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Abstract

Obiettivo della tesi € la construzione di iterate p-adiche della connessione di Gauss-Manin su fasci sovra-
convergenti di classi di de Rham nel caso di varieta modulari di Hilbert quando p non ramifica nel campo
totalmente reale. Questa € una generalizzazione di un lavoro di Andreatta-Iovita [AI21] nel caso di curve
ellittiche, usando una nuova tecnica che segna un miglioramento del loro approccio in termini di con-
vergenza delle iterate di detta connessione.

We construct p-adic iteration of the Gauss-Manin connection on overconvergent sheaves of de Rham
classes on Hilbert modular varieties in the case p is unramified in the totally real field. This is a general-
ization of the work of Andreatta-Tovita [AI21] in the case of elliptic curves, using a technique that marks
an improvement on their approach in terms of convergence of the iterates of the connection.



Introduction

The theory of p-adic L-functions has been an important object of study due to its numerous arithmetic
applications, most notably towards the Birch and Swinnerton-Dyer conjecture and its generalizations.
Katz’s p-adic Kronecker limit formula [Kat76] relates special values of the two variable p-adic L-function
associated to a quadratic imaginary field at finite order Hecke characters to p-adic logarithms of elliptic
units. The work of Bertolini-Darmon-Prasanna [BDP13] relates the central critical values of a certain
p-adic Rankin L-function associated to a cusp form f and a quadratic imaginary field K to p-adic Abel-
Jacobi images of generalized Heegner cycles. The article [Ber+14] explains why the two examples can be
viewed as similar using the theory of Euler systems. The article of Darmon and Rotger [DR14] proves a
p-adic Gross-Zagier formula relating the special values of the p-adic Garrett-Rankin triple product L-
function attached to a triple of Hida families of modular forms to p-adic Abel-Jacobi images of certain
generalized Gross-Kudla-Schoen cycles in the product of three Kuga-Sato varieties.

The general technique of constructing these p-adic L-functions consists of two ingredients: firstly, a the-
ory of p-adic modular forms and secondly, a way to p-adically iterate differential operators on the space
of modular forms. For example, in the case of triple product L-functions due to the work of Harris-Kudla
[HK91], Ichino [Ich08] and others, one expects that the special values of classical L-functions that one
wishes to p-adically interpolate is a meaningful algebraic number upto multiplication by a transcenden-
tal period. More precisely, one expects the algebraic number to be expressed as the square of a Petersson
inner product of nearly holomorphic modular forms, possibly arising as the image of a holomorphic
modular form under the Shimura-Maass operator. Working with Hida families, as in the case of [DR14],
the p-adic analogue of the Shimura-Maass operator is the #-operator of Serre, which acts as § = qd% on
g-expansions. The analogy between the Shimura-Maass operator d and Serre’s 6 operator rests on the
fact that they both can be viewed as the application of the Gauss-Manin connection followed by a pro-
jection to the space of modular forms. In the case of § the projection comes from the splitting induced
by the Hodge decomposition which is a special property of Kahler manifolds and in the case of  this is
given by the unit root splitting, which is a uniquely p-adic phenomenon.

Following the work of Coleman on overconvergent families [Col96], [Col97], it becomes a natural ques-
tion of interest to adapt these techniques for finite slope families. The main problem in this case is
the unavailability of the unit root splitting. One approach to solve this problem is to instead try to p-
adically iterate the Gauss-Manin connection itself. This is the technique employed in the recent work of
Andreatta-Tovita [AI21], where they construct triple product p-adic L-function attached to finite slope
families. Moreover, as a consequence of working beyond the ordinary locus, they manage to construct



Katz-BDP type p-adic L-function in the case p is non-split in the quadratic imaginary field [AI19]. We
describe the approach briefly here.

To talk about p-adic iteration of the Gauss-Manin connection, one needs to consider families of modular
forms for p-adically varying weights, as well as families of de Rham classes for varying weights. The first
object, i.e. the sheaf of p-adic modular forms has been geometrically constructed and studied for quite
some time [AIP15], [AIP16a], [AIP18]. The novelty of their work has been the construction of a sheaf Wy,
that interpolates symmetric powers of H (}R of the universal elliptic curve for analytic weights k. This
construction is based on the theory of vector bundles with marked sections. This approach has been used
fruitfully by Graziani [Gra20] to define interpolation sheaves of de Rham classes, and by Aycock [Ayc20]
to define the Gauss-Manin connection V in the setting of Hilbert modular forms.

