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Abstract. We use differential dynamic microscopy and particle tracking to
determine the dynamical characteristics of a coarsening foam in reciprocal and
direct space. At all wavevectors q investigated, the intermediate scattering
function exhibits a compressed exponential decay. However, the access to
unprecedentedly small qs highlights the existence of two distinct regimes for
the q-dependence of the foam relaxation rate Γ(q). At any given foam age,
Γ(q) ∼ q at high q, consistent with directionally-persistent and intermittent
bubble displacements. At low q, we find Γ(q) ∼ q1.6. We show that such change
in q-dependence of Γ(q) relates to a bubble displacement distribution exhibiting
a cut-off length of the order of the bubble diameter. Investigations of the q-
dependence of Γ(q) at different foam ages reveal that foam dynamics is not only
governed by the bubble length scale, but also by the strain rate imposed by the
bubble growth; normalizing Γ(q) by this strain rate and multiplying q with the
age-dependent bubble radius leads to a collapse of all data sets onto a unique
master-curve.
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1. Introduction

Liquid foams commonly consist of polydisperse gas
bubbles that are highly packed in a liquid continuous
phase [1]. As the bubble packing fraction generally
exceeds random close packing, the bubbles exert direct
contact forces onto one another. To maintain a static
bubble configuration, these forces need to be balanced.
However, because of differences in Laplace pressures
between bubbles of different size, foams coarsen in
time, the large bubbles growing at the expense of small
ones. This coarsening process continuously alters the
stress configuration of the system, leading to locally
imbalanced stresses that in turn trigger local bubble
rearrangement events [2, 3].

Such stress-driven dynamics has been inferred to
be at the origin of residual activity in a number
of aging soft matter systems [4, 5]. Experimental
evidence for this scenario were obtained in dynamic
light scattering experiments, yielding intermediate
scattering functions displaying compressed exponential
decays with relaxation rates Γ(q) depending linearly
on the scattering wavevector q, reminiscent of ballistic
motion [5, 6, 7]. To account for this behavior
it was proposed that randomly distributed dipolar
stress sources generate displacement fields that lead to
directionally-persistent displacements characterized by
a power-law tailed probability distribution [8, 9, 10],
and numerical studies suggested that this could be
the case in a broad range of systems exhibiting stress
relaxation [11, 12, 13]. Though this conjecture is
appealing, direct experimental evidence of the link
between stress-induced displacements and reciprocal
space characteristics is to date very limited [14].

In this work, we aim to fully explore this link
in foams. This choice is motivated by the fact
that the source of stress imbalances in foams can be
traced back to the continuous bubble growth, and
because the size of the foam bubbles is sufficiently
large to use microscopy as a main investigative tool.
Microscopy image sequences of the foam acquired
during coarsening are analyzed both with particle
tracking and with differential dynamic microscopy
[15, 16, 17, 18] to obtain a comprehensive set of data
probing foam dynamics in both direct and reciprocal
space.

Our experiments reveal that foam dynamics
is governed by intermittent bubble displacements
exhibiting a persistent direction up to the bubble

length scale. This length scale introduces a cut-off
in the probability distribution function of the bubble
displacements that otherwise exhibits the power-
law scaling expected [8, 9, 10]. We demonstrate
experimentally and theoretically that such cut-off leads
to distinct q-dependencies of the relaxation rates
depending on whether 1/q larger or smaller than the
cut-off length.

Moreover, we find that the dispersion relations
obtained at different foam ages collapse onto a unique
master curve, by rescaling q with the bubble size and
Γ(q) with the coarsening strain rate Γc = Ṙ/R. This
shows that foam dynamics is uniquely ruled by a single
length and time scale, imposed by respectively the
foam structure and coarsening kinetics.

2. Materials and methods

2.1. Sample preparation and imaging

Our sample is a commercial shaving foam (Gillette
Foamy Regular), which has been previously shown to
exhibit reproducible coarsening characteristics, and to
be reasonably stable against coalescence and drainage
[2].

The start of our experimental time frame is set by
the foam production (tw = 0), at which point the foam
is directly injected into a two-piece polystyrene Petri
dish (radius 35 mm and height 10 mm). The Petri dish
is subsequently sealed with Parafilm and immediately
transferred to the microscope.

