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1. Introduction 

 Stress on early stages of life has been suggested to impact the 

neurodevelopment of infants through biological and behavioral changes (Provençal & 

Binder, 2015). Previous studies have shown that early life stress (ELS) exposure may 

impair brain structure and function, especially in sensitive regions, such as the 

prefrontal cortex, amygdala and hippocampus (Aleksić et al., 2016; de Azeredo et al., 

2017; Hanson et al., 2015; Teissier et al., 2020; van Bodegom et al., 2017). Moreover, 

alterations in the inflammatory state and immune system are often observed in 

individuals exposed to ELS (Agorastos et al., 2019; Brenhouse et al., 2019; Massart 

et al., 2016). These alterations are considered risk factors for the emergence of 

psychiatric disorders, including anxiety, depression, and drug addiction (Danese & J 

Lewis, 2017; Lo Iacono et al., 2018; Park et al., 2021; Tannous et al., 2020). For 

example, chronic exposure to parental neglect, physical abuse or abandonment, 

induce overstimulation of the hypothalamus-pituitary-adrenal (HPA) axis, which is the 

main physiological system responsible for stress response, releasing stress hormones 

that are linked to an increase in the levels of proinflammatory cytokines (Grassi-

Oliveira et al., 2016; Reed & Raison, 2016). Therefore, alterations in the levels of 

inflammatory cytokines and neuroimmune signaling induced by ELS play a critical role 

in the development of cognitive and behavioral dysfunctions later in life (Diaz-Chávez 

et al., 2020; Kuhlman et al., 2020). 

Cytokines are signaling proteins secreted by immune cells that can trigger 

protective and damaging responses (Dugue et al., 2017). They contribute to the 

modulation of the neuroinflammatory state, neurogenesis, and synaptic processes 

(Pei et al., 2021). ELS may prime brain microglia to stimulate proinflammatory 

cytokines and chemokines release in response to chronic stress exposure (Weber et 

al., 2015). Higher stress reactivity induce elevation of proinflammatory cytokines, such 

as TNF-α, IL-1β and IL-6, which stimulate neuronal apoptosis and serotonin reuptake 

(Fabbri et al., 2017). Therefore, it is possible that together these inflammatory-induced 

changes contribute as a vulnerability factor for the development of psychiatric 

disorders (Bauer & Teixeira, 2019; Druzhkova et al., 2019; Pace et al., 2006).  

Considering the prominent role of inflammatory cytokines on the regulation of 

immunological and stress systems, it is important to further understand the potential 

relationship of such biomarkers on the brain and on its phenotypic expression. For this 

reason, the use of animal models represent an essential tool to investigate the 



changes promoted by ELS at different levels (Pfau & Russo, 2015). On the other hand, 

clinical studies face some limitation to access biological materials and provide 

adequately control of variables for evaluate stress effects over different periods of 

development. ELS animal models studies commonly reproduce adverse postnatal 

conditions in order to induce exposure to stressful environment. For example, in the 

maternal separation (MS) model, pups are separated from the dam for a period of 

time, increasing stress response due to an unfamiliar environment and disrupting the 

maternal care pattern of the dams after reuniting with the pups (Orso et al., 2019; 

White & Kaffman, 2019). In the limited bedding (LB) model, the dams have reduced 

access to bedding material and nest building resources, which are both necessary for 

offspring thermoregulation and adequate maternal care (McLaughlin et al., 2014; Rice 

et al., 2008). More recently, a combination of both models (MS and LB) was proposed 

in order to induce more robust ELS-induced effects and reduce the previously reported 

variability observed in studies that utilized MS or LB (Orso et al., 2020; Peña et al., 

2017). 

A recent review reported that MS exposure may indeed alter the levels of pro-

inflammatory cytokines, but major modifications in the immune system were observed 

after a secondary hit later in life (Dutcher et al., 2020). Nevertheless, no meta-analysis 

compiled data regarding how ELS exposure may influence inflammatory cytokine 

levels in rodents. Considering that there are still inconsistencies in findings of studies 

utilizing MS and LB models, and that the effects of methodological variables have not 

been previously explored, a meta-analysis is now required to provide further statistical 

support. Thus, the aim of this study was to perform a systematic review and meta-

analysis with findings from rodent studies that investigated the impact of ELS on 

inflammatory cytokines in the brain. Moreover, we explored sources of heterogeneity 

between studies using meta-regression models, and investigated the methodological 

quality of the included studies. 

