A NOTE ON TRIGONOMETRIC APPROXIMATIONS OF BESSEL FUNCTIONS OF THE FIRST KIND, AND TRIGONOMETRIC POWER SUMS

LUCA GUIDO MOLINARI

Abstract

I reconsider the approximation of Bessel functions with finite sums of trigonometric functions, in the light of recent evaluations of Neumann-Bessel series with trigonometric coefficients. A proper choice of the angle allows for an efficient choice of the trigonometric sum. Based on these series, I also obtain straightforward non-standard evaluations of new parametric sums with powers of cosine and sine functions.

1. Introduction

Bessel functions are among the most useful and studied special functions. Analytic expansions exist for different regimes [18], and numerical algorithms for their precise evaluation [15 21] [13. Their simplest approximations are polynomials [1] [12] 14] and finite trigonometric sums, that can be advantageous in applications 5].
Let's consider J_{0}. Several trigonometric sums appeared in the decades, sometimes being rediscovered. These very simple ones

$$
\begin{align*}
& J_{0}(x) \simeq \frac{1}{4}\left[1+\cos x+2 \cos \left(\frac{\sqrt{2}}{2} x\right)\right] \tag{1}\\
& J_{0}(x) \simeq \frac{1}{6}\left[1+\cos x+2 \cos \left(\frac{1}{2} x\right)+2 \cos \left(\frac{\sqrt{3}}{2} x\right)\right] \tag{2}
\end{align*}
$$

have errors $\epsilon=J_{0}-J_{0}^{\text {approx }}$ with power series (the marvel of Mathematica)

$$
\epsilon(x)=-\frac{x^{8}}{2^{8} \cdot 20560}\left(1-\frac{x^{2}}{36}+\ldots\right), \quad \epsilon(x)=-\frac{x^{12}}{2^{12} \cdot 239500800}\left(1-\frac{x^{2}}{52}+\ldots\right)
$$

In practice, an error less than 0.001 is achieved for $x \leq 3$ or $x \leq 5.9$. These approximations were obtained by Fettis with the Poisson formula [11. Rehwald [20] and later Waldron [24, Blachman and Mousavinezhad 6] and [3] used the strategy of truncating to the first term Neumann-Bessel series like

$$
J_{0}(x)+2 J_{8}(x)+2 J_{16}(x)+\ldots=\frac{1}{4} \cos \left[1+\cos x+2 \cos \left(\frac{\sqrt{2}}{2} x\right)\right]
$$

that can be obtained from the Bessel generating function. The examples correspond to $n=4,6$ of eq. 19 in [2]:

$$
\begin{equation*}
J_{0}(x)+2 \sum_{k=1}^{\infty}(-)^{k n} J_{2 k n}(x)=\frac{1}{n} \sum_{\ell=0}^{n-1} \cos \left(x \cos \frac{\pi}{n} \ell\right) \tag{3}
\end{equation*}
$$

and the errors reflect the behaviour $J_{2 n}(x) \approx(x / 2)^{2 n}$ of the first neglected term, but with much larger denominators.

[^0]The truncation yields J_{0} as a sum of cosines that corresponds to the evaluation of the Bessel integral $J_{0}(x)=\int_{0}^{\pi} \frac{d \theta}{\pi} \cos (x \cos \theta)$ with the trapezoidal rule with n nodes [22] [4] [23. Increasing n increases accuracy: $n=15$ is a formula by Fettis [11] with 8 cosines (instead of 15 , symmetries of the roots of unity reduce the number of terms):

$$
\begin{equation*}
J_{0}(x) \simeq \frac{1}{15} \cos x+\frac{2}{15} \sum_{k=1}^{7} \cos \left(x \cos \frac{k \pi}{15}\right) \tag{4}
\end{equation*}
$$

The error now is order $x^{30} \times 10^{-42}$ and less than 10^{-6} for $x<15$.
In this note I reconsider the approximations for J_{0} in the light of new NeumannBessel trigonometric series in ref. [17]. They extend the series (3) by including an angular parameter, that is chosen to kill the term with $J_{2 n}$, so that the truncation involves the next-to-next term $J_{4 n}$ of the series.
The same strategy on appropriate series is then used for Bessel functions J_{n} of low order, that are discussed in section 3 .
In section 4, I show that the series give in very simple way some parametric sums of powers of cosines and sines. Some are in the recent literature (Jelitto [10], 2022) while the following ones, to my knowledge, are new:

$$
\sum_{\ell=0}^{n} \sin ^{p}\left(\frac{\theta+2 \pi \ell}{n}\right) \sin _{\cos }\left(q \frac{\theta+2 \pi \ell}{n}\right) \quad(p, q=0,1, \ldots)
$$