Images of the bubble layer in contact with the
bottom side of the Petri dish are taken in back
reflection, using a 2× objective with a numerical
aperture of NA = 0.06. The microscope used is an
inverted microscope (Nikon Eclipse Ti-E) equipped
with a digital camera (Hamamatsu Orca Flash 4.0
v2), epi-illumination being provided by a blue LED
(Thorlabs M455L4-C, peak wavelength 455 nm). The
pixel size is 13 µm. The images are 3.3 x 3.3 mm2 in
area and contain 4000 - 400 bubbles depending on the
age of the foam. We acquire images over a period of
14 hours at a frame rate 1/∆t0 of 1 fps.

Representative cropped images taken at different
times after production tw are shown in Fig.1 a-d, where
the gas bubbles appear bright and the continuous phase
dark. Optical contrast is here mainly generated by the
reflectivity of the interface between the gas bubbles and
the continuous phase.
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To determine the age-dependent foam dynamics at
quasi-stationary conditions, the entire image sequence
is divided into many partially overlapping sub-
sequences that are analysed separately. The n-th sub-
sequence Sn is centered at age tw = 103 exp [n/4] s
(n = 1, 2, ..., 16) and covers a time interval of tw/4.
This choice warrants that the mean bubble size changes
by less than 15% within each sub-sequence.

2.2. Reciprocal space analysis

The foam structure and dynamics are characterized
in reciprocal space by using the differential dynamic
microscopy (DDM) protocol [15, 16, 17]. For each
sequence Sn, we determine the azimuthally averaged
Fourier power spectrum (static amplitude) An(q), and
the intermediate scattering function fn(q,∆t). To
simplify the notation, the index n referring to the
image sequence is omitted in the following.

In a preliminary step, we remove the effect
of uneven illumination by dividing each image by
the background image Ib(x) obtained by applying a
Gaussian filter with standard deviation 200 µm to the
temporal average of all the images in the sequence.

We then calculate the difference between two
background corrected images acquired at times t and
t+∆t, d(x, t,∆t) = I(x, t+∆t)−I(x, t). By averaging
the spatial Fourier power spectrum of d(x, t,∆t)
obtained for the same ∆t but different reference times
t we obtain the image structure function d(q,∆t) =

〈|d̂(x, t,∆t)|2〉t that captures the sample dynamics as a
function of the two-dimensional scattering wavevector
q and of the lag time ∆t. The symbol ·̂ indicates
the two dimensional digital Fourier transform, usually
performed with a Fast Fourier Transform algorithm.
The average taken over different t is justified because
the dynamics and structure are quasi-stationary within
the time interval at which an image sub-sequence is
taken.

In a last step, we take advantage of the circular
symmetry of the image structure function to perform
an azimuthal average of d(q,∆t), which provides the
dimensionally-reduced structure function d(q,∆t) of

the radial wavevector q =
√
q2
x + q2

y.

This structure function is connected to the
intermediate scattering function (ISF) f(q,∆t) [19] by
the relation [17]

d(q,∆t) = 2A(q) [1− f(q,∆t)] + 2B(q) (1)

with B(q) accounting for the camera noise and the
static amplitude A(q) = T (q)I(q), depending on the
static scattering intensity of the sample I(q) and the
transfer function of the microscope T (q).

For the images taken in our experiment, the main
contribution to random fluctuations comes from shot
noise, which is delta-correlated in space. This entails

that the noise term B(q) is practically q-independent.
Since A(q → ∞) = 0 and f(q,∆t → 0) = 1 due to
the finite numerical aperture of the objective, we can
estimate the magnitude of B as the high-q, small ∆t
limit of d(q,∆t) [16].

Once B is known, we could in principle use Eq. 1
to extract both A(q) and f(q,∆t). However, because
of the limited time interval over which an image
sub-sequence is taken, a full relaxation of f(q,∆t)
is not observed at all q values. To overcome this
limitation, we estimate A(q) from the time-averaged
power spectrum of the individual images as A(q) '
〈|Î(q, t0)|2〉|q|=q,t0 − B(q) [20]. For our experiment,
this approximation is justified as the optical signal
produced by the foam is much stronger than any
contribution of stray light or dirt on the optical
components.