 

2. Methods 

2.1 Search strategy 

 The search was performed on September 17th, 2019, and updated on March 

5th, 2021. Three databases were used: PubMed, Web of Science, PsycInfo. The 

following terms were used for the search: [cytokine OR “proinflammatory cytokine” OR 

chemokine OR inflammation OR “tumor necrosis factor alpha” OR “interferon gamma” 



OR “granulocyte-macrophage colony stimulating factor” OR “transforming growth 

factor” OR “C-reactive protein” OR “Macrophage Inflammatory Protein-1 alpha” OR 

Eotaxin-1 OR IL-1 OR IL-1β OR IL-2 OR IL-4 OR IL-5 OR IL-6 OR IL-8 OR IL-10 OR 

IL-12 OR IL-17 OR IL-18 AND rattus OR “mus musculus” OR rat OR mice OR rodent 

AND “maternal separation” OR “maternal deprivation” OR “neonatal stress” OR 

“postnatal stress” OR “limited bedding” OR “maternal stress” OR “early life stress” OR 

“early handling” OR “unpredictable stress”. This study followed the Cochrane 

recommendations for developing a search strategy (Cochrane  Infectious Diseases 

Group, 2007). 

 

2.2 Selection and eligibility 

 The selection of the articles was performed in two phases. For the first phase, 

only the titles and abstracts were screened. The second phase consisted in reading 

the full text for possible inclusion. The following exclusion criteria were applied to 

select the studies for this review: (1) the study was not written in English; (2) the study 

was not empirical; (3) the study did not use mice or rat; (4) the study did not have an 

early life stress protocol; (5) the study did not analyze cytokines in the brains of the 

offspring; (6) the study only used transgenic or knock-out animals. Both phases were 

performed blindly by two independent authors (FSL and EKF) using the Rayyan QCRI 

website (Ouzzani et al., 2016). Any disagreement regarding selection of studies was 

resolved by two senior authors (RGO and TWV). 

 

2.3 Data extraction 

 Two independent authors (FSL and EKF) extracted the following data from all 

included studies: ‘first author’, ‘publication year’, ‘species’, ‘strain’, ‘early life stress 

protocol’, ‘early life stress period’, ‘sex’, ‘age’, ‘analyzed cytokines’, ‘analyzed tissues’, 

‘biological material’, ‘secondary manipulations’, and ‘outcome data’. For both the 

stressed and control groups, the mean, the standard deviation (SD), and the number 

of animals per group were collected for the outcome data. When only the standard 

error (SE) was reported, it was used to calculate the SD. When a study reported the 

number of animals per group as a range, we utilized the smallest number for the meta-

analysis. WebPlotDigitizer was utilized to extract the necessary information when data 

was only reported in graphs. 

 



2.4 Coding procedure and potential moderators 

 The following variables and codes were used as potential moderators for meta-

regression: 

- Species, coded as: (0) rat; and (1) mice. 

- Early life stress protocol, coded as: (0) maternal separation; (1) maternal 

separation + heat or cold stress; (2) limited bedding; (3) maternal deprivation. 

- Early life stress period, coded as: (0) 1 day; (1) 2-7 days; (2) 8-14 days; (3) 15-

21 days. 

- Sex, coded as: (0) male, (1) female, (2) unspecified. 

- Age, coded as: (0) post-natal day 0-21; (1) post-natal day 22-45; (2) post-natal 

day 46-60; (3) post-natal day 61-90; (4) post-natal day 91 or more. 

- Tissue, coded as: (0) hippocampus; (1) cortex; (2); cerebrospinal fluid; (3) 

striatum; (4) nucleus accumbens; (5) brain stem; (6) hypothalamus. 

- Biological material, coded as: (0) protein; (1) RNA. 

- Secondary manipulations, coded as: (0) no manipulation; (1) sham surgery or 

vehicle injection; (2) behavior; (3) sham surgery or vehicle injection + behavior. 