2. The Bessel function J_{0}

Consider the Neumann trigonometric series eq. 11 in [17]:

$$
\begin{equation*}
J_{0}(x)+2 \sum_{k=1}^{\infty}(-)^{k n} J_{2 k n}(x) \cos (2 k n \theta)=\frac{1}{n} \sum_{\ell=0}^{n-1} \cos \left[x \cos \left(\theta+\frac{\pi}{n} \ell\right)\right] \tag{5}
\end{equation*}
$$

The approximations (1), (2) and (4) are obtained with $\theta=0, n=4,6,15$, and neglecting functions J_{8}, J_{12}, J_{30} and higher orders. However they are not optimal. The advantage of eq. (5) is the possibility to choose the angle $\theta=\pi / 4 n$ to kill all terms $J_{2 n}, J_{6 n}$, etc. Then:

$$
\begin{equation*}
J_{0}(x)-2 J_{4 n}(x)+2 J_{8 n}(x)-\ldots=\frac{1}{n} \sum_{\ell=0}^{n-1} \cos \left(z \cos \frac{1+4 \ell}{4 n} \pi\right) \tag{6}
\end{equation*}
$$

An expansion for J_{0} results, again, by neglecting the other terms.
Some examples:

- $n=2$. It is $J_{0}(x)=\frac{1}{2}\left[\cos \left(x \cos \frac{\pi}{8}\right)+\cos \left(x \sin \frac{\pi}{8}\right)\right]+\epsilon_{2}(x)$. If we neglect the error, the first zero occurs at $\pi \sqrt{2-\sqrt{2}}=2.4045\left(j_{0,1}=2.4048\right)$.
- $n=3$. The approximation has three cosines:

$$
\begin{align*}
& J_{0}(x)=\frac{1}{3}\left[\cos \left(x \frac{1}{\sqrt{2}}\right)+\cos \left(x \frac{\sqrt{3}-1}{2 \sqrt{2}}\right)+\cos \left(x \frac{\sqrt{3}+1}{2 \sqrt{2}}\right)\right]+\epsilon_{3}(x) \tag{7}\\
& \epsilon_{3}(x)=\frac{x^{12}}{2^{12} \cdot 239500800}\left[1-\frac{x^{2}}{52}+\frac{x^{4}}{52 \cdot 112}-\frac{x^{6}}{52 \cdot 112 \cdot 180}+\ldots\right] .
\end{align*}
$$

Remarkably, the first powers of the error are opposite of those for the expansion eq. 22, that would involve 6 terms if not for the degeneracy of the roots of unity.

Figure 1. The Bessel function J_{0} (thick) and the trigonometric expansion (9). The difference increases with x; it is less than 10^{-9} for $x<8$ and 10^{-3} for $x<15$.

The half-sum of (2) and (7),

$$
\begin{array}{r}
J_{0}(x) \simeq \frac{1}{12}\left[1+\cos x+2 \cos \left(\frac{1}{2} x\right)+2 \cos \left(\frac{\sqrt{3}}{2} x\right)+2 \cos \left(x \frac{1}{\sqrt{2}}\right)\right. \\
\left.+2 \cos \left(x \frac{\sqrt{3}-1}{2 \sqrt{2}}\right)+2 \cos \left(x \frac{\sqrt{3}+1}{2 \sqrt{2}}\right)\right] \tag{8}
\end{array}
$$

has error $\epsilon(x)=-\frac{x^{24}}{5.2047} \times 10^{-30}\left[1-\frac{x^{2}}{100}+\frac{x^{4}}{20800}-\ldots\right]$.

- $n=6$ gives a precision similar to the sum (8):

$$
\begin{align*}
J_{0}(z)= & \frac{1}{6}\left[\cos \left(x \cos \frac{\pi}{24}\right)+\cos \left(x \cos \frac{3 \pi}{24}\right)+\cos \left(x \cos \frac{5 \pi}{24}\right)\right. \\
& \left.+\cos \left(x \sin \frac{\pi}{24}\right)+\cos \left(x \sin \frac{3 \pi}{24}\right)+\cos \left(x \sin \frac{5 \pi}{24}\right)\right]+\epsilon_{6}(x) . \tag{9}
\end{align*}
$$

The error has power expansion $\epsilon_{6}(x)=\frac{x^{24}}{5.2047} \times 10^{-30}\left[1-\frac{x^{2}}{100}+\ldots\right]$.

- $n=8$ is a sum of 8 cosines and compares with the formula (4) by Fettis. The two approximations are different but with the same number of terms (because $\theta=0$ produces degenerate terms) and similar precision.

