLO, in the Z-peak region mℓℓ̄ = mZ and at mℓℓ̄ = 5TeV. While
indeed for mℓℓ̄ = mZ eq. (6.28) reproduces the exact luminosity, this is not the
case for mℓℓ̄ ≫ mZ: both the magnitude and the shape of the luminosity are very
different. This qualitative behavior is common to all PDF sets: the approximation
fails equally badly regardless of the PDF set.

We conclude that there is no simple relation between the sign of the asymmetry
and that of the valence PDF, and that the behavior of the asymmetry must be
determined by studying the large-x behavior of the quark and antiquark PDFs.

6.2.2 Parton distributions

We assess now the large-x behavior of the quark and antiquark PDFs in differ-
ent recent PDF determinations: specifically, we compare ABMP16, CT18, NNPDF4.0,
and MSHT20. For completeness, in section 6.4 we also present results obtained
with the widely used NNPDF3.1 set, Ball et al. 2017b.
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Figure 6.8: Comparison of the xf+q (top) and xf−q (bottom) quark PDF combinations for the
up, down, strange, and charm quarks, evaluated at mℓℓ̄ = 5TeV for NNPDF4.0

NNLO. The right panels display the relative 68% CL uncertainties. The two ver-
tical lines indicate xmin = m

2
ℓℓ̄/s, the smallest allowed value of x for dilepton

DY production for a collider CoM energy
√
s = 14TeV, and the value of x cor-

responding to a symmetric partonic collision x1 = x2, namely xsym = mℓℓ̄/
√
s.

First, we provide a qualitative assessment of the relative size of the PDFs corre-
sponding to individual quark flavors, both for the total and valence PDFs. In
fig. 6.8 we compare the total xf+q and valence xf−q quark PDF combinations
for the up, down, strange, and charm quarks, evaluated at mℓℓ̄ = 5TeV with
the NNPDF4.0 NNLO PDF set. The right panels display the corresponding rel-
ative 68% CL uncertainties. The leftmost vertical line indicates xmin = m

2
ℓℓ̄/s,

the smallest allowed value of x for dilepton DY production with invariant mass
mℓℓ̄ = 5TeV for a collider CoM energy

√
s = 14TeV. The rightmost vertical line

corresponds to the value of x in a symmetric partonic collision where x1 = x2,
namely xsym ≡ mℓℓ̄/

√
s.

From fig. 6.8 one can observe that for x ≲ 0.3 there is a clear hierarchy f+u >

f
+
d > f

+
s > f

+
c , while for larger x values the strange and charm PDFs become

of comparable magnitude. The up and down quarks, both for xf+q and xf−q , are
significantly larger than the second-generation quark PDFs until x ≃ 0.7, and
hence dominate the large-mℓℓ̄ differential distributions in Drell–Yan production.
PDF uncertainties grow rapidly with x, reflecting the lack of direct experimental
constraints. The same qualitative behavior of the lighter versus heavier flavor
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(δ
f d̄

)/
f d̄

Figure 6.9: The up and down quark and antiquark PDFs evaluated at mℓℓ̄ = 5TeV for
NNPDF4.0, CT18, MSHT20, and ABMP16 in the x region relevant for high-mass
Drell–Yan production. The upper panels display the absolute PDFs, the middle
ones their ratio to the central NNPDF4.0 value, and the bottom panels the
relative 68% CL uncertainties. The vertical lines in the top row indicate the
values of xmin = m

2
ℓℓ̄/s and in the central row those of xsym = mℓℓ̄/

√
s for

three different values mℓℓ̄ = 3, 5, 7TeV. Note that in the second row the range
on the y axis is not the same for quarks and antiquarks, and in the third row
also for up and down quarks. Note also that the PDFs, their ratios and their
uncertainties are essentially unchanged in the displayed large-x region in the
range 1 TeV < mℓℓ̄ < 7TeV.

PDFs is observed for other PDF sets. Given the hierarchy f±u , f±d ≫ f
±
s , f±c , in

the following we will discuss only the behavior of the first-generation quark and
antiquark PDFs which are those relevant for the interpretation of neutral-current
Drell–Yan production in the kinematic region used for BSM searches.

We next compare the large-x behavior of the four PDF sets ABMP16, CT18,
MSHT20, and NNPDF4.0 in fig. 6.9 for mℓℓ̄ = 5TeV. We display from top to
bottom the absolute PDFs, their ratio to the central NNPDF4.0 value, and their
relative 68% CL uncertainties. As in the case of fig. 6.8, we indicate with two
vertical lines the values of xmin and xsym, both for mℓℓ̄ = 5TeV, and for a smaller
and a larger value of mℓℓ̄, namely for mℓℓ̄ = 3TeV and mℓℓ̄ = 7TeV. For clarity,
the values of xmin are only shown in the top row of plots, and the values of xsym in
the central row. Note that the scale dependence of the PDFs in this range of x and
invariant mass is very slight. Indeed, the PDFs shown in fig. 6.8 are essentially
unchanged at mℓℓ̄ = 3TeV or mℓℓ̄ = 7TeV; only the corresponding ranges of x1,
x2 vary significantly.
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Good agreement between all PDF sets is found up to around x ≃ 0.4. Formℓℓ̄ =

5TeV this corresponds to the value of xsym, i.e. central rapidity. For larger values
of x ∼

> 0.4, the up quark PDF xfu from the NNPDF4.0 set is somewhat suppressed
in comparison to the other three sets, which in turn agree among each other.
A rather stronger suppression of NNPDF4.0 in comparison to CT18 is observed
for the down quark, with MSHT20 and ABMP16 in a somewhat intermediate
situation. The opposite behavior is found in the same region x ∼

> 0.4 for antiquark
PDFs xfū and xfd̄: namely, the NNPDF4.0 PDF is significantly larger than that of
the other sets. It follows that for a lower invariant mass value mℓℓ̄ = 3TeV, all
PDF sets are in agreement in the x range in which they are probed, while for a
higher value mℓℓ̄ = 7TeV the disagreement between NNPDF4.0 and the other PDF
sets is present for most of the x ⩾ xmin range.

It is interesting to observe that in the region with 0.4 ≲ x ≲ 0.6 the PDFs are
constrained by some fixed-target DIS structure functions and by forward W and
Z production data from LHCb. Hence, at the edge of the data region NNPDF4.0

starts disagreeing with the other global PDF sets considered here, with the dis-
agreement getting more marked as x grows outside the region covered by the
data. Qualitatively, NNPDF4.0 is characterized by the fact that the quark PDFs
drop faster as a function of x, and the antiquark PDFs drop less fast as x grows
towards x = 1. As we will show next, this feature will lead to significant differ-
ences in the antisymmetric PDF luminosities LA,q as the value of the dilepton
invariant mass mℓℓ̄ is increased.

The relative PDFs uncertainties, shown in the lower panels in fig. 6.9 in all cases
grow with x (see also fig. 6.8). The largest PDF uncertainties correspond to either
CT18 or NNPDF4.0, depending on the x range and the PDF flavor. Specifically, the
NNPDF4.0 uncertainties are largest for fd in the region x ∼

> 0.6 and for fū and fd̄
when 0.3 ∼

< x ∼
< 0.5. The smallest PDF uncertainties are displayed by ABMP16

and MSHT20.
The different behavior of the rate of decrease with x of PDFs in the large x

region, specifically comparing NNPDF4.0 to other PDF sets, can be seen most
clearly from a comparison off effective asymptotic exponents (cf. Ball, Nocera, et
al. 2016)

βa,q(x,Q) ≡
∂ ln |xfq(x,Q)|

∂ ln(1− x)
, (6.29)

which of course for PDFs of the form of eq. (6.24) just coincide with the exponent
b up to O(1− x) corrections. In fig. 6.10 we compare the values of βa,q(x,mℓℓ̄)

for ABMP16, CT18, MSHT20, and NNPDF4.0 evaluated at mℓℓ̄ = 5TeV for the up
and down quark and antiquark PDFs in the x range of fig. 6.8.

It is clear that while all PDF sets have a similar effective asymptotic exponent
for x ∼

< 0.35, a different behavior of NNPDF4.0 in comparison to other determi-
nations sets in for x ∼

> 0.4. Specifically, for quarks the NNPDF4.0 exponents are
always larger, and for antiquarks smaller than those found with other PDF sets.
Interestingly, whereas for the up quark the effective exponent βa,u is approxi-
mately constant for all PDF sets when x ∼

> 0.4, with the NNPDF4.0 value being just
slightly higher and slowly increasing, for the down quark and all antiquarks this
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Figure 6.10: The large-x asymptotic exponents βa,q(x,mℓℓ̄), defined in eq. (6.29), for
ABMP16, CT18, MSHT20, and NNPDF4.0 evaluated at mℓℓ̄ = 5TeV for the
up and down quark and antiquark PDFs.

approximately constant behavior is seen for other PDF sets but not for NNPDF4.0.
Specifically, for the NNPDF4.0 down quark the exponent slowly but markedly in-
creases for x ∼

> 0.3, together with its uncertainty. In the case of NNPDF4.0 for both
antiquarks the exponent rapidly drops in the region 0.3 ∼

< x ∼
< 0.4. This is consis-

tent with the observation at the PDF level (fig. 6.9) that for NNPDF4.0 at large-x,
as compared to the other groups, the up and especially the down quark fall off
more rapidly, while the antiquark PDFs drop more slowly. Note in particular that
for the down PDF the antiquark effective exponent is significantly smaller than
the quark effective exponent for all x ∼

> 0.4.

The fact that a modification in behavior of the effective down quark and espe-
cially antiquark PDFs is observed at the edge of the data region for NNPDF4.0,
but not for other PDF sets, suggests that this might be related to the fact that
NNPDF4.0 generally adopts a more flexible PDF parametrization in comparison to
other groups. Also, the uncertainties on the effective exponents βa,q(x,mℓℓ̄) tend
to be larger for NNPDF4.0 (and also to a lesser extent for CT18) in comparison to
those of other groups. Note however that the full PDF uncertainty contains also
a contribution from the overall magnitude, which is not captured by the effective
exponents displayed here.
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Figure 6.11: The symmetric LS,q (top) and antisymmetric LA,q (bottom) parton luminosi-
ties (left) and relative uncertainties (right) evaluated with NNPDF4.0 NNLO
at mℓℓ̄ = 5TeV and

√
s = 14TeV. The bottom and top x-axes in each plot

show respectively the values of x1 and x2 at which the luminosities are being
evaluated, within the allowed range x ⩾ xsym = mℓℓ̄/

√
s, with the convention

x1 > x2.

6.2.3 Parton luminosities

We finally turn to the behavior of parton luminosities, with particular regard
for the antisymmetric combination which is relevant for the forward-backward
asymmetry. As for PDFs, we first assess the qualitative features of the lumi-
nosities corresponding to different quark flavors. Specifically, the symmetric
LS,q and antisymmetric LA,q luminosities eq. (6.12) for individual flavors are
displayed in fig. 6.11, evaluated with NNPDF4.0 NNLO for mℓℓ̄ = 5TeV and√
s = 14TeV. The left panels display the absolute luminosities (in logarithmic

and linear scale respectively for the y and x axes) while the right panels show
the corresponding PDF uncertainties (relative and absolute for LS,q and LA,q, re-
spectively). The bottom and top x-axes in each plot show respectively the values
of x1 and x2 at which the luminosities are being evaluated, within the allowed
range x ⩾ xsym = mℓℓ̄/

√
s, with the convention x1 > x2.

The symmetric parton luminosities exhibit of course the same hierarchy be-
tween flavors as the corresponding PDF plots of fig. 6.8. The luminosity LS,q
drops rapidly for x1 ∼

> 0.6. PDF uncertainties depend weakly on x up to x1 ∼
> 0.8,
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Figure 6.12: The symmetric parton luminosities LS,q(x1,mℓℓ̄) for the NNPDF4.0, ABMP16,
CT18, and MSHT20 NNLO PDF sets for dilepton invariant masses of mℓℓ̄ =

5TeV. The luminosities are multiplied by the effective charges Sq defined in
eq. (6.8). From left to right, we display LS,u, LS,d, and their weighted sum
that enters the coefficient gS,q in eq. (6.18). The bottom panels display the
relative 68% CL PDF uncertainties.

after which they blow up, and range between ∼ 20% for the up quark luminosity
to ∼ 60% for the charm quark one, with down and strange intermediate and of
similar magnitude.

As displayed in fig. 6.12, the light quark symmetric luminosities of other global
PDF sets are qualitatively similar. We show LS,u, LS,d, and their weighted sum
that enters the enters the symmetric coefficient gS,q in eq. (6.18) for the NNPDF4.0,
ABMP16, CT18, and MSHT20 at mℓℓ̄ = 5TeV. The luminosities are multiplied by
the effective charges Sq defined in eq. (6.8), and the bottom panels display the
corresponding 68% CL PDF uncertainties. Good agreement between the four
sets, with a similar shape of LS,q, is observed. The PDF luminosities for the
dominant LS,u contribution are the largest for NNPDF4.0.

Turning to the antisymmetric PDF luminosities LA,q, we note that, for NNPDF4.0,
while the up luminosity is positive, the central value of the down luminosity is
negative, though the luminosity is compatible with zero at the one sigma level.
Recalling from fig. 6.8 that xf−d itself is positive for all values of x, this provides
an explicit example in which the condition eq. (6.27) is satisfied without the va-
lence combination being negative. We conclude that for NNPDF4.0, the faster drop
of the quark distribution and slower drop of the antiquark distribution that was
displayed by the effective exponents of fig. 6.10 leads to a negative antisymmetric
luminosity, in agreement with eq. (6.27). The absolute PDF uncertainties are of a
similar size for LA,u and LA,d, with a different shape reflecting the underlying
central values.

We compare in fig. 6.13 the behavior of the antisymmetric luminosities for all
PDF sets for mℓℓ̄ = 3TeV (top) and mℓℓ̄ = 5TeV (bottom). In order to facilitate
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Figure 6.13: The antisymmetric parton luminosities LA,q(x1,mℓℓ̄) for the NNPDF4.0,
ABMP16, CT18, and MSHT20 NNLO PDF sets for dilepton invariant masses
of mℓℓ̄ = 3TeV (top) and mℓℓ̄ = 5TeV (bottom). The luminosities are multi-
plied by the effective charges Aq defined in eq. (6.8). From left to right, we
display LA,u, LA,d, and their weighted sum that enters the coefficient gA,q
eq. (6.19).
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Figure 6.14: Same as fig. 6.13 now for the absolute PDF uncertainties.

the understanding of the way the PDF behavior determines that of the asymme-
try, we show both the contribution of individual flavors and the total contribution
to the antisymmetric coefficient gA,q of eq. (6.19). Namely, in fig. 6.13 the lumi-
nosities corresponding to individual flavors are multiplied by the corresponding
flavor-dependent effective charges Aq defined in eq. (6.8): from left to right we
display LA,u, LA,d, and their weighted sum which determines the sign and mag-
nitude of the total forward-backward asymmetry. The corresponding absolute
PDF uncertainties for each of the four PDF sets are displayed in fig. 6.14.
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fig. 6.13 shows that for ABMP16, CT18, and MSHT20 the antisymmetric parton
luminosities depend only mildly on mℓℓ̄, whereas for NNPDF4.0 they exhibit a
strong mℓℓ̄ dependence. Indeed, for dilepton invariant masses of mℓℓ̄ = 3TeV
there is good agreement between the three groups, but for mℓℓ̄ = 5TeV the
NNPDF4.0 up quark luminosity, while preserving a similar valence-like shape, is
suppressed by a factor 2 in comparison to other groups, and the down quark lu-
minosity becomes compatible with zero with a negative central value, as already
noted. For all PDF sets and mℓℓ̄ values the weighted sum is dominated by the up
quark contribution. The strong scale dependence of LA,q in NNPDF4.0 reflects the
underlying PDF behavior seen in fig. 6.9 and highlighted by the effective expo-
nents fig. 6.10. As the scale mℓℓ̄ increases, a range of increasingly large x values
is probed, for which, in the case of NNPDF4.0, the quark effective exponent slowly
increases and the antiquark exponent rapidly drops. This leads to a negative
asymmetry, following eq. (6.27).

A comparison of the corresponding PDF uncertainties, displayed in fig. 6.14,
clearly shows the transition from the data region to the extrapolation region. For
mℓℓ̄ = 3TeV the uncertainty δLA,u is generally small for all sets, with CT18 show-
ing a somewhat larger uncertainty for the up quark, and comparable uncertainties
for the down quark for all PDF sets. As the scale increases to mℓℓ̄ = 5TeV, where
the large-x region is probed, the uncertainty increases, though more markedly
for NNPDF4.0. For all PDF sets but NNPDF4.0, the uncertainty is approximately
unchanged when the scale is further increased, while for NNPDF4.0 it grows
markedly.

Finally, in fig. 6.15 we display for all PDF sets the ratio of antisymmetric to
symmetric couplings

Rfb ≡
∑

q gA,q∑
q

′ gS,q ′
, (6.30)

that, according to eq. (6.23), determines at leading order the sign and magnitude
of the forward-backward asymmetry distribution Afb(cos θ∗). The symmetric and
antisymmetric coefficients are obtained by integrating the corresponding symmet-
ric LS,q and antisymmetric LA,q partonic luminosities according to eq. (6.19), and
the result is shown as a function of the lower integration cut mmin

ℓℓ̄ . In all cases
the correlation between PDF uncertainties in the numerator and the denominator
are kept into account.

fig. 6.15 shows that, consistently with the behavior of the luminosity of fig. 6.13,
for mmin

ℓℓ̄ ∼
< 3TeV results agree within uncertainties for all PDF sets. The situa-

tion is different for higher dilepton invariant masses mmin
ℓℓ̄ ∼

> 3TeV: the ratio Rfb
starts to decrease for NNPDF4.0, while it remains approximately constant for the
other PDF sets. In particular, for NNPDF4.0 the coupling ratio vanishes around
m

min
ℓℓ̄ ∼ 5TeV, and it becomes negative for yet larger mmin

ℓℓ̄ values. It follows that
the forward-backward asymmetry in high-mass Drell–Yan production should de-
crease and eventually vanish (and possibly even turn negative) in NNPDF4.0 as the
m

min
ℓℓ̄ cut is increased, while for CT18, MSHT20, and ABMP16 it should remain

positive with a similar magnitude irrespective of the cut mmin
ℓℓ̄ adopted.
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Figure 6.15: The coupling ratio Rfb, eq. (6.30), that enters the forward-backward asymme-
try Afb(cos θ∗) at LO, eq. (6.23), for different PDF sets, as a function of the
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ℓℓ̄ .

1 2 3 4 5

m
(min)

`¯̀
(TeV)

0.00

0.05

0.10

0.15

0.20

δ(
R

fb
)

NNPDF4.0

ABMP16

CT18

MSHT20

1 2 3 4 5

m
(min)

`¯̀
(TeV)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

δ(
R

fb
)/
R

fb

NNPDF4.0

ABMP16

CT18

MSHT20

Figure 6.16: The absolute (left) and relative (right panel) uncertainties in the coupling ratio
Rfb shown in fig. 6.15.

fig. 6.16 displays the absolute and relative uncertainties associated to the cou-
pling ratio Rfb. We observe that NNPDF4.0 shows the most marked increase of
the uncertainties in Rfb as mmin

ℓℓ̄ grows. For instance, for mmin
ℓℓ̄ ≳ 4TeV the ab-

solute PDF uncertainty in NNPDF4.0 is about twice as large as that found using
CT18 four times as large as MSHT20, and about one order of magnitude larger
than ABMP16. This trend is magnified for the relative uncertainties due to the
decrease in the central value of Rfb as mmin

ℓℓ̄ increases.
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6.3 the drell-yan forward-backward asymme-
try at the LHC

After the qualitative discussion of the previous sections, here we present re-
sults for the cos θ∗ distributions eq. (6.17) and the forward-backward asymmetry
eq. (6.22), with NLO QCD and electroweak corrections included and with realis-
tic selection and acceptance cuts for the LHC at

√
s = 14TeV and different values

of the invariant mass mℓℓ̄ relevant for SM studies and BSM searches.
Computations are performed using MadGraph5_aMC@NLO, Alwall et al. 2014, in-

terfaced to PineAPPL, S. Carrazza et al. 2020a; Schwan et al. 2022b, to generate
fast interpolation grids. In order to account for realistic detector acceptances, we
impose phase-space cuts on the transverse momentum and the pseudo-rapidity
of the two leading leptons,

p
ℓ
T > 10GeV , |ηℓ| < 2.4 . (6.31)

We then consider various regions of dilepton invariant mass mℓℓ̄: either close
to the Z-boson peak (60GeV < mℓℓ̄ < 120GeV), relevant for precision SM stud-
ies, or the high-mass region relevant for BSM searches, with various choices of
a lower mass invariant cutoff (mℓℓ̄ > 3, 4, 5, 6TeV). In all cases, in order to fa-
cilitate the interpretation of hadron-level results and the connection to the dis-
cussion of the PDF features from section 6.2, we also provide results for the two
partonic channels that give the largest contribution to the cross-section. As in
section 6.2, we compare results obtained using the ABMP16, CT18, MSHT20, and
NNPDF4.0 PDF sets. In all cases, we use the NNLO sets corresponding to the value
αs(mZ) = 0.118 of the strong coupling. Results obtained using the NNPDF3.1 PDF
set are reported in section 6.4.

