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Species distribution models are often used to predict the potential distributions of 
invasive species outside their native ranges and rely on the assumption of realized 
niche conservatism. Analyses observed that freshwater invasive species often show 
high degrees of niche expansion, suggesting limited reliability of species distribution 
models. However, observed niche shifts can arise because of both actual niche shifts, 
determined by biological factors, and apparent shifts, due to methodological issues. 
We compared metrics of niche dynamics calculated using different sets of variables 
to identify factors that could influence the rate of niche shifts. We collected presence-
only data for 40 freshwater invasive animal species, then measured niche shift dynam-
ics using 14 different combinations of environmental variables. Shifts were assessed 
measuring niche overlap, expansion and unfilling, and testing for niche conservatism. 
We then built generalized linear mixed models relating niche shifts to methodologi-
cal choices and biological features. Our results showed that methodological choices 
strongly affected all the considered niche dynamics metrics, while the effects of biolog-
ical features were less prominent. Moreover, different niche dynamic measures some-
times provided contradictory assessments of niche conservatism. Niche analyses are 
powerful tools to predict areas at risk of invasion, but inappropriate methodological 
choices can lead to apparent niche shifts, questioning niche model reliability and bio-
logical interpretation. The high rate of niche expansion observed in freshwater invasive 
species highlights the importance of delineating objective criteria to determine the set 
of variables to be used in niche dynamic assessments.

Keywords: biological invasions, ecospat, invasive alien species, niche comparisons, 
niche conservatism, niche dynamics

Introduction

Freshwater environments are among the habitats most affected by invasive alien 
species (Strayer 2010). Freshwater invasive species (FIS) threaten local communi-
ties through multiple mechanisms, such as predation, hybridization, disease spread, 
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food-web alterations and competition (Huxel 1999, Mooney 
and Cleland 2001, Ficetola et al. 2012, Falaschi et al. 2020). 
During the last decades, international trade has accelerated 
the rate of introductions of alien species (Westphal  et  al. 
2008, Hulme 2009, Seebens  et  al. 2017). Additionally, 
global warming may facilitate the establishment of fresh-
water species outside their native ranges (Rahel and Olden 
2008, Jourdan et al. 2018). Predicting potential FIS distri-
butions is thus pivotal to prevent and/or limit their spread, 
since early detection and prompt control response repre-
sent the most effective strategy to eradicate an invasive spe-
cies (Torres  et  al. 2018, Falaschi  et  al. 2020). A common 
strategy to predict the potential distribution of an invasive 
species is the use of occurrence data and selected environ-
mental variables to approximate the species niche (Soberón 
2007). These approaches, known as species distribution 
models (SDMs), are widely used; nevertheless, they pres-
ent some limitations. Occurrences are only possible in envi-
ronments where the local abiotic and biotic conditions are 
suitable for the species, and that are within the geographi-
cal area accessible to the species (Soberón and Peterson 
2005, Barve  et  al. 2011). This means that niche assess-
ments derived from occurrences can only give us informa-
tion about the realized niche, i.e. the intersection between 
accessible, suitable abiotic and biotic conditions. The real-
ized niche represents only a subset of the ensemble of the 
suitable abiotic conditions, namely the fundamental niche. 
Moreover, estimations of potential distribution performed 
using these models rely on several assumptions, such as 
niche conservatism between the native and the exotic range 
(Early and Sax 2014, Hill et al. 2017). The violation of the 
niche conservatism assumption may limit the ability of 
SDMs to accurately predict the potential distribution of 
non-native species (Early and Sax 2014, Pili  et  al. 2020, 
Atwater and Barney 2021). Assessing the pervasiveness 
of niche conservatism is thus a prerequisite for the broad 
application of SDMs in invasion biology. Previous assess-
ments suggested that most invasive species conserve their 
niche (Petitpierre et al. 2012, Liu et al. 2020); nonetheless, 
some studies have reported relevant rates of niche shifts in 
some groups of invasive species (Lauzeral et al. 2011, Early 
and Sax 2014). FIS, for instance, show particularly strong 
niche shifts between native and exotic ranges (Torres et al. 
2018, Liu et al. 2020).