2.3. Direct space analysis

To characterize the bubble dynamics in direct space, we
apply a particle tracking (PT) analysis on the image
sub-sequence corresponding to the age tw = 1.5 · 104

s. As done for the DDM analysis, we first correct
the images for uneven illumination. The background-
corrected images are then filtered with a Gaussian
kernel with standard deviation 5 µm to reduce noise,
and subsequently converted into binary masks by
applying a fixed threshold value.

Bubbles are identified as connected regions
Bm(t) of the binary mask with surface area am(t)
larger than a fixed cutoff value of 120 µm2.
The bubble center xm(t) is determined as the
intensity-weighted center of mass of the correspond-
ing region in the compensated image xm(t) =∑
x∈Bm(t) [x · Ic(x, t)]/

∑
x∈Bm(t) Ic(x, t).

The typical displacement of a bubble between
consecutive frames is well below the pixel size, while
the largest displacement observed is always smaller
than the bubble diameter. We can thus link the
position of each bubble in two consecutive frames
by maximizing the overlap between the respective
surface areas to reliably determine the single bubble
trajectories.

Once the trajectories of all bubbles are available,
we evaluate the probability distribution function
(PDF) P (∆r|∆t) = 〈δ (∆r − |xm(t+ ∆t)− xm(t)|)〉
of the bubble displacement, where the average is
calculated over all bubbles m and initial times t. In
practice, P is evaluated for each ∆t as the normalized
frequency histogram of |xm(t + ∆t) − xm(t)| with
logarithmic binning using 40 bins covering the interval
0.01 -10 µm.

The mean square bubble displacement (MSD) is
determined as r(∆t) = 〈|xm(t+ ∆t)− xm(t)|2〉, where
the average is again performed over all bubbles m and
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Figure 1: Structural characteristics of coarsening foam. a-d) Images taken at tw = 1000, 3000, 5000, 8000, 20000
s. The size of each image corresponds to 2 x 2 mm2 in real space. e) Azimuthally averaged Fourier power spectra
A(q) obtained at tw ranging from 1600s to 54000s. The vertical dashed line denotes the limit beyond which the
A(q) is distorted by artifacts due to the microscope transfer function f) Scaled representation of the data shown
in panel e); the q axis is scaled with the mean bubble radius R(tw), A(q) is scaled with R(tw)−2. Inset: orange
circles denote the age dependence of the inverse squared peak position of A(q), qp(tw)−2; blue squares denote
the age dependence of the squared bubble radius R2 multiplied with a constant c = 0.60. The continuous line
corresponds to the best linear fit to the data.

initial times t.
The characteristic foam bubble radius R(tw) at

a given age is estimated from the relation R2(tw) =
〈am(tw)〉/π.

3. Results and discussion

3.1. Reciprocal space: foam structure

Because of the differences in Laplace pressure between
small and large bubbles, the average bubble size of our
foam increases with increasing tw (Figure 1a-d). Such
evolution reflects in a change of the q-dependence of
the static amplitude A(q) = T (q)I(q). As shown in
Figure 1e, A(q) is characterized by a well-defined peak,

which shifts towards lower q-values with increasing
tw. In our experiment, T (q) is almost constant up
to q ' 0.2µm−1, such that the q-dependence of
A(q) essentially reflects that of I(q) below that q-
value. Considering only the low q-range, a simple
normalization of A(q) byR(tw)2 and q withR(tw) leads
to a good collapse of all data-sets onto a unique master-
curve, as shown in Figure 1f. This denotes that the
mean bubble radius is the only parameter that varies
during coarsening, the average bubble configuration
remaining essentially the same.