3. Bessel functions J_{n}.

- \mathbf{J}_{1} is evaluated via $J_{1}=-J_{0}^{\prime}$. Eq. (8) gives:

$$
\begin{array}{r}
J_{1}(x) \simeq \frac{1}{12}\left[\sin x+\sin \left(\frac{1}{2} x\right)+\sqrt{3} \sin \left(\frac{\sqrt{3}}{2} x\right)+\sqrt{2} \sin \left(x \frac{1}{\sqrt{2}}\right)\right. \\
\left.+\left(\frac{\sqrt{3}-1}{\sqrt{2}}\right) \sin \left(x \frac{\sqrt{3}-1}{2 \sqrt{2}}\right)+\left(\frac{\sqrt{3}+1}{\sqrt{2}}\right) \sin \left(x \frac{\sqrt{3}+1}{2 \sqrt{2}}\right)\right] \tag{10}
\end{array}
$$

with error $\epsilon(x) \simeq(x / 20)^{23} \times 3.87 \times\left[1-\frac{13}{1200} x^{2}+\ldots\right]$.

- $\mathbf{J}_{\mathbf{2}}, \mathbf{J}_{\mathbf{4}}$ can be evaluated with the following identity (the real part of eq.(5) in [17):

$$
\begin{array}{r}
J_{p}(x)+\sum_{k=1}^{\infty}\left[J_{k n+p}(x)+(-1)^{k n+p} J_{k n-p}(x)\right] \cos (k n \theta) \\
=\frac{1}{n} \sum_{\ell=0}^{n-1} \cos \left[x \sin \left(\theta+\frac{2 \pi \ell}{n}\right)+p\left(\theta+\frac{2 \pi \ell}{n}\right)\right] \tag{11}
\end{array}
$$

Because of the term J_{n-p}, we take $2 p<n$. With $y=\frac{\pi}{2 n}$:

$$
J_{p}(x)-(-1)^{p} J_{2 n-p}(x)+\ldots=\frac{1}{n} \sum_{\ell=0}^{n-1} \cos \left[x \sin \left(\frac{1+4 \ell}{2 n} \pi\right)+p \frac{1+4 \ell}{2 n} \pi\right]
$$

If only J_{p} is kept, the approximation depends on the parity of p :

$$
J_{p}(x) \simeq\left\{\begin{align*}
\cos \left(p \frac{1+4 \ell}{2 n} \pi\right) \times \frac{1}{n} \sum_{\ell=0}^{n-1} \cos \left[x \sin \left(\frac{1+4 \ell}{2 n} \pi\right)\right] & p \text { even } \tag{12}\\
-\sin \left(p \frac{1+4 \ell}{2 n} \pi\right) \times \frac{1}{n} \sum_{\ell=0}^{n-1} \sin \left[x \sin \left(\frac{1+4 \ell}{2 n} \pi\right)\right] & p \text { odd }
\end{align*}\right.
$$

$p=2, n=6$, give the short formula

$$
\begin{equation*}
J_{2}(x) \simeq \frac{1}{2 \sqrt{3}}\left[\cos \left(x \sin \frac{\pi}{12}\right)-\cos \left(x \cos \frac{\pi}{12}\right)\right] \tag{13}
\end{equation*}
$$

with error $\epsilon(x)=2.69114 \times(x / 10)^{-10}\left[1-\frac{x^{2}}{44}+\ldots\right]$. The first zero is evaluated $\frac{2}{3} \pi \sqrt{6} \simeq 5.1302\left(j_{2,1}=5.13562\right)$. A better approximation is $n=8, y=\frac{\pi}{16}$:

$$
\begin{align*}
J_{2}(x) \simeq & \frac{1}{4} \cos \left(\frac{\pi}{8}\right)\left[\cos \left(x \sin \frac{\pi}{16}\right)-\cos \left(x \cos \frac{\pi}{16}\right)\right] \tag{14}\\
& +\frac{1}{4} \sin \left(\frac{\pi}{8}\right)\left[\cos \left(x \cos \frac{5 \pi}{16}\right)-\cos \left(x \sin \frac{5 \pi}{16}\right)\right]
\end{align*}
$$

with error $\epsilon(x)=7.00119 \times 10^{-16} x^{14}\left[1-\frac{x^{2}}{60}+\ldots\right] ; \epsilon(5)=3 \times 10^{-6}, \epsilon(8)=0.0010$.
For J_{4} we select $p=4, n=8, \theta=\frac{\pi}{16}$. Now the lowest neglected term is J_{12} :

$$
\begin{equation*}
J_{4}(x) \simeq \frac{\sqrt{2}}{8}\left[\cos \left(x \sin \frac{\pi}{16}\right)+\cos \left(x \cos \frac{\pi}{16}\right)-\cos \left(x \sin \frac{5 \pi}{16}\right)-\cos \left(x \cos \frac{5 \pi}{16}\right)\right] \tag{15}
\end{equation*}
$$

The error is less that 10^{-3} at $x<6.3$.