Several processes can lead to the observation of niche 
divergence between native and invasive populations. First, 
adaptive evolution and different biotic interactions can 
allow invasive populations to occupy an environment 
that is not exploited in the native range (niche expansion; 
Guisan  et  al. 2014). Second, dispersal limitations, biotic 
interactions, and/or a recent introduction history can result 
in the exploitation of an environment in the native range 
but not in the exotic range (niche unfilling; Guisan et  al. 
2014). Furthermore, methodological issues related to the 
approaches used to compare niches among species/popula-
tions can lead to apparent niche shifts, even in the absence 
of true biological effects (apparent divergence; Strubbe and 

Matthysen 2014, Torres  et  al. 2018, Atwater and Barney 
2021; Fig. 1a). Niche unfilling does not represent a vio-
lation of the niche conservatism assumption and is usu-
ally expected to decline as the invasion continues, thus 
niche shifts are often described by quantifying the degree 
of niche expansion. Comparisons of the realized niches of 
native versus introduced populations of a species cannot 
prove whether an observed niche expansion is the result 
of changes in the fundamental niche or just in the realized 
niche. Moreover, the quantification of niche dynamics is 
only possible between analogous environments, i.e. envi-
ronments shared by the native and the exotic geographical 
ranges. Indeed, when a species colonizes new environments 
unavailable in its native range, it is extremely challenging to 
determine whether this is caused by adaptive evolution or 
by other mechanisms (Guisan et al. 2014).

Several mechanisms, related to methodological choices, 
can bias niche comparisons, particularly for freshwater spe-
cies, including:

1)	 Using biologically non-relevant variables. Using uninfor-
mative variables may increase the rate of apparent niche 
shifts (Rödder et al. 2009, Strubbe and Matthysen 2014, 
Torres et al. 2018). Niche comparisons are often based on 
broad-scale layers, such as WorldClim (Fick and Hijmans 
2017) and CHELSA (Karger et al. 2020), which represent 
macroscale ‘bioclimatic’ conditions such as average annual 
temperature or annual precipitation. However, freshwater 
species live in specific microhabitats that are not neces-
sarily affected by local conditions (e.g. the river regime 
can be affected by precipitation and snowmelt occurring 
hundreds of kilometres upstream), and in which tempera-
ture can strongly differ from nearby terrestrial environ-
ments. In turn, the use of bioclimatic layers that do not 
match the microhabitat experienced by animals can affect 
niche estimates (Ficetola et al. 2018, 2020). In addition 
to climate, other factors such as water chemistry shape 
the distribution of freshwater species (Jeschke and Strayer 
2008). Nevertheless, there is evidence that bioclimatic 
variables are indeed appropriate to model aquatic spe-
cies distributions (Frederico et al. 2014, McGarvey et al. 
2018). Testing the effects of water chemistry variables on 
FIS niche shifts at a global level is challenging due to the 
lack of high-resolution global datasets (Loo et  al. 2007, 
Torres et al. 2018).

2)	 Overparameterization. Including too many predictors can 
lead to inaccurate definitions of the relationships between 
species and environmental features, resulting in appar-
ent niche shifts (Peterson 2011, Low et al. 2020). On the 
other hand, considering only a few variables might overes-
timate niche conservatism (Peterson 2011).

3)	 Selecting inappropriate backgrounds. Niche analyses 
usually select a geographical background to represent 
the environmental conditions accessible to the focal spe-
cies. Background selection can deeply influence SDMs 
and niche quantifications and should be limited to areas 
accessible by the species (Godsoe 2010, Barve et al. 2011, 
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Acevedo  et  al. 2012, Hill  et  al. 2017). For freshwater 
organisms, limiting the background area to freshwater 
environments could improve the transferability of SDMs 
and reduce apparent niche shifts between native and inva-
sive populations (Nori and Rojas-Soto 2019).

Studies assessing niche dynamics in invasive species 
often use bioclimatic variables, do not subset the available 
variables and only rarely try to limit the background areas 
(Peterson 2011, Qiao et al. 2017, Nori and Rojas-Soto 2019, 
Liu et al. 2020); thus we hypothesize that a relevant portion 

Figure 1. (a) Niche shifts detected by niche dynamics analyses can be the result of real niche shifts, caused by changes in the fundamental or in 
the realized niche, and/or apparent niche shifts, caused by methodological issues. (b) We used presence data for 40 freshwater invasive species 
(FIS) and 14 different sets of ecological variables to calculate six measures used in niche dynamic assessments. After that, each niche measure 
was used as the dependent variables in a generalized linear mixed model (GLMM), while five characteristics of the ecological variables and four 
commonly tested biological features of the species were used as independent variables. Drawings by: Natasha Sinegina (CC-SA 4.0 license; 
https://creazilla.com/), Creazilla, hamdolii, UnboxScience (Public Domain) and JoyPixel (CC-SA 4.0 license; www.joypixels.com/). 
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of observed niche shifts found in FIS is due to the inclusion 
of non-relevant variables, overparameterization and inappro-
priate background selection. These choices may affect niche 
analyses, possibly leading to strong apparent niche shifts in 
FIS, which in turn would affect the reliability of SDMs out-
side native ranges. The aim of our study was assessing the 
factors that determine observed niche shifts in FIS, testing 
whether and how a priori selection of different variables 
influences measures of niche dynamics.