 

2.5 Analysis of methodological quality 

 To evaluate the methodological quality of the included studies, we utilized an 

adapted version of the Gold Standard Publication Checklist (GSPC) (Hooijmans et al., 

2011) and the ARRIVE Guidelines for Reporting Animal Research (Kilkenny et al., 

2010), which was used by Tractenberg et al. (2016). The checklist consisted of 26 

items, and 0.5 points were given when a specific data was presented in the article, 

while 0 points were given when the information was missing. Two authors (FSL and 

EKF) independently performed the analysis. 

 

2.6 Data analysis 

 Considering that the assumption of independence between outcomes was 

violated because some studies contributed with more than one sample, we conducted 

the meta-analysis using the random effects model (RE Model), and a multilevel 

approach to generate the forest plots. A 2-level hierarchical data structure was 

modeled, with samples within studies nested with samples between studies. The 

estimated effect size of each cytokine investigated on different brain regions was 

determined using the standardized mean difference (SMD), which was calculated 



using Cohen’s d. Influence analysis was performed to detect possible outliers for all 

targets. Q statistic was used to verify possible heterogeneity, and I² to assess the 

proportion of total variability due to heterogeneity. Univariate meta-regression models 

with potential moderators were used to explore the sources of heterogeneity of all 

meta-analyses. The existence of publication bias was identified using funnel plots’ 

asymmetry and then statistically confirmed by Egger’s regression test. All statistical 

analyses were performed using the package ‘metafor’ (version 2.4-0) from the 

statistical software R (version 4.0.0). 

 

Results 

The first database search yielded 828 studies, of which 244 were extracted 

from PUBMED, 280 from PsycInfo and 304 from Web of Science. After exclusion of 

450 duplicate studies, we evaluated the title and abstract of 378 studies, which 

resulted in 173 studies selected for full-text screening (n = 205 excluded). The full-text 

analysis resulted in additional 153 exclusions: n = 6 studies were not written in English; 

n = 7 were not empirical; n = 81 did not use ELS protocols; n = 59 did not analyze 

cytokines in the brain. The update search provided 91 new studies for screening, in 

which 84 were excluded considering the criteria previous used. The final number of 

included studies for analysis was 27 (Amini-Khoei et al., 2017; Arabi et al., 2021; 

Banqueri et al., 2019; Burke et al., 2013; Ganguly et al., 2019; Giridharan et al., 2019; 

Hoeijmakers et al., 2017; Hohmann et al., 2017; Lajud et al., 2021; Lorigooini et al., 

2021; Nouri et al., 2020; Oliveira et al., 2020; Park et al., 2014; Pinheiro et al., 2015; 

Romeo et al., 2004; Roque et al., 2016; Réus et al., 2013; Réus et al., 2017; Réus et 

al., 2015; Saavedra et al., 2017; Ströher et al., 2020; Tang et al., 2017; Viola et al., 

2019; Viviani et al., 2014; Wang et al., 2020; Ye et al., 2019; Zhu et al., 2017). 

Flowchart information with detailed description of all stages can be viewed in Figure 

1. 

 

3.1 Studies characteristics 

  66.6% of eligible studies were performed with rats (n = 18) and 33.4% with 

mice (n = 9). Regarding ELS protocols, MS was the most used, corresponding to 

85.2% of studies (n = 23), while both LB (n = 1) and MS combined with heat or cold 

stress (n = 1) corresponded to 3.7% each and finally maternal deprivation was 

performed in 2 studies (7.4%). Most studies utilized an ELS period of 8-14 days 



(55.6%, n = 15), followed by 29.6% of studies using 15-21 days (n = 8). The use of a 

single day of stress (n = 2), or 2-7 days (n = 2) composed 7.4% of each. 70.4% of 

studies used only males (n = 19), only 3.7% used only females (n = 1), 18.5% used 

both male and female animals (n = 5) and 7.4% did not specify sex (n = 2). 