The article [Mol21] of Molina marks a significant improvement on this technique. One crucial step in the
construction of the p-adic iteration of V is the proof of its convergence. In [AI21], the authors need to
carry out extremely long and complicated computations to prove this. However, in [Mol21], Molina uses
a refined version of vector bundles with marked sections to simplify the computations to a large extent.
The key idea of his work relies on [Mol21, Lemma 5.1] which proves that the modified integral model Hg
of the de Rham sheaf that one uses to define the interpolation sheaf W, admits a splitting modulo a small
power of p. Using this one can restrict to a certain well-defined open subspace in the adic geometric
vector bundle with marked sections associated to ’Hg, such that the Gauss-Manin connection converges
faster on the sections of this open subspace. With this the author has been able to construct triple product
p-adic L-functions associated with families of quarternionic automorphic forms in Shimura curves over
totally real fields in the finite slope situation.

Our work is concerned with the construction of p-adic iteration of V in the case of overconvergent
Hilbert modular forms as in [Gra20] and [Ayc20]. The main idea of our work is similar to that of [Mol21],
in the sense that we use a refined version of vector bundles with marked sections, using a canonical
splitting of our integral model of de Rham sheaf H&l modulo a small power of p, and prove that the
partial Gauss-Manin connection V(o) associated to the embedding o : L — Q,, of our fixed totally real
field L converges fast enough, and that V(o) commutes with V(7) for o # 7. In the following, we will
describe this in more detail. The thesis has three chapters. In the first chapter we implement the idea in
the simpler case of elliptic modular forms, while in the second we deal with the case of Hilbert modular
forms. It will be already evident in the case of elliptic modular forms that our approach gives a faster
rate of convergence. We will eventually use this knowledge to deal with the higher dimensional case
of Hilbert modular forms. In the introduction we have decided to describe the contents of the second
chapter, as it will bring to light the specificities of the higher dimensional case as well as shed light on the
key improvement in the technique.

Fix a totally real field L of degree g over Q. Let 0 be the different ideal of L/Q. Fix an integer N > 4 and
aprime p { N that is unramified in L. Fix a finite unramified extension K of Q,, that splits L. Assume
for simplicity p > 2. Let 3. be the set of embeddings of L in K.

The notion of Hilbert modular forms has a slight ambiguity in the literature. Namely, one can talk either
about geometric Hilbert modular forms, or about arithmetic Hilbert modular forms. This discrepancy
arises from the fact that the Shimura variety associated to the group G' := Resp, /7 GLz at the usual
principal N level or pup level doesn’t have an interpretation as a fine moduli of abelian varieties. In-



stead its connected components, which are parametrized by elements in the strict class group are finite
étale quotients of actual moduli spaces of abelian varieties with polarization data and level structure. The
geometric Hilbert modular forms are the sections of modular sheaves on the moduli scheme of abelian
varieties, whereas the arithmetic Hilbert modular forms are the automorphic forms on the Shimura va-
riety associated to GG. The arithmetic Hilbert modular forms are necessary to consider for a good Hecke
theory. The geometric modular forms, as the name suggests are much more suitable for use in geometric
constructions. Let us make the relation between the two notions precise. Let us fix the level K = K (N)

Ki(N) = (CCL Z)EGLQ(@L)|CLELCEOHIOCIN

Then the Shimura variety Shx (G) at level K is a disjoint union of connected components indexed by
the strict class group C17 (L) of L. For any ¢ coprime to p, the moduli M (u, ¢) of c-polarized abelian
varieties with real multiplication by Op, and iy -level structure is representable by a smooth scheme, and
there is a universal abelian scheme A — M (p, ¢). There is an action of the totally positive units O; +
on M (un, ¢), given simply by multiplying the polarization data by the unit. This action factors through
the finite quotient I' := O;’Jr / UJQV where Uy is the group of units congruent to 1 mod N. This action
is free and the quotient scheme is isomorphic to the connected component of Sh (G) indexed by the
class [c]. For any weight k € Z[X], let w" be the sheaf of Hilbert modular forms of weight k. There is an
action of I' on wﬁl lifting the action on M (f, ¢) and arithmetic Hilbert modular forms are defined as
the invariant sections for this action. (See §2.1.2.1 for details.) Henceforth everything that we discuss in
the introduction will involve only the geometric modular forms.