Material and methods

Species records and ranges

We downloaded occurrence records for 40 FIS from the iNat-
uralist data portal (www.inaturalist.org/observations/export), 
filtering for ‘Research Grade’ data to reduce misidentification 
risk. We selected species with a large number of observations 
(range: 95–45 351; median: 1108.5; and with > 20 records 
for both the native and the invasive range) and included 
freshwater molluscs, crustaceans, fishes and tetrapod spe-
cies (amphibians and reptiles; Supporting information) with 
occurrence records from the period 1962 to 2021. When 
available, we downloaded native ranges from the IUCN Red 
List website (IUCN 2022).

We used the Freshwater Ecoregions of the World 
(Abell et al. 2008) to select background areas for each spe-
cies in both its native and introduced ranges. This allows an 
appropriate selection of background areas since they were 
delineated by considering physical and ecological dispersal 
limitations of freshwater species (particularly freshwater fish; 
Abell et al. 2008). For each species, native backgrounds were 
determined as those ecoregions that contained at least one 
record of the focal species and intersected the polygon of the 
IUCN native range. For those species whose distributions 
were not present on the IUCN website, other sources were 
used to determine native ranges (Supporting information). 
Subsequently, we determined the exotic background of each 
FIS as those ecoregions that contained at least one non-native 
record of the focal species in areas with bibliographical evi-
dence of established populations. This criterion was used to 
avoid the inclusion of captive or semi-captive individuals and 
non-viable populations, because feral individuals of some 
FIS, e.g. turtle species, can survive for several years in sub-
optimal habitats without establishing reproductive popula-
tions (Ficetola et al. 2008).

Environmental variables

To test the hypothesis that niche shifts detected between 
native and non-native ranges can derive from the variables 
used for analyses, we evaluated several datasets of environ-
mental variables that could be used to model FIS niches. 
We aimed to understand whether and how niche metrics are 
affected by 1) using general (bioclimatic) versus more specific 
proxy variables, 2) selecting different numbers of variables and 

3) limiting the background areas to waterbodies. To achieve 
this goal, we downloaded different raster datasets from two 
sources: WorldClim (Fick and Hijmans 2017) and EarthEnv 
(www.earthenv.org; Domisch et al. 2015). WorldClim pro-
vides global data for 19 different macroclimatic (‘bioclimatic’) 
variables at different resolutions, which well describe the fea-
tures of terrestrial environments (Fick and Hijmans 2017). 
EarthEnv provides different near-global, standardized, 1-km 
resolution layers that can be used for niche modelling and 
other scientific purposes, and includes several river-specific 
variables (Domisch et al. 2015). We downloaded data from 
the near-global freshwater environmental variables dataset 
provided by EarthEnv through the ‘sdmpredictors’ R pack-
age (Bosch 2020). EarthEnv includes 19 bioclimatic variables 
derived from WorldClim; data on river drainage networks 
derived from HydroSHEDS (Lehner et al. 2008); and prox-
ies for water chemistry derived from the soil properties maps 
of SoilGrids1km (Hengl et al. 2014). Both bioclimatic and 
water chemistry variables are provided as the average or sum 
of the upstream values and as inverse-distance weighted aver-
age or the inverse-distance weighted sum of the upstream 
values. The latter approximations aim to better represent 
local water conditions, although validation showed this it is 
not always the case (Domisch et al. 2015). The extent of all 
EarthEnv layers is 60° N to 5° S latitude, and 145° W to 
180° E longitude.

We built 14 combinations of variables at the finest reso-
lution available (0.008°; Table 1), because fine-scale niche 
shifts might not be detected when using coarse-resolution 
data (Petitpierre et al. 2012, Li et al. 2014; Supporting infor-
mation). WorldClim rasters were cropped to the extent of 
EarthEnv ones.

Data preparation and analyses

For each species, we kept one presence point per grid cell. 
Presence points located more than 1 km away from waterbod-
ies were discarded; points located < 1 km away from water-
bodies were moved to the nearest cell inside a waterbody. This 
was done to avoid loss of information due to limited accuracy 
of coordinates or raster maps, or changes in stream and river 
shapes, and to include occurrences of semi-aquatic animals 
moving nearby main waterbodies. Presence points falling on 
cells associated with no value in at least one of the raster maps 
used were discarded.