For dry foams we expect a linear growth of the
bubble area with time [1]. This is consistent with our
experimental results. As shown in the inset of Figure
1f, the square of the bubble radius or equivalently the
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Figure 2: Reciprocal space analysis of foam dynamics. a) Intermediate scattering functions f(q,∆t) obtained
at a foam age of tw = 10000 s for q-values covering the range of 0.02-0.3µm−1. Continuous lines are fits to
the data using compressed exponentials of form exp {−(Γ(q)∆t)α}, with α ' 1.2. Inset: q-dependence of the
relaxation rates Γ(q) obtained from the fits. b) Logarithm of the ISFs shown in panel a). Continuous lines
are best fits to the data using power-laws of form (Γ(q)∆t)α. c) q-dependence of relaxation rates obtained at
different foam ages. Continuous lines are best fits to the large q-limits using a linear model of form Γ(q) = u0q.
d) Scaled representation of the data shown in panel c). A master curve is obtained by scaling q with R(tw) and
normalizing Γ(q) with the coarsening rate Ṙ(tw)/R(tw). The vertical dashed line corresponds to the rescaled
cross-over wave-vector qcR ' 2.4 separating the low-q regime, where Γ(q) ∼ q1.6, from the ”ballistic” regime at
larger q, where Γ(q) ∼ q.

square of the inverse scattering vector at the peak
of A(q), qp, depend linearly on tw. Fitting the data
for q−2

p (tw) with a linear function of form q−2
p (tw) =

q−2
p (0) + Ktw yields K = (2.5 ± 0.05) · 10−2 µm2/s

for the average coarsening constant. A fit to a more
general model, q−2

p (tw) = q−2
p (0) + Kβt

β
w, provides a

slightly different scaling exponent β = 0.84±0.05. This
deviation from an ”ideal” coarsening behavior is likely
due to a small drainage-induced increase of the liquid
fraction at the bottom of the cell, which is the plane

we observe experimentally.

3.2. Reciprocal space: bubble dynamics

To assess the impact of coarsening on the rearrange-
ment dynamics of the foam, we analyze the interme-
diate scattering function f(q,∆t) for different foam
ages. As a representative example, we show the ICFs
obtained for tw = 10000s in Figure 2a. As we re-
strict the determination of f(q,∆t) to a time window
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over which we can expect the dynamics to be quasi-
stationary, the accessible data range is limited and
a full decay of f(q,∆t) is only obtained for large q-
values. However, despite this limitation we can assess
the decay rate of f(q,∆t) by fitting the initial decay
as f(q,∆t) = exp [−(Γ(q)∆t)α]. This can be appre-
ciated in Figure 2b, where we report the dependence
of − ln f(q,∆t) as a function of ∆t in a double loga-
rithmic plot. At all q-values investigated, the initial
slope is described by a unique value corresponding to
α ' 1.2, while the absolute values of − ln f(q,∆t) shift
towards lower ∆t as q increases, reflecting the increase
of the relaxation rate . Remarkably, we find that the
q-dependence of the relaxation rate shows two distinct
regimes. As shown in the inset of Figure 2a, Γ(q) scales
linearly with q in the range of q � 0.1 µm−1, while for
low q a stronger dependence is found, Γ(q) ∼ qδ with
δ ≈ 1.6.

The analysis at different foam ages yield similar
results: the ISFs are well described by compressed
exponential functions with a compressing exponent
α ' 1.2; the q-dependent relaxation rates displays two
dynamic regimes separated by a crossover scattering
vector qc. However, qc progressively shifts towards
lower q-values as the foam coarsens (Figure 2c). In
addition, we find that the prefactor u0 of the linear
scaling regime Γ(q) ' u0q, becomes markedly smaller
as the foam ages.

Remarkably, a simple normalization of the
horizontal axis of the dispersion relation Γ(q) with
the characteristic bubble radius R(tw) and the vertical
axis with the strain rate Ṙ(tw)/R(tw) associated to
coarsening leads to a collapse of all data sets onto a
single master curve (Figure 2d).

This scaling denotes that foam dynamics is
determined by a single length and a single time scale,
the bubble size and the strain rate associated to the
coarsening process, respectively.

3.3. A simple model accounting for the dynamical
characteristics in reciprocal space

At large enough q, our results denote that compressed
exponential relaxations are associated to a ballistic-
like dispersion relation. Such combination has been
found in a variety of non-equilibrium systems [5, 6,
21, 22, 23, 11, 24, 7], and has been rationalized
in terms of a heuristic model, originally developed
for colloidal gels [25] [8]. This model entailed that
randomly distributed local rearrangement events would
lead to stress inhomogeneities that act as dipolar
forces, inducing strain fields that would give rise to
ultraslow yet continuous ballistic-like motion of the
gel strands. Additional work then indicated that
intermittent rearrangement events could be at the
origin of a linear dispersion relation provided that

they would lead to displacements with directional
persistence [9].