Let 20 = Spf OL[(OL ® Z,)*] = Spf A be the formal weight space and let 20° = Spf A be its
connected component of the trivial character. A is a local ring and let m be its maximal ideal. Let \/°
be the adic analytic fibre of 207, and let W9 be the affinoid open where [¢| < |p| # 0forall ¢ € m.
Let Qﬂg = Spf O;_VS' Let kY be the universal analytic weight on Qﬁg. Due to analyticity, k” extends to a

character on 1 +p" Resp, /7 Ga =~ [[,cx 1 + p" G, for some n. Thus we may view kO as a product of
characters k¥ = [, 5, k2.

Consider the p-adic completion of M (y, ¢) and let X be its base change to Qﬂg. Consider the blow-up
spaces X, obtained by blowing up the Hdg ideal and taking the open where the inverse image ideal is
generated by Hdg” " Here Hdg is the ideal generated locally by lifts of the Hasse invariant and p. These
blow-up spaces are formal models for the rigid analytic overconvergent locus where \Hdgpwrl\ > |p|.
The main results of this work are the following.

Theorem 1. For suitable choice of 7, there are interpolation sheaves mg and W% on X, that interpolates
modular forms and symmetric powers of de Rham classes for weight k¥ respectively. The sheaf Wg on X, is
equipped with an increasing filtration {Fil; };>o. The filtered pieces are locally free Ox, -modules and Wg is
the completed colimit of Filiwg. The zeroth filtered piece Fﬂowg = mg coincides with the modular sheaf of
weight k¥, [§2.2,§2.3]

Theorem 2. The Gauss-Manin connection on H J»(A) induces a connection ¥V on Wg over the generic fibre

that satisfies Griffiths’ transversality with respect to the filtration mentioned above. Moreover, let k = [ [ k, =

[Texp(uglog(-)) and s = []ss = [ exp(vo log(-)) be two analytic weights such that us, vy € O .
p



Then for any p-depleted g of weight k, V*(g) makes sense as an overconvergent Hilbert modular form of weight
k + 2s. [§2.4]

Let us begin by discussing our approach to proving Theorem 1. The theory of canonical subgroup tells
us that there exists a canonical subgroup of level n for all 1 < n < 7. Then over the partial Igusa
tower J&,, , that classifies trivializations O/p™O ~ H of the dual of the canonical subgroup, one
can define an integral model €2 4 of the modular sheaf w 4 as the submodule generated by all lifts of the
image dlog(P"™") of the universal generator P*"" of H,/ under the dlog map. Thisisan Or, ® O3e,, , -
line bundle that is equipped with a marked section dlog(P""") by construction. Then using the theory
of vector bundles with marked section one can define the modular sheaf mg of weight k¥ in the usual
manner. This definition coincides with previous definitions in [AIP16b], [Gra20] and [Ayc20].

As mentioned before the key construction in this theory is the definition of interpolation sheaves of de
Rham classes. Such a definition appears in [Gra20] and [Ayc20]. The definition due to Graziani follows
closely the analogous definition in the elliptic case due to Andreatta-Iovita. One has to choose a suitable
integral model H& of H ;R(A) such that the induced Hodge filtration identifies the zeroth filtered piece
with €2 4. The definition due to Graziani then uses VBMS to define the interpolation sheaf. Our choice
of the integral model H& differs from that due to Graziani. Let £ be the invertible Oy ® O3, . ideal
that satisfies Q24 = Ew4. Let HW be the invertible O L ® Ojg,, . ideal generated by local lifts of the
Hasse-Witt matrix. The first key result towards the goal of defining the interpolation sheaf for de Rham
classes is the following.

Theorem. For suitable choice of r,m as above, there exists a locally free O, @ O3, ,. sheaf H& C Hj(A)
of rank 2, such that the induced Hodge filtration is

0— Quq — HY — EHWWY — 0.

Moreover the Hodge filtration admits a canonical splitting modulo p/ Hdgp2 that coincides with the unit root
splitting over the ordinary locus. The splitting is functorial for the lift of Verschiebung.

The proof of this result is the content of §2.2 and §2.3.1. We remark that in the case of GL3 g we have
an analogous splitting of the integral model Hﬂg modulo a small power of p. Moreover, in this case, our
Hg actually coincides with the H?g of [AI21].

Let Q be the kernel of the splitting in the theorem above. Using this definition of Hi‘, we define a notion
of vector bundle with marked sections and marked splitting, similar to the definition of Molina [Mol21,
§4.2] as follows.