Following Hill et al. (2017), we selected 10 000 random 
cells as the background for each species in both the native and 
exotic range. For WorldClim variables, background points 
were selected across the entire background areas, whereas for 
the EarthEnv variables the background points were selected 
within waterbodies. Subsequently, we extracted the variable 
values for both presence and background points. Each result-
ing dataset was used to describe the native and exotic niches 
using the centroid shift, overlap, unfilling, expansion (COUE) 
framework, an ordination approach to quantify niche 
changes (Guisan et al. 2014). Following Broennimann et al. 
(2012), we performed a principal component analysis (PCA) 
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on the environmental space of the native and exotic ranges. 
Occurrence densities of the species in the native and invasive 
ranges were then calculated with kernel smoothing methods 
to limit sampling biases and projected onto the gridded PCA 
environmental space. We used the 75th percentile of environ-
mental densities as a threshold to eliminate rare environments 
from our analyses (Petitpierre et al. 2012, Guisan et al. 2014, 
Li et al. 2014, Liu et al. 2017). Niches were then defined by 
using 95% of the species occurrences to avoid the inclusion 
of the most marginal populations.

Subsequently, we calculated the adjusted Schoener’s D, a 
measure of niche overlap (Broennimann  et  al. 2012). Low 
Schoener’s D values are a first indication of limited niche over-
lap; nonetheless, large Schoener’s D values do not necessarily 
imply the absence of niche shifts (Guisan et al. 2014). After 
that, we performed niche equivalency and similarity tests. 
Niche equivalency tests consist in pooling all occurrences 
and splitting them into two datasets, calculating Schoener’s 
D and repeating the process N-times; niche similarity tests 
were performed by randomly shifting the entire observed 
density of occurrences in the exotic range and calculating the 
overlap of the simulated niche with the observed niche in the 
native range (Broennimann et al. 2012). Both tests were run 
with 1000 random replicates using the ‘ecospat’ (ver. 3.2) R 
package (Di Cola et al. 2017). When testing for niche con-
servatism, a significant (p < 0.05) equivalency test implies 
that overlap between native and exotic niches is higher than 
expected under randomness, while a significant similarity 
test implies that the focal species occupies environments in 
the native and exotic range that are more similar than would 
be expected by chance. Finally, we calculated niche expan-
sion, i.e. the proportion of the exotic niche non-overlapping 
with the native niche, and niche unfilling, i.e. the proportion 
of conditions inside the native niche but outside the exotic 
niche (Guisan et al. 2014). Niche expansion is often consid-
ered to be the only measure that truly describes shifts in the 
realized niche (Petitpierre  et  al. 2012, Strubbe  et  al. 2013, 
Li et al. 2014, Liu et al. 2020).

We used generalized linear mixed models (GLMMs) to 
test the effects of variable selection, overparameterization and 
background area limitation on the measures of niche dynam-
ics (Fig. 1b). Moreover, we also considered the effects of ‘bio-
logical’ features of invasive species commonly used in similar 
studies, to evaluate whether the effects of these predictors are 
stronger or weaker than the ones related to methodological 
choices. Previous analyses found relationships between niche 
conservatism and the extent of invasive species ranges (Early 
and Sax 2014, Li et al. 2014, Hill et al. 2017, Liu et al. 2017), 
thus we included the log-transformed number of raster cells 
occupied in the native range and in the exotic range as inde-
pendent variables. The year of first introduction of each FIS 
was obtained from Seebens et al. (2017) and used to calcu-
late residence time in the exotic ranges, another frequently 
considered factor in niche dynamic studies (Cardador and 
Blackburn 2020, Liu et  al. 2020). Finally, we included the 
taxonomic group (invertebrate, fish or tetrapod) as a fixed 
factor. We ran six separate GLMMs with different indepen-
dent variables: Schoener’s D, the significance of statistical 
comparisons between native and invasive niches (equiva-
lency and similarity tests; non-significant versus significant), 
the relevance of niche expansion and niche unfilling, and 
the portion of variance explained by the first two principal 
components (PCs). Niche expansion and unfilling are usu-
ally considered to be relevant when > 0.10 (Hill et al. 2017, 
Torres  et  al. 2018), thus we used this value as a threshold 
and treated these two metrics as binomial variables. Results of 
equivalency and similarity tests were also treated as binomial 
variables (significant versus non-significant tests), while the 
proportion of variance explained by the first two PCs and 
Schoener’s D values were modelled using beta regressions 
(Ferrari and Cribari-Neto 2004). We expected the propor-
tion of variance explained by the PCs to be directly linked 
to collinearity between the selected variables, thus we mod-
elled it using the methodological approaches as the only inde-
pendent variables. Each GLMM included: a niche metric as 
dependent variables; five variables representing the typology 

Table 1. The 14 combinations of environmental variables used to assess niche metrics and quantify niche shifts. Each combination was used 
to calculate niche metrics for the 40 freshwater invasive species. The different variables were obtained from WorldClim (Fick and Hijmans 
2017) and EarthEnv (Domisch et al. 2015).