Hippocampus was the predominantly analyzed tissue (n = 20), corresponding to 

46.5% of studies, followed by the prefrontal cortex (n = 12) that was analyzed in 27.9% 

of studies. The cerebral cortex (n = 3) and hypothalamus (n = 3) were analyzed in 7% 

of studies each, while 4.7% analyzed cerebrospinal fluid (n = 2). The striatum (n = 1), 

nucleus accumbens (n = 1), and Brainstem (n = 1), were the least analyzed regions 

(2.3% of studies each). 22.2% evaluated cytokines between postnatal day (PND) 0-

21 (n = 8), 27.8% between PND 22-45 (n = 10), 16.7% between PND 46-60 (n = 6), 

8.3% between PND 61-90 (n = 3), 16,7% from PND 91 or more (n = 6), and 8.3% did 

not report the age (n = 3). Furthermore, 13 studies (44.8%) were performed using RNA 

samples, and 16 studies (55.2%) were performed using protein samples. There is a 

discrepancy between the total number of studies since some of them have evaluated 

more than one variable. 

 

3.2. Methodological quality assessment 

 Among all studies, the maximum methodological quality score obtained was 

11,5, the minimum score was 7, and the average score between studies was 9,5. The 

methodological quality score for each study is presented in the last column of Table 1. 

Considering each methodological aspects evaluated, we highlight the following 

features that were present in 100% of studies: housing conditions, ethical statement, 

light conditions, number of groups, ELS description, ELS duration, ELS time, and 

description of the method of biological sampling. Interestingly, only 33.3% of studies 

reported the total number of animals used, 25.9% of studies reported breeding 

procedures, 25.9% reported a description of the cages, 22.2% reported blinding 

procedures, and 7.4% provided information about lost samples. A detailed description 

of the methodological quality assessment can be viewed in Figure 2. 

 

3.3 Impact of early-life stress on proinflammatory cytokines 

 The meta-analysis was performed in 26 studies previously included in the 

systematic review. Four cytokines (IL-1β, IL-6, TNF-α and IL-10) were used for meta-

analysis due to insufficient studies analyzing the remaining cytokines. Out of these 



studies, 19 analyzed IL-1β (50 effect sizes), and the results indicated that ELS 

exposure increases brain levels of IL-1β (SMD 0.72; 95% CI 0.27, 1.17; p = 0.0016) 

(Figure 3). Similarly, 21 studies analyzed TNF-α (51 effect sizes), and the analysis 

revealed increased levels of this target in the brain after ELS exposure (SMD 0.87; 

95% CI 0.39, 1.36; p = 0.0004) (Figure 4). The anti-inflammatory cytokine IL-10 was 

analyzed only by 6 studies (20 effect sizes) and no significant effect of ELS was 

detected (SMD -0.38; 95% CI -1.46, 0.71; p = 0.4984) (Figure 5). Regarding IL-6, 16 

studies showed data on its cytokine (43 effect sizes), and there was no statistical effect 

of ELS (SMD 0.68; 95% CI -0.01, 1.36) (Figure 6). However, we observed a trend (p 

= 0.0524), which indicates that ELS may lead to an increase in IL-6 levels in the brain. 

This increase would probably be observed with the addition of a few more studies. 

 The heterogeneity between studies in IL-1β, IL-6, IL-10 and TNF-α was 

significant (I2 = 83.66%, p < 0.0001; I2 = 88.09%, p < 0.0001; I2 = 80.93%, p < 0.0001; 

I2 = 79.09%, p < 0.0001, respectively). Therefore, we explored sources of 

heterogeneity using meta-regression analysis, including the following eight potential 

moderators: (1) species, (2) early life stress protocol, (3) early life stress period, (4) 

sex, (5) age, (6) tissue, (7) biological material, and (8) secondary manipulations. 

Unfortunately, it was not possible to perform a comparison of the early life stress 

protocols due to insufficient n. 

The first applied moderator (species) was significantly associated with the 

estimates of heterogeneity only in IL-6 meta-analysis (p < 0,0001; variance explained 

= 13.65%), indicating that mice had lower levels of IL-6 estimates following ELS when 

compared to rats. While the ELS period, was significantly associated with the 

estimates of heterogeneity of IL-1β, IL-6 and TNF-α meta-analysis. In detail, animals 

that were exposed to 8 to 14 days or 15 to 21 days had higher IL-1β and IL-6 estimates 

following ELS when compared to estimates of animals exposed to only 1 day of ELS 

(IL-1β: p = 0.0025 and p = 0.0007, respectively; variance explained = 7.43%; IL-6: p < 

0.0001 for both periods; variance explained = 12.32%). Moreover, animals that were 

exposed from 8 to 14 days also had higher TNF-α estimates following ELS (p = 0.001; 

variance explained = 3.77%). The sex of the animals was significantly associated with 

the estimates of heterogeneity only in TNF-α meta-analysis (p = 0.001; variance 

explained = 5.19%), indicating that female animals had lower estimates of this cytokine 

following ELS when compared to male animals. 