Independent of the actual physical origin, the
general idea is that a compressed exponential decay
of the self intermediate scattering function fs(q,∆t) =
e−(Γ(q)∆t)α , with Γ(q) = u0q, results from a probability
density function of particle displacements P (∆r,∆t)
that exhibits a power-law tail ∼ ∆r−(α+1). This can
be understood as follows. The Fourier transform of a
compressed exponential function of form g(u) = e−|u|

α

is the Levy stable distribution Lα,0(u), which displays
a power-law tail for large values of its argument
Lα,0(u) ∼ |u|−(α+1) [5]. For a one-dimensional
system with a self-ISF of form fs(q,∆t) = e−(u0∆tq)α ,
this entails that the spatial Fourier transform of
fs(q,∆t), which corresponds to the PDF of the
particle displacements, will be given by P (∆r,∆t) =

1
u0∆tLα,0( ∆r

r0∆t ) ∼ (u0∆t)α∆r−(α+1).
As demonstrated explicitly for the 3D case in Ref.

[5], this result can be generalized to an arbitrary space
dimension d, showing that compressed exponential
relaxations of ISFs always imply the presence of
power-law tails in the PDF of particle displacements.
However, let us note that when the compressing
exponent α is smaller than 2, the particle mean square
displacement 〈∆r2〉 =

∫ +∞
0

r2P (r,∆t)dr is infinite for
every ∆t. This rather unphysical situation can be
mitigated by assuming the existence of some physical
cut-off length l0 limiting the maximum displacement
of the particles. If this is the case, the MSD becomes
finite 〈∆r2〉 ∼ l20(u0(∆t)/l0)α.

The introduction of a cut-off length l0 has a
negligible effect on fs(q,∆t) as long 1/q � l0,
which is the regime typically probed in experiments
[5, 26, 27, 28]. By contrast, if the probed length
scale 1/q is large enough to exceed the largest particle
displacements, fs(q,∆t) is a Gaussian function of q

and takes the form fs(q,∆t) ' exp
[
− q

2〈∆r2〉
2d

]
'

exp
[
− q

2l2−α0 r0(∆t)α

2d

]
, where the first identity holds up

to the second order in q [29, 30]. The ISF is here
still described by a compressed exponential function
f(q,∆t) ' e−[Γ(q)∆t]α ; the compressing exponent α is
the same as that obtained for large q, the relaxation
rate, however, follows a completely different dispersion
relation Γ(q) = (2d)−1/α(u0/l0)(l0q)

δ, with δ = 2/α.
This model is fully consistent with our experimen-

tal findings (δ ' 1.6 and α ' 1.2) and provides the
essential framework for the relation between dynami-
cal characteristics in respectively reciprocal and direct
space.

3.4. Direct space: bubble dynamics

To test this relation, we determine the bubble
displacements in real space for a fixed foam age
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Figure 3: Real space analysis of the data obtained at tw = 1.5 · 104 s. a) Representative examples of bubble
trajectories. Each trajectory covers a time interval of 1400 s; consecutive dots are separated by a time interval
of 10 s; the scale bar corresponds to 20 µm. b) Probability density functions of bubble displacements P (∆x,∆t)
for ∆t ranging from 30s to 1000s. The grey area corresponds to a narrow interval around 60 µm corresponding
to the cutoff length l0. c) Scaled representation of the data shown in panel b); the horizontal and the vertical
axis are rescaled with ∆t and 1/∆t, respectively. Inset: Mean square displacement obtained from particle
tracking are denoted as blue circles, those obtained from f(q1,∆t) are shown as black downward triangles. d)
Self intermediate scattering functions obtained from particle tracking for q-values ranging from 0.15 µm−1 to 78
µm−1. Continuous black lines are best fits to the data using compressed exponentials of form exp {−(Γ(q)∆t)α}
with α = 1.2. e) Comparison of the q-dependent relaxation rates obtained from PT (blue squares) and DDM
(black downward triangles) analysis. The vertical dotted line denotes the position of the peak in S(q). f) Static
structure factor S(q) of the bubble centers. The vertical dashed line denotes the lowest q-value at which S(q1) = 1
(q1 = 0.056 µm−1); the vertical dotted line denotes the peak position (q = 0.067 µm−1).