Vg (HE,, dlog(P*™), Q)(R) = { f: HY(R) = O ® R f is Op-linear, f(dlog(P™™) = 1), f(Q) = o}

We prove that this vector bundle is representable. In fact as an adic space this has a very simple local
description. Let s be alocal lift of dlog( P"™") and ¢ be a lift of a local generator of Q. Let 3,, be the small
power of p such that dlog(P"™") is a section of 4/ 3. Letn = p/HngQ. Then locally as adic spaces,

. —1 ¢
VO£ (HY,, dlog(P™™), Q) = VS* (HY) (S 5 ’n) .



Here Vg) L (HEA) is the usual vector bundle whose sections over R are O, ® R-linear maps H&(R) —
O, ® R. (Note since we assume that p is unramified in L it is fine to take O, ® R as the codomain
instead of 0! ® R.) We then define the interpolation sheaf Wg using this refined version of VBMS and
prove the rest of the statements in Theorem 1. The proof of these results concerns the rest of §2.3.

The next section §2.4 is where we define the Gauss-Manin connection on W9, and show that it can
be p-adically iterated for analytic weights. The strategy is exactly similar to [AI21] and [Mol21]. Using
Grothendieck’s description of connections we prove the first part of Theorem 2:

Theorem. The Gauss-Manin connection on H }; (A) induces a connection ¥V on WY over the generic fibre that
satisfies Griffiths’ transversality with respect to the filtration mentioned above.

The definition of p-adic iteration of V follows the strategy of [AI21]. For each embedding o € %, the
Kodaira-Spencer class corresponding to o gives a partial connection V(o) : W [1/p] — WY, [1/p].
We first study the convergence properties of V(o) over the ordinary locus using g-expansions and local
coordinates. Here we realize that V(o) behaves exactly like the connection V in the case of elliptic curves.
However, owing to our use of VBMS with marked splitting, we get faster convergence estimates. This
is really the key improvement to the technique of [AI21] and mimics the results obtained by Molina. In

particular [AI21, Proposition 4.10] states that for any p-depleted g € H° (3@%“1, W9),
(VP! —id)P(g) € pHO (387, W),

Here WY is the direct image of the structure sheaf of V, (Hi, dlog(P" ")) — I, Instead, if we work

with VO(Hg, dlog(P""), Q), and let WY be the direct image of its structure sheaf, then we can prove
(Corollary 1.4.1) that
(VP! —id)(g) € pH° (3G, WP).

An exactly analogous statement holds for V(o) for all o in the Hilbert case. Then for any analytic weight
s = [I,ex 5o = [ exp(vo log(-)) and any p-depleted Hilbert modular form g of weight k, satisfying
the conditions on u,, v, as mentioned in Theorem 2, we show that V(¢)*(g) defined using a formal

expression
Vo

Vo) (g) = exp P 1oV ) (o)

is actually the limit of a Cauchy sequence in W over the ordinary locus. Finally we manage to show that
by shrinking the initial radius of overconvergence, it is possible to realize V(¢)*” (g) as an overconver-
gent form. Moreover, the Gauss-Manin connection commutes with the U, operator, and hence slopes
are preserved. We can also check on g-expansions that V(o) and V(7) commutes for different o, 7.
Then the definition of V* = [] s, V(0)® is obvious. This then proves the second part of Theorem 2.

Theorem. Let k = [[k, = []exp(uslog(:)) and s = [[se = []exp(velog(+)) be two analytic
weights such that Uy, Vs € (9;;\}0. Then for any p-depleted g of weight k, V*(g) makes sense as an overconver-

p
gent Hilbert modular form of weight k + 2s.

Applications:

In their article [BF20], Blanco-Chacon and Fornea construct a twisted triple product p-adic L-function
associated to two nearly ordinary families. In the special case of a real quadratic extension L/Q, they



relate the special values of their L-function to syntomic Abel-Jacobi images of generalized Hirzebruch-
Zagier cycles. We hope that our methods can be applied to similarly construct twisted triple product p-adic
L-functions associated to finite slope families. This relies on understanding the relationship between two
different notions of Hecke operators — one geometric and the other using adelic g-expansions of Hilbert
modular forms. In Chapter 3 we review these two notions and also define a notion of overconvergent
projection in families similar to [AI21, Definition 3.36].

Further developments:

This work is a contribution to the recent trend in research in number theory trying to p-adically iterate
differential operators beyond the ordinary locus [SG19], [EM21]. An interesting case is that when the
ordinary locus is empty. It is clear from the description that our construction in the Hilbert case depends
on a non-empty ordinary locus. So while this method will most certainly work for Siegel varieties, we
need something different for more general PEL-type Shimura varieties. The article [How20] of Sean
Howe might provide some insight into these cases.