Variables set
Bioclimatic 
variables

Instream conditions 
proxies Distance-weighted variables Limited backgrounds

Number of 
variables

bioclim6 Yes No No No 6
bioclim19 Yes No No No 19
climriv6 Yes No No Yes 6
climriv19 Yes No No Yes 19
climrivw6 Yes No Yes Yes 6
climrivw19 Yes No Yes Yes 19
riv5 No Yes No Yes 5
riv13 No Yes No Yes 13
rivw5 No Yes Yes Yes 5
rivw13 No Yes Yes Yes 13
rivall11 Yes Yes No Yes 11
rivall32 Yes Yes No Yes 32
rivallw11 Yes Yes Yes Yes 11
rivallw32 Yes Yes Yes Yes 32
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of environmental characteristics and four variables represent-
ing species features as independent variables (Fig. 1b), and 
species identity as a random effect. GLMMs were run using 
the ‘lme4’ (Bates et al. 2015) and the ‘GLMMtmb’ packages 
(Brooks  et  al. 2017). The significance of independent vari-
ables was assessed using likelihood ratio tests.

All the species we selected had at least 20 records for both 
the native and the invasive range before spatial filtering; 
however, after spatial filtering, seven species retained fewer 
than 20 records for either the native or the invasive range 
(range: 6–19 records). The COUE approach is thought to be 
robust even with small sample sizes, and niche comparisons 
can be performed with as few as five occurrences in either 
range (Liu et al. 2017, Torres et al. 2018). Nevertheless, we 
repeated GLMMs removing the seven species with fewer than 
20 observations to assess the robustness of our conclusions.

Results

Overall, we obtained data from seven molluscs, five crusta-
ceans, 19 fishes and nine tetrapod species (six amphibians 
and three reptiles; Supporting information). After spatial fil-
tering, the mean number of retained records per species ± 
SD was 1413 ± 2337 (range: 61–10 321). The mean number 
of raster cells occupied in the native range was 853 ± 1969 

(15–10 199), while the mean number of occupied cells in the 
invaded range was 561 ± 798 (6–3494). The average resi-
dence time was 153 years ± 89 (42–525). Residence time was 
not correlated to invaded range extent (Pearson’s r38 = 0.219, 
p = 0.175). For each species, each niche dynamic measure 
was calculated multiple times, using different sets of ecologi-
cal variables. We obtained a total of 560 values for each niche 
dynamic measure (40 species × 14 sets of variables). The 
GLMMs relating niche parameters to the different predictors 
explained a good amount of variation (R2 ranging from 0.33 
to 0.93); see Supporting information for details. In nearly all 
cases, the models excluding species with < 20 occurrences in 
at least one of the two ranges were highly consistent with the 
ones including all the species (Supporting information).

Variance explained by the first principal 
components

On average, the first two principal components explained 
65.3 ± 13.2% of variance of environmental variables. The 
amount of explained variance was strongly affected by 
methodological choices (Fig. 2), as it increased when we 
used terrestrial bioclimatic data (B = 0.482, χ2

1 = 288.3, p 
< 0.001), as well as when we limited background to water-
bodies (B = 0.083, χ2

1= 7.2, p = 0.007). Furthermore, the 
first two principal components explained a lower proportion 

Figure 2. Results of generalized linear mixed models (GLMMs) relating niche metrics to methodological choices and biological factors. All 
niche shift measures were modelled as a function of methodological choices and biological factors; the amount of variance explained by the 
two principal components was modelled as a function of methodological choices only. Significant positive effects are shaded in red, while 
significant negative effects are shaded in blue. Asterisks indicate those effects whose significance disappeared when removing the species with 
small sample size. Drawings by: Natasha Sinegina (CC-SA 4.0 license; https://creazilla.com/), Creazilla, hamdolii, UnboxScience, lorithe-
ladybug7 (Public Domain) and JoyPixel (CC-SA 4.0 license; www.joypixels.com/).
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of variation when we considered a larger number of envi-
ronmental variables (B = −0.398, χ2

1 = 740.5, p < 0.001), 
when we used variables representing instream conditions 
(B = −0.696, χ2

1 = 507.2, p < 0.001) and when using dis-
tance-weighted measures (B = −0.075, χ2

1 = 17.7, p < 0.001) 
(Fig. 2; Supporting information).