Before considering the angular distributions, in fig. 6.17 we display the differ-
ential distribution in absolute dilepton rapidity |yℓℓ̄|, defined in eq. (6.21), for a
dilepton invariant mass of mℓℓ̄ > 5TeV. This is the kinematic region relevant for
searches of high-mass resonances in the dilepton channel at the LHC, e.g. Aad
et al. 2019; Khachatryan et al. 2017. We display the absolute differential distri-
butions with the 68% CL PDF uncertainties (top), the relative PDF uncertainty
(center) normalized for each PDF set to the corresponding central prediction, and
the pull between the NNPDF4.0 result, taken as a reference, and other sets (bot-
tom). This pull is defined as

Pulli =
σ
(0)
2,i − σ

(0)
1,i√(

δσ2,i
)2

+
(
δσ1,i

)2 , i = 1, . . . ,nbin , (6.32)

where σ(0)1,i and σ(0)2,i are the central values of the theory prediction in the i-th bin
of the distribution and δσ1,i, δσ2,i are the corresponding PDF uncertainties. For
the central NNPDF4.0 prediction in the upper panel we also display the contribu-
tions from the dominant parton subchannels, namely uū+ cc̄ and dd̄+ ss̄+ bb̄.
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Figure 6.17: The differential distribution in absolute dilepton rapidity |yℓℓ̄|, given in
eq. (6.21), for dilepton invariant masses of mℓℓ̄ > 5TeV for neutral current
Drell–Yan production at the LHC 14 TeV, obtained using ABMP16, CT18,
MSHT20, and NNPDF4.0 NNLO PDFs with αs(mZ) = 0.118. All uncertain-
ties shown are 68% CL PDF uncertainties, computed at NLO in the QCD and
EW couplings with realistic cuts (see text). We show the absolute distribu-
tions (top), relative uncertainties (normalized to the central curve of each set,
middle) and the pull with respect to the NNPDF4.0 result, eq. (6.32) (bottom).
For the central NNPDF4.0 prediction the contributions of the uū + cc̄ and
dd̄+ ss̄+ bb̄ parton subchannels are also shown.

As discussed in section 6.1, the |yℓℓ̄| distribution depends on the symmetric
partonic luminosities LS,q, eq. (6.15), which in turn are driven by the total PDFs
xf

+
q . The |yℓℓ̄| distribution is dominated by the uū contribution and its quali-

tative behaviour is found to be similar for the four PDF sets considered. PDF
uncertainties are the largest in NNPDF4.0, ranging between 25% and 50%, and
the pull between NNPDF4.0 and CT18 and MSHT20 is at most at the 1.5σ level,
and slightly larger with ABMP16. The dependence of the |yℓℓ̄| distribution on the
dilepton mass mℓℓ̄ is moderate, and the same qualitative features are obtained if
mℓℓ̄ is lowered down to the Z-peak region, or raised to yet higher values. Hence,
for the absolute rapidity distribution there is a reasonable agreement between all
PDF sets for all scales considered.

We now turn to the differential distribution in cos θ∗ and the corresponding
forward-backward asymmetry Afb(cos θ∗). We first consider the Z-peak region,
60GeV < mℓℓ̄ < 120GeV, in fig. 6.18. The cos θ∗ distribution exhibits a small but
non-negligible asymmetry, and uncertainties are smallest for NNPDF4.0. The four
PDF sets predict a similar behaviour and magnitude of the asymmetry Afb. PDF
uncertainties in the asymmetry are comparable for all PDF sets when cosθ∗ ≈ 0,
and actually largest for NNPDF4.0 when cosθ∗ ≈ 1. In all cases the predictions

 http://nnpdf.mi.infn.it/for-users/unpolarized-pdf-sets/#NNPDF4.0 
 http://nnpdf.mi.infn.it/for-users/unpolarized-pdf-sets/#NNPDF4.0 
 http://nnpdf.mi.infn.it/for-users/unpolarized-pdf-sets/#NNPDF4.0 
 http://nnpdf.mi.infn.it/for-users/unpolarized-pdf-sets/#NNPDF4.0 
 http://nnpdf.mi.infn.it/for-users/unpolarized-pdf-sets/#NNPDF4.0 
 http://nnpdf.mi.infn.it/for-users/unpolarized-pdf-sets/#NNPDF4.0 
 http://nnpdf.mi.infn.it/for-users/unpolarized-pdf-sets/#NNPDF4.0 


6.3 the drell-yan forward-backward asymmetry at the LHC 143

0

200

400
dσ

d
co

sθ
∗

[p
b]

DY @ 14 TeV with 60 GeV < m`¯̀< 120 GeV

dd̄ + ss̄ + bb̄
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Figure 6.18: Same as fig. 6.17, now for the differential distribution in cos θ∗ (left) and
the corresponding forward-backward asymmetry Afb(cos θ∗) (right), in the
Z-peak region defined by 60GeV < mℓℓ̄ < 120GeV.

are compatible within 2σ, with ABMP16 showing larger differences of up to 2.8σ
for the cos θ∗ distribution. Note that the sharp drop-off at the edges | cos θ∗| ≈ 1,
appearing in all plots in this section, is a consequence of the phase-space cuts
which limit the phase-space volume. Indeed, using LO kinematics

| cos θ∗| = tanh
∣∣∣∣
ηℓ − ηℓ̄
2

∣∣∣∣ =

√√√√1− 4(pℓT )
2

m
2
ℓℓ̄

, (6.33)

so | cos θ∗| ≈ 1 requires a lepton pair with either a large rapidity separation, or a
very large invariant mass and small transverse momenta.

As expected from the antisymmetric partonic luminosities studied in section 6.2.3,
the situation is quite different when considering distributions with a higher dilep-
ton invariant mass range. The angular distribution and forward-backward asym-
metry in the high-mass region, for different values of the lower cut in the dilepton
invariant mass, namelymmin

ℓℓ̄ = 3, 4, 5 and 6 TeV, are respectively shown in fig. 6.19

and fig. 6.20.
Consistent with the underlying parton luminosities, the cos θ∗ distribution

is dominated by uū scattering, while dd̄ provides a subdominant contribution.
When the lower cut is mmin

ℓℓ̄ = 3TeV is used, the four PDF sets are in agreement
at the 1σ level: they all display a positive forward-backward asymmetry, and ex-
hibit PDF uncertainties ranging between 10% and 15%. As the invariant mass cut
is raised, the qualitative behaviour of the angular distribution and asymmetry
change substantially for NNPDF4.0, while they remain approximately the same
for all other PDF sets, consistent with the behaviour of the PDFs and luminosities
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Figure 6.19: Same as fig. 6.18 (left) for different values of the lower cut in the dilepton
invariant mass: mℓℓ̄ ⩾ 3, 4, 5, and 6 TeV respectively.

discussed in sections 6.2.2 to 6.2.3. Specifically, raising the cut to mℓℓ̄ ⩾ 4TeV, for
NNPDF4.0 the backwards cross-section starts increasing, though the asymmetry
remains positive.

For mℓℓ̄ ⩾ 5TeV the central value of the NNPDF4.0 cos θ∗ distribution becomes
symmetric, though the PDF uncertainty band is rather asymmetric. Also, PDF
uncertainties are now the largest for NNPDF4.0, reaching up to 30%. Finally, for
mℓℓ̄ ⩾ 6TeV the central value of forward-backward asymmetry for NNPDF4.0 be-
comes negative, with the PDF uncertainties increasing further so the asymmetry
remains compatible with zero at about the 1.1 σ level. For all other PDF sets there
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Figure 6.20: Same as fig. 6.18 (right) for different values of the lower cut in the dilepton
invariant mass: mmin

ℓℓ̄ = 3, 4, 5, and 6 TeV.

is little change in the shape of the distribution as the dilepton invariant mass cut
is increased.

Because of the very large uncertainty on the NNPDF4.0 result for the cos θ∗ dis-
tribution, even with the highest value of the mmin

ℓℓ̄ cut, where NNPDF4.0 finds a
symmetric distributions while all other PDF sets find an asymmetry, the pull is al-
ways below 2σ. This suggests that the more conservative estimate of NNPDF4.0 in
the extrapolation region might be desirable, and lead to more robust predictions
for the forward-backward asymmetry in the high-mass region which is relevant
for new physics searches.
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Figure 6.21: Same as fig. 6.12 (upper panels) comparing NNPDF4.0, NNPDF4.0 (3.1pos),
and NNPDF3.1.

6.4 Afb in NNPDF3.1

Finally, we compare partonic luminosities and LHC differential distributions
obtained with NNPDF4.0 in section 6.2 and section 6.3 with those based on its
predecessor NNPDF3.1, as well as with a variant of NNPDF4.0 where positivity is
imposed at the level of observable cross-sections but not at the PDF level, as was
the case in NNPDF3.1, which we will denote NNPDF4.0 (3.1pos).

Figure 6.21 compares the symmetric partonic luminosities LS,q evaluated for
mℓℓ̄ = 5TeV. The three sets are found to agree within uncertainties, with NNPDF4.0

having the smallest uncertainties. This increase in precision arises only marginally
due to the more restrictive positivity constraints imposed, since predictions with
the NNPDF4.0 (3.1pos) variant are close to the baseline NNPDF4.0, especially for
the uū contribution, for both central values and uncertainties. The comparison
in fig. 6.21 indicates that phenomenological predictions for high-mass Drell–Yan
production based on NNPDF3.1 are expected to be consistent within errors with
those of NNPDF4.0 for the contributions symmetric in cos θ∗, such as the |yℓℓ̄|

distribution.
The antisymmetric luminosities LA,q, relevant for the forward-backward asym-

metry, are displayed in fig. 6.22 for mℓℓ̄ = 3 and 5 TeV respectively. Their qualita-
tive behavior is similar for all PDF sets, with a marked decrease of PDF uncertain-
ties first from NNPDF3.1 to NNPDF4.0 (3.1pos) then to NNPDF4.0. Specifically, the
qualitative mℓℓ̄ dependence of LA,q remains unchanged. Namely, the positive
Afb found for mℓℓ̄ = 3TeV decreases as the dilepton invariant mass is increased.
Hence also for the component of the Drell–Yan cross-section which is odd in
cos θ∗ we expect LHC predictions based on NNPDF3.1 to be consistent with those
obtained from NNPDF4.0.

These expectations are confirmed by fig. 6.23, which shows the dilepton ra-
pidity |yℓℓ̄| and the Collins–Soper angle cos θ∗ distributions for neutral-current
DY production at the LHC 14 TeV for dilepton invariant masses of mℓℓ̄ ⩾ 5TeV,
comparing the baseline NNPDF4.0 predictions with those from NNPDF3.1 and
NNPDF4.0 (3.1pos). Indeed, good agreement within the three PDF sets is ob-
served with a significant reduction of PDF uncertainties between NNPDF3.1 and
NNPDF4.0, consistent with the behaviour exhibited by the corresponding partonic
luminosities.
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Figure 6.22: Same as fig. 6.13 for the antisymmetric partonic luminosities LA,q, comparing
NNPDF4.0, NNPDF4.0 (3.1pos), and NNPDF3.1.
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the cos θ∗ (right) distributions for dilepton invariant masses of mℓℓ̄ ⩾ 5TeV
comparing NNPDF4.0, NNPDF4.0 (3.1pos), and NNPDF3.1.

6.5 summary and outlook

In this work we have scrutinised the PDF dependence of neutral current Drell–
Yan production at large dilepton invariant masses mℓℓ̄, focusing on the behavior
of the forward-backward asymmetry Afb in the Collins–Soper angle cos θ∗, an ob-
servable frequently considered in the context of searches for new physics beyond
the SM. We have demonstrated that while theoretical predictions for the sign and
magnitude of Afb are very similar for all PDF sets in the Z peak region, they de-
pend markedly on the choice of PDF set for large values of mℓℓ̄. We have traced
this behavior to that of the PDFs, which agree in the data region, but differ in the
large-x region, where PDFs are mostly unconstrained by data.

We have specifically shown that the uncertainty on the asymmetry differs sub-
stantially between PDF sets, with NNPDF4.0 displaying a more marked increase
as mℓℓ̄ grows, leading to an absolute uncertainty that e.g. for mmin

ℓℓ̄ ≳ 4TeV is
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about twice as large as that found using CT18, four times as large as MSHT20,
and about one order of magnitude larger than ABMP16. Also, whereas other PDF
sets predict a shape of the asymmetry which is unchanged when mℓℓ̄ increases
from the Z-peak region to the TeV range, namely a positive asymmetry imply-
ing a larger cross-section for cos θ∗ ⩾ 0, NNPDF4.0 finds that as mℓℓ̄ increases,
the asymmetry is reduced, and the cos θ∗ distribution becomes symmetric when
m

min
ℓℓ̄ ∼ 5TeV.

We have traced this behavior to that of the underlying PDFs in the large-x
region, where PDFs are mostly unconstrained by data. Specifically we have seen
that in this region NNPDF4.0 has generally wider uncertainties. Also, while for
all PDF sets the quark and antiquark distributions vanish as a power of (1− x) as
x → 1, for all groups but NNPDF4.0 this power is constant for light quarks to the
right of the valence peak, while for NNPDF4.0 it changes as x increases, slowly for
up quarks, more rapidly for down quarks and even more rapidly for antiquarks.
All this suggests that the different behavior of NNPDF4.0 is due to its more flexible
PDF parametrization.

Our general conclusion is that the behavior of the forward-backward asym-
metry observed at lower invariant masses is not necessarily reproduced at large
masses if flexible enough PDFs are used: the characteristic positive asymmetry
observed for low mℓℓ̄ values can be washed out in the high-mass region. Hence,
deviations from the traditional expectation of a positive forward-backward asym-
metry in high-mass Drell–Yan cannot be taken as an indication of BSM physics,
at least based on our current understanding of proton structure in the large-x
region.

Turning the argument around, future measurements of the cosθ∗ distribution
and the associated forward-backward asymmetry Afb when included in PDF de-
terminations could help in constraining PDFs at large x. For instance, fig. 6.19

indicates that for mmin
ℓℓ̄ = 5TeV and

√
s = 14TeV the asymmetry Afb can be as

large as 50% for ABMP16 while it vanishes (within large uncertainties) in the case
of NNPDF4.0. By rebinning the cos θ∗ distribution, for an integrated luminosity
of L = 6 ab−1, corresponding to the combination at ATLAS and CMS at the end
of the HL-LHC data-taking period, O(10) events are expected in the backward
region, with an statistical uncertainty of δstat ∼ 30% which could be sufficient to
discriminate between these two limiting scenarios at the 2σ level.

Higher event counts are expected if the mℓℓ̄ cut is loosened, though one is
then less sensitive to the large-x region where differences between PDF sets and
their uncertainties are maximal. Ultimately, the constraining power of high-mass
Drell–Yan in general and of the forward-backward asymmetry in particular can
only be addressed by means of a dedicated projections based on binned pseudo-
data such as those carried out for the HL-LHC and the Electron Ion Collider in
e.g. Abdul Khalek et al. 2018; Khalek et al. 2021. While we leave this exercise
for a future study, the investigations presented in this work indicate that Afb at
high-invariant masses represents a promising and mostly unexplored channel to
pin down large-x light quark and antiquark PDFs at the HL-LHC.
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While in this work we have focused on the forward-backward asymmetry in
neutral-current Drell–Yan production, similar considerations apply for other pro-
cesses relevant for BSM searches at high mass at the LHC. Indeed, the HL-LHC
will be sensitive to a broad range of hypothetical new massive particles, from
resonances in the mjj dijet invariant mass distribution up to 11 TeV, heavy vector
triplet resonances decaying into a diboson VV ′ pair up to 5 TeV, and gluinos with
masses up tomg̃ = 3TeV in the minimal supersymmetric standard model (MSSM)
with a massless lightest SUSY particle, Cid Vidal et al. 2019. For all these chan-
nels, a robust understanding of PDFs and their uncertainties at large x, including
the role of methodological and model assumptions, will be necessary to fully ex-
ploit the HL-LHC discovery potential for BSM signatures. Conversely, once BSM
phenomena have been excluded in some high-energy channel, the corresponding
search can be unfolded into a measurement to provide direct constraints on the
PDFs in this key large-x region, which in turn will enhance the reach of other
searches.
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As defined in the parton model, PDFs are essentially probability densities, and
thus they are positive semi-definite functions over their whole domain. This
picture is modified by the factorization scheme, required for NLO or higher order
calculations, redefining the PDFs, in such a way that it can assume negative values
as well, according to the specific scheme chosen.

While violating the initial intuition associated to the parton model, this is not
spoiling any desirable physical property, since PDFs are not observables, but their
definition is bound to a factorization scheme (as much as the factorization scale,
which is an unphysical scale). Therefore, positivity of physical observables (cross
sections and related) is preserved. Nevertheless, might be an interesting question,
though academic, to check which schemes yield positive or non-positive PDFs,
and whether is possible to tell something about well-known and widespread
schemes.

7.1 background and motivations
The origin of this study has been the observation, brought to NNPDF by ex-

ternal users, that the adoption of NNPDF3.1 in some searches produced negative
results for the central values of physical observables.

The problem was identified in the PDF set having negative values for some
flavors, specifically in the large-x region, which is probed by searches, but not
covered by data. However, already NNPDF3.1 imposed the positivity of a set
of physical observables, that is a relevant constraint on the PDF shape. But it
is not possible to cover, with a finite amount of observable values, the whole
spectrum of possible measurements, thus they guarantee more the positivity of
standard data-region values (e.g. DY distributions, or DIS structure functions),

153
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but not of any possible BSM search. Moreover, an too strong assumptions in the
extrapolation region might also generate some bias towards the SM itself, and the
inclusion of constraints on BSM observables would be at the very least arbitrary.

Yet, it is true that in the known cases observables negativity can be traced back
to PDFs negativity. Indeed, LO observables are positive by construction (being
squared amplitudes), and convoluted with a positive PDF would yield a positive
result, though it is not generally true for all orders, since they are affected by
factorization subtractions, that can generate negative results also from positive
PDFs.

For this reason, we wondered if it were possible to obtain a scheme that would
guarantee the positivity of the PDFs, in such a way that two results would be
achieved at the same time: LO observables would be positive with these PDFs,
and a further theoretical constraint could be imposed on the fit, augmenting the
physical information embedded in the fit.

As explained later on, the existence goal is easily obtained, since it is possible to
construct “physical” schemes in which the PDF is anchored to an observable, and
thus positive by construction. Unfortunately, using PDFs in this schemes would
be rather unpractical, since dedicated calculations would be required, adding the
details (coefficient functions) of the process linked to the PDFs to any other pro-
cess as well. So the further requirement we imposed was to obtain a positive
subtraction scheme as close as possible from MS, such that PDFs could be fitted
in that scheme, and tree level observables would become positive anyhow, since
they do not require a specific subtraction (thus the difference with respect to MS
would be higher order). We started from the assumption that MS itself were not
a negative scheme, and we tried to enhance positivity working on the negativ-
ity of the coefficient functions in N-space. We found out in the first place that
N-space positivity does not coincide with x-space one, and the relation is rather
non-trivial. We wanted the PDF values to be positive, not its moments, so we
needed to work on n x-space transformation, even though this involved neces-
sarily distributions. Once we had a reasonable candidate, obtained tracing back
the structure of MS subtraction in d-dimensions, we started proving its positivity,
and studying the relation with the MS. There, it strangely appeared from the ex-
plicit change of scheme that MS PDFs were more positive than those in the new
scheme. Finally, after convincing ourselves of this fact, we turned our argument
to prove the positivity of MS scheme itself. This is the most convenient result for
the PDF fit, achieving the goal of healing the original issue with NNPDF3.1, but it
is in no way assuring the positivity of resulting observables, that remain beset by
subtraction and perturbative truncation.

7.2 positivity of partonic cross sections
QCD factorization allows expressing physical cross sections σ as convolutions

of partonic cross sections with parton distributions fi. In the prototypical case
of DIS the cross section is expressed in terms of hadronic structure functions
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F(x,Q2), which are then factorized in terms of parton-level structure functions,
called coefficient functions Ci:

1

x
F(x,Q2) =

∑
i

e
2
iCi ⊗ fi, (7.1)

where the sum runs over all parton species, ei are quark electric charges, or the
sum over all electric charges for the gluon, (for photon-induced DIS, and more in
general electroweak charges), ⊗ denotes convolution, and we refer to R. K. Ellis et
al. 1996 for notations and conventions. The convolution in eq. (7.1) links the three
a priori physically distinct scaling variables on which respectively the physical
observable F, the partonic cross-section C and the PDF f depend. In the sequel,
for clarity, we will denote with x the physically observable variable (Bjorken-x for
DIS, or the scaling variable in hadronic collisions), with z the variable on which
the coefficient function depends, and with ξ the PDF momentum fraction. Of
course, Mellin transformation turns the convolution into an ordinary product and
upon transformation all these variables are mapped onto the same N variable.