(tw = 1.5 · 104s). A typical map of the trajectories
obtained over a time interval of 1400s in steps of
10s is shown in Figure 3a. Each trajectory displays
directional persistence, consistent with ballistic-like
motion inferred from the linear dependence of Γ(q)
on ∆t observed at larger q. The PDF of particle
displacements displays a well-defined peak for any
given ∆t, as shown in Figure 3b. At larger ∆r
the PDF decreases as a power-law with an exponent
α + 1 ∼ 2.2. For the smallest ∆t considered, this
regime extends over about two decades, before being

truncated at a cut-off length scale l0 ≈ 60 µm. The
peak of the PDF systematically shifts to larger ∆r as
∆t is increased, while the cut-off length-scale is almost
fixed at a value corresponding to approximately the
characteristic bubble diameter 2R ' 62 µm. The
∆t-dependence of the PDF is fully consistent with
ballistic-like motion. Indeed, a simple normalization
of ∆r and of the amplitude of the PDF with ∆t leads
to an excellent collapse of the data up to the cut-off
length, as shown in Figure 3c. Moreover, the MSD
(inset of Figure 3c, blue squares) scales as 〈∆r2〉 ∼ ∆tα
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with α=1.2, in full agreement with the expectation
from the truncated power law behavior of the PDF
predicted by the simple model outlined in Subsection
3.3.

As a further consistency check, we evaluate
the self intermediate scattering function fs(q,∆t) =
1
N

∑N
m=1〈e−jq·([rm(t0+∆t)−rm(t0)]〉|q|=q,t0 . Consistent

with the results obtained in reciprocal space, fs(q,∆t)
is well described by a compressed exponential with
an exponent of 1.2 (Figure 3d). Moreover, the
q-dependence of the relaxation rate Γs(q) shown
in Figure 3e clearly displays two distinct dynamic
regimes, in excellent agreement with the analogous
quantity obtained from DDM analysis of the same
image sub-sequence. The quality of the agreement is
actually somewhat surprising. It indicates that the
decay of the ISF probed in DDM is dominated by its
self-part; effects due to collective dynamics seem to be
negligible over the whole q-range accessible in DDM.

We further exploit PT to calculate the static
structure factor S(q) of the bubble centers, which
exhibits a well defined peak at q ' 0.067 µm−1

' 2/R (Figure 3f). This q-value corresponds to the
crossover wavevector separating the two dynamical
regimes, which supports the idea that the scale-
dependent dynamics originates from a cut-off in the
displacements that corresponds to the bubble length
scale. Considering that the displacements of bubbles
are determined by local stress imbalances that will
occasionally exceed the yield conditions, this indicates
that a new local stress configuration is only reached
once the bubble has moved by its own diameter.

As a further test of the relation between reciprocal
and direct space results we focus on the wavevector,
denoted as vertical dashed line in Figure 3 f), where
S(q1) = 1. This q-value falls in the low q dynamic
regime, where f(q,∆) is, in good approximation, a
Gaussian function of q2, suggesting that the single
bubble MSD can be determined as −4 ln[f(q1,∆t)]/q

2
1 .

As shown in the inset of Fig. 3c) this estimate is in
very good agreement with the PT results.

4. Conclusions

Our investigation on a coarsening foam reveals
that bubble dynamics is governed by intermittent
displacements that exhibit a persistent direction up
to a given length scale. This cut-off length leads
to distinct features in the dispersion relation of the
relaxation rate Γ(q) probed as a function of the wave-
vector q in reciprocal space. In our foam, the cut-
off length corresponds to the bubble diameter 2R;
at 1/qvalues smaller than 2R, Γ(q) scales linearly
with q consistent with the results obtained for aging
colloidal gels [25]. By contrast, for 1/q > 2R, we

find a scaling of Γ(q) ∼ q2/α, with α = 1.2. We
show that introducing a cut-off length into the models
proposed in [8, 9, 10] naturally accounts for this
behaviour; in addition, it explains the compressed
exponential relaxation of the intermediate scattering
function f(q,∆t) = exp [−(Γ(q)∆t)α] observed in both
q-regimes.