While preparing this manuscript we came to know that Andrew Graham and Vincent Pilloni had reached
similar results [GP] working locally on the moduli space and using the local description of our refined
VBMS that we gave above. Moreover working locally they could obtain a splitting modulo any power of
p, which meant that they could remove the restriction on weights for the iteration. However they did not
have the notion of a global splitting.
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Chapter 1

Overconvergent Modular and de Rham

Sheaves for GL;

1.1 The setup

Notation

Let N > 4 be an integer, p a prime coprime to N. Let ¢ = p if p # 2 and ¢ = 4 otherwise.

1.1.1 The weight space

Let A := Z,[Z,] ~ Zp[(Z/qZ)*|[T] be the Iwasawa algebra. Here the second isomorphism is given
by sending exp(q) +— 1 + T. Let A® = Z,[T7] be the quotient of A that sends (Z/qZ)* + 1. Let
20 := Spf A and 2° := Spf AC. The formal scheme 207 is called the formal weight space because it
satisfies the following universal property. For any p-adically complete Zj,-algebra R,

Hom7™. (A, R) ~ Hom7z™(Z, , R*).
The subscheme 23V is the connected component of the trivial character. Let W := Spa(A, A)*" be the
analytic adic space associated to A, and similarly define WO := Spa(AY, A%),

W is a disjoint union of copies of W indexed by (Z/qZ)*. There is a continuous, surjective map of
topological spaces k: [WY| — [0, co] defined as follows. For any point z € WY, let Z be the unique
rank 1 generization of x. Then define

log |T'|z

Here we followed [SW20, p. 30] (but our & is the reciprocal of loc. cit. because we will follow the notation
of [AI21]). As a continuous map « is uniquely characterized by the following property: x(z) = 7 if and
only if for any rational m/n < r, [p|2 < |T|”* and for any rational m/n > r, |p|2 > |T|7". We
note that both numerator and denominator of « take values in [—00, 0). Hence x(x) = 0iff |T|, = 0



and k(x) = oo iff [p|, = 0. These two points correspond to the p-adic and T™-adic valuations on Q)
and F,,((T)) respectively. For any interval I C [0, oc], define WY to be the interior of £~ *(I). For
I = [p®,p*] for some a € NU {—oc0} and b € NU {00},

a b
WP ={zeW° : |pl, < |T%"|, # 0and |T?'|, < ||, # 0}.

There are two notable cases of I to consider: I = [0, p®] for some b € Nand I = [p?,p’] for some
a € Nand b € N U {oo}. The first case gives an affinoid neighbourhood of the point {T" = 0}. The

adic open unit disc {|T| < 1} over Q, is W[OO o0y Which has a cover by affinoids W[% ) We have the

following description of the two cases.

" 1 TP°
Wi e I < 2= | <p> e <p>

a b
W0y = {2 € W0 pls < [T7'], # 0and [T7'], < [pl # 0}

b b
_ o/ p TP \|1| o/ p T7
- Spa’ A <Tpa’ p > |:T:| 7A <Tpa? p

For I as above, we let Wy the componentwise union of W?.

Welet AY := T(WYP, O, ,) and Af := T(Wr, Oy, ). Let WY := Spf A and 2y := Spf A ;.
I

The affinoid adic spaces described above are adic spectra of Tate rings. We choose a pseudouniformiser
for each of the two cases considered above. For I = [0, p’] we let & = p and for I = [p®, p®] we let
a=T.

Analyticity of the universal character:

Let k"": Z; — A be the universal character. Denote by kV: Zlf — AV the character obtained by
composing k"™ with the projection onto the component of the trivial character. Let k:(I) 1Ly — A? be its
restriction to W?.

Lemma 1.1.1. For I C [0, ¢ 'p"], the restriction of k:(I) tol + qp”_lZp is analytic. Thus it extends to a

character
K : WP x 25 (1+ " 'Gl) = G,

which restricts to a character
KW x (L4 gp™ ™ 16)) = 1+ oGy

Proof. See [AIP18, Proposition 2.1]. O



1.1.2 The modular curve

Let N > 4 be an integer and p a prime coprime to N. Let Y = Y7(NN)/Zj, be the moduli scheme of
elliptic curves with level I'; (V) -structure. Let X = X (V) be its smooth, proper compactification that
classifies generalised elliptic curves with I'; (/V)-level structure. Let X be the p-adic completion of X
and let 7: £ — X be the universal semi-abelian scheme. Let wg be the canonical extension of the sheaf
of invariant differentials on the universal elliptic curve to the cusps. It is a line bundle. Let Hg be the