At LO all factors on the right-hand side of eq. (7.1) are manifestly positive.
Indeed, the partonic cross sections (which for DIS at LO are trivial) are defined
as the square modulus of amplitudes. The PDFs in turn are defined as operator
matrix elements which can be interpreted as probability distributions J. C. Collins
and Soper 1982; Curci et al. 1980: for quark PDFs J. C. Collins and Soper 1982
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1
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]
ψi(0)|P⟩, (7.2)

where P denotes path-ordering; P is the four-momentum of the parent hadron in
light-cone components and gs is the strong coupling, with analogous expressions
for antiquarks and gluons J. C. Collins and Soper 1982. It can be shown (see e.g.
section 6.7 of J. Collins 2013) that the expression eq. (7.2) is a number density, and
as such before subtraction of divergences it is positive.

Beyond LO, besides ultraviolet renormalization, both the PDFs and the partonic
cross section are beset by collinear singularities which can be factored into the
PDF. Before factorization the PDF is a “bare” probability density f(0)i J. Collins
2013, while after factorization it is a renormalized PDF fi

fi =
∑
j

Z
S
ij ⊗ f

(0)
j . (7.3)

In operator language, the factor ZS
ij is a multiplicative renormalization of the

operator eq. (7.2), which admits a perturbative expansion

Z
S
ij(Q

2) = δij +
αs
2π
δ
S
ij(Q

2) +O(α2s), (7.4)
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where δSij is a counterterm which diverges after regularization is removed, the
superscript S denotes the fact that the finite part of the counterterm depends
on the choice of a particular subtraction scheme S, and regularization induces a
dependence of the counterterm and thus of the renormalization constant on scale.

The counterterm can be determined in a standard way by taking the matrix
element of the operator in a state in which the right-hand side of eq. (7.2) is
perturbatively computable, such as a free state of a parton i, in which the PDF
for finding a parton j is trivially

f
i (0)
j (ξ) = δijδ(1− ξ), (7.5)

imposing a renormalization condition and finally removing the regulator. In prac-
tice, this is most easily done J. Collins 2013; Curci et al. 1980 by introducing
a probe that couples to the free quark, so for instance computing the structure
function eq. (7.1) for deep-inelastic scattering off a free quark. This is the strategy
that we will follow in this section, where such a computation will be performed
explicitly in a way that fully determines the factorization scheme, both in the MS
and in our new positive schemes.

The factorization argument then works as follows. The d-dimensional structure
function eq. (7.1) is written as

1

x
Fi(x,Q2, ϵ) =

∑
j

e
2
jCj ⊗ f

i (0)
j (7.6)

=
∑
j

e
2
jC

S
j ⊗ fiSj ; d = 4− 2ϵ, (7.7)

and computed by taking in turn the incoming parton to be each of the par-
ton species, i.e. using eq. (7.5). Of course, the structure function on the l.h.s.
then reduces to the unsubtracted, regularized coefficient function, which is es-
sentially the cross-section for scattering off the given incoming free parton. The
counterterm is defined by imposing the cancellation of the singularity. Up to
NLO, assuming a free incoming parton according to eq. (7.5), substituting in
eqs. (7.6) and (7.7)) the perturbative expression eq. (7.4) of the renormalization
factor eq. (7.3), and assuming a perturbative expansion of the coefficient func-
tions of the form

Ci(z,Q
2) = C

(0)
i (z,Q2) +

αs
2π
C
(1)
i (z,Q2) +O(α2s) (7.8)

one gets

C
S
i (z,Q

2, ϵ) = C(1)
i (z,Q2, ϵ) − δSqi(z,Q

2, ϵ) , (7.9)

where q denotes a quark parton. Note that, up to NLO, imposing finiteness of
the DIS structure functions fixes the renormalization in the quark sector because
DIS is a probe that only couples to quarks at leading order.

The advantage of determining the counterterms in this way, as opposed to
performing a direct computation of the current matrix element eq. (7.2) is that
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in operator matrix elements all divergences appear as ultraviolet, while, when
computing a structure function for an incoming free parton (or, more generally,
a generic partonic cross-section), collinear singularities come from the infrared
region of integration over transverse momenta. Hence, one may compute the
relevant cross-section using renormalized perturbation theory (i.e., with coun-
terterms already included in the Lagrangian). The only divergences are then of
collinear and infrared origin. The regularized partonic cross-section is then finite
if the computation is performed with ϵ < 0, and it enjoys the positivity prop-
erties of a standard cross-section. This property will be crucial in the argument
presented below.

After the subtraction eq. (7.9), the partonic cross-section (coefficient function)
is finite in the ϵ → 0 limit, so one may define the four-dimensional coefficient
function as

C
(1)
i

S
(z) = lim

ϵ→0
−

(
C
(1)
i (z,Q2, ϵ) − δSqi(z,Q

2, ϵ)
)

, (7.10)

where ϵ → 0
− denotes the fact that the limit is taken from below, as discussed

above. Note that the four-dimensional coefficient function function can depend
only on z for dimensional reasons, while the d dimensional one also depends on

Q
2 through the combination Q

2

µ
2 , where µ2 is the scale of dimensional regulariza-

tion. That this subtraction is always possible is the content of factorization the-
orems J. Collins 2013; Curci et al. 1980. The universal (i.e. process-independent)
nature of the collinear singularities ensure that the renormalization conditions
on parton distributions, defined as operator matrix elements eq. (7.2) without
reference to any specific process, may be determined by the computation of a
particular process or set of processes as discussed here.

The finite part of the subtraction is arbitrary and it defines the factorization
scheme S. In MS it turns out that in some partonic subchannels the subtracted
cross section can be negative: effectively, negative finite parts are factored away
from the regularized cross sections, and into the PDFs. These can then also
become negative, though whether this happens or not depends on the relative
weight of the various subchannels. On the other hand, the residue of the collinear
pole is universal – it is given by process-independent splitting functions – and this
makes it possible to define its subtraction in a way that preserves positivity of the
partonic cross section at the regularized level. If all contributions which are fac-
tored away from the partonic cross section and into the PDF remain positive, then
the latter also stays positive.

Having explained the general strategy, we now implement it explicitly. We first
discuss DIS structure functions. We then turn to double hadronic processes, both
quark-induced and gluon induced.
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Figure 7.1: Mellin-space NLO contributions to deep-inelastic coefficient functions. The
quark (left) and gluon (right) coefficient functions, respectively C(1)

q and C(1)
g ,

eq. (7.11), are shown. The DPOS scheme is defined in eqs. (7.20) and (7.28),
the POS scheme is defined in eqs. (7.34) to (7.36), and the MPOS scheme in
eqs. (7.81) and (7.82). Results are shown in the MS and DPOS, POS and MPOS
schemes. For C(1)

q MS, DPOS and POS coincide, and the two curves shown

correspond, from top to bottom, to MS and MPOS; for C(1)
g POS and MPOS

coincide and the three curves correspond, from bottom to top, to MS, DPOS
and POS.

7.2.1 Deep-inelastic coefficient functions

At NLO, photon-induced DIS proceeds through the two sub-processes q +

γ
∗ → X and g + γ∗ → X, in such a way that the contribution of each quark

or antiquark flavor to the structure function F2 can be written as:

1

x
F2(x,Q2) = e2q

[
q+

αs
2π

(
C
(1)
q ⊗ q+C(1)

g ⊗ g
)]

(Q2) , (7.11)

where eq is the electric charge of the quark, on the right-hand side we have omit-
ted the x dependence which arises from the convolution, and the generalization
to Z- and W-induced DIS is trivial.

The MS NLO contributions to the coefficient functions Cq and Cg are shown
in fig. 7.1 in Mellin space, where the convolution becomes an ordinary product.
The Mellin space plot is especially transparent since the x-space cross section is
found to high accuracy by computing the inverse Mellin transform in the saddle-
point approximation Bonvini et al. 2012: hence, the physical x-space cross section
is just the product of the Mellin-space coefficient function and PDF evaluated
at the value of N corresponding to the saddle for given kinematics. It is clear
from fig. 7.1 that at large N the gluon coefficient function is negative on the real
axis: hence, the x-space coefficient function must also be negative because its real
moments are negative. This shows that a negative contribution has been factored
from the coefficient function into the PDF.



7.2 positivity of partonic cross sections 159

Over-subtraction and the off-diagonal coefficient function

In order to understand what is going on, we look at the dimensionally regular-
ized, unsubtracted gluon coefficient function:

C
(1)
g (z,Q2, ϵ) =

Γ(−ϵ)

(
µ
2
D

πµ
2

)−ϵ [
8Pqg(z) − 16TRϵ(3− ϵ(2− ϵ))

]

16π(2− 2ϵ)Γ(3− 2ϵ)
, (7.12)

where

µ
2
D =

s

4
=
Q

2(1− z)

4z
, (7.13)

and s =
Q

2(1−z)
z is the center-of-mass energy of the γ∗q collision. Note that

in order to regulate the collinear singularity it is necessary to choose ϵ < 0; it
then follows that as ϵ goes to zero from below, Γ(−ϵ) > 0 and the unsubtracted
coefficient function, eq. (7.12), is positive as it ought to be.

The subtracted MS coefficient function is then given by

C
(1)
g

MS
(z) = lim

ϵ→0
−

[
C
(1)
g (z,Q2, ϵ) −

(
Q

2

4πµ
2

)−ϵ(
−
1

ϵ
+ γE

)
Pqg(z)

]
(7.14)

= Pqg(z)

(
ln
(
1− z

z

)
− 4

)
+ 3TR , (7.15)

where ϵ→ 0
− denotes the fact that the limit should be taken from below, because

the collinear singularity is regulated with ϵ < 0. The Pqg splitting function
is positive for all z, so for z > 1

2 the log becomes negative and at large z the
coefficient function is negative.

Comparing eqs. (7.12) and (7.14) immediately reveals what happened: the reg-
ularized coefficient function contains a term

(
s/4

πµ
2

)−ϵ

= 1− ϵ ln

(
Q

2(1− z)/z

4πµ
2

)
, (7.16)

but in the collinear subtraction ln Q
2

4πµ
2 has been subtracted instead. For z > 1

2 ,

s < Q
2 this amounts to over-subtracting, at the larger scale Q2 instead of the

smaller physical scale s. The physical origin of this contribution, and the reason
for the mismatch are easy to trace.

Namely, this is the contribution coming from quark emission from the incom-
ing gluon line, and the singularity is due to the collinear singular integration over
the transverse momentum of the emitted quark, as revealed by the fact that it is
proportional to the corresponding Pqg splitting function. The argument of the
ensuing collinear log is set by the upper limit of the transverse momentum inte-
gration kmax

T , which for a 2 → 2 process with massless particles in the final state
is kmax

T = s
4 . In MS the collinear subtraction is performed at the scale Q2, hence
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leading to the over-subtraction that we observed, and producing a contribution to
the coefficient function which is logarithmically enhanced in the threshold z→ 1

limit.
Therefore, this contribution has the same origin as the soft (Sudakov) loga-

rithms which are resummed to all orders when performing threshold resumma-
tion S. Catani and Trentadue 1989; Sterman 1987, except that in soft resummation
the splitting function is evaluated in the z → 1 limit, and the factor of 1

z in the
argument of the log is neglected. In fact, threshold resummation can be obtained
by identifying (and then renormalization-group improving)

|k
max, DIS
T |

2 = µ2D (7.17)

(with µ2D given by eq. (7.13)) as the physical scale in the soft limit Forte and Ridolfi
2003. The over-subtraction is then simply the manifestation of the well-known
fact that, in the MS scheme, threshold logs beyond the first are factored in the
coefficient function, and not in the PDF Albino and Ball 2001. Indeed, alternative
factorization schemes in which these logs are instead included in the PDF have
been proposed, in particular the Monte Carlo factorization scheme of Jadach et
al. 2016. Note, however, that radiation in off-diagonal parton channels is power-
suppressed in the threshold limit, and indeed this contribution is proportional to
ln(1− z), which in Mellin space behaves as lnN

N . This is to be contrasted with

the
(

ln(1−z)
1−z

)
+

behavior, corresponding to ln2
N, found in diagonal channels, as

we shall discuss in section 7.2.1 below. Hence, while it has the same origin, this
contribution is not among those included in standard leading-power threshold
resummation.

In conclusion, in order to restore positivity it is sufficient to perform the collinear
subtraction at the scale µ2D = s/4, eq. (7.17). There is a further subtlety, however.
Namely, the factor 2− 2ϵ in the denominator of eq. (7.12) is the average over the
polarization states of the incoming gluon. Therefore, it should be viewed as an
overall prefactor which is common to both the unsubtracted and subtracted co-
efficient function, and thus must be included in the subtraction term. Because it
interferes with a −1

ϵ pole, not including it, as in MS, leads to over-subtraction:
the collinear singularity is regulated with ϵ < 0, so 1

1−ϵ < 1.
Therefore, we define a modified positivity subtraction as

C
(1)
g

DPOS
(z) = lim

ϵ→0
−

[
C
(1)
g (z,Q2, ϵ) −

1

1− ϵ

(
µ
2
D

πµ
2

)−ϵ(
−
1

ϵ
+ γE

)
Pqg(z)

]
(7.18)

= 3
[
TR − Pqg(z)

]
. (7.19)

Note that the normalization of the prefactor is fixed by the requirement of cancel-
lation of the pole. The coefficient function of eq. (7.18) is positive definite, as it is
easy to check explicitly. Its Mellin-space form is also shown in fig. 7.1, and it is
manifestly positive.



7.2 positivity of partonic cross sections 161

0 2 4 6 8 10
N

0

10

20

30

40

50

q + q Z + X

0 2 4 6 8 10
N

0.50

0.25

0.00

0.25

0.50

0.75

1.00
q + g Z + X

MS
POS
MPOS

Figure 7.2: Mellin-space NLO contributions to Drell–Yan coefficient functions. The quark
(left) and gluon (right) coefficient functions, respectively Cq

q
(1) and Cq

g
(1),

eq. (7.29), are shown. Results are shown in the MS, POS and MPOS schemes.
The POS scheme is defined in eqs. (7.34) to (7.36) and eqs. (7.45) to (7.47), and
the MPOS scheme in eqs. (7.81) to (7.84)). Cq

q
(1) MS and POS coincide, and

the two curves correspond, from top to bottom, to MS and MPOS; for Cq
g
(1)

POS and MPOS coincide and the two curves correspond, from top to bottom,
to MS and POS.

We can rewrite the subtraction which relates the regularized coefficient func-
tion, eq. (7.12), to its renormalized counterparts eqs. (7.14) and (7.18) in terms of
counterterms according to eq. (7.10), where now S = MS, DPOS. We then have

C
(1)
g

DPOS
(z) = C(1)

g

MS
(z) −KDPOS

qg (z) , (7.20)

K
DPOS
qg (z) = δMS

qg − δDPOS
qg = Pqg(z)

[
ln
(
1− z

z

)
− 1

]
. (7.21)

The diagonal coefficient function

We now turn to the diagonal coefficient function: in the MS scheme it is given
by

C
MS
q (z) = δ(1− z) +

αs
2π
C
(1)
q

MS
(z) (7.22)

= δ(1− z)

(
1+

αs
2π
∆
(1)
q

MS
)
+
αs
2π
Cq

(1)MS
(z) , (7.23)

where in the last step we have separated off the contribution to C(1)
q

MS
(z) pro-

portional to a Dirac δ (corresponding to a constant in Mellin space) so that
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Cq
(1)MS

(z) only contains functions and + distributions. The NLO diagonal coef-
ficient function is given by

C
(1)
q

MS
(z) = lim

ϵ→0
−

[
C
(1)
q (z,Q2, ϵ) −

(
Q

2

4πµ
2

)−ϵ(
−
1

ϵ
+ γE

)
Pqq(z)

]
(7.24)

= lim
ϵ→0

−

[
C
(1)
q (z,Q2, ϵ) − δMS

qq(z,Q
2, ϵ)

]
(7.25)

= CF

[(
pqq(z) ln

(
1− z

z

))

+

−
3

2

(
1

1− z

)

+

+ 3+ 2z− 4δ(1− z)

]
,

(7.26)

where pqq(z) is implicitly defined in terms of the quark-quark splitting function
Pqq(z) as

Pqq(z) = CF

(
pqq(z)

)
+

. (7.27)

The Mellin transform of C(1)
q (z) is shown in fig. 7.1. It is clear that the coeffi-

cient function is positive for all N: the slightly negative dip of the NLO term in
the N ∼ 1 region is more than compensated by the much larger LO contribution,
which in N space is a constant (at 2π

αs
on the scale of fig. 7.1). As N → ∞, where

the NLO contribution diverges (and in principle needs resummation) the growth
is actually positive.

A comparison of eq. (7.26) with its off-diagonal counterpart, eq. (7.15), imme-
diately shows what is going on. In this case too, the MS subtraction amounts to
an over-subtraction, and indeed the term proportional to pqq(z) in the coefficient
function eq. (7.26) has the same origin as the term eq. (7.16), namely, the collinear
singularity due to real emission, in this case of a gluon from the incoming quark
line. In fact, this is the contribution which is included in standard leading-log
threshold resummation. Amusingly, the further (process-dependent) term, pro-
portional to

(
1

1−z

)
+

, arises at the next-to-leading log level due to collinear radia-
tion from the outgoing quark line S. Catani and Trentadue 1989, and thus has the
same kinematic origin Forte and Ridolfi 2003. One may thus think of generally
including these contributions in the PDF by changing the collinear subtraction, as
we did above: indeed this is done in the Monte Carlo scheme of Jadach et al. 2016,
which aims at including in PDFs all contributions coming from soft radiation.

However, if the goal is ensure positivity, in the diagonal case it is not necessary
to modify the MS subtraction prescription. Indeed, in this case over-subtraction
actually leads to a more positive coefficient function, due to the fact that the Pqq
splitting function is negative at large z, where it reduces to a + distribution, i.e.,
it leads to a negative answer when folded with a positive test function. Of course,
this follows from baryon number conservation which requires the vanishing of
the first moment of the splitting function. It is in fact easy to check that the MS
coefficient function, eq. (7.22), is positive for all z < 1. The term proportional
to a δ of course has a positive coefficient in the perturbative regime, where it is
dominated by the LO term.
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We conclude that in order to ensure positivity of the coefficient function it is
sufficient to modify the collinear subtraction only in the off-diagonal channel. We
therefore set

C
(1)
q

DPOS
(z) = C(1)

q

MS
(z) . (7.28)

eqs. (7.20) and (7.28) thus define the DPOS factorization scheme in the quark
channel, in terms of the MS scheme. Note that the considerations underlying
the construction of this factorization scheme are based on the structure of the
collinear subtraction and the behavior of the splitting functions, and are therefore
process-independent.

In order to fully characterize the scheme it is necessary to also consider gluon-
induced processes. In Altarelli, Forte, et al. 1998, this was done by considering
Higgs production in gluon fusion, with one of the two gluons coming from a
proton and the other being taken as a pointlike probe. Equivalently, one might
consider Higgs production in photon-gluon fusion. However, the treatment of
these processes is essentially the same as that of hadronic processes, to which we
thus turn.

7.2.2 Hadronic processes

For hadronic processes1 the basic factorization formula has the same structure
as eq. (7.11), with the structure function replaced by a cross section and the PDF
replaced by a parton luminosity Lij: up to NLO

1

x
σ(x,Q2) = σ̂0

[
Lii +

αs
2π

(
C
i
q

(1) ⊗Liq +Ci
g

(1) ⊗Lig

)]
, (7.29)

where for simplicity we consider process for which at LO only one partonic chan-
nel contributes, so i = q,g labels quark-induced processes (such as Drell–Yan) or
gluon-induced processes (such as Higgs production in gluon fusion), σ̂0 is the
LO partonic cross section and the parton luminosity is

Lij = fi ⊗ fj . (7.30)

We first discuss quark-induced processes: their treatment is very close to that of
DIS presented in the previous section, so it is sufficient to highlight the differences.
We then turn to gluon-induced processes, for which we repeat the analysis of
section 7.2.1.

1Here hadronic processes is used to identify those that in section 0.2 have been called double hadronic
processes. The more verbose term is used for disambiguation, since also in DIS-like processes an initial
hadron is involved, but here it is referred only to those with two hadrons in the initial state.
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Figure 7.3: Same as fig. 7.2, but now for the Higgs coefficient functions Cg
g
(1) (left) and

C
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(1) (right).