- $\mathbf{J}_{\mathbf{3}}, \mathbf{J}_{\mathbf{5}}$. A useful sum for odd-order Bessel functions is eq.(17) in [17):

$$
\begin{equation*}
\sum_{k=0}^{\infty}(-)^{n+k} J_{(2 n+1)(2 k+1)}(x) \cos [(2 k+1) \theta]=\sum_{\ell=0}^{2 n} \frac{\sin \left[x \cos \left(\frac{\theta+2 \pi \ell}{2 n+1}\right)\right]}{2(2 n+1)} \tag{16}
\end{equation*}
$$

The angle $\theta=\frac{\pi}{6}$ cancels $J_{6 n+3}, J_{14 n+7}$ etc. and gives the approximation

$$
\begin{equation*}
J_{2 n+1}(x) \simeq \frac{(-1)^{n}}{\sqrt{3}} \sum_{\ell=0}^{2 n} \frac{\sin \left[x \cos \frac{1+12 \ell}{12 n+6} \pi\right]}{2 n+1} \tag{17}
\end{equation*}
$$

that neglects $J_{10 n+5}$ etc. With $n=1$ and $n=2$ we obtain:

$$
\begin{align*}
& J_{3}(x) \simeq-\frac{1}{3 \sqrt{3}}\left[\sin \left(x \cos \frac{\pi}{18}\right)-\sin \left(x \sin \frac{2 \pi}{9}\right)-\sin \left(x \sin \frac{\pi}{9}\right)\right] \tag{18}\\
& J_{5}(x) \simeq \frac{1}{5 \sqrt{3}}\left[\sin \left(x \cos \frac{\pi}{30}\right)+\sin \left(x \sin \frac{\pi}{15}\right)-\sin \left(\frac{\sqrt{3}}{2} x\right)\right. \\
& \left.-\sin \left(x \sin \frac{4 \pi}{15}\right)+\sin \left(x \cos \frac{2 \pi}{15}\right)\right] . \tag{19}
\end{align*}
$$

The expansion for J_{3} has error $\epsilon=2.33373 \times 10^{-17} x^{15}\left[1-\frac{x^{2}}{64}+\ldots\right]$. The second one has error $\epsilon=1.92134 x^{25} \times 10^{-33} \times\left[1-\frac{x^{2}}{104}+\ldots\right]$.

4. Trigonometric identities

The Neumann-Bessel series here used provide sums of powers of sines and cosines. They arise by expanding in powers of x the Bessel functions in the series,

$$
J_{n}(x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{(x / 2)^{n+2 k}}{k!(k+n)!}
$$

and the trigonometric functions in the sum of the series.

Figure 2. The Bessel function J_{3} (thick) and the approximation 18.) The difference is $\epsilon(6)=6 \times 10^{-6}, \epsilon(8)=.0003, \epsilon(10)=.0045$.

- Consider the series eq. (5). At threshold powers $x^{2 n}, x^{4 n}$ etc. new Bessel functions $(-)^{n} 2 J_{2 n} \cos (2 n \theta), 2 J_{4 n} \cos (4 n \theta)$ etc. enter a term in the sum of cosines.

$$
\begin{align*}
& \frac{1}{n} \sum_{\ell=0}^{n-1}\left[\cos \frac{\theta+\ell \pi}{n}\right]^{2 k}= \tag{20}\\
& = \begin{cases}\frac{1}{4^{k}}\binom{2 k}{k} & 0 \leq k<n \\
\frac{1}{4^{k}}\left[\binom{2 k}{k}+2\binom{2 k}{k-n} \cos (2 \theta)\right] & n \leq k<2 n \\
\frac{1}{4^{k}}\left[\binom{2 k}{k}+2\binom{2 k}{k-n} \cos (2 \theta)+2\binom{2 k}{k-2 n} \cos (4 \theta)\right] & 2 n \leq k<3 n \\
\ldots & \ldots\end{cases}
\end{align*}
$$

By replacing θ with $\theta+n \frac{\pi}{n}$ we obtain:

$$
\begin{align*}
& \frac{1}{n} \sum_{\ell=0}^{n-1}\left[\sin \frac{\theta+\ell \pi}{n}\right]^{2 k}= \tag{21}\\
& \left.=\left\{\begin{array}{ll}
\frac{1}{4^{k}}\binom{2 k}{k} & 0 \leq k<n \\
\frac{1}{4^{k}} \\
\left.\frac{1}{4^{k}}\left[\begin{array}{c}
2 k \\
k
\end{array}\right)+(-)^{n} 2\binom{2 k}{k-n} \cos (2 \theta)\right] & n \leq k<2 n \\
\ldots & \ldots \\
k
\end{array}\right)+(-)^{n} 2\binom{2 k}{k-n} \cos (2 \theta)+2\binom{2 k}{k-2 n} \cos (4 \theta)\right] \\
& \ldots
\end{align*}
$$