Regarding the age of the animals, this moderator was significantly associated 

with the estimates of heterogeneity of IL-1β, IL-6 and TNF-α meta-analysis. In detail, 

animals analyzed from PND 46 to 60 had higher IL-1β estimates following ELS when 

compared to estimates of animals analyzed between PND 0 and 21 (p = 0.007; 

variance explained = 5.16%). Moreover, animals analyzed from PND 61 to 90 had 

higher IL-6 estimates while animals analyzed on PND 91 or later had lower estimates 

of this cytokine (p = 0.001 and p = 0.028, respectively; variance explained = 19.73%). 

Furthermore, animals analyzed from PND 22 to 45 and PND 91 or later had lower 

TNF-α estimates following ELS (p = 0.008 and p < 0.0001, respectively; variance 

explained = 37.18%). The analyzed tissue was significantly associated with the 

estimates of heterogeneity of IL-6 and TNF-α meta-analysis. Indicating that analysis 

performed in the cerebral cortex and hypothalamus had lower IL-6 estimates (p = 

0.043 and p < 0.0001, respectively; variance explained = 5.37%) and the striatum had 

lower TNF-α estimates (p = 0.016; variance explained = 5.37%) following ELS when 

compared to the hippocampus. 

Furthermore, the biological material analyzed was associated to the 

heterogeneity of IL-6 and TNF-α meta-analysis, indicating that RNA analysis 

presented lower estimates of both cytokines following ELS when compared to protein 

analysis estimates (p < 0.0001 for both targets; variance explained = 21.18% and 

19.65%, respectively). Finally, secondary manipulations were significantly associated 

with the estimates of heterogeneity of IL-10 and TNF-α. In detail, animals that 

experienced behavioral testing had lower IL-10 estimates (p = 0,003; variance 

explained = 16,41%) and higher TNF-α estimates (p = 0.033; variance explained = 

1.34%) following ELS exposure when compared to estimates of animals not exposed 

to secondary manipulations. Detailed information regarding IL-1β, IL-6, IL-10, and 

TNF-α heterogeneity sources are respectively displayed in Supplementary Tables 1-

4.  

Funnel plots were created to evaluate the publication bias and they revealed 

an asymmetry in all targets (Figure 7). Egger’s regression test was used to confirm if 

the asymmetry was statistically significant. As we predicted, the test evidenced 

publication bias in IL-1β, IL-6, TNF-α and IL-10 (z = 5.7455, p < 0.0001; z = 7.5297, p 

< 0.0001; z = 10.1140, p < 0.0001; z = -4.7384, p < 0.0001;). The existence of 

publication bias may indicate an overestimation of the effect size. 

 



Discussion 

In this study we sought to analyze the effects of ELS exposure on the levels of 

inflammatory cytokines in the brain. To our knowledge, this is the first meta-analytic 

investigation of such outcomes in rodents. The evidence analyzed in our study 

indicated that ELS induced a significant increase in the proinflammatory cytokines IL-

1β and TNF-α in the brain, especially in the hippocampus. A trend effect (0.052) that 

indicates an increase in IL-6 levels in animals exposed to ELS was also reported. Our 

meta-regression analysis showed that extended ELS protocols induce more 

pronounced alterations in the investigated cytokines, and that ELS effects appear to 

diminish when the analysis is performed in older animals. Furthermore, publication 

bias was evidenced for all meta-analysis, which points out negative results might not 

have been reported in the studies. 