Quark-induced processes

As a prototype of quark-induced process we consider Drell–Yan production.
The NLO coefficient functions (i.e. NLO partonic cross sections normalized to the
LO result) are given by

C
q
q
(1)MS

(z) = CF

[(
4π

2

3
−
7

2

)
δ(1− z) + 2

(
pqq(z) ln

(
(1− z)2

z

))

+

]

= ∆(1)
qq

MS
δ(1− z) + 2CF

(
pqq(z) ln

(
(1− z)2

z

))

+

, (7.31)

C
q
g
(1)MS

(z) = Pqg(z)

[
ln

(
(1− z)2

z

)
− 1

]
+CF

[
3

2
−
3

2
z
2 + z

]
. (7.32)

Comparing the coefficient functions eqs. (7.31) and (7.32) to their DIS counter-
parts eqs. (7.14) and (7.26) shows that they have the same structure, with a resid-
ual logarithmic contribution proportional to the splitting function, due to over-

subtraction. The only difference is that the argument of the log is now (1−z)2

z .
This is again recognized to be the upper limit of the transverse momentum inte-
gral, and to coincide with the argument of the logs whose renormalization-group
improvement leads to threshold resummation Forte and Ridolfi 2003: indeed, for

a 2→ 2 process with a final state particle with mass M2, and z = M
2

s ,

µ
2
h = |k

max, had
T |

2 =
(s−Q2)2

4s
=
Q

2(1− z)2

4z
, (7.33)

where Q2 =M2. The coefficient functions, eqs. (7.31) and (7.32), are displayed in
fig. 7.2 in Mellin space; their qualitative features are the same as those of the DIS
coefficient functions.
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Hence, just as in case of DIS, it is possible to define a positive subtraction
scheme, which we call POS, and which differs from MS because in the off-diagonal
quark-gluon channel the subtraction is performed at the scale µ2h, eq. (7.33). Just
like for DIS, in the diagonal quark-quark channel there is no need to modify the
MS subtraction, which actually makes the coefficient function more positive, so
we define a POS factorization of the DY process according to

C
q
q
(1)POS

(z) = Cq
q
(1)MS

(z) , (7.34)

C
q
g
(1)POS

(z) = Cq
g
(1)MS

(z) −KPOS
qg (z) , (7.35)

K
POS
qg (z) = Pqg(z)

[
ln

(
(1− z)2

z

)
− 1

]
. (7.36)

The quark-gluon coefficient function can be read off eqs. (7.32) and (7.36) and it
is easy to check that it is positive definite for all 0 < z < 1.

Of course, a choice of factorization scheme must be universal. Therefore, it is
interesting to check what this choice amounts to if adopted for DIS. Clearly, the
hadronic scale eq. (7.33) is always lower than the DIS scale eq. (7.33): µ2h < µ

2
D.

Hence, subtraction in the DPOS scheme amounts to under-subtraction, and if

adopted for DIS coefficient function it leads to a DIS coefficient function C(1)
g

POS
(z)

which is actually more positive than that in the DPOS scheme. This is seen in
fig. 7.1 (right), where C(1)

g (z) is shown in the MS, DPOS and POS schemes.

Gluon-induced processes

In order to fix completely the factorization scheme we turn to gluon-induced
hadronic processes. We choose Higgs production in gluon fusion (in the infinite
top mass limit) as a prototype, and we repeat the analysis of section 7.2.1, but
now for the quark coefficient function C

g
q
(1). The regularized, unsubtracted

expression is (see e.g. Maltoni 2018)

C
g
q
(1)

(z,Q2, ϵ) =
Γ(−ϵ)

(
µ
2
h

πµ
2

)−ϵ

(1− ϵ)

[
Pgq(z) −CF

(1+z)2

2z ϵ

]

16π(2− 2ϵ)Γ(3− 2ϵ)
, (7.37)

where µ2h is given by eq. (7.33), with Q2 =M2
H, the Higgs square mass. Perform-

ing MS subtraction in the usual way we get

C
g
q
(1)MS

(z) = lim
ϵ→0

−

[
C
g
q
(1)

(z,Q2, ϵ) −

(
Q

2

4πµ
2

)−ϵ(
−
1

ϵ
+ γE

)
Pgq(z)

]

(7.38)

= Pgq(z)

[
ln

(
(1− z)2

z

)
− 1

]
+CF

(1+ z)2

2z
. (7.39)
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Again, we encounter the same situation that we have seen in the quark channel
for DIS, eqs. (7.12) and (7.14): the collinear log has a scale set by the upper limit of
the transverse momentum integration, now the hadronic µ2h, eq. (7.33), but the MS
subtraction is performed at the scaleQ2, which at large z is higher, thus leading to
over-subtraction. Indeed, the Mellin-space MS coefficient function Cg

q
(1), shown

in fig. 7.3, is seen to be negative at large N.
As in the quark sector, the problem is fixed by performing the collinear subtrac-

tion at the physical scale µ2h. Note that also in this case, as for the DIS quark-gluon
channel, there is an issue with the sum over gluon polarizations: indeed, because
the LO process is in the gluon-gluon channel, even the NLO quark-gluon channel
has a gluon in the initial state, leading to a factor 1 − ϵ in the denominator of
eq. (7.37), which must be accounted for in order to avoid over-subtraction. Hence,
we define the POS scheme coefficient function as

C
g
q
(1)POS

(z) = lim
ϵ→0

−

[
C
g
q
(1)

(z,Q2, ϵ) −
1

1− ϵ

(
µ
2
h

πµ
2

)−ϵ(
−
1

ϵ
+ γE

)
Pqg(z)

]

(7.40)

= CF

(1+ z)2

2z
, (7.41)

with µ2h given by eq. (7.33). The coefficient function is clearly positive. Its Mellin
transform is also shown in fig. 7.3.

We finally examine the gluon-gluon NLO coefficient function:

C
g
g
(1)MS

(z) = CA

[
2
1

z

(
zpgg(z) ln

(
(1− z)2

z

))

+

+

(
473

36
+
4π

2

3

)
δ(1− z) −

11

3

(1− z)3

z

]
(7.42)

= ∆(1)
gg

MS
δ(1− z)

+CA

[
2
1

z

(
zpgg(z) ln

(
(1− z)2

z

))

+

−
11

3

(1− z)3

z

]
, (7.43)

where, in analogy to eq. (7.27), pgg(x) is implicitly defined by

Pgg(z) = CA

1

z

(
zpgg(z)

)
+
−
nf

3
δ(1− z). (7.44)

As in the diagonal quark channel, the MS subtraction is now multiplied by a
splitting function which is negative at large z, for the same physical reason. It
therefore leads to a coefficient function which is positive, as seen by inspecting
eq. (7.42) and shown in fig. 7.3 (left), so no further scheme change is needed.
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Therefore we get

C
g
g
(1)POS

(z) = Cg
g
(1)MS

(z) , (7.45)

C
g
q
(1)POS

(z) = Cq
g
(1)MS

(z) −KPOS
gq (z) , (7.46)

K
POS
gq (z) = Pgq(z)

[
ln

(
(1− z)2

z

)
− 1

]
. (7.47)

Equations (7.34) to (7.36) and eqs. (7.45) to (7.47) fully define the POS sub-
traction. We shall see in the next section that they define a positive factoriza-
tion scheme. Indeed, in the construction presented in this section we have not
made use of the detailed from of the partonic cross section, but rather just of
the collinear counterterms, expressed in terms of universal splitting functions.
Hence, these counterterms, when used in eq. (7.4) define a universal renormaliza-
tion scheme eq. (7.3) for PDFs, without spoiling PDF universality.

7.3 a positive factorization scheme
We will now construct a positive factorization scheme based on the POS sub-

traction of eqs. (7.34) to (7.36) and eqs. (7.45) to (7.47). We then discuss the scheme
transformation from this scheme to the MS scheme and use it to show that PDFs
are non-negative in the MS scheme in the perturbative region.

The argument is based on the factorization eqs. (7.6) and (7.7), and, very crudely
speaking, amounts to showing that with the POS subtraction, all factors in eq. (7.7)
are positive: the left-hand side is positive because it is a physically measurable
cross-section, the coefficient CS function on the right-hand side is positive be-
cause the POS subtraction preserves the positivity of the unsubtracted coefficient
function C, which is a partonic cross-section, and thus positive before subtraction,
but only well-defined in d > 4 dimensions.

Taking a Mellin transform of both sides of eqs. (7.6) and (7.7)) all convolutions
turn into ordinary products, and it is immediately clear that, because the left-
hand side is positive, for the Mellin transformed PDF to be positive it is necessary
and sufficient that the coefficient function is positive. However, positivity of the
Mellin transform of a function is a necessary condition for its positivity, but not
a sufficient one: a negative function may have a positive Mellin transform. The
somewhat more complex structure of the discussion below is necessary in order
to deal with the necessity of providing an x-space argument.

7.3.1 Positive PDFs

We start by presenting the construction in a simplified setting, namely in the
absence of parton mixing. This means that the operators eq. (7.2) whose matrix
elements define the PDFs renormalize multiplicatively. This would specifically
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correspond to the case of a quark combination that does not mix with the gluon,
such as any combination qNS(Q2) = qi(Q

2) − qj(Q
2), where i, j denote gener-

ically a quark flavor or antiflavor, with i ̸= j. We refer to this as a nonsinglet
quark combination. We can think of the argument below as applying to such a
combination, chosen in such a way that the bare qNS(Q2)(0), eq. (7.2), is positive
– which in general of course will not be true even if qi and qj are separately posi-
tive. This should be viewed as an academic case – after all, in principle, a positive
nonsinglet PDF might not exist – whose purpose is to illustrate the structure of
the argument in the absence of parton mixing. We then turn to the realistic case
of PDFs that do undergo mixing upon renormalization (which we will refer to as
singlet case). The nonsinglet case is simpler, not only because of the absence of
mixing, but also because in this case the POS scheme actually coincides with MS
(i.e., MS is already positive).

The nonsinglet case as a toy model

In the nonsinglet case, only the diagonal quark subtraction is relevant: so in
the nonsinglet case the DIS structure function eq. (7.11) becomes

1

x
F

NS
2 (x,Q2) = ⟨e2i ⟩

[
1+

αs
2π
C
(1)
q ⊗

]
q

NS(Q2) , (7.48)

where qNS is a difference of two quark or antiquark PDFs, assumed positive and

⟨e2i ⟩ = 1
2

(
e
2
i + e2j

)
is the average of their electric charges.

The factorization eqs. (7.6) and (7.7) takes the form

1

x
F

NS
2 (x,Q2) = ⟨e2i ⟩ lim

ϵ→0
−

[
1+

αs
2π
C
(1)
q (Q2, ϵ)⊗

] [
q

NS
](0)

(7.49)

= ⟨e2i ⟩ lim
ϵ→0

−

[
1+

αs
2π
C
(1)
q

MS
(Q2, ϵ)⊗

]

×
[
1+

αs
2π
δ

MS(Q2, ϵ)⊗
] [
q

NS
](0)

(7.50)

= ⟨e2i ⟩
[
1+

αs
2π
∆
(1)
q

MS
+
αs
2π
C̄
(1)
q

MS⊗
] [
q

NS
]MS

(Q2) , (7.51)

where C(1)
q

MS
, Cq

(1)MS
, ∆(1)

q

MS
and δMS

qq have been defined in eqs. (7.23) to (7.25),
and the dependence on x on the right-hand side has been omitted because it
appears due to the convolution, while the dependence on all other variables has
been indicated explicitly.

Now, the discussion of section 7.2.1 shows that, because the bare PDF of eq. (7.2)
is a probability density, the three factors which are convoluted in eq. (7.51) are
all separately positive when ϵ → 0

−, i.e. from the negative region, provided
only µ2 < µ

2
D, with µ2D given by eq. (7.13)2. This, as discussed in section 7.2.1

2Note that the condition cannot be satisfied in the strict x → 1 limit, but this is as it should be
since in the limit the scattering process becomes elastic and it is no longer described by perturbative
QCD.
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[see in particular eq. (7.26) and fig. 7.1] can be understood as a consequence of
the fact that the only region in which the O(αs) term could overwhelm the LO
contribution is the threshold region z → 1, where αs ln(1− z) ∼ 1. However,
in this region the MS over-subtraction leads to a coefficient function which is
positive because Pqq is negative at large z. Consequently, all factors in eq. (7.51)
remain positive for all z.

The meaning of the factorization argument eqs. (7.49) and (7.51) can be un-
derstood by noting that it is possible to choose a “physical” factorization scheme,
Stefano Catani 1996, in which PDFs are identified with physical observables. This
means that the coefficient function is set to one to all orders by scheme choice. An
example is the “DIS” scheme Diemoz et al. 1988 in which the quark PDF is iden-
tified with the DIS structure function, so that eq. (7.48) becomes

1

x
F

NS
2 (x,Q2) = ⟨e2i ⟩

[
q

NS
]DIS

(x,Q2) , (7.52)

which holds to all perturbative orders. Comparing this DIS scheme expression of
the structure function to the MS expression, eq. (7.11), immediately shows that
the quark PDF in the DIS and MS schemes are related by

[
q

NS
]DIS

(ξ,Q2) =

[
1+

αs
2π
∆
(1)
q

MS
+
αs
2π
C̄
(1)
q

MS⊗
] [
q

NS
]MS

(Q2) , (7.53)

where again we have dropped the ξ dependence of the convolution on the right-
hand side, as in eqs. (7.49) to (7.51).

The MS PDFs can be obtained in terms of the DIS ones by inverting eq. (7.53):
perturbative inversion of course gives

[
q

NS
]MS

(ξ,Q2) =

[
1−

αs
2π
∆
(1)
q

MS
−
αs
2π
C̄
(1)
q

MS⊗
] [
q

NS
]DIS

(Q2) +O(α2s) . (7.54)

One may worry that therefore the MS PDFs may turn negative in the large ξ re-
gion, where αs ln(1− ξ) ≳ 1 and the last term in square brackets in eq. (7.54),
which is negative, may overwhelm the LO contribution term. However, in this re-
gion the perturbative inversion is invalid, but it is easy to invert eq. (7.53) exactly
in the asymptotic large ξ limit. Letting

[
q

NS
]DIS

(ξ,Q2) =

[
1+

αs
2π
∆
(1)
q

MS
+
αs
2π
2CF

[
ln(1− z)
1− z

]

+

⊗
] [
q

NS
]MS

(Q2)

+ NLL(1− ξ) (7.55)

=

(
1+

αs
2π
∆
(1)
q

MS
)[
1+ cLL

[
ln(1− z)
1− z

]

+

⊗
] [
q

NS
]MS

(Q2)

+ NLL(1− ξ) , (7.56)

with

cLL =

αs
2π2CF

1+
αs
2π∆

(1)
q

MS
, (7.57)
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and which holds at the leading ln(1− ξ) level (LL(1− ξ)), inversion can be per-
formed by going to Mellin space and then computing the Mellin inverse term by
term in an expansion in powers of αs. We get

[
q

NS
]MS

(ξ,Q2) =
1

1+
αs
2π∆

(1)
q

MS
×

[
1− cLL


 ln(1− z)
[
1+ cLL ln2(1− z)/2

]2
1

1− z



+

⊗
] [
q

NS
]DIS

(Q2) + NLL(1− ξ) . (7.58)

It is clear that as ξ→ 1 the negative LL(1− ξ) contribution actually vanishes.3

Now, we observe that
[
q

NS
]DIS

(ξ,Q2) is positive because it is a physical ob-

servable. Equation (7.53), which expresses the DIS PDF in terms of the MS one,

then implies that for
[
q

NS
]MS

(ξ,Q2) to be guaranteed to be positive, the MS coef-

ficient function must also be positive, otherwise folding a positive MS PDF with
a negative coefficient function could lead to a negative DIS PDF. So positivity of
the MS coefficient function is a necessary condition for positivity of the MS PDF.
However, the inverse of eq. (7.53), expressing the MS PDF in terms of the DIS
one, implies that the condition is also sufficient, because it gives the MS PDF as
the convolution of a positive coefficient with a positive PDF. eqs. (7.54) and (7.58)
show that the coefficient is indeed positive because in the dangerous ξ → 1 re-
gion, where a large negative contribution may arise, inversion can be performed
exactly and shown to lead to a positive result. Of course, this argument works
for any factorization scheme, and it shows that a necessary and (perturbatively)
sufficient condition for the PDFs to be positive is that the coefficient function in
that scheme is positive.

The perturbative nature of the argument is worth commenting upon. As dis-
cussed at the beginning of this section, the corresponding Mellin space argument
is trivial: because in Mellin space the structure function is the product of the
PDF times the coefficient function, it follows that positivity of the coefficient func-
tion is necessary and sufficient for the positivity of the PDF. However, as already
mentioned, Mellin-space positivity is not sufficient for x-space positivity. It is
therefore necessary to compute the x-space inverse of the coefficient function,
and check that it is still positive.

The inversion is done perturbatively in eq. (7.54), and it leads to a coefficient
function which is manifestly positive in most of the z range, except at small and
large z, where the coefficient functions blows up, due to high-energy (BFKL) and
soft (Sudakov) logs respectively. Consider the large-z case that was discussed
above. Upon Mellin transformation, the z→ 1 region is mapped onto the N→∞
region, and specifically, as well known (see e.g. Forte and Ridolfi 2003) powers

3A similar argument also applies at small ξ, where the coefficient function also rises, as seen in
fig. 7.1. We do not discuss this case in detail since positivity of the MS PDF at small ξ is manifest.
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of ln(1− z) are mapped onto powers of lnN. The lnN logarithmic growth of the
coefficient function in this limit is seen in fig. 7.1, where it is apparent that the
coefficient function diverges as N → ∞. The N-space inverse of the coefficient
function is just its reciprocal, and thus it manifestly vanishes as N → ∞ (while
of course remaining positive). One would therefore naively expect that the x-
space inverse also vanishes (from the positive side) as z→ 1, and this expectation
is borne out by the explicit computation presented above in eq. (7.58).4 Similar
arguments apply at higher orders (NNLO and beyond), where the coefficient
function grows with a higher order power of ln(1− z) as z → 1, and at small z,
where the coefficient function grows as powers of ln 1

z as z → 0. Hence, either
the coefficient function is not logarithmically enhanced, and then the perturbative
inverse is manifestly positive, or it is logarithmically enhanced, and then the exact
inverse of the enhanced terms can be computed ans also shown to be positive. It
is natural to conjecture that an explicit computation of the exact inverse of the
full coefficient function would also be positive.

The perturbative assumption is therefore used in two different ways. On the

one hand, the NLO correction to the MS coefficient function C̄
(1)
q (z)

MS
is not

everywhere positive, as it is apparent from fig. 7.1. However, this is a small
correction to the positive coefficient function if αs ≲ 1, and the overall coefficient
function remain positive. This would fail in a region in which αs blows up. So
the full NLO coefficient function remains positive, but only in the perturbative
region. On the other hand, the perturbative inversion eq. (7.54) is used to show
that positivity of the coefficient function is shared by its inverse, and in regions
in which perturbativity would fail it is checked explicitly that this is the case by
exact inversion. In this case we conjecture that positivity of the inverse is actually
an exact property, even when αs is arbitrarily large.

The argument based on the physical factorization scheme showing that a posi-
tive coefficient function is necessary and (perturbatively) sufficient for a positive
PDF is in fact equivalent to the factorization argument eqs. (7.49) to (7.51). In-
deed, the operator definition of the quark distribution, eq. (7.2), upon performing
a derivative expansion of the Wilson line, leads to the standard expression of its
moments in terms of matrix elements of local operators. The interpretation of the
bare quark distribution as a probability is then preserved by any physical sub-
traction scheme such that the matrix elements of Wilson operators are expressed
in terms of a measurable quantity. The DIS scheme of eq. (7.48) is of course an
example of this scheme. Given the equivalence of the two arguments, one may
wonder whether, if at all, perturbativity is used in the argument of eqs. (7.49)
to (7.51): specifically, the perturbative inversion of eq. (7.54). The question is an-

4Since the Mellin space inverse coefficient function behaves as [C̄(1)(N)]−1
∼

N→∞ 1

ln2 N
it may

appear surprising hat the term in square brackets in eq. (7.58) starts with one. However, it should
be born in mind that the Mellin transform of any function which is regular (or indeed integrable) at
x = 1 vanishes as 1

N
k , with k > 0, hence in Mellin space the suppression of the inverse coefficient

function as N → ∞ is a subleading correction to the leading power suppression of qNS(N).
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swered in the affirmative: the perturbative inversion is hidden in the step leading
from eq. (7.49) to eq. (7.50). Indeed, this step amounts to

[
1+

αs
2π
C
(1)
q

MS⊗
]−1 [

1+
αs
2π
C
(1)
q (Q2, ϵ)

]
=
[
1+

αs
2π
δ

MS(Q2, ϵ)
]
+O(α2s) , (7.59)

i.e. the perturbative inversion of the MS coefficient function. The two arguments
are thus seen to coincide. Again, while we only provide a perturbative argument
it is natural to conjecture that the argument is in fact exact (i.e. it also holds for
large values of αs).