Factors affecting niche overlap

The niche overlap between native and non-native ranges 
(Schoener’s D) showed a strong variation across species and 
sets of variables (average 0.256 ± 0.147; range 0.003–0.596). 
Niche overlap was significantly larger when using distance-
weighted variables (B = 0.364, χ2

1 = 38.9, p < 0.001), while 
overlap decreased when using backgrounds limited to water-
bodies (B = −0.446, χ2

1 = 24.0, p < 0.001) and when we 
increased parameterization (B = −0.063, χ2

1 = 4.2, p = 0.041). 
Species with a greater native range showed larger overlap 
between native and invasive range (B = 0.410, χ2

1 = 25.3, p 
< 0.001). We also detected significant differences between 
taxonomic groups (likelihood ratio test: χ2

2 = 6.6, p = 0.036), 
with tetrapod species showing significantly lower D val-
ues than invertebrates (Tukey test: B = −0.484, p = 0.021) 
(Fig. 2; Supporting information). Finally, using water condi-
tions proxies slightly increased niche overlap, but this effect 
was significant at the 0.05% level only after removing species 
with small sample sizes (B = 0.184, χ2

1 = 5.4, p = 0.020).

Factors affecting niche equivalency tests

We obtained 158 out of 560 significant niche equivalency 
tests. The niche equivalency hypothesis was accepted more 
frequently when using distance-weighted values (B = 0.872, 
χ2

1 = 13.8, p < 0.001), while it was more frequently rejected 
when using waterbody-limited backgrounds (B = −1.177, 
χ2

1 = 10.6, p = 0.001; Fig. 2). Large native ranges (B = 0.604, 
χ2

1 = 5.6, p = 0.018) and long residence times (B = 0.581, 
χ2

1 = 6.7, p = 0.009) were associated with higher levels of 
niche equivalency, but the significances of both these effects 
disappeared when removing species with few occurrences 
(Fig. 2; Supporting information).

Factors affecting niche similarity tests

We obtained 176 out of 560 significant niche similarity tests. 
Similarity rates were higher when using distance-weighted 
variables (B = 1.055, χ2

1 = 21.8, p < 0.001) and for species 
with wide exotic ranges (B = 0.489, χ2

1 = 5.8, p = 0.016). 
Conversely, similarity tests were less frequently signifi-
cant when using waterbody-limited variables (B = −1.294, 
χ2

1 = 14.3, p < 0.001) (Fig. 2; Supporting information).

Factors affecting niche expansion

The selected FIS showed relevant (> 0.1) niche expansions in 
331 out of 560 comparisons, with a mean value of 0.251 ± 
0.244. Relevant niche expansions were less frequently found 

when using terrestrial bioclimatic variables (B = −0.851, 
χ2

1 = 5.3, p = 0.021), and when limiting backgrounds to 
waterbodies (B = −1.581, χ2

1 = 15.2, p < 0.001). Conversely, 
using distance-weighted variables increased niche expansion 
(B = 1.725, χ2

1 = 43.5, p < 0.001). Residence time had a sig-
nificant positive effect on this measure (B = 0.883, χ2

1 = 8.0, 
p = 0.005), while the number of cells occupied in the native 
range had a negative effect on it (B = −1.374, χ2

1 = 14.0, p < 
0.001 (Fig. 2; Supporting information).

Factors affecting niche unfilling

Niche unfilling was relevant (> 0.1) in 277 out of 560 com-
parisons, with a mean value of 0.198 ± 0.232. Unfilling 
was less frequent when selecting waterbody-limited back-
grounds (B = −1.209, χ2

1 = 8.2, p = 0.004), and for species 
with broad exotic ranges (B = −2.652, χ2

1 = 39.6, p < 0.001). 
Conversely, unfilling was inflated by using distance-weighted 
variables (B = 0.947, χ2

1 = 12.6, p < 0.001) and by over-
parameterization (B = 0.407, χ2

1 = 7.9, p = 0.005) (Fig. 2; 
Supporting information).

Discussion

The majority of the 560 niche comparisons showed signifi-
cant niche shifts between native and invasive range, with 
frequent niche expansion and limited values of overlap. 
Nevertheless, detections of niche shifts strongly depended on 
methodological choices, including background selection, the 
use of distance-weighted variables or the use of a large num-
ber of variables. This suggests that a priori choices of envi-
ronmental predictors have strong impacts on the detection of 
niche shifts and some choices might inflate the probability of 
observing apparent shifts. The effects of these methodological 
choices seem to be stronger than potential biological factors, 
such as residence time or the extent of native range.