Cytokines are key modulators of neuroinflammatory processes, which are directly 

related with the protection of neural integrity. However, increased pro-inflammatory 

cytokines expression is harmful when uncontrolled, leading to chronic changes in the 

patterns of inflammation and  aggravating neuronal damage (Kim et al., 2016). Chronic 

stress exposure may induce changes in the immune system, which could lead to 

alterations on the HPA axis (Jia et al., 2019; Walker et al., 2019), and trigger a chronic 

neuroinflammatory state that has been associated with multiple psychiatric conditions 

(Kim et al., 2016; Na et al., 2014). In our study we observed that ELS increased TNF-

α and IL-1β, which is an interesting finding considering that both cytokines have similar 

pro-inflammatory properties. TNF-α and IL-1β are capable of inducing inflammatory 

damage by regulating a series of cellular activities in the endothelium trough similar 

mechanisms (Feghali & Wright, 1997; Marafini et al., 2019; Wojdasiewicz et al., 2014). 

However, a key function of these cytokines is the ability to stimulate IL-6 synthesis in 

various cell types during TNF-α and IL-1β activation (Feghali & Wright, 1997), which 

promotes a cascade of intracellular events that perpetuate the inflammatory response 

through the release of several cytokines with culminating effects (Feghali & Wright, 

1997; Marafini et al., 2019; Warren, 1990). This scenario may favor the development 

of a chronic inflammatory state that may have a significant impact on sensitive regions 

of the brain.  

Even though a trend was observed regarding IL-6 data, this might be explained by 

recent studies that reported alterations in IL-6 levels only within a 24-hour period after 

the end of ELS protocol, which suggests that these changes are more evident during 



acute stages (Giridharan et al., 2019; Roque et al., 2016). Cytokine production occurs 

in large amounts during an acute response, whereas during chronic activation 

cytokines are produced recurrently but in smaller amounts (Feghali & Wright, 1997). 

This trend effect leads to the hypothesis that long-term changes in IL-6 levels may be 

dependent on the chronicity of the stress protocols used. Moreover, we should also 

consider that if more studies were included in the meta-analysis, we might have 

reached statistical significance. 

No alteration was observed regarding IL-10 levels, which is in agreement with a 

recent review that reported inconsistencies in studies that investigated IL-10 levels 

after ELS exposure (Dutcher et al., 2020). Considering that IL-10 has a robust action 

to counteract an inflammatory response (Feghali & Wright, 1997; Pedersen et al., 

2018), it is possible that the stress protocols used by the studies included in our review 

were not sufficient to induce long-lasting alterations in the levels of this cytokine. In 

addition, according to Walker et al. (2019), IL-10 expression varies significantly among 

brain tissues, being more expressed in the hypothalamus and pituitary when 

compared to the hippocampus. In our review we found that the hippocampus was the 

predominantly analyzed tissue whereas the hypothalamus was analyzed only in 

11,11% of the studies, highlighting that the focus of analysis of IL-10 levels should 

expand to other brain regions in order to complement this research gap. 

 Regarding the specific moderators investigated in our meta-analysis, we 

observed that multiple moderators had an impact on analysis estimates. For instance, 

we identified that extended ELS protocols induced higher estimates of IL-1β, IL-6, and 

TNF-α when compared to shorter protocols. This interpretation can be seen in the 

studies from Burke et al. (2013), in which one day of maternal deprivation resulted an 

IL-1β increase only in females. Furthermore, Hohmann et al. (2017) used a 6 days MS 

protocol and no difference was observed in any of the cytokines investigated in our 

meta-analysis. On the other hand, Wang et al. (2020) exposed rats to 19 days of MS 

and reported increased levels of IL-1β, IL-6, and TNF-α in both the PFC and 

hippocampus. Additionally, we identified an overexpression of TNF-α on female 

animals compared to males, which can support the hypothesis that females are more 

prone to a pro-inflammatory state following stressful events, and might be related to 

the development of later in life psychiatric disorders (Bekhbat & Neigh, 2018; Engler 

et al., 2016). 



 Even though an overexpression of pro-inflammatory cytokines was observed 

during adolescence and early adulthood in animals previously exposed to ELS 

(Fagundes & Way, 2014; Majcher-Maślanka et al., 2019), we identified a 

desensitization effect of ELS in older animals. When analyzing animals past PND 90, 

ELS-induced cytokine alterations were hardly even present. For example, 

Hoeijmakers et al. (2017) reported no effect of ELS on animals with 10 months of age. 