The POS factorization scheme

Equipped with the results of section 7.3.1 we can turn to the case in which
parton mixing is present. This corresponds to the realistic case in which the
operators eq. (7.2) mix with the gluon and conversely (at NLO) and with each
other at NNLO and beyond. Because at NLO only quark-gluon mixing is present,
we refer to this as the singlet case. In order to fully define the factorization scheme
at NLO we must thus consider a pair of processes, a quark-induced and a gluon-
induced one. The factorization for a pair of hadronic processes can be written
as

1

x
σ(x,Q2) = Σ̂0 ⊗

[
1+

αs
2π
C
(1)⊗

]
f(Q2) . (7.60)

In eq. (7.60)

• σ(x,Q2) is a vector of hadronic cross sections

σ(x,Q2) =

(
σ
q(x,Q2)

σ
g(x,Q2)

)
, (7.61)

such as the pair of processes of section 7.2.2, namely Drell–Yan and Higgs
production in gluon fusion; we are assuming for simplicity and without
loss of generality that both are evaluated at the same scale Q2 =M2 (such
as when producing an off-shell gauge boson and/or Higgs with the same
mass), with a trivial generalization to the case of unequal scales, and the

scaling variable is x = Q
2

s , with s the hadronic center-of-mass energy;

• Σ̂0 is a diagonal matrix of LO partonic cross sections, multiplied by the
respective PDFs,

Σ̂0(x,Q2) =

(
σ̂
q
0q(x,Q2) 0

0 σ
g
0g(x,Q2)

)
, (7.62)

namely the quark and the gluon respectively for Drell–Yan and Higgs;

• C(1) is the two-by-two matrix of NLO coefficient functions Ci
j

(1)
with i, j =

q, g defined in eq. (7.29);
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• f(ξ,Q2) is a vector of PDFs that mix upon renormalization:

f(ξ,Q2) =

(
q(ξ,Q2)

g(ξ,Q2)

)
. (7.63)

Having established a suitable notation, the argument then proceeds in an anal-
ogous way as the nonsinglet argument of section 7.3.1, except that now, in order
to guarantee positivity of the two-by-two matrix of coefficient functions, we must
perform the POS subtraction, which in the diagonal channels (and thus in the
nonsinglet case) coincides with MS but in the off-diagonal channel differs from it.
Namely, we have

1

x
σ(x,Q2) = Σ̂0 ⊗ lim

ϵ→0
−

[
I +

αs
2π
C
(1)(Q2, ϵ)⊗

]
f
(0) (7.64)

= Σ̂0 ⊗ lim
ϵ→0

−

[
I +

αs
2π
C
(1)POS

(Q2, ϵ)⊗
] [

I +
αs
2π
δ

POS(Q2, ϵ)⊗
]
f
(0)

(7.65)

= Σ̂0 ⊗
[

I +
αs
2π
∆
(1)POS

+
αs
2π
C
(1)POS

⊗
]
f

POS(Q2) . (7.66)

In eqs. (7.64) to (7.66)

• ∆(1)POS
is the diagonal matrix

∆
(1)POS

=


 ∆

(1)
qq

MS
0

0 ∆
(1)
gg

MS


 , (7.67)

with ∆(1)
ii

MS
defined in eq. (7.31) and (7.42) respectively for i = q and i = g;

• δPOS(Q2, ϵ) is a two-by-two matrix of counterterms

δ
POS(z,Q2, ϵ) =

(
−
1

ϵ
+ γE

)



(
Q

2

4πµ
2

)−ϵ

Pqq(z)
1

1−ϵ

(
µ
2
h

πµ
2

)−ϵ

Pqg(z)

1
1−ϵ

(
µ
2
h

πµ
2

)−ϵ

Pgq(z)
(

Q
2

4πµ
2

)−ϵ

Pgg(z)


 ,

(7.68)
with µ2h given by eq. (7.33), so that in the diagonal channels the subtraction
is the same as in MS, while in the off-diagonal channels it is performed at
the physical scale µ2h, and also, accounting for the d-dimensional continua-
tion of the average over the polarization of the gluons.

Positivity of the quark and gluon PDF vector fPOS(Q2), eq. (7.66), now fol-
lows from the same argument used to show the positivity of the nonsinglet PDF
eq. (7.51). Namely, all factors, which are convoluted in eq. (7.51), are separately
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positive when ϵ→ 0
− and µ2h < µ

2
D (with µD defined in eq. (7.13)) and in partic-

ular, the matrix of POS-scheme coefficient functions is now positive as shown in
section 7.2.2.

Also, as in the nonsinglet case, the positivity argument can be formulated in
terms of a physical scheme, in which now to all perturbative orders the quark
and gluon are defined by

1

x
σ̄(x,Q2) = fPHYS(x,Q2) , (7.69)

where, as in Altarelli, Forte, et al. 1998, the hadronic cross sections σ̄(x,Q2) are
computed assuming that one of the two incoming protons is replaced by a beam
of antiquarks or a beam of gluons respectively, i.e.

σ̄(x,Q2) =

(
σ(x,Q2)[q̄p→ γ

∗ +X]
σ(x,Q2)[gp→ H+X]

)
. (7.70)

This hadronic cross section is linear in the PDFs, it coincides with it at LO in any
scheme, and, assuming that it coincides with it to all orders, defines the PHYS
scheme. Equivalently, one could choose as σ̄ a DIS structure function in the quark
channel, and the cross section for Higgs production in photon-gluon fusion in the
gluon channel. The POS and PHYS schemes are then related by

f
PHYS(x,Q2) =

[
I +

αs
2π
∆
(1)POS

+
αs
2π
C̄
(1)POS⊗

]
f

POS(Q2) , (7.71)

which is perturbatively inverted as

f
POS(x,Q2) =

[
I −

αs
2π
∆
(1)POS

−
αs
2π
C̄
(1)POS⊗

]
f

PHYS(Q2) +O(α2s) . (7.72)

Again, this shows that positivity of the POS-scheme coefficient function is nec-
essary for positivity of the POS-scheme PDFs and sufficient if perturbativity holds.
Just like in the case of eq. (7.54), this assumption fails at the endpoints z→ 0 and
z→ 1. However, as well known (cf. R. K. Ellis et al. 1996), and as it is easy to check

from the explicit expressions of the matrix elements of C̄(1)(z)
POS

, in both these
limits the matrix is diagonal up to power-suppressed corrections. Specifically, in
the z→ 1 limit the coefficient function matrix is diagonal:

lim
z→1

C
(1)POS

(z,Q2) =


 C

q
q
(1)POS

0

0 C
g
g
(1)POS


 [1+O(1− z)] . (7.73)

Indeed, diagonal coefficient functions grow as
(

ln(1−z)
(1−z)

)
+

while off-diagonal

ones tend to a constant as z → 1. This is clearly seen in the N space plots of
figs. 7.2 and 7.3, in which as N → ∞ the diagonal coefficient functions are seen
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to grow (as ln2
N) while the off-diagonal ones vanish (as 1

N ) 5 It follows that at
large z the quark and gluon channels decouple, and the perturbativity argument
is the same as in the non-singlet case.

Positive PDFs and their scale dependence

In section 7.3.1 we have shown that also in the presence of quark-gluon mix-
ing POS-scheme coefficient functions are positive, and thus in the perturbative
regime PDFs are also positive. One can then ask two (closely related) questions.
First, at which scale does this conclusion apply, and is it affected by perturbative
evolution? And second, which PDF combinations are actually positive? Indeed,
as well known, the eigenstates of QCD evolution are the two eigenstates of a mix-
ing matrix between the quark singlet and the gluon, and individual nonsinglet
components; any PDF (and thus any observable) can be decomposed into a sin-
glet and nonsinglet component, which evolve independently (see e.g. section 4.3.3
of R. K. Ellis et al. 1996). Of course a difference between two positive quantities is
not necessarily positive, so this raises the question of which are actually the pos-
itive combinations: the eigenstates of evolution, or individual quark, antiquark
and gluons (or indeed something else)?

In order to answer the questions, we start from the observation that the opera-
tors whose matrix elements separately define probability densities are the quark
operators eq. (7.2), and their antiquark and gluon counterparts. This can be un-
derstood physically in a simple way by considering a moment of the PDF: for
example, the second moment of the PDF for quark of flavor i is just the matrix
element of the energy (Hamiltonian) operator for the corresponding quark, ex-
pressed in terms of creation and annihilation operators for the given quark state.
Ditto for each antiquark of flavor j, and for the gluon. Hence, at leading order the
quantities which are separately positive are individual quark flavors, antiquark
flavors, and the gluon.

The argument presented in section 7.3.1 shows that this positivity is preserved
for the quark and gluon PDF, which at this order mix to first order in αs. This
argument does not make any assumption about the particular value ofQ2, except
that it ought to be in the perturbative region where αs(Q

2) is small enough.
Hence, positivity must necessarily be preserved by QCD evolution.

Actually, that this is the case directly follows from the construction of the pos-
itive subtraction scheme. Indeed, QCD evolution of the PDF is a consequence of
the Q2 dependence induced by the factorization into the PDF of scale-dependent
collinear logs, i.e., by the scale dependence of the renormalization factor ZS

ij(Q
2)

in eqs. (7.3) and (7.4). Indeed, using in these equations the explicit form of the
subtraction, as given in eqs. (7.14), (7.24) and (7.38) it follows that upon a change

5The same power behavior also holds in the MS scheme, where however the off-diagonal coeffi-
cient functions grow as ln(1− z) as z → 1, corresponding to a lnN

N behavior of its Mellin transform
at large N.
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of the scale at which the subtraction is performed, the renormalization factor
changes according to

Z
S
ij(Q

′2) =

(
δij +

αs(Q
′2)

2π
Pij ln

Q
′2

Q
2

)
⊗Zj(Q

2) +O(α2s), (7.74)

where Pij is the Altarelli-Parisi splitting function. Of course, taken in differential
form for infinitesimal scale changes eq. (7.74) is the standard QCD evolution
equation.

The POS factorization scheme construction essentially amounts to choosing δSij
in eq. (7.4) in such a way that ZS

ij remains positive for all Q2: in particular, when-
ever Pij is negative, this will mean that as the scale is increased, the renormaliza-
tion factor ZS

ij decreases, while (in a positive scheme) remaining positive. Clearly,
the condition is more easily satisfied at higher scales because of asymptotic free-
dom, in agreement with the phenomenological observation Ball et al. 2015; Ball,
Del Debbio, Forte, Guffanti, Latorre, Rojo, et al. 2010 that positivity constraints
are more restrictive if imposed at low scale and are preserved by evolution.

It is worth noting that a consequence of eq. (7.74) is that, as well known, a
scheme change will affect the NLO splitting functions. In particular, in the POS

scheme contributions proportional to ln (1−z)2

z to the off-diagonal splitting func-
tion will now be automatically resummed to all orders when solving the NLO
QCD evolution equations. These contributions are actually power-suppressed as
z → 1, so this resummation is likely not to have a significant effect: the POS
scheme is thus useful as a means to obtain positive PDFs (which is our main
goal here), but not necessarily phenomenologically better than the standard MS
scheme. On the other hand, in Jadach et al. 2016 a factorization scheme has
been advocated, called the Monte Carlo scheme, that is similar in spirit to the
POS scheme in the off-diagonal channel, but also modifies the MS subtraction
in the diagonal channel by an analogous change of subtraction point. In this
Monte Carlo scheme, ln(1− z)2 contributions in the diagonal channels are also
resummed when solving the QCD evolution equation: hence, leading-log thresh-
old (Sudakov) resummation is automatically performed, without having to be
added a posteriori. It can be argued that in this Monte Carlo scheme PDFs also
resepect positivity Jadach 2020.

7.3.2 Positive schemes vs. MS

In the previous section, we have shown that coefficient functions and PDFs in
the POS factorization scheme are indeed positive. We would like now to inves-
tigate the relation of the POS scheme to other factorization schemes, specifically
MS, and the related issue of how a positive factorization scheme should be and
can be defined.
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Figure 7.4: The off-diagonal elements of the NLO scheme change matrix KPOS, eq. (7.77),
in Mellin space.

General positive schemes

The scheme change from POS to MS can be determined using eqs. (7.34) to (7.36)
(quark channel) and eqs. (7.45) to (7.47) (gluon channel). We have

[
I +

αs
2π
C
(1)MS

]
=

[
I +

αs
2π
C
(1)POS

]
⊗
[

I +
αs
2π
C
(1)POS⊗

]−1

×
[

I +
αs
2π

(
C
(1)POS

+KPOS
)]

(7.75)

=

[
I +

αs
2π
C
(1)POS

] [
I +⊗αs

2π
K

POS
]

, (7.76)

where in eq. (7.76) we have written the inverse of the POS scheme coefficient
functions in perturbative form according to eq. (7.72). The matrix KPOS has the
off-diagonal structure

K
POS =

[
ln

(
(1− z)2

z

)
− 1

](
0 Pqg(z)

Pgq(z) 0

)
. (7.77)

The off-diagonal matrix elements of the matrix are displayed in fig. 7.4 in Mellin
space. Writing the basic factorization formula eq. (7.66) in the POS and MS
schemes, equating the results, and using eq. (7.76) we get

f
POS(Q2) =

[
I +

αs
2π
K

POS⊗
]
f

MS(Q2) , (7.78)

which gives the scheme change between the MS and POS PDFs.
Inspection of eq. (7.78) immediately shows a possible issue with the POS scheme.

Indeed, as well known, momentum conservation implies the pair of relations be-
tween the second Mellin moments of splitting functions γqq(2) +γgq(2) = 0 and
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2nfγqg(2) +γgg(2) = 0. This relation is verified in the MS scheme: in order for it
to remain true in any scheme obtained from MS, the scheme change matrix must
satisfy

Kqq +Kgq = 2nfKqg +Kgg

∣∣∣
N=2

= 0 , (7.79)

where by Kij

∣∣∣
N=2

we denote the second Mellin moment of the scheme change
matrix elements. This relation is not satisfied by the matrix defined in eqs. (7.34)
to (7.36) and eqs. (7.45) to (7.47)).

It might therefore be worth considering a variant of the POS scheme, in which
momentum conservation is enforced by adding to the diagonal elements of the
scheme change matrix a contribution which enforces momentum conservation.
This can be done e.g. by adding a soft function, which vanishes both as z → 1

and z→ 0. We choose
f

MOM(z) = 60z2(1− z)2 , (7.80)

which has the property that its second Mellin moment equals one: fMOM(N =

2) = 1. We then define a MPOS scheme as that which is obtained from MS
through a scheme change matrix KMPOS whose matrix elements satisfy

K
MPOS
qq (z) = −fMOM(z)KPOS

gq

∣∣∣
N=2

, (7.81)

K
MPOS
qg (z) = KPOS

qg (z) , (7.82)

K
MPOS
gq (z) = KPOS

gq (z) , (7.83)

K
MPOS
gg (z) = −2nff

MOM(z)KPOS
qg

∣∣∣
N=2

. (7.84)

The MPOS scheme then automatically satisfies momentum conservation. Coef-
ficient functions in the MPOS scheme are shown in figs. 7.1 to 7.3. It is clear
that coefficient functions, and thus PDFs, remain positive in the MPOS scheme:
indeed, the off-diagonal coefficient functions are unchanged, while the diagonal
NLO contributions are modified by a small correction which is offset by the large
positive LO contribution, and in fact in the hadronic case leaves the NLO correc-
tion positive for all z. Hence the MPOS and POS schemes have the same positivity
properties. We will thus not discuss the MPOS scheme any further and restrict
the discussion for simplicity to the POS scheme.

A further observation is that the POS scheme has been constructed in sec-
tion 7.2.2 based on the kinematics of hadronic processes, namely by performing
the collinear subtraction in off-diagonal channels at the scale µ2h, eq. (7.33). As
discussed in section 7.2.2, if this scheme is used for the computation of electropro-
duction processes for which the relevant scale is µ2D, eq. (7.17), leads to coefficient
functions, and consequently PDFs, that are with stronger reason positive. More
in general, the POS scheme has been constructed using universal properties of
the collinear emission that only depend on the LO splitting functions and the
choice of scale, which is determined by the general kinematics of hadronic pro-
cesses, but otherwise process-independent. However, the positivity argument
presented in this section shows that this choice, whereas theoretically appealing,
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is by no means necessary. In fact, any physical scheme choice of the form of
eq. (7.69) can be used to construct a positive factorization scheme, by just picking
a scheme choice such that the coefficient functions of the processes used to define
the PDFs remain positive, and perturbative for all ξ. In any such scheme positiv-
ity of the PDFs holds. In fact, the simplest choice would be to pick as a positive
factorization scheme the physical scheme itself, in which PDFs are positive by
construction, as they are identified with physically observable cross sections.

The MS scheme

Having concluded that we can take the POS scheme as representative of a wide
class of positive factorization schemes, we now discuss its relation to the MS
scheme, and what it tells us about positivity of MS PDFs.

Inverting the scheme change from MS to POS perturbatively (cf. eq. (7.78)) we
obtain

f
MS(Q2) =

[
I −

αs
2π
K

POS⊗
]
f

POS(Q2) . (7.85)

It is then clear that if the POS PDFs are positive, then so are the MS ones, because
the matrix KPOS vanishes on the diagonal, and it has negative matrix elements
off the diagonal, so −KPOS in eq. (7.85) is positive. The perturbative inversion
is justified due to the fact that the non-vanishing off-diagonal matrix elements
of the K matrix are actually power-suppressed (i.e. next-to-eikonal) in the z → 1

limit.
This can be seen more formally by considering the exact Mellin-space inverse

of the scheme change matrix, eq. (7.78):
[
I +

αs
2π
K

POS(N)
]−1

=
1

1−
(αs
2π

)2
Kqg(N)Kgq(N)

[
I −

αs
2π
K

POS(N)
]

, (7.86)

where KPOS
ij (N) denote (by slight abuse of notation) the Mellin transforms of

the matrix elements KPOS
ij of the matrix KPOS. It is easy to check that the fac-

tor Kqg(N)Kgq(N) is a monotonically decreasing function of N along the real N
axis, and in particular it vanishes as 1

N
2 as N → ∞, hence the prefactor which

relates the exact and perturbative inversions, eqs. (7.85) and (7.86), is actually
bounded in the region N ≳ 2 in which the MS coefficient functions, and thus the
matrix elements of K, turn negative (cf. figs. 7.2 and 7.3).

We conclude that the light quark and gluon MS PDFs are in fact positive at
NLO.

Heavy quarks require a separate discussion, because for heavy quarks MS fac-
torization can be defined in a variety of ways (see e.g. Forte, Laenen, et al. 2010).
Specifically, heavy quarks can be treated in a massive scheme, in which collinear
singularities associated to them are regulated by their mass, so they decouple
from perturbative evolution. In this scheme no collinear subtraction is performed
for massive quarks, so their PDF is given by the unsubtracted eq. (7.2) and thus it
remains a positive (and scale-independent) probability distribution to all pertur-
bative orders. Note that nothing prevents this heavy quark PDF from having an
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“intrinsic” component, of non-perturbative origin: however, in this factorization
scheme, the heavy quark PDFs will be scale-independent, and thus positive at all
scales.

However, it is also possible to treat the heavy quark in a massless MS scheme, in
which the heavy quark is treated like other massless quarks, namely the collinear
singularity regulated by its mass is subtracted according to eqs. (7.14) and (7.24),
but with µ

2 now replaced by the heavy quark mass. Calculations performed
in this scheme, with heavy quark mass effects neglected, are accurate for scales
much larger than the quark mass. However, the massless scheme is in princi-
ple formally defined for all scales, including at the heavy quark mass. This is
sometimes done by using the massless scheme for all flavors, but discontinu-
ously changing the number of flavors at a matching scale chosen equal to (or of
order of) the heavy quark mass (zero-mass variable-flavor number scheme, ZM-
VFNS Aivazis et al. 1994). Below the matching scale the ZM-VFNS coincides with
the massive scheme (with non-evolving heavy quark PDF), and at the matching
scale the heavy quark PDF changes discontinuously: the matching condition is
the scheme transformation from the massive to the massless MS (computed up
to NNLO in Buza, Matiounine, Smith, and W. van Neerven 1998). This scheme
transformation accounts for the fact that in the massive scheme the heavy quark
decouples from the running, so loop corrections with the massive quark circulat-
ing in loops are included in the Wilson coefficient, and not in the operator matrix
element, while in the massless scheme they are included in the operator normal-
ization along with all other light quarks, but neglecting the quark mass when
computing them.

When Q
2

∼ m
2
h this neglect is not justified, and the corresponding scheme

transformation may ruin positivity of the PDF. Specifically, it is often assumed
that the massive-scheme PDF vanishes at some scale Q2

∼ m
2
h, and it indeed ap-

pears reasonable to expect that the low-scale heavy quark scheme PDF if not van-
ishing, is rather smaller than light quark PDFs (cf. Ball, Bertone, Bonvini, Stefano
Carrazza, et al. 2016; Ball, Bonvini, et al. 2015). However, if one determines the
massless-scheme heavy quark PDF by starting with a vanishing massive-scheme
PDFs, and using perturbative matching conditions, a negative result can be found
– and is indeed found using standard light quark and gluon PDFs Ball et al. 2017b.
This is now possible because the massless-scheme heavy quark PDF is not defined
by a matrix element of the form of eq. (7.2), but rather, as the transformation of
such an operator matrix element to a scheme in which the quark mass is ne-
glected, but in a region in which the quark mass is not negligible. Of course, if
Q

2 ≫ m
2
h the mass does become negligible, the previous arguments apply, and

positivity of the heavy quark PDF is restored. Hence, positivity of the heavy
quark PDF in the massless scheme only holds at high enough Q2 that mass cor-
rections are negligible.