Effects of methodological choices

Methodological choices appear to be extremely relevant in 
influencing niche metrics (Fig. 2). These findings pose a chal-
lenge to the interpretation of meta-analyses on niche com-
parisons since niche conservatism and shifts may be linked 
to differences across studies in modelling techniques, instead 
of actual biological processes. This underlines once more the 
urgent need for objective criteria in selecting the most appro-
priate variables for niche comparisons, particularly for those 
species, such as FIS, whose realized niches are likely to be 
influenced by complex interactions between climatic, chemi-
cal and dispersal factors.

Traditionally, niche modelling for FIS and other invasive 
species was based on easily accessible bioclimatic variables, 
such as air temperature or annual precipitation (Torres et al. 
2018, Mori et al. 2021). Bioclimatic variables are often highly 
collinear, thus in most works principal components explain a 
great proportion of the variance of these variables. Bioclimatic 
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data are particularly suitable for ordination approaches such 
as the COUE scheme, still they do not necessarily describe 
the environmental features truly affecting organism occur-
rences. Therefore, it is pivotal to select variables that better 
represent the environment experienced by organisms, such 
as instream conditions, soil temperature or other micro-hab-
itat features (Bramer  et  al. 2018, Lembrechts  et  al. 2021). 
Unfortunately, an accurate representation of microhabitat 
features over broad spatial scales can be extremely challenging 
because of the limitations of remote sensing when trying to 
derive extremely fine-grained information (Lembrechts et al. 
2021). Datasets aiming to represent instream conditions at 
a global level are broad-scale estimates, mostly based on soil 
chemistry and geological features of nearby environments, 
and hence in some cases they may not accurately represent 
the actual conditions experienced by organisms. Moreover, 
several water chemistry parameters relevant for FIS distribu-
tion (e.g. calcium concentrations for molluscs) are not always 
available at high resolution at the global scale (Jeschke and 
Strayer 2008).

Distance-weighted variables led to contrasting results. 
While their use increased niche overlap, equivalency and sim-
ilarity between native and invaded ranges, it also increased 
niche expansion and unfilling. Validation exercises sug-
gested that distance-weighted variables may represent some 
instream conditions less accurately than the unweighted ones 
(Domisch et al. 2015), possibly inflating niche expansion and 
unfilling. On the other hand, weighted variables might be 
particularly appropriate for parameters such as precipitation, 
for which downstream conditions are more tightly linked to 
drainage-based processes.

Limiting the background to the accessible area should 
improve the representation of the movement constraints 
of the species (Godsoe 2010, Barve  et  al. 2011, Nori and 
Rojas-Soto 2019). This may be particularly important for 
modelling FIS, which often are strongly affected by disper-
sal barriers (Jeschke and Strayer 2008). In fact, the use of a 
limited background resulted in low rates of niche expansion 
and unfilling compared to the ‘traditional’ background. This 
suggests that this approach can minimize the detection of 
apparent differences between native and exotic niches, con-
sistently with results of previous studies on invasive turtles 
(Nori and Rojas-Soto 2019). Nevertheless, the constrained 
background also reduced niche overlap and the significance 
of equivalency and similarity tests between native and inva-
sive ranges compared to ‘traditional’ background (Nori and 
Rojas-Soto 2019). This probably occurred because limiting 
the background to waterbodies also drastically reduces the 
number of points available to estimate background abiotic 
conditions, decreasing the statistical power of tests (Nori and 
Rojas-Soto 2019). This highlights the risk of obtaining con-
trasting results with different niche metrics when background 
areas are limited to different extents.

The number of ecological variables has long been recog-
nized as a major methodological issue of distribution model-
ling. Many approaches are available to reduce dimensionality, 
such as excluding those variables that are supposed to be not 

relevant for the target species, that show strong correlations 
with other variables or that are secondly derived from other 
variables (Peterson 2011, Low et al. 2020). Increasing dimen-
sionality is expected to decrease the amount of variation 
explained by the first two PCs, hence limiting the effective-
ness of ordination analyses. Moreover, using too many eco-
logically variables can lead to apparent niche shifts (Strubbe 
and Matthysen 2014, Torres et al. 2018). Our results remark 
the importance of avoiding over-parameterization, and the 
need for objective methods to define an appropriate number 
of ecological variables used to define species niche, particu-
larly for FIS.