Moreover, Banquieri et al. (2019) utilized a robust MS protocol of 21 days and 4 hours 

per day of separation and only reported a single increase in IL-6 levels in the 

hippocampus at PND 100. For this reason, it is possible to hypothesize that ELS 

indeed primes a neuroinflammatory response, but it cannot ensure long-lasting 

alterations in cytokine levels. Previous evidence has shown that a secondary stress 

exposure, especially during adolescence could be the key factor to trigger an 

irreversible neuroinflammatory malfunction (Dutcher et al., 2020; Kiank et al., 2009; 

Wohleb et al., 2012). 

 Considering that RNA transcripts do not necessarily correlate with protein 

levels, our meta-analysis sought to deepen the knowledge about the differences 

between cytokines RNA and protein levels (Koussounadis et al., 2015). We observed 

that protein analysis presented higher estimates when compared to studies that 

investigated only RNA expression. In fact, we suggest that future studies investigate 

both protein and RNA levels of cytokines, since only RNA might not give a proper 

estimative of how these alterations may influence the immune state of the brain (Vogel 

& Marcotte, 2012). For example, Lajud et al. (2021), performed MS protocol on rats 

and investigated RNA expression, but no difference was observed in the cytokines 

analyzed. On the other hand, Reus et al. (2017) , performed a similar MS protocol, but 

analyzed protein levels of cytokines and saw multiple alterations on the targets. 

Considering the brain regions analyzed in the included studies, we observed that the 

hippocampus was the region with more significant effects. The high number of studies 

in our meta-analysis that investigated this region, and also the significant relationship 

of the hippocampus with neuroinflammatory function could be in part associated with 

those results (Calcia et al., 2016; Frank et al., 2014; González-Pardo et al., 2020; 

Wohleb et al., 2012; Çalışkan et al., 2020). 

 We must consider some limitations for the present study. First, we identified 

publication bias in all the analyzed targets included in this study, which might suggest 

that some of the effect sizes of these cytokines could be overestimated. In addition, 



pro-inflammatory cytokines analysis gathered 46 effect sizes or even more, while few 

studies analyzed anti-inflammatory cytokines, hence only IL-10 could be included in 

the meta-analysis, but still not being present in many studies and having only 20 effect 

sizes, which is less than half when compared to other cytokines. We are aware that 

the included studies have different methodological approaches and aim for a range of 

brain regions, to overcome this issue we applied meta-regression analysis with 

different moderators. Unfortunately, we could not investigate specific differences 

between ELS protocols due to the predominance of MS, so model to model 

singularities could not be identified.  

 In conclusion, our analysis revealed that ELS exposure can alter the expression 

of pro-inflammatory cytokines, especially regarding protein levels of IL-1β and TNF-α. 

The analysis also suggests that these alterations were more apparent in the 

hippocampus of adult animals that were exposed to at least 8 days of ELS protocol. 

Moreover, the meta-regression results indicate that these inflammatory changes might 

not be long-lasting, and we hypothesize that a further stressful challenge could trigger 

them also later in life. Finally, it would be important for future studies to focus on the 

effects of ELS exposure on anti-inflammatory cytokines because the existent evidence 

is still too little to fully understand the relationship between these targets and ELS. 

 

Figure Legends 

Figure 1. Flowchart of the systematic review. 

Figure 2. Methodological quality assessment. Percentage of studies that reported 

each item of the checklist. 

Figure 3. Forest plot showing the effect size of IL-1β. SMD = Standardized Mean 

Difference; RE Model = Random Effects Model; 95% CI. 

Figure 4. Forest plot showing the effect size of TNF-α. SMD = Standardized Mean 

Difference; RE Model = Random Effects Model; 95% CI. 

Figure 5. Forest plot showing the effect size of IL-10. SMD = Standardized Mean 

Difference; RE Model = Random Effects Model; 95% CI. 

Figure 6. Forest plot showing the effect size of IL-6. SMD = Standardized Mean 

Difference; RE Model = Random Effects Model; 95% CI. 

Figure 7. Funnel plots indicating publication bias of included studies. A) IL-1β; B) 

TNF-α; C) IL-10; D) IL-6. 
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