All the discussion so far has been pursued at NLO. However, the main struc-
ture of the argument remains true to all perturbative orders. In particular, it is
true to all orders that the diagonal splitting functions are negative at large z: in
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fact, at large z to all perturbative orders they behave as 1
(1−z)+

Albino and Ball
2001. At higher perturbative orders, coefficient functions will contain plus dis-
tributions with higher order powers of ln(1− z), leading to the familiar rise in
the partonic cross section which is predicted to all orders by threshold resumma-
tion S. Catani and Trentadue 1989; Sterman 1987. Off-diagonal channels, where
negative contributions as z → 1 may and indeed are expected to arise, remain
power suppressed in this limit. It follows that the off-diagonal structure eq. (7.77)
of the matrix relating a positive scheme to MS will hold true to all orders. The
positivity argument of section 7.3.2 is a direct consequence of this structure, and
it will thus also hold to all orders.

7.4 summary and remarks
The goal of this work has been the construction of a universal factorization

scheme in which PDFs are non-negative. In order to attack the problem, we
started from the observation that MS partonic cross sections for typical electro-
and hadro-production processes are not positive. This then implies that positivity
of the PDFs is not guaranteed, since folding a negative partonic cross section
with a positive PDF could lead to a negative physical cross section. We have
then traced negative partonic cross sections to the way collinear subtraction is
performed in MS and specifically we have shown that it is due to over-subtraction,
related to the choice of subtraction scale, and also the treatment of the average
over gluon polarizations in d dimensions. This loss of positivity only manifests
itself in off-diagonal quark-gluon and gluon-quark channels.

A universal subtraction prescription which preserves positivity of the partonic
cross section can then be constructed using hadronic kinematics, and shown to
preserve positivity also in electroproduction kinematics. This prescription does
not automatically respect momentum conservation, which however can be en-
forced with a soft modification of the subtraction procedure that does not affect
its positivity properties. By performing collinear factorization in the standard ap-
proach of J. C. Collins and Soper 1982; Curci et al. 1980 it is then possible to show
that positivity of the PDFs, defined as probability distributions, is preserved at
all stages, so PDFs remain positive.

In fact, this positivity is a manifestation of the fact that PDFs can always be
defined in terms of a physical process: what PDFs do is to allow one to express
the perturbative QCD prediction for a process in terms of that for another process.
The definition of the PDFs can then be process-independent (as in MS) or process-
dependent (as in so-called physical schemes Stefano Catani 1996; Diemoz et al.
1988). Its positivity will then be preserved provided only that the renormalization
conditions, which fix the value of operator matrix elements that define the PDFs,
preserves their interpretation as moments of a probability distribution. Effectively,
this corresponds to choosing positive Wilson coefficients.

By considering a scheme in which PDFs are manifestly positive, and the trans-
formation from it to MS, we have finally shown that in the MS scheme PDFs
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remain positive, despite the fact that off-diagonal partonic cross sections are
negative. From a physical point of view, this is a consequence of the fact that
the MS subtraction is actually strongly positive in the diagonal channels (where
by “strongly” we mean that partonic functions tend to +∞ towards kinematic
boundaries). This then overwhelms the negative contribution from off-diagonal
channels, while away from kinematic boundaries off-diagonal channels are per-
turbatively subleading.

Positivity of the PDFs is neither necessary nor sufficient for physical cross sec-
tions to be positive, as they ought to: it is not necessary, because it is possible that
a negative PDF still leads to a positive hadronic cross section once folded with
a suitable coefficient function, and it is not sufficient because in a scheme, such
as MS, in which some partonic cross sections are negative it could well be that,
while the true PDF must necessarily lead to positive measurable cross sections, an
incorrectly determined PDF could lead to a negative cross section despite being
positive.

In other words, it is not necessarily true that the region in PDF space which is
excluded by the requirement of positivity of the PDF is the same as that which
is excluded by requiring positivity of the cross sections. However, from the point
of view of PDFs determination, knowing that PDFs must be positive in a given
factorization scheme does provide a useful constraint, in that it excludes a region
which does not have to be explored, though this restriction is not necessarily the
most stringent one. It is natural to ask whether the positivity requirement could
be more restrictive in some factorization schemes than others, but it is unclear
whether and how this question could be answered. The question of optimizing
the scheme choice from the point of view of positivity constraints, for the sake of
PDFs determination, remains open for future investigation.
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As briefly described in the general introduction (cf. chapter 0) PDF fitting has
always been a challenging task, and methodology is decisive in determining the
final outcome, but highly non-trivial, driven several arbitrary choices.

Assessing the goodness of methodological choices, and its impact on the final
result, is an important and serious topic. To this goal, several discussions among
different PDF fitting groups have been devoted (e.g. Albert De Roeck 2009), re-
sulting in publications that assess the status of PDF extraction Sergey Alekhin
et al. 2011; Ball et al. 2022b; Michiel Botje et al. 2011; Rojo 2016.

The common ambition would be to pick a methodology that is not adding in-
formation, such that the resulting PDF is only determined by the data constraints,
plus theoretical knowledge (such as sum rules). While this target is certainly de-
sirable, it is not possible to fulfill it completely, because the theory defined object
has simply too many degrees of freedom. Indeed, the undetermined PDF is the
set of functions introduced in eq. (0.1), and the theoretical knowledge consists in
a finite set of linear constraints. Thus, and infinite number of degrees of freedom
remains unconstrained.

In order to make inference with a finite amount of data, further assumptions
need to be used, to step from the infinite unconstrained directions, that would
lead to infinite uncertainty, to a finite space in which optimizing the PDFs dis-
tribution for data compatibility with theory predictions. The more traditional
approach consists in parametrizing the PDFs with some selected polynomials, fit-
ting some exponents as well, for the behavior about the domain boundaries. This
is definitely a sensible choice, and fully compatible with the principle that will
be exposed in section 8.3, but with one major drawback: there is no specific rea-
son to prefer a given polynomial basis, so this procedure creates room for some
arbitrariness, leading to potential debate about an optimal choice.

In this context, the NNPDF Collaboration proposed an alternative PDF parametriza-
tion, based on a Neural Network (NN), that will then be trained with its intrinsic

183

http://nnpdf.mi.infn.it/


184 new candidate methodologies

training algorithm. This led to a series of challenges, that will be described in sec-
tion 8.1, eventually conducing to release a completely analogue object, but with
significant discrepant features, originated by the different methodology.

A number of issues however arose around NNPDF sets, some of them character-
istic of the NN determined PDFs, while other shared with other determinations.
Some of them will be described in section 8.2.

While attempting to improve the current methodology to address these con-
cerns, the inspection suggested that another paradigm shift could give an easier
and more complete answer, keeping the benefit of all or most of the present de-
velopments, just minimally (as possible) replacing the fitting “engine”. This new
proposal is the result of the active discussion on improvements inside the col-
laboration, but also arising from external proposals, and it will be presented in
section 8.3.

8.1 the NNPDF methodology
The methodology adopted by the NNPDF Collaboration has already been de-

scribed in its publications, Ball, Del Debbio, Forte, Guffanti, Latorre, Piccione, et
al. 2009; Forte, Garrido, et al. 2002, and in dedicated reviews, Ethier and Nocera
2020; Forte and Stefano Carrazza 2020. Therefore, it would be redundant to add
too many details here, that can be easily found in references, but it is relevant to
summarize the main points, for the subsequent discussion.

The primary challenge in switching from polynomial parametrization1 to NN
consists in the uncertainty propagation. Indeed, the first step would be to estab-
lish a training algorithm, but, while the fixed parametrizations require an explicit
choice, the NN comes with its own efficient training algorithm. It is in no way
unique, and there are many options available, but there is no need for a dedi-
cated development. The exact algorithm selection becomes part of the methodol-
ogy, and it is once more a source of arbitrariness, but there are suitable strategies
to educate this choice, and sometimes it is also driven by consistent technical
considerations.

Before explaining the uncertainty propagation technique it is worth noticing
that the most renowned and usual applications of NNs aim to determine an un-
known function, but the details of the learnt function are not particularly relevant,
while it is relevant to evaluate it on a specific subset of inputs, settling the task
to be performed by the trained network. In the case of the PDFs, all values of
the functions are relevant, since a large enough set of physical observables is po-
tentially sensible to all its analytical features. Moreover, being able to manually
examining the function can help in inferring specific properties of the hadrons.
So, the final step of an NN fit is to evaluate the function on a sufficiently com-
plete set of inputs, originating a function set by means of interpolation.

1Or parametrization over a fixed basis of functions, more in general.

http://nnpdf.mi.infn.it/
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In this context, fixed parametrization fits are no different, because after deter-
mining the parameters in a Hessian fit, they also evaluate the resulting functions.
To propagate the uncertainty, an Hessian fit require to determine the main eigen-
vectors for the minimized quantity, generating a Gaussian distribution that ap-
proximate the uncertainty on the fitted parameters in a neighborhood of the best
fit.

For an NN fit this is not technically available, because of the large number
of parameters involved. And even when it would be possible, it is not recom-
mended to follow the classical approach, since many parameters might be poorly
constrained, but with a negligible impact on the value of the PDFs. Therefore,
NNPDF proposed a more direct approach: since the distribution in the value of
the PDF is derived from the data distribution, it is possible to start from an alter-
native representation of this distribution. As illustrated in fig. 8.1, the data are
then fluctuated, according to their distribution, and many samples of the whole
dataset are taken, each one containing one and only one value for each experimen-
tal data point (i.e. each sample is a single extraction from the joint distribution of
all experimental data). This samples are called data replicas. After that, one NN
is fitted to each replicate, and the resulting set of trained NNs, called NN replicas
are gathered, and they are the determined MC representation of the PDFs distri-
bution. In particular, this procedure associates to each point in the PDFs domain
a set of values (the NN replicas), that should be interpreted as a sample of the
PDFs distribution for that point.

As thoroughly discussed in Del Debbio, Giani, et al. 2022, this boils down to
solve the inverse problem for the PDFs: the map from PDF space to data space is
known, and it consists in the theory prediction. So the fit is essentially inverting
this map, constrained with some assumptions. Applying the inverse2 to each
data replica the distribution is propagated from one space to the other.

closure tests However, the training algorithm for the NN is sufficiently so-
phisticated to introduce a further level of indirectness, that makes harder to un-
derstand which features of the input dataset is causing a specific behavior in the
output distribution. Because of this partial loss of explainability (part of it is al-
ready in the size of the dataset, and the lack of a one-to-one mapping caused by
convolutions), the methodology requires to be validated in a more systematic way.
NNPDF is doing this employing closure tests, explained in details in Del Debbio,
Giani, et al. 2022. Basically, a set of fake data is generated by a fake underlying
truth, chosen to be a reasonable PDF set (usually a set by a different collabora-
tion) applying the same theory predictions used in the fit, and the final result is
compared to the starting point.

This exercise is possible at many levels:

2The inverse map is not a unique one, since the NN may obtain different minima according
to its initialization. If this is done randomly, the distribution of the initialization assigns a certain
probability to each possible minimum, creating a probabilistic inverse, that will convolute the data
distribution in the result. This becomes clearer in the Bayesian framework in section 8.3, where this
further probability can be essentially identified with the prior.
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Figure 8.1: NNPDF uncertainty propagation methodology, one of the most important key
points of NNPDF methodology. Picture available on the collaboration website
http://nnpdf.mi.infn.it/research/general-strategy/.

http://nnpdf.mi.infn.it/research/general-strategy/
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level 0 using directly the mock truth, or

level 1 fluctuating it, to emulate how the experimental uncertainty is affecting
the estimate of central values, or

level 2 fluctuating once more, to obtain the same data replicas used in a reg-
ular fit

Closure tests have a great power in assessing the faithfulness of the uncertain-
ties established by a given methodology. It is important to remark that what is
tested is not if there would exist an alternative methodology that could led to
smaller uncertainties, but only if the chosen one produces an estimate of the un-
certainty that is compatible with the expected shift of the central value from the
underlying truth. Then, two very different methodologies, one obtaining much
bigger errors than the other from the same dataset, can both pass the closure test,
if their error is consistent with the actual shift from the truth: big uncertainty
associated to a big shift, and conversely.

Nevertheless, also closure tests have some limitations, since they test the method-
ology with the assumption of perfectly consistent data, and accepting the pertur-
bative theory predictions, truncated at a fixed order, as a prompt for the full
theory, generating fake data for that PDF. These two elements introduce an ambi-
guity in the outcome of the closure tests themselves, that is possible to alleviate
studying how it behaves when specific inconsistencies are injected (this is actually
a work currently in progress, being performed by NNPDF members).

8.1.1 Generalization

As in other classical machine learning problems, also for PDFs there is a fun-
damental concern, that goes beyond the loss function minimization: how much
does the predictions extend, beyond the region strictly covered by data?

The first instance of this issue is interpolation itself, since an extremely aggres-
sive optimization can generate an incredibly noisy result, matching anyhow all
the points in the dataset. This is partially prevented by the structure of the net-
work itself, and its training algorithm: in the case of NNPDF there is no explicit
penalty term imposing smoothness in the loss function. The rest is done by the
training-validation split. As it is customary for many machine learning applica-
tions, data are split in the two sets, and only one of the two is passed to the
optimizer, while the other is observed during the training, in order to interrupt
the process before learning the noise, and prevent over-fitting. Despite being very
common, there is not a full analytical understanding for this method, or for the
NN training more in general, and many counter-intuitive are still being investi-
gated (e.g. double descent, or multiple in general). So, the final and most reliable
proof of good interpolation properties comes from the closure tests.

A second instance lies in the extrapolation region. Since this region is not di-
rectly controlled by data, or at least very little, it is largely undetermined, but it is
important for PDFs uncertainties to be reliable also in this region, usually heavily
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affecting BSM searches. Being reliable means to be large enough to cover unob-
served features of the PDFs, without completely forgetting the few constraints
coming from the sum rules. To check the fidelity of these portions of the fi-
nal product, a different kind of tests is employed: the dataset is chronologically
segmented, and they are incrementally included in the input of the NN, finally
comparing the various results. This type of checks have been called future tests,
and the essential idea consist to check how faithful are the extrapolation uncer-
tainties, since the extrapolation region of a chronologically prior fit will intersect
the data region of a later one. In practice, despite NNPDF4.0 being significantly
smaller than those in the other PDF set, this is mostly limited to the data region,
and the increased flexibility prevents an extreme extrapolation, decoupling the
two regions, as much as it is allowed by sum rules. This is shown and exempli-
fied quite well in the Drell–Yan forward-backward asymmetry study, presented
in chapter 6.

It is worth to remark once more that there are many possible variations, whose
results can span wide space of solutions. In order to avoid arbitrary choices,
inspired by subjective opinions or human experience (potentially reliable, but cer-
tainly hard to quantify and systematically improve), in NNPDF4.0 a large enough
space of hyperparameters has been considered, and they have been hyperopti-
mized (also standard practice, though computationally expensive) based on a
grid search. This also contribute to improve the generalization power of the full
procedure, since also the methodology parameters have been systematically opti-
mized for this task.

8.1.2 Minor improvements

While it would be desirable that most of the decisions were inspired only by
physical or statistical reasons, a common enough pattern is that technical limita-
tions imposed further constraints.

An example of this is the choice of the training algorithm: NNPDF4.0 adopted
the Stochastic Gradient Descent (SGD), that incredibly boosted performances
with respect to the former Nodal Genetic Algorithm (NGA) used by NNPDF3.1.
Both the algorithm are very well-known in literature, with SGD being based
on the classical idea of Gradient Descent (GD), applied in optimization tasks
since two centuries. Nevertheless, the choice here is mainly driven by its per-
formances, improved by automatic differentiation techniques (implemented in
modern frameworks). This allowed further studies, like hyperoptimization cited
above, that would have not been possible with the former NGA implementation,
only because of performances.

I proposed a couple of minor improvements in this sense, that is worth to
briefly report.

negative sampling Data replicas generation involves sampling data from the
joint distribution of measurements, assuming this to be normally distributed.
However, for most of the observables this assumption can only hold approxi-

 http://nnpdf.mi.infn.it/for-users/unpolarized-pdf-sets/#NNPDF4.0 
 http://nnpdf.mi.infn.it/for-users/unpolarized-pdf-sets/#NNPDF4.0 
 http://nnpdf.mi.infn.it/for-users/unpolarized-pdf-sets/#NNPDF4.0 
 http://nnpdf.mi.infn.it/for-users/unpolarized-pdf-sets/#NNPDF3.1 
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mately, since they are known to be positive semi-definite. In order to prevent
negative values, the current algorithm operates a cut, implementing by redraw-
ing the full sample if a value, supposed to be positive, has actually been drawn
negative. Usually this is not causing any issue, since most experimental measure-
ments are rather precise, and thus incompatible with zero. But it is still prone to
terrible performances. Indeed, if for any reason there were a fixed rate r for a set
of k measurements to be negative, the probability for all of them to be positive
would be (1− r)k, and then a number of extractions of order:

1

(1− r)k
(8.1)

would be required on average to obtain a fully positive sample, so they increase
exponentially with the number of points k. If r starts approaching O(1/2), a huge
amount of draws would be required also for a few points. E.g. for r = 1/2 and
k = 10 one thousand extractions would be performed on average, for the full
sample.

Following, a list of possible solutions, with related advantages:

decouple Since the main problem consists the performance, a simple solution
is just to redraw only the samples that happened to be negative, in
order to prevent the exponential scaling

Slightly more challenging at a technical level, since the code is based on NumPy,
and Python iterations should be avoided as much as possible. But it is sufficient
to redraw arrays with a length equal to the amount of negative samples, and apply
with a mask.

↬ This modifies the distribution to be a truncated Gaussian
(obviously rescaled for normalization).

wall Another option is just to cut all the negative values, and just set them
to zero, this limits the procedure to a single draw.

↬ The resulting distribution is the truncated Gaussian, re-
taining the original normalization, with a discrete point, 0,
having a finite weight (the integrated value of the negative
tail).

reflection
Keeping the single draw, but avoiding the attribution of finite prob-
abilities to a single point, is possible, e.g. just taking the absolute
value of the drawn sample.

↬ In this case the distribution would be the sum of the trun-
cated positive Gaussian, and the mirrored negative tail.

This has been experimented, but it produces a distribution that is
significantly different from the original one, leading to unexpected
features in the fit.
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distortion
To minimally transform the original distribution, it is possible to
consider a rescaling that is preserving the right tail of the Gaussian
(larger values than average), while smoothly distorting the left one.
Shifting the distribution to be centered in 0, x → y = x − x̄, this
means the left tail should not exceed a minimal threshold value ŷ =

−x̄. There are many functions that can do this, one possible solution
is an Exponential Linear Unit (ELU):

ỹ =

{
y if y > 0,
ŷ (exp(a · y) − 1) otherwise

(8.2)

Finally yielding a value for the transformed x equal to x̃ = ỹ+ x̄. The
value of the parameter a can be set for example to 1/ŷ, such that the
derivative is also continuous, arguably the minimal distortion for
this functional form. Being the transformation simple and analytical,
performances would not be impacted. Other transformations with
the same properties would be completely equivalent.

↬ The distribution would be the one described above: a per-
fect right Gaussian tail, and smoothly warped left one, van-
ishing for negative values.

no bound Finally, there are applications for which not any of this compromises
is required, since it is possible to treat also negative values for the ob-
servables. In this case, retaining them has the advantage of keeping a
cleaner distribution, avoid more complex procedures, and achieving
optimal generation performances the same.

theory covariance matrix construction Another performance issue en-
countered in the current implementation of NNPDF methodology concerns the
construction of the theory covariance matrix. The problem also here consists in
extra unneeded iterations. The really superfluous part can just be dropped, while
further optimizations are possible if a fully factorized prescription is adopted, in
place of the current sliced one (cf. section 4.4). Since this is rather technical, with
no impact on anything but performances (as opposed to the former one, also af-
fecting significantly the distribution of a few points), no further details will be
provided here, and the interested reader can directly read the documentation of
the new proposed implementation:

AleCandido/thcovmat

8.2 neural networks’ puzzles
A number of concerns arose during the development of NNPDF, partially from

other PDF groups and external parties, the rest from inside the collaboration
itself.

https://github.com/AleCandido/thcovmat
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A first point is still related to the partial loss of explainability due to the NN,
already addressed by closure tests and hyperoptimization. Unfortunately, all the
techniques adopted until now always relies on the χ2 of some subsets of data, that
might be a poor quantifier of over-fitting and other possible issues. So, an open
question has been posed to the collaboration, whether it is possible to quantify
this properties with an alternative metric, that could also be used in the method-
ology hyperoptimization. A basic idea would be to rely on the arc-length of the
PDF replica: if the PDF oscillates more (contains more wiggles) its arc-length is
increased, thus minimizing would yield less wiggly PDFs, privileging smoother
replicas. While on one side this is already done by the NN itself, on the other
it might be worrying to explicitly penalize the arc-length, since the PDF should
always be able to reproduce physical oscillations. Some metrics definitions are
currently being discussed, based on the statistical properties of replicas ensem-
bles, or refining the idea of detecting wild oscillations, e.g. measuring the local
oscillation rate, to detect anomalous regions (this local quantifier has been called
kinetic energy, for the similarly with the expression of this quantity for a moving
particle).