To put our results into general context, let us
note that the magnitude of the compressing exponent
α observed in our experiment is significantly smaller
than α ' 1.5 reported in dynamic light scattering
studies on other systems [5]. According to the mean-
field arguments presented in ref. [5] the exponent
α is determined by the ratio d/β, where β is the
exponent of the leading term in the decay of the
displacement field u(r) generated by a single dipolar
plastic event occurring at the origin u(r) ∼ u−β . In
three dimensions (d = 3) β = 2, leading to α = 3/2
[5]. The deviation of the observed exponent (α ' 1.2)
from this value could be due to the geometry of our
sample. The thickness of the sample is indeed much
larger than the average bubble radius (at least 150
times), the observation plane, however, coincides with
one of the confining walls. At this 3D semi-infinite
condition, the far-field decay of the displacement field
generated by a single plastic event should be that of the
3D unbounded case, but due to events occurring close
to the wall we expect significant near-field corrections
[31]. These could lead to an effective, faster-then-
quadratic decay of the displacement field, which would
explain the deviation of the observed exponent from
the mean-field value expected in the 3D unbounded
case.

With respect to the origin of dynamics in
foams, our experiments unambiguously show that the
constantly renewed mechanical constraints imposed by
the coarsening process are the cause for persistent
dynamics. This is evidenced by a direct correlation
between the age dependent relaxation rates and the
strain rates imposed by the increase in bubble size.
On a microscopic scale, the persistence in direction
of bubble displacements from one intermittent event
to another is consistent with previous observations,
reporting that subsequent bubble rearrangement
events preferentially occur at the same location [32].
Considering that an event is triggered by local stress-
imbalances, these findings indicate that an event does
not necessarily rejuvenate the stress configuration.
Indeed, we can argue that the bubbles start to move
when the net local stress exceeds the yield stress, and
that they will stop moving once the local stress is below
the yield stress again. This entails that the event
location remains among the most fragile regions of the
system, and that the direction of the net local stress
is not significantly changed after an event, consistent
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with the observed behaviour.
Our results significantly contribute to the under-

standing of dynamics that is driven by internal stresses.
They provide clear evidence of the driving mechanism
for intermittent bubble rearrangements in foam and
they unveil a limit for directionally-persistent displace-
ments. We believe that investigations specifically aim-
ing to explore the source for stress-driven dynamics
and the existence of a cut-off length for directionally-
persistent displacements in other systems would be
highly beneficial to fully establish the mechanisms of
stress-driven dynamics.

In this context, investigations on cell tissues
appear promising. Indeed, foams and cell tissues
exhibit similar tessellation patterns [33, 34, 35], and
it has been shown that simple models, originally
developed to describe the configuration of foams and
other jammed systems, can be extended to rationalize
experimental results on cell tissues [36, 37, 38, 39]
[40, 41]. More importantly, both tissues and foams are
non-equilibrium, slowly evolving systems, displaying
heterogeneous, intermittent, super-diffusive dynamics
and long-range correlations [42, 32, 43, 30]. The source
for persistent dynamics are different: in foams, the
source is the coarsening process, which is induced by
the pressure difference between differently sized gas
bubbles, in cell tissues, energy is continuously injected
at the single cell level, cell motility and proliferation
being major drivers of structural reorganisation [44,
45]. Only recently, a study similar that presented here
for foams, using a combination of real- and reciprocal-
space diagnostic tools typically used in soft condensed
matter physics have been applied to cell tissues [43,
46, 47, 30], unveiling their potential in providing a
robust multi-scale description, which should facilitate
the theoretical description of these systems. This
strategy appears particularly promising to establish
the link between spatial structure and dynamics, which
represents one of the major challenges in understanding
the behaviour of complex active systems close to
dynamical arrest [48].
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