Examples:
$\frac{1}{9} \sum_{\ell=0}^{8}\left[\sin \frac{\theta+\ell \pi}{9}\right]^{20}=\frac{1}{4^{10}}\left[\binom{20}{10}-2\binom{20}{1} \cos (2 \theta)\right]$.
$\frac{1}{n} \sum_{\ell=0}^{n-1}\left[\cos \left(\frac{1+6 \ell}{6 n} \pi\right)\right]^{2 n}=\frac{1}{4^{n}}\left[\binom{2 n}{n}+1\right], \quad \frac{1}{n} \sum_{\ell=0}^{n-1}\left[\cos \left(\frac{1+4 \ell}{4 n} \pi\right)\right]^{4 n}=\frac{1}{16^{n}}\left[\binom{4 n}{2 n}-2\right]$.
For $\theta=0$ and $\theta=\frac{\pi}{2}$ these identities are eqs. 4.4.2 in [19], 2.1 and 2.2 (together with several other non-parametric sums) in [9. The series had also been studied in [16]. Parametric averages on the full circle were recently evaluated by Jelitto [10], with a different method.

- With the Neumann series (16) we obtain:

$$
\begin{align*}
& \frac{1}{2 n+1} \sum_{\ell=0}^{2 n}\left[\cos \frac{\theta+2 \pi \ell}{2 n+1}\right]^{2 k+1}= \tag{22}\\
& = \begin{cases}0 & 2 n+1 \leq 2 k+1<3(2 n+1) \\
\frac{1}{4^{k}}\binom{2 k+1}{k-n} \cos \theta & 1 \leq 2 k+1<2 n+1 \\
\frac{1}{4^{k}}\left[\binom{(2 k+1}{k-n} \cos \theta+\binom{2 k+1}{k-3 n-1} \cos (3 \theta)\right] & 3(2 n+1) \leq 2 k+1<5(2 n+1) \\
\ldots & \ldots\end{cases}
\end{align*}
$$

The sums of even powers of cosines are obtained from the series eq. 16 in [17]:

$$
\left.\begin{array}{c}
J_{0}(x)+2 \sum_{k=1}^{\infty}(-)^{k} J_{(4 n+2) k}(x) \cos (2 k \theta)=\sum_{\ell=0}^{2 n} \frac{\cos \left[x \cos \frac{\theta+2 \pi \ell}{2 n+1}\right]}{2 n+1} \\
\left.=\left\{\begin{array}{ll}
2 n+1 & \sum_{\ell=0}^{2 n}\left[\cos \frac{\theta+2 \pi \ell}{2 n+1}\right]^{2 k}= \\
\frac{1}{4^{k}}\binom{2 k}{k} & 0 \leq k<2 n+1 \\
\left.\frac{1}{4^{k}}\left[\begin{array}{l}
2 k \\
4^{k} \\
k
\end{array}\right)+2\binom{2 k}{k-2 n-1} \cos (2 \theta)\right] \\
\ldots & 2 n+1 \leq k<4 n+2 \\
k
\end{array}\right)+2\binom{2 k}{k-2 n-1} \cos (2 \theta)+2\binom{2 k}{k-4 n-2} \cos (4 \theta)\right] \tag{24}\\
4 n+2 \leq k<6 n+3
\end{array}\right] .
$$

Example: $\left(\cos \frac{\theta}{3}\right)^{12}+\left(\cos \frac{\theta+\pi}{3}\right)^{12}+\left(\cos \frac{\theta+2 \pi}{3}\right)^{12}=\frac{3}{4^{6}}\left[\binom{12}{6}+2\binom{12}{3} \cos (2 \theta)+2 \cos (4 \theta)\right]$. The formulae with sines are obtained by shifting the parameter θ.

- Now let's consider the sum eq. 11 with $p<n-p$. The equations are new and are easier to state if we distinguish the parity of n and of p.

Case $\mathbf{n}=\mathbf{2 m}$ and $\mathbf{p}=\mathbf{2 q}$. Eq. 11 now is:

$$
\begin{aligned}
& \frac{1}{2 m} \sum_{\ell=0}^{2 m-1} \cos \left[x \sin \left(\frac{\theta+\pi \ell}{m}\right)\right] \cos \left[2 q \frac{\theta+\pi \ell}{m}\right]=J_{2 q}(x)+ \\
& +\left[J_{2 m-2 q}(x)+J_{2 m+2 q}(x)\right] \cos (2 \theta)+\left[J_{4 m-2 q}(x)+J_{4 m+2 q}(x)\right] \cos (4 \theta)+\ldots
\end{aligned}
$$