Another direction for improvements lies in the uncertainty propagation itself.
At the moment, each replica is determined on its own, irrespectively of the other
replicas, and only gathering all of them together at the end will generate the final
PDFs distribution. Since the object sought is the distribution, there might be a
more direct way to extract it, and once the full distribution (or a part of it) is
available during training, more features would be available to the algorithm to
construct a better optimization path.

Another subject is the treatment of extrapolation. While NNs are extremely
good at interpolating, the extrapolation assumptions remain hidden, and it is
more difficult to directly assess the goodness of the extrapolation, and recognize a
fit with spurious extrapolation. This is connected to the general lack of analytical
insights, but this condition is not intrinsic to the more problem, but rather to
the adopted solution. Start thinking this way, it is possible and appropriate to
consider if there are more suitable techniques that can make use of the original
fully analytical formulation of the problem (some well-behaving functions over a
simple real domain), that instead is traditionally lacking in most machine learning
applications.

8.3 bayesian PDFs
Starting from the concerns exposed in the previous section, the need for some

changes in the methodology became manifest. There is no clear indication that
all of the possible issues enumerated might be solved keep using a NN, but
especially there is no special need not to consider any other alternative.

One of the points was if there is a way to determine the distribution, rather
than the individual elements of the samples, one by one. Following this path, one
can start considering having a NN that fits a batch of replicas together, but how
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many? All replicas share the same theory, through the FK tables (cf. chapter 3),
that already limits the resources required, but fitting the whole set at the same
time is prohibitive. Moreover, there was the need of a more direct and insightful
approach. Taking mainly into account these two points, an alternative solution
start looking promising: why not to directly apply Bayesian inference to the PDF
posterior determination?

Bayesian inference is sufficiently well-known, and already applied in a series of
contexts, including HEP theory (e.g. see Cacciari and Houdeau 2011, as described
in chapter 4). The basic essence lies in the so-called Bayes theorem:

P(A|B) =
P(B|A)P(A)

P(B)
(8.3)

In the context of inference, the Bayes theorem is usually written:

P (θ|{x}) =
P ({x}|θ)P (θ)∫

dθ P ({x}|θ)P (θ)
(8.4)

Differences in the notation are minimal, and the integration in the denominator
essentially correspond to P({x}). But the interpretation is fundamental:

data {x} is a set of observations

parameter θ is an unknown parameter, that enters the distribution of the ob-
servations, and can thus be inferred from them

prior P(θ) is the prior knowledge about the parameter θ (also “the prior”),
before any observation is considered

likelihood P ({x}|θ) is the likelihood of the data observed, given the value of
the parameter θ

posterior P (θ|{x}) is the probability distribution of the parameter θ, after the
observations {x} are taken into account

evidence is the normalization of the right-hand side, i.e. the denominator

So, even before the experiment is performed, the observer has a prior knowl-
edge about the parameter, coming from its model or external sources. The effect
of the experiment is to update this prior knowledge with the observed results.

There is an extremely important feature of this formula, that applies extremely
well to the PDFs extraction task: in order to derive the posterior probability, no
inverse map is required: to know the value of the posterior for a given PDF, it
is sufficient to be able to evaluate the prior, usually analytic and simple enough
to evaluate, the likelihood, that involves the actual connection from PDFs to data
space, but only the forward map, and the evidence (usually the complex part,
since it involves an integration on a wide space). No minimization is required to
determine the full distribution, so no effective inverse map has to be constructed.

It is not the first time that someone attempts to use Bayesian inference for fitting
PDFs, Aggarwal et al. 2022; Gbedo and Mangin-Brinet 2017, but there two main
novelties that we want to propose:
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parametrization
what the other references do is to apply Bayesian inference, in place
of an Hessian fit, but retaining a fixed parametrization.

Coming from the experience of NNPDF, it became evident how a
sufficiently flexible parametrization is appropriate for the task. But
at this point, PDFs are also distributed in a standard format (LHAPDF,
Buckley et al. 2015), in which a series of points are stored and later
interpolated. This approach is successful enough that the distributed
grids represent extremely well the fitted object, and essentially loose
no feature.

Because of these two considerations, there is an obvious candidate
for the parametrization: we want to determine exactly the values of
the PDFs that are going to be distributed, i.e. the PDFs evaluated on
the points of the chosen grids. Any further value would be lost, and
thus provide no information to the user.

data set all the previous attempts were done at the level of a proof of concept
Gbedo and Mangin-Brinet 2017, or to investigate the features of a
specific data set Aggarwal et al. 2022

We want to attempt a global fit in which the full data set of NNPDF
would be taken into account, to have a meaningful comparison with
existing PDF sets.

While it seems too ambitious for a new methodology to aim at the
widest data set available immediately (and intermediate steps will
be done anyhow), the target is definitely accessible, this because the
NNPDF framework provide already all the elements required for
a full fit, and only the underlying engine has to be switched. In
this sense, the road for this study has already been paved by n3fit

Stefano Carrazza and Cruz-Martinez 2019, that replaced the former
NNPDF NN, plugging an isolated inference module in the rest of
the framework.

The most expensive part in Gaussian inference is computing the evidence: it
usually involves one or more integration, and it is possible to perform it analyt-
ically only in a handful of cases. Because of this, suitable numerical methods
have been developed, in order to make Bayesian inference practically possible for
a wide variety of cases. One of the most popular algorithm is Markov Chain
Monte Carlo (MCMC), that allows to sample a generic distribution without com-
puting its normalization, since it is based on probability ratios. Many variants
of MCMC are known, one of the most popular being the Metropolis–Hastings
algorithm Hastings 1970; Metropolis et al. 1953, and more recently Hamiltonian
Monte Carlo (HMC) Duane et al. 1987 (also known as hybrid Monte Carlo, as it is
called in the original paper).

This is what has been used in the past attempts, and what we eventually aim
to use as well. However, MCMC are delicate tools, and a series of caveats have
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to be considered when analyzing the results, including the role of a first thermal-
ization phase, and the autocorrelations of the chains (new algorithms partially
alleviate the main issues, but convergence is still fragile for complex problems).
We will then inspect produce some first iterations by means of approximate meth-
ods, that are strictly exact for a wide portion of the data set, and are much less
computationally demanding, see next section 8.3.1 for some further details.

One clear advantage over fitting replicas is in the algorithm simplicity, and we
expect it will eventually drive better performances. Indeed, in NNPDF method-
ology drawing one more sample requires fitting one NN more, while in MCMC
is just an effective step (possibly consisting of multiple actual ones, because of
autocorrelations).

Another advantage consists in interpretability, and this happens on many levels.
While NN added a level of indirectness, in the case of the Bayesian fit everything
is straightforward, since there is no complex architecture or training algorithm
involved; the ingredients are the likelihood and PDFs prior, and the composition
is simply the normalized product. In order to compare the weight attributed to
a PDF candidate, the only operation required is to evaluate the prior on it. This
is a criticism that NNPDF had to address in practice, Courtoy et al. 2022: given a
set of candidates, constructed with whatever procedure, explain the reason why
they are considered unlikely by the chosen methodology, since they are such in
the posterior, but still compatible with data and theoretical constraints. What hap-
pens is that the NN architecture and initialization is also implementing an effective
prior, that makes some candidates more unlikely than others, before having seen
the observations. But this effective prior is practically impossible to evaluate, so
other proxies have to be constructed in order to extract this information from the
network. Nothing like that is required if the prior is known analytically, since it
can be explicitly motivated and evaluated for comparison.

Moreover, machine learning is best suited to those tasks that is difficult to ex-
press analytically, but this is not the case for PDFs: their definitions and theoret-
ical properties are known formulas, so it is possible to study them, and possibly
implement, at an analytic level.

One point that is often considered cumbersome in Bayesian inference is the
prior choice, because it might introduce strong assumptions. As motivated above,
assumptions in the case of PDFs are a strong requirement, so explicit prior choice
is an advantage, to clarify which features in the result are inherited from it, and
which are instead produced by data. The former example of direct prior probing
to motivate a low weight for apparently reasonable candidates is an instance of
this.

There are two classes of assumptions that we want to explicitly include in the
prior: theoretical knowledge and smoothness. The first are exact properties of
the PDFs predicted by QCD, mainly sum rules dictating the global number of
some quark species, or imposing total momentum conservation. The second is
a reasonable assumption from an Occam razor-like approach: we want to first
resolve fluctuations over large scales, so we deweight high-frequency oscillatory
modes. A suitable prior family to encode these assumptions are Gaussian processes.
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Gaussian processes are an extremely wide and powerful family, also proven to be
equivalent to infinitely wide NN. They are characterized by a mean function over
their domain D, and a kernel function, associated to the covariance of the process
G:

E[G(x)] = µ(x) x ∈ D (8.5)

Cov[G(x),G(y)] = k(x,y) (x,y) ∈ D
2 (8.6)

Their defining property is that the marginal distribution over any finite subset of
variables is a multi-Gaussian, and consequently the mean and covariance specify
the whole distribution. There are many important and useful properties of Gaus-
sian processes, those that are relevant will be described in the related publication,
Petrillo 2022.

Just a couple of features that are worth noticing explicitly. Gaussian processes
are convenient over continuous domain, since analytic manipulation are possible,
and during inference data and constraints can be added on its derivatives as well.
Exploiting this, sum rules, that are actually constraints on the primitive, can be
imposed analytically in the prior. Another handy property is that, as well as
interpolation, extrapolation behavior is determined by the kernel function, and
in particular its characteristic extrapolation length. This gives a direct handle
to control extrapolation, that will follow quite straightforward from the injected
prior knowledge.

Finally, a last part of the methodology applied in NNPDF fits was the men-
tioned hyper-optimization. In the language of Bayesian determination the hyper-
parameters correspond to prior’s parameters. This can also be optimized, but
a more consistent way of treating them is available: it is possible to obtain a
joint posterior distribution P (θ;α|{x})) over both inferred parameters θ and hyper-
parameters α. Once this function is extracted, hyper-optimization would consist
in taking the value of α maximizing its marginal posterior. This is called the
Maximum A Posteriori (MAP) estimate of α. Though possible, it is not required,
and the joint distribution contains more complete information than the output of
hyper-optimization itself.

8.3.1 Approximate inference with lsqfitgp

Following, the description of the current attempt to achieve approximate Bayesian
PDFs is presented. Everything included in this section, and part of the previous
one, is actually a summary of the work-in-progress draft, available online Petrillo
2022.

The core of a Gaussian Process regression is rather simple: given some (xi, fi)
data pairs, and some x ′j points of interest, the posterior distributions for the x ′j
set is obtained conditioning the joint prior multi-Gaussian on the observed values
(basically slicing the distribution in the i dimensions at the fi values, and normal-
izing the result). This procedure is exact, and only requires some linear algebra
to determine the posterior average and covariance, since the posterior as well will
be a Gaussian distribution.
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Applying linear transformation changes the Gaussian parameters, but preserves
Gaussianity. Thus the fit would be exact also in the case of observations living in
a different space, but with a linear map connecting the two spaces. This is exactly
the case of DIS data, since a single PDF is involved, and is mapped to data space
through convolution, i.e. a linear operation. Sum rules are also linear in the PDFs,
and imposed on the primitive. So, a full DIS-only fit, including sum rules, can be
performed just:

1. picking a suitable kernel function (defining the prior)

2. conditioning the process on observations

3. evaluating on point of interests3

as already explained in Del Debbio, Giani, et al. 2022.
There are two categories of data for which it is not possible to apply the ex-

act algorithm: quadratic and compound data. The first category corresponds to
data collected in double hadronic collisions (cf. section 0.2). Since two PDFs are
involved, the PDF space and data space are not connected by linear transforma-
tions. The same is also true for those data, including DIS ones, that are obtained
by applying some operations on the elementary cross-sections, e.g. taking the ra-
tio of two corresponding types of events. A solution that allows for these data is
a standard least squares fit, in which the problem is solved iteratively, roughly:
linearizing locally, determining the linear solution, and then repeating from there.

The computationally complexity of the fit is dominated by the matrix inver-
sion, required to evaluate the new mean and covariance. Matrix inversion basic

complexity is O
(
n
3
)

, for a generic n×n matrix. Being an extremely widespread
task, there are optimized algorithms achieving better performances, but the best
improvements are obtained restricting to specific classes of matrices. While this
approach might seem quite restrictive, it should be noted that the matrices in-
volved are coming from the evaluation of kernel functions, and they usually
involve multiple properties. At the very least they are symmetric and positive
semi-definite.

The program implementing the linear and approximate solution is not exclu-
sively developed for this work, but is a generic library to implement least squares
fits based on Gaussian processes. Its source is openly available:

Gattocrucco/lsqfitgp

and the documentation, user manual, and several examples can be found at:

https://gattocrucco.github.io/lsqfitgp/docs/

8.3.2 Status of the project

At the moment of writing, the status of the project is rather inhomogeneous:
while the core machinery in lsqfitgp is mostly available, and rather advanced,

3In practice, this operation is included in the former one.

https://github.com/Gattocrucco/lsqfitgp
https://gattocrucco.github.io/lsqfitgp/docs/
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the general fit is still at the level of a proof of concept, since still being developed
on fake data. On the other hand, data and theory predictions are available to
be consumed, even though some final improvements are still required. Final
evolution and grid generation will be performed in the same way of the NNPDF
current fit.

The whole project is public, and available at:

NNPDF/mcpdf

https://github.com/NNPDF/mcpdf
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Figure 8.2: Current lsqfitgp results on fake data. The lines are the underlying (fake)
PDFs used to generate the fake data, while the bands are the ±1σ intervals of
the posterior. The vertical dashed lines mark the start of the x values that are
linked to the data. The lower plot shows the inference over the hyperparame-
ters, with the gray band representing the ±1σ intervals of the prior.
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The material presented cover a range of topics, all related to Parton Distribu-
tion Functions, but about different aspects. My PhD itself has been mainly
focused on the rework of the theory predictions architecture, in collabo-

ration with other NNPDF members, the number of which increased during the
years, together with projects’ ambitions: the initial goal of replacing the DIS and
DGLAP evolution modules was pursued by me and Felix Hekhorn, but it grew
to include a full rework of the theory pipeline, together with other collaborators.

The modular structure of the architecture we created (the backbone of which
we inherited from APFELcomb and previous NNPDF projects) has been designed
to achieve three goals: extensibility, maintainability, and external access. Indeed,
while designed and developed by NNPDF members, we hope that the other
groups interested in PDF fitting, and related topics, can make use of the tools
we developed. The development itself happened completely in public, and still
continues this way. Until now, it has not been a big deal: projects were formally
public, but not being production-ready little interactions took place in practice.
However, we considered important to manifest from the beginning the will to
write tools at the disposal of the entire community, accepting feedback, feature
requests, and any kind of contributions (within the scope of the projects). This
is motivated by the non-negligible expense in the amount of manpower required,
and the intention to lower the barrier for further studies, giving free and easy
access to common machinery.

We already benefited ourselves from the design choices made: the various
projects are the base on which new features are being introduced, as described
for the study of Missing Higher Order Uncertainties impact on PDFs in chapter 4,
and additional progresses as well, even if they have not been accounted for in
this thesis, like the introduction of consistent N3LO theory predictions and other
elements already available in existing software (QED corrections, polarized ele-
ments or FF-based predictions, small-x resummed predictions), but all provided
by a single framework. The individual modules are already being used in further
studies, as it happened for EKO in the quest for intrinsic charm in chapter 5, or
PineAPPL for Drell–Yan Afb exercise of chapter 6, and also yadism, in the deter-
mination of low-energy neutrino structure functions (still in preparation, and not
described here). As we are doing it, we hope that external users of our modules
could the same as well. Also PDF-wise, the new methodology proposal in chap-
ter 8 is an example of how having lowered the barrier through task decoupling
allows for more iterations on new ideas, and the consequential innovation.

Any new perturbative order is a completely new challenge, but this translates
in more complex calculations, heavier math in the results, and more sophisticated
approximations required for them (to keep them fast enough to evaluate), while
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the rest of the infrastructure is ready to expand for new contributions. In par-
ticular, while N3LO inclusion has already been mentioned as a work-in-progress
effort, one of PineAPPL initial motivations has been to account for EW correc-
tions, and this will also be possible with current tools. At the same time, also
new data and new processes are becoming available, as well as alternative data
sources, like lattice computations, but the advantage of the current approach is
that we do not need any major modification of the framework for them, but they
will plugged as additional modules.

A specific effort in building the new architecture is being dedicated to repro-
ducibility, not only in making possible to reobtain the same result (thus recon-
structing and scrutinizing all the choices made), but also making it simple, as
much as possible, to encourage other people to do it. Running a PDF fit, i.e. a fit
accounting for higher orders QCD effects on a global data set, has always been a
complex process, but it should become easier over the years, despite more ingre-
dients and further theory being added to the present status, to encourage people
to focus on the new developments, instead of the complication of gathering all
the pieces from scratch.

It is relevant to note that this last goal is not uniquely pursued by our frame-
work, since it exists at least the remarkable example of xFitter https://www.

xfitter.org/, with a similar target, but a different perspective, as it privileged
an integrated (i.e. monolithic) architecture, distributing theory predictions tools
and the fitting machinery altogether. Instead, we want to allow the user (possibly
including xFitter) to compute its own theory predictions, and use them with
their favorite fitting methodology.

All these tools are empowering PDF fitters, in order to let them directing efforts
to the final purpose of more accurate and precise determinations, hopefully lead-
ing to a fruitful collaboration to reduce the related theoretical uncertainty still
very relevant in many hadronic observables.

https://www.xfitter.org/
https://www.xfitter.org/
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Figure 0.1 The LO Feynman diagram associated to the scattering of a
lepton (electron in picture) against an hadron component,
mediated by an EW boson. 3

Figure 0.2 The LO Feynman diagram associated to the scattering of
two quark components of the proton in the s-channel, gen-
erating a virtual EW boson, eventually decaying leptoni-
cally. 5

Figure 0.3 The LO Feynman diagram associated to the scattering of
two gluon components of the proton, coupling to a virtual
quark loop, that finally generates an Higgs boson. This is
the Higgs production via gluon fusion, the main channel
for Higgs production at LHC. 6

Figure 1.1 The LO Feynman diagram of the DIS process, including
the original hadron. Kinematic variables indicated. Notice
that, contrary to what is shown in the figure, in the text
x will be reserved for the hadronic Bjorken-x, while the
partonic momentum fraction will usually be represented
by z (the two of them coincide at this perturbative order).

12

Figure 1.2 In blue the leptonic coupling, the corresponding green one,
close to the blob, is instead the hadronic coupling. The
blob itself is the hadronic contribution. 13

Figure 1.3 Comparison of the yadism predictions for DIS structure
functions and reduced cross-sections at NNLO with the
corresponding ones from APFEL for the same choice of in-
put settings. We display predictions for four x bins of rep-
resentative DIS datasets included in the NNPDF4.0 global
analysis: fixed-target neutral-current DIS on a deuteron
target from BCDMS, fixed-target charged-current DIS on a
lead target from CHORUS, collider neutral-current positron-
proton DIS from HERA, and collider charged-current electron-
proton DIS from HERA. 29

Figure 2.1 Relative differences between the outcome of NNLO QCD
evolution as implemented in EKO and the corresponding re-
sults from Dittmar et al. 2005, APFEL Bertone, Stefano Car-
razza, and Rojo 2014 and PEGASUS Vogt 2005. We adopt the
settings of the Les Houches PDF evolution benchmarks Dittmar
et al. 2005; Giele et al. 2002. 40
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Figure 2.2 Relative differences between the outcome of evolution as
implemented in EKO and the corresponding results from
APFEL at different perturbative orders. We adopt the same
settings of fig. 2.1. 41

Figure 2.3 Same of fig. 2.2, now comparing to PEGASUS Vogt 2005.
42

Figure 2.4 Compare selected solutions strategies, with respect to the
iterated-exact (called exa in label) one. In particular:
perturbative-exact (pexa) (matching the reference in the
non-singlet sector), iterated-expanded (exp), and truncated

(trn). The distributions are evolved in µ
2
F = 1.652 →

10
4 GeV2. 43

Figure 2.5 Relative differences between the outcome of NNLO QCD
evolution as implemented in EKO with 20, 30, and 60 points
to 120 interpolation points respectively. 44

Figure 2.6 Strong coupling evolution as(µ
2) at LO, NLO and NNLO

respectively with the bottom matching µ2b at 1/2, 1, and 2
times the bottom mass m2

b indicated by the band. In the
left panel we show the absolute value, while on the right
we show the ratio towards the central scale choice. 45

Figure 2.7 Difference of PDF evolution with the bottom matching µ2b
at 1/2, 2, and 5 times the bottom mass m2

b relative to µ2b =

m
2
b. Note the different scale for the two distributions. All

evolved in µ2F = 1.652 → 10
4 GeV2. 46

Figure 2.8 Relative distance of the product of two opposite NNLO
EKOs and the identity matrix, in case of exact inverse and
expanded matching (cf. eq. (2.12)) when crossing the bot-
tom threshold scale µ2b = 4.922 GeV2. In particular the
lower scale is chosen µ2F = 4.902 GeV2, while the upper is
equal to µ2F = 4.942 GeV2, 47

Figure 2.9 (left) The NNPDF4.0 perturbative charm distribution T15(x) Ball
et al. 2022a with MS and pole masses NNLO evolution
when running on µ2F = 1→ 10

4 GeV2. (right) Relative dif-
ference to EKO for the same run with APFEL Bertone, Stefano
Carrazza, and Rojo 2014. 48

Figure 2.10 Running of the bottom quark mass mb(µ
2
m) for differ-

ent threshold ratios, similar to fig. 2.6. The plot shows
how the different choices of matching scales affect the run-
ning in the matching region (and slightly beyond) at LO,
NLO, and NNLO. The border condition for the running
has been chosen at mb(mb) = 4.92GeV, as it is clear from
the plot, since it is the intersection point of all the curves
shown. 48
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Figure 3.1 Updated version of the flow diagram already appeared in
Amoroso et al. 2022, showing the overall pipeline architec-
ture. Arrows in the picture indicate the flow of information
(together with the execution order), and the orange insets
on other elements indicate an interface to PineAPPL (no-
tice EKO not having it). In particular, magenta blocks above
pinefarm are the providers Anastasiou et al. 2004; Daniel
Britzger et al. 2012; Candido, Hekhorn, and Magni 2022b;
Carli et al. 2010; R. Frederix et al. 2018; Grazzini et al. 2018.