Comparison between methodological and biological 
factors

Previous work has reported that several biological features can 
significantly affect niche shift measures. A broad native range 
has been found to increase niche overlap and reduce niche 
expansion (Early and Sax 2014, Li et al. 2014, Liu et al. 2017, 
2020), while several studies observed a negative relationship 
between the extent of invaded ranges and niche unfilling, and 
a positive effect of residence time on niche expansion (Li et al. 
2014, Liu et al. 2020). These patterns have been explained by 
several biological processes. A positive relationship between 
residence time and climatic niche shifts has been taken as 
a confirmation that these shifts can be related to a release 
from dispersal limitations within the invasive range (Li et al. 
2014); nevertheless, the interpretation of the role of residence 
time is subjected to several pitfalls, as similar studies with 
small methodological differences showed contrasting results 
(Liu et al. 2017, 2020). In fact, in our analysis the effect of 
residence time on niche equivalency found by our models 
disappeared when removing species with small sample size, 
suggesting that it might be an artifact.

Freshwater invasive species with broad native ranges often 
are generalist species that already exploit a wide range of envi-
ronments, meaning that their exotic populations are more 
likely to be introduced in environments with similar condi-
tions just by chance, and are unlikely to further expand their 
niche. Similarly, species that have been able to exploit broad 
invasive areas are expected to reduce their unfilling compared 
to the native range. Our results were consistent with these 
expectations, regardless of the methodological approach, con-
firming the potential importance of these processes (Fig. 2). 
Nevertheless, in most cases biological factors explained less 
deviance in niche metrics, compared to methodologi-
cal choices (Supporting information). As methodological 
choices can outweigh biological effects, the risk of apparent 
niche shifts should be carefully considered when planning 
the analysis, and researchers should pay special attention to 
testing the robustness of their conclusions. Direct measures 
of actual niche shifts, such as experimental approaches that 
approximate the fundamental niche and/or genomic analy-
ses, would be extremely helpful to verify whether observed 
shifts represent actual evolutionary processes (Kearney and 
Porter 2009, Sherpa et al. 2022).
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Additional factors influencing observed shifts

Regardless of the robustness of modelling designs, niche 
modelling has some inherent weaknesses that are difficult to 
overcome. Global analyses are based on large databases of spe-
cies distribution. These databases do not necessarily represent 
the actual distribution of the species, owing to geographical 
biases in data collection, uneven search efforts and reporting 
biases (van Strien et al. 2013, Uyeda et al. 2020). Approaches 
like the COUE scheme are thought to limit the effects of sam-
pling bias by calculating smooth densities of species occur-
rences in a gridded environmental space (Broennimann et al. 
2012, Guisan et al. 2014), but there are other biases that can 
undermine the reliability of models.

Occurrences of dispersing individuals or non-viable popu-
lations, such as continuously restocked fish populations that 
occupy sub-optimal environments, should be excluded from 
analyses to avoid niche overestimation. To limit this issue, 
we only selected observations from countries where the 
considered FIS are known to be established, and excluded 
marginal observations from niche analyses. However, niche 
overestimation caused by non-breeding populations might 
have occurred in large countries and for species with wide 
distributions. Finally, even the best global datasets of ecologi-
cal variables currently available have some limitations, and 
they can provide an imperfect representation of conditions 
experienced by organisms (Domisch et al. 2015). The devel-
opment of high-quality datasets that well represent micro-
habitat conditions is one of the major issues for modelling 
studies, and recent broad-scale efforts promise improvements 
that will be extremely useful for future studies (Potter et al. 
2013, Bennie et al. 2014, Lembrechts et al. 2021, Marta et al. 
2022). The increased resolution of recently available water-
body maps (Allen and Pavelsky 2018) might soon allow the 
realistic accounting for dispersal limitation while retaining 
high statistical power.

Conclusion

An appropriate selection of environmental variables is pivotal 
when performing niche analyses and can have major conse-
quences on the detection of niche shifts. The differences in 
niche comparisons linked to different methodological choices 
can be extremely relevant for niche conservatism assessments. 
Identifying the best approach to quantify niche dynamics 
can greatly improve our ability to predict FIS distribution, 
improving the effectiveness of prevention and/or contain-
ment measures, and enhancing predictions under climate 
change scenarios.

Apparent niche shifts can be reduced by using appropri-
ate ecological variables and avoiding overparameterization. 
Therefore, a better understanding of the drivers of FIS dis-
tribution, the availability of global high-resolution maps of 
these drivers and objective methods for selecting the appro-
priate number of variables are essential prerequisites for reli-
able niche modelling. Moreover, drawing biological inference 

from niche modelling without accounting for the weak-
nesses of this approach can lead to misleading conclusions. 
Experimental approaches, and physiological and genomic 
data, when available, can greatly help to refine niche mod-
elling and SDMs. Meeting these challenges will also help 
conservationists to face the ongoing threats in freshwater 
environments in a more appropriate and effective way.
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