Separation of even and odd parts in x, and expansion in x give:

$$
\frac{1}{2 m} \sum_{\ell=0}^{2 m-1}\left[\sin \frac{\theta+\pi \ell}{m}\right]^{2 k+1} \sin \left(2 q \frac{\theta+\pi \ell}{m}\right)=0, \quad \forall k
$$

This result is obvious as the sum from 0 to $m-1$ is opposite of the rest of the sum. The symmetry is used also in the other result:

$$
\begin{align*}
& \frac{1}{m} \sum_{\ell=0}^{m-1}\left[\sin \frac{\theta+\pi \ell}{m}\right]^{2 k} \cos \left(2 q \frac{\theta+\pi \ell}{m}\right)= \tag{25}\\
& =\frac{(-)^{q}}{4^{k}} \begin{cases}0 & k<q \\
\binom{2 k}{k-q} & q \leq k<m-q \\
\binom{2 k}{k-q}+(-1)^{m}\binom{2 k}{k-m+q} \cos (2 \theta) & m-q \leq k<m+q \\
\left.\binom{2 k}{k-q}+(-1)^{m}\left[\begin{array}{c}
2 k \\
k-m+q
\end{array}\right)+\binom{2 k}{k-m-q}\right] \cos (2 \theta) & m+q \leq k<2 m-q \\
\ldots & \cdots\end{cases}
\end{align*}
$$

Case $\mathbf{n}=\mathbf{2 m}, \mathbf{p}=\mathbf{2 q}+1$. Eq. 11 becomes:

$$
\begin{aligned}
& -\frac{1}{2 m} \sum_{\ell=0}^{2 m-1} \sin \left[x \sin \left(\frac{\theta+\pi \ell}{m}\right)\right] \sin \left[(2 q+1) \frac{\theta+\pi \ell}{m}\right]=J_{2 q+1}(x)+ \\
& +\left[-J_{2 m-2 q-1}(x)+J_{2 m+2 q+1}(x)\right] \cos (2 \theta)+\left[J_{4 m-2 q-1}(x)+J_{4 m+2 q+1}(x)\right] \cos (4 \theta)+\ldots
\end{aligned}
$$

The non trivial result is:

$$
\begin{align*}
& \frac{1}{m} \sum_{\ell=0}^{m-1}\left[\sin \frac{\theta+\pi \ell}{m}\right]^{2 k+1} \sin \left[(2 q+1) \frac{\theta+\pi \ell}{m}\right]= \tag{26}\\
& =\frac{(-)^{q}}{2^{2 k+1}} \begin{cases}0 & k<q \\
\binom{2 k+1}{k-q} & q \leq k<m-q-1 \\
\binom{2 k+1}{k-q}+(-1)^{m}\binom{2 k+1}{k+m-q} \cos (2 \theta) & m-q-1 \leq k<m+q \\
\binom{2 k+1}{k-q}+(-1)^{m}\left[\binom{2 k+1}{k+m-q}+\binom{2 k+1}{k-m-q}\right] \cos (2 \theta) & m+q \leq k<2 m-q-1 \\
\ldots & \ldots\end{cases}
\end{align*}
$$

Example: $\frac{1}{5} \sum_{\ell=0}^{4} \sin ^{13}\left(\frac{\pi \ell}{5}\right) \sin \left(\frac{3 \pi \ell}{5}\right)=-\frac{1}{2^{13}}\left[\binom{13}{5}-\binom{13}{10}-\binom{13}{0}\right]=-\frac{125}{1024}$.

Case $n=2 m+1$ and $p=2 q$:

$$
\begin{align*}
& \frac{1}{2 m+1} \sum_{\ell=0}^{2 m} \cos \left[x \sin \left(\frac{\theta+2 \pi \ell}{2 m+1}\right)\right] \cos \left(2 q \frac{\theta+2 \pi \ell}{2 m+1}\right)=J_{2 q}(x)+\left[J_{4 m+2-2 q}(x)+J_{4 m+2+2 q}(x)\right] \cos (2 \theta)+\ldots \\
& \frac{1}{2 m+1} \sum_{\ell=0}^{2 m} \sin \left[x \sin \left(\frac{\theta+2 \pi \ell}{2 m+1}\right)\right] \sin \left(2 q \frac{\theta+2 \pi \ell}{2 m+1}\right)=\left[J_{2 m+1-2 q}(x)-J_{2 m+1+2 q}(x)\right] \cos \theta+\ldots \\
& \frac{1}{2 m+1} \sum_{\ell=0}^{2 m}\left[\sin \frac{\theta+2 \pi \ell}{2 m+1}\right]^{2 k} \cos \left(2 q \frac{\theta+2 \pi \ell}{2 m+1}\right)= \tag{27}\\
& =\frac{(-)^{q}}{4^{k}} \begin{cases}0 & k<q \\
\binom{2 k}{k-q} & q \leq k<2 m+1-q \\
\binom{2 k}{k-q}-\binom{2 k}{k+q-1-2 m} \cos (2 \theta) & 2 m+1-q \leq k<2 m+1+q \\
\left.\binom{2 k}{k-q}-\left[\begin{array}{c}
2 k \\
k+q-1-2 m
\end{array}\right)+\binom{2 k}{k-q-1-2 m}\right] \cos (2 \theta) & 2 m+1+q \leq k<4 m+2-q \\
\ldots & \ldots\end{cases} \\
& \frac{1}{2 m+1} \sum_{\ell=0}^{2 m}\left[\sin \frac{\theta+2 \pi \ell}{2 m+1}\right]^{2 k+1} \sin \left(2 q \frac{\theta+2 \pi \ell}{2 m+1}\right)= \tag{28}\\
& =\frac{(-)^{q+m+1}}{2^{2 k+1}} \begin{cases}0 & k<m-q \\
\binom{2 k+1}{k-m+q} \cos \theta & m-q \leq k<m+q \\
{\left[\binom{2 k+1}{k-m+q}-\binom{2 k+1}{k-m-q}\right] \cos \theta} & m+q \leq k<3 m+1-q \\
\ldots & \ldots\end{cases}
\end{align*}
$$

Case $\mathbf{n}=\mathbf{2 m}+1$ and $p=2 q+1$:

$$
\begin{gathered}
\frac{1}{2 m+1} \sum_{\ell=0}^{2 m} \cos \left[x \sin \frac{\theta+2 \pi \ell}{2 m+1}\right] \cos \left[(2 q+1) \frac{\theta+2 \pi \ell}{2 m+1}\right]=\left[J_{2 m-2 q}(x)+J_{2 m+2 q+2}(x)\right] \cos \theta+\ldots \\
-\frac{1}{2 m+1} \sum_{\ell=0}^{2 m} \sin \left[x \sin \frac{\theta+2 \pi \ell}{2 m+1}\right] \sin \left[(2 q+1) \frac{\theta+2 \pi \ell}{2 m+1}\right]=J_{2 q+1}(x)+ \\
+\left[-J_{4 m-2 q+1}(x)+J_{4 m+2 q+3}(x)\right] \cos (2 \theta)+\ldots
\end{gathered}
$$

$$
\begin{align*}
& \frac{1}{2 m+1} \sum_{\ell=0}^{2 m} \sin \left[\frac{\theta+2 \pi \ell}{2 m+1}\right]^{2 k} \cos \left[(2 q+1) \frac{\theta+2 \pi \ell}{2 m+1}\right]= \tag{29}\\
& =\frac{(-)^{m+q}}{4^{k}} \begin{cases}0 & k<m-q \\
\binom{2 k}{k-m+q} \cos \theta & m-q \leq k<m+q+1 \\
\left.\left[\begin{array}{c}
2 k \\
k-m+q
\end{array}\right)-\binom{2 k}{k-m-q-1}\right] \cos \theta & m+q+1 \leq k<3 m+q+2 \\
\ldots & \ldots\end{cases} \\
& \frac{1}{2 m+1} \sum_{\ell=0}^{2 m} \sin \left[\frac{\theta+2 \pi \ell}{2 m+1}\right]^{2 k+1} \sin \left[(2 q+1) \frac{\theta+2 \pi \ell}{2 m+1}\right]= \tag{30}\\
& =\frac{(-)^{q}}{2^{2 k+1}} \begin{cases}0 & k<q \\
\binom{2 k+1}{k-q} & q \leq k<2 m-q \\
\binom{2 k+1}{k-q}-\binom{2 k+1}{k+q-2 m} \cos (2 \theta) & 2 m-q \leq k<2 m+q+1 \\
\left.\binom{2 k+1}{k-q}-\left[\begin{array}{c}
2 k+1 \\
k+q-2 m
\end{array}\right)+\binom{2 k+1}{k-q-1-2 m}\right] \cos (2 \theta) & 2 m+q+1 \leq k<4 m-q+1 \\
\ldots & \ldots\end{cases}
\end{align*}
$$

Data availability. Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Publ. New York 1965.
[2] A. Al-Jarrah, K. M. Dempsey and M. L. Glasser, Generalized series of Bessel functions, J. Comp. Appl. Math. 143 (2002) 1-8. https://doi.org/10.1016/S0377-0427(01)00505-2
[3] M. T. Abuelma'atti, Trigonometric approximations for some Bessel functions, Active and Passive Elec. Comp. 22 (1999) 75-85.
https://downloads.hindawi.com/journals/apec/1999/015810.pdf
[4] P. Baratella, M. Garetto and G. Vinardi, Approximation of the Bessel function $J_{\nu}(x)$ by numerical integration, J. Comp. Appl. Math. 7 (2) (1981) 87-91.
[5] V. Barsan and S. Cojocaru, Physical applications of a simple approximation of Bessel functions of integer order, Eur. J. Phys. 28 (5) (2007) 983.
https://doi.org/10.1088/0143-0807/28/5/021
[6] N. M. Blachman and S. H. Mousavinezhad, Trigonometric Approximations for Bessel Functions, IEEE Transactions on Aerospace and Electronic Systems AES-22 n. 1 (1986). https://doi.org/10.1109/TAES.1986.310686
[7] J. Bremer, An algorithm for the rapid numerical evaluation of Bessel functions of real orders and arguments, (2017), arXiv https://arxiv.org/abs/1705.07820
[8] A. Cuyt, Wen-shin Lee, Min Wu, High accuracy trigonometric approximations of the real Bessel functions of the first kind, Comput. math. and math. phys. 60 (1) (2020) 119-127. https://doi.org/10.1134/S0965542520010078
[9] C. M. da Fonseca, M. L. Glasser and V. Kowalenko, Basic trigonometric power sums with applications, Mathematics. The Ramanujan Journal 42 (2017) 401-428. https://doi.org/10.1007/s11139-016-9778-0
[10] H. Jelitto, Generalized trigonometric power sums covering the full circle, Journal of Applied Mathematics and Physics 10 (2022) 405-414. https://doi.org/10.4236/jamp.2022.102031
[11] H. E. Fettis, Numerical calculation of certain definite integrals by Poisson's summation formula, Math. Tables Aids. Comp. 9 (1955) 85-92.
https://doi.org/10.2307/2002063
[12] F. B. Gross, New approximations to J_{0} and J_{1} Bessel functions, IEEE transactions on antennas and propagation 43 n .8 (1995) 904-907. https://doi.org/10.1109/8.402217
[13] E. A. Karatsuba, Calculation of Bessel functions via the summation of series, Numer. Analys. Appl. 12 (2019) 372-387. https://doi.org/10.1134/S1995423919040050
[14] Lianlin Li, Fang Li, F. B. Gross, A new polynomial approximation for J_{ν} Bessel functions, Applied Mathematics and Computation 183 (2006) 1220-1225.
https://doi.org/10.1016/j.amc.2006.06.047
[15] G. Matviyenko, On the evaluation of Bessel functions, Appl. Computational Harmonic Analysis 1 (1993) 116-135. https://doi.org/10.1006/acha.1993.1009
[16] M. Merca, A note on cosine power sums, Journal of Integer Sequences, 15 (2012) article 12.5.3. https://cs.uwaterloo.ca/journals/JIS/VOL15/Merca1/merca6.pdf
[17] L. G. Molinari, Some Neumann-Bessel series and the Laplacian on polygons, J. Math. Phys. 62 (5) (2021) 053502 (7pp). https://doi.org/10.1063/5.0037872
[18] Handbook of Mathematical functions, edited by F. Olver, D. Lozier, R. Boisvert, C. Clark, Cambridge University Press (2010).
[19] A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and Series, Vol. 1: Elementary functions, Gordon and Breach (1986).
[20] W. Rehwald, Representation of Bessel functions through trigonometric functions or power series and asymtotic formulas with complex arguments (in German), Frequenz 21 (1967) 321-328. https://doi.org/10.1515/FREQ.1967.21.10.320
[21] C. Schwartz, Numerical calculation of Bessel functions, Int. J. Mod. Phys. C 23 (12) (2012) 1250084. https://doi.org/10.1142/S0129183112500842
[22] A. H. Stroud and J. P. Kohli, Computation of J_{n} by numerical integration, Communications of the ACM 12 n. 4 (1969) 236-238.
[23] Lloyd N. Trefethen and J. A. C. Weideman, The exponentially convergent trapezoidal rule, SIAM Review Vol. 56, No. 3 (2014), 385-458.
[24] R. A. Waldron, Formulas for computation of approximate values of some Bessel functions, Proc. of the IEEE 69 n. 12 (1981) 1586-1588. https://doi.org/10.1109/PROC.1981.12211

Physics Department "Aldo Pontremoli", Università degli Studi di Milano and I.n.F.n. sez. Milano, Via Celoria 16, 20133 Milano, Italy. ORCiD (L.G.Molinari): 0000-0002-5023-787X

Email address: luca.molinari@unimi.it

[^0]: Date: 21 May 2022.
 2010 Mathematics Subject Classification. Primary 33C10, Secondary 42A10, 33B10.
 Key words and phrases. Bessel functions, trigonometric power sum, Neumann series, trigonometric approximations.