59

Figure 4.1 Comparison between the experimental covariance matrix
and the theoretical one, generated by the 9 point prescrip-
tions, both normalized to central values. 67

Figure 4.2 Combined covariance matrix (experimental plus theoreti-
cal), the actual one used in the NNPDF3.1th fit. 68

Figure 4.3 The diagonal uncertainties σi (red) symmetrized about zero,
compared to the shift δi for each data-point (black). Values
are shown as percentage of the central theory prediction

68

Figure 4.4 NNPDF3.1th NLO sets, gluon and anti-down distributions
at 10GeV, the first PDF determination to include MHOU
estimates in the fit. 69

Figure 4.5 Gluon and anti-down distributions comparison, in which
it is shown the effect of using the theory covariance matrix
in the χ2 or in the pseudo-data generation only. 69

Figure 4.6 Visualization of the 9 points prescription for the diagonal
(2 dimensional) and off-diagonal (3 dimensional) elements.

78

Figure 4.7 Visualization of the 5 points prescription for the diagonal
(2 dimensional) and off-diagonal (3 dimensional) elements.

80

Figure 4.8 Visualization of the 5̄ points prescription for the diagonal
(2 dimensional) and off-diagonal (3 dimensional) elements.

81
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Figure 5.1 The intrinsic charm PDF and comparison with models. Left:
the purely intrinsic (3FNS) result (blue) with PDF uncertainties
only, compared to the 4FNS PDF, that includes both an intrin-
sic and radiative component, at Q = mc = 1.51 GeV (orange).
The purely intrinsic (3FNS) result obtained using N3LO match-
ing is also shown (green). Right: the purely intrinsic (3FNS) final
result with total uncertainty (PDF +MHOU), with the PDF uncer-
tainty indicated as a dark shaded band; the predictions from the
original BHPS model, S. J. Brodsky, Hoyer, et al. 1980, and from
the more recent meson/baryon cloud model, Hobbs et al. 2014,
are also shown for comparison (dotted and dot-dashed curves
respectively). 92

Figure 5.2 Intrinsic charm and Z+charm production at LHCb. Top left:
the LHCb measurements of Z boson production in association
with charm-tagged jets, Rc

j , at
√
s = 13 TeV, compared with our

default prediction which includes an intrinsic charm component,
as well as with a variant in which we impose the vanishing of the
intrinsic charm component. The thicker (thinner) bands in the
LHCb data indicate the statistical (total) uncertainty, while the
theory predictions include both PDF and MHOU. Top right: the
correlation coefficient between the charm PDF at Q = 100 GeV
in NNPDF4.0 and the LHCb measurements of R

c
j for the three

yZ bins. Center: the charm PDF in the 4FNS (right) and the in-
trinsic (3FNS) charm PDF (left) before and after inclusion of the
LHCb Z+charm data. Results are shown for both experimental
correlation models discussed in the text. Bottom left: the intrinsic
charm PDF before and after inclusion of the EMC charm struc-
ture function data. Bottom right: the statistical significance of the
intrinsic charm PDF in our baseline analysis, compared to the
results obtained also including either the LHCb Z+charm (with
uncorrelated systematics) or the EMC structure function data, or
both. 94

Figure 5.3 The 4FNS charm PDF is parametrized at Q0 and evolved
to all Q, where it is constrained by the NNPDF4.0 global
dataset. Subsequently, it is transformed to the 3FNS where
(if nonzero) it provides the intrinsic charm component.

96

Figure 5.4 The kinematic coverage in the (x,Q) plane covered by the
4618 cross-sections used for the determination of the charm
PDF in the present work. These cross-sections have been
classified into the main different types of processes enter-
ing the global analysis. 97
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Figure 5.5 Left: the perturbative charm PDF at Q = 1.51 GeV obtained
from NNLO PDFs using NNLO and N3LO matching conditions.
Right: the NNLO perturbative charm PDF including the MHOU
computed as the difference between NNLO and N3LO matching.
In both plots our default (intrinsic) charm PDF is also shown for
comparison. 100

Figure 5.6 The dependence of the 4FNS charm PDF at Q = 1.65 GeV on the
input dataset. We compare the baseline result with that obtained
by also including EMC Fc2 data (top left), only including DIS data
(top right), only including collider data (bottom left) and remov-
ing LHCb gauge boson production data (bottom right). 102

Figure 5.7 The default 4FNS charm PDF at Q = 1.65 GeV compared to a
result obtained by parametrizing PDFs in the flavor basis instead
of the evolution basis. 103

Figure 5.8 The 4FNS charm PDF determined using three different values of
the charm mass. The absolute result (left) is shown at Q = 1.65
GeV, while the ratio to the default value mc = 1.51 GeV (right)
used elsewhere in this paper is shown at Q = 100 GeV. 104

Figure 5.9 The same as fig. 5.8 but now for the perturbative charm PDF.
105

Figure 5.10 Same as fig. 5.7, comparing the baseline determination of the
4FNS charm PDF, based on NNPDF4.0, with that obtained from
the same dataset using the NNPDF3.1 fitting methodology. 105

Figure 5.11 Same as fig. 5.6 for the intrinsic charm (3FNS) PDF (top four
plots), now also including four additional dataset variations: no
ATLAS and CMS W,Z production data (third row left), no jet
data (third row right), no Z pT measurements (bottom row left),
no HERA DIS data (bottom row right). The error band indicates
the PDF uncertainties combined in quadrature with the MHOUs.
107

Figure 5.12 Same as fig. 5.7 for the intrinsic (3FNS) charm. 108

Figure 5.13 Same as fig. 5.8, now for the intrinsic (3FNS) charm PDF. Note
that the intrinsic charm PDF is scale independent. 108

Figure 5.14 The 4FNS charm momentum fraction in NNPDF4.0 as a function
of scale Q, both for the default and perturbative charm cases,
for a charm mass value of mc = 1.51 GeV. The inset zooms on
the low-Q region and includes the 3FNS (default) result from
table 5.1. Note that the uncertainty includes the MHOU for the
3FNS default and 4FNS perturbative charm cases, while it is the
PDF uncertainty for the 4FNS default charm case. 110

Figure 5.15 Same as fig. 5.14 for different values of the charm mass. Note that
the 3FNS momentum fraction for perturbative charm vanishes
identically by assumption. 111
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Figure 5.16 The value of the truncated charm momentum integral, eq. (5.5),
as a function of the lower integration limit x min for our base-
line determination of the 3FNS intrinsic charm PDF. We display
separately the PDF and the total (PDF +MHOU) uncertainties.
111

Figure 5.17 The 4FNS charm PDF from Hou et al. 2018 compared to our re-
sult (also in the 4FNS) at Q = 1.65 GeV on a linear (top left)
and logarithmic (top right) scale in x, and at Q = 100 GeV on a
linear scale in x and as a ratio to our result (bottom left). The
momentum fraction corresponding to either case is also shown
as a function of Q (bottom right). Note that for our result the un-
certainty band is the 68%CL PDF uncertainty, while for Hou et
al. 2018 the central curve (labeled CT14IC BHPS1) corresponds to
the BHPS model with best-fit normalization, the lower curve (la-
beled CT14) corresponds to the default CT14 perturbative charm
PDF and the upper curve (labeled CT14IC BHPS2) corresponds
to the BHPS model with normalization at the upper 90% CL (see
text). The value of the momentum fractions are also provided in
each case. 112

Figure 5.18 The quark-gluon (left) and charm-gluon (right) parton luminosi-
ties in the mX region relevant for Z+charm production and three
different rapidity bins (see text). Results are shown both for our
default charm PDFs and for the variant with perturbative charm.
117

Figure 6.1 Neutral-current Drell–Yan production at LO in the quark-
antiquark channel. 122

Figure 6.2 The symmetric Sq (left) and antisymmetric Aq (right) cou-
plings, eq. (6.8), for up-like and down-like quarks, as a
function of the dilepton invariant mass mℓℓ̄. 124

Figure 6.3 The single-inclusive differential distribution in the Collins–
Soper angle cos θ∗, eq. (6.17), and the corresponding forward-
backward asymmetry computed at LO, where the ana-
lytic calculation eq. (6.22) is compared with the numeri-
cal simulation based on MadGraph5_aMC@NLO interfaced to
PineAPPL. The bottom panels display the relative differ-
ence between the analytic and numerical calculations. One
of the replicas of the NNPDF4.0 NNLO PDF set is used as
input to the calculation. 127

Figure 6.4 Same as fig. 6.3 but now for the absolute dilepton rapidity
distribution |yℓℓ̄| 128

Figure 6.5 Same as fig. 6.3 now comparing the LO result to the NLO
QCD result obtained using MadGraph5_aMC@NLO. The K-factor
is shown in the lower panel. 128
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Figure 6.6 The single-inclusive cos θ∗ distribution eq. (6.17) (left) and
the corresponding forward-backward asymmetry (right panel)
eq. (6.22) evaluated using the toy PDFs of eq. (6.24). No
kinematic cuts are applied except formmin

ℓℓ̄ = 5TeV. 130

Figure 6.7 The antisymmetric partonic luminosity LA,q, eq. (6.16), for
the up and down quarks compared to the approximation
eq. (6.28) in the case of NNPDF4.0 at mℓℓ̄ = mZ (top) and
mℓℓ̄ = 5TeV (bottom panels). 131

Figure 6.8 Comparison of the xf+q (top) and xf−q (bottom) quark PDF combi-
nations for the up, down, strange, and charm quarks, evaluated
at mℓℓ̄ = 5TeV for NNPDF4.0 NNLO. The right panels display
the relative 68% CL uncertainties. The two vertical lines indicate
xmin = m

2
ℓℓ̄/s, the smallest allowed value of x for dilepton DY

production for a collider CoM energy
√
s = 14TeV, and the value

of x corresponding to a symmetric partonic collision x1 = x2,
namely xsym = mℓℓ̄/

√
s. 132

Figure 6.9 The up and down quark and antiquark PDFs evaluated at mℓℓ̄ =

5TeV for NNPDF4.0, CT18, MSHT20, and ABMP16 in the x region
relevant for high-mass Drell–Yan production. The upper panels
display the absolute PDFs, the middle ones their ratio to the cen-
tral NNPDF4.0 value, and the bottom panels the relative 68% CL
uncertainties. The vertical lines in the top row indicate the values
of xmin = m

2
ℓℓ̄/s and in the central row those of xsym = mℓℓ̄/

√
s

for three different values mℓℓ̄ = 3, 5, 7TeV. Note that in the sec-
ond row the range on the y axis is not the same for quarks and
antiquarks, and in the third row also for up and down quarks.
Note also that the PDFs, their ratios and their uncertainties are
essentially unchanged in the displayed large-x region in the range
1 TeV < mℓℓ̄ < 7TeV. 133

Figure 6.10 The large-x asymptotic exponents βa,q(x,mℓℓ̄), defined in eq. (6.29),
for ABMP16, CT18, MSHT20, and NNPDF4.0 evaluated at mℓℓ̄ =

5TeV for the up and down quark and antiquark PDFs. 135

Figure 6.11 The symmetric LS,q (top) and antisymmetric LA,q (bot-
tom) parton luminosities (left) and relative uncertainties
(right) evaluated with NNPDF4.0 NNLO at mℓℓ̄ = 5TeV
and

√
s = 14TeV. The bottom and top x-axes in each plot

show respectively the values of x1 and x2 at which the lu-
minosities are being evaluated, within the allowed range
x ⩾ xsym = mℓℓ̄/

√
s, with the convention x1 > x2. 136
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Figure 6.12 The symmetric parton luminosities LS,q(x1,mℓℓ̄) for the
NNPDF4.0, ABMP16, CT18, and MSHT20 NNLO PDF sets
for dilepton invariant masses of mℓℓ̄ = 5TeV. The lumi-
nosities are multiplied by the effective charges Sq defined
in eq. (6.8). From left to right, we display LS,u, LS,d,
and their weighted sum that enters the coefficient gS,q in
eq. (6.18). The bottom panels display the relative 68% CL
PDF uncertainties. 137

Figure 6.13 The antisymmetric parton luminosities LA,q(x1,mℓℓ̄) for
the NNPDF4.0, ABMP16, CT18, and MSHT20 NNLO PDF
sets for dilepton invariant masses of mℓℓ̄ = 3TeV (top) and
mℓℓ̄ = 5TeV (bottom). The luminosities are multiplied by
the effective charges Aq defined in eq. (6.8). From left to
right, we display LA,u, LA,d, and their weighted sum that
enters the coefficient gA,q eq. (6.19). 138

Figure 6.14 Same as fig. 6.13 now for the absolute PDF uncertainties.
138

Figure 6.15 The coupling ratio Rfb, eq. (6.30), that enters the forward-
backward asymmetry Afb(cos θ∗) at LO, eq. (6.23), for dif-
ferent PDF sets, as a function of the lower cut in the dilep-
ton invariant mass mmin

ℓℓ̄ . 140

Figure 6.16 The absolute (left) and relative (right panel) uncertainties
in the coupling ratio Rfb shown in fig. 6.15. 140

Figure 6.17 The differential distribution in absolute dilepton rapidity
|yℓℓ̄|, given in eq. (6.21), for dilepton invariant masses of
mℓℓ̄ > 5TeV for neutral current Drell–Yan production at
the LHC 14 TeV, obtained using ABMP16, CT18, MSHT20,
and NNPDF4.0 NNLO PDFs with αs(mZ) = 0.118. All
uncertainties shown are 68% CL PDF uncertainties, com-
puted at NLO in the QCD and EW couplings with realistic
cuts (see text). We show the absolute distributions (top),
relative uncertainties (normalized to the central curve of
each set, middle) and the pull with respect to the NNPDF4.0

result, eq. (6.32) (bottom). For the central NNPDF4.0 pre-
diction the contributions of the uū+ cc̄ and dd̄+ ss̄+ bb̄

parton subchannels are also shown. 142

Figure 6.18 Same as fig. 6.17, now for the differential distribution in
cos θ∗ (left) and the corresponding forward-backward asym-
metry Afb(cos θ∗) (right), in the Z-peak region defined by
60GeV < mℓℓ̄ < 120GeV. 143

Figure 6.19 Same as fig. 6.18 (left) for different values of the lower cut
in the dilepton invariant mass: mℓℓ̄ ⩾ 3, 4, 5, and 6 TeV
respectively. 144
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Figure 6.20 Same as fig. 6.18 (right) for different values of the lower
cut in the dilepton invariant mass: mmin

ℓℓ̄ = 3, 4, 5, and 6

TeV. 145

Figure 6.21 Same as fig. 6.12 (upper panels) comparing NNPDF4.0, NNPDF4.0

(3.1pos), and NNPDF3.1. 146

Figure 6.22 Same as fig. 6.13 for the antisymmetric partonic luminosi-
ties LA,q, comparing NNPDF4.0, NNPDF4.0 (3.1pos), and
NNPDF3.1. 147

Figure 6.23 Same as figs. 6.17 and 6.19 for the absolute dilepton rapid-
ity |yℓℓ̄| (left) and the cosθ∗ (right) distributions for dilep-
ton invariant masses of mℓℓ̄ ⩾ 5TeV comparing NNPDF4.0,
NNPDF4.0 (3.1pos), and NNPDF3.1. 147

Figure 7.1 Mellin-space NLO contributions to deep-inelastic coefficient func-
tions. The quark (left) and gluon (right) coefficient functions,
respectively C

(1)
q and C

(1)
g , eq. (7.11), are shown. The DPOS

scheme is defined in eqs. (7.20) and (7.28), the POS scheme is de-
fined in eqs. (7.34) to (7.36), and the MPOS scheme in eqs. (7.81)
and (7.82). Results are shown in the MS and DPOS, POS and
MPOS schemes. For C(1)

q MS, DPOS and POS coincide, and the
two curves shown correspond, from top to bottom, to MS and
MPOS; for C(1)

g POS and MPOS coincide and the three curves
correspond, from bottom to top, to MS, DPOS and POS. 158

Figure 7.2 Mellin-space NLO contributions to Drell–Yan coefficient func-
tions. The quark (left) and gluon (right) coefficient functions,
respectively Cq

q
(1) and Cq

g
(1), eq. (7.29), are shown. Results

are shown in the MS, POS and MPOS schemes. The POS scheme
is defined in eqs. (7.34) to (7.36) and eqs. (7.45) to (7.47), and the
MPOS scheme in eqs. (7.81) to (7.84)). Cq

q
(1) MS and POS co-

incide, and the two curves correspond, from top to bottom, to
MS and MPOS; for Cq

g
(1) POS and MPOS coincide and the two

curves correspond, from top to bottom, to MS and POS. 161

Figure 7.3 Same as fig. 7.2, but now for the Higgs coefficient functions Cg
g
(1)

(left) and Cg
q
(1) (right). 164

Figure 7.4 The off-diagonal elements of the NLO scheme change matrix
K

POS, eq. (7.77), in Mellin space. 177

Figure 8.1 NNPDF uncertainty propagation methodology, one of the
most important key points of NNPDF methodology. Pic-
ture available on the collaboration website http://nnpdf.

mi.infn.it/research/general-strategy/. 186
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Figure 8.2 Current lsqfitgp results on fake data. The lines are the
underlying (fake) PDFs used to generate the fake data,
while the bands are the ±1σ intervals of the posterior. The
vertical dashed lines mark the start of the x values that are
linked to the data. The lower plot shows the inference over
the hyperparameters, with the gray band representing the
±1σ intervals of the prior. 198

L I S T O F TA B L E S

Table 1.1 Overview of the different types and accuracy of the DIS
coefficient functions currently implemented in yadism. For
each perturbative order (NLO, NLO, and N3LO) we in-
dicate the light-to-light (“light”), light-to-heavy (“heavy”),
heavy-to-light and heavy-to-heavy (“intrinsic”) and “asymp-
totic” (Q2 ≫ m

2
h limit) coefficients functions which have

been implemented and benchmarked. The NNLO heavy
quark coefficient functions for CC scattering are available
in K-factor format and are being implemented into the
yadism grid formalism. 18

Table 2.1 Selected PDF sets with their respective number of mem-
bers 50

Table 2.2 Rough estimates of times taken by EKO, with an average
sized x-grid of 50 points and single core. 51

Table 2.3 Comparison between several evolution programs. The up-
per part of refers to some physical features: by x we mean
the momentum fraction, N the Mellin variables, x∗ denotes
that PEGASUS is able to deal with x-space input, but only for
fixed PDF parametrization (cf. Vogt 2005). E and f stands
for evolution operators and PDFs respectively. The lower
part refers to program aspects, such as program language
and interface with LHAPDF. 54

Table 5.1 The charm momentum fraction, eq. (5.4). We show re-
sults both in the 3FNS and the 4FNS (at Q = 1.65 GeV)
for our default charm, and also in the 4FNS for perturba-
tive charm. We provide results for three different values of
the charm mass mc and indicate separately the PDF and
the MHO uncertainties. 109
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Table 5.2 The values of χ2/N dat for the LHCb Z+charm data before
(prior) and after (reweighted) their inclusion in the PDF fit.
Results are given for two experimental correlation models,
denoted as ρ sys = 0 and ρ sys = 1. We also report values
before inclusion for the perturbative charm PDFs. 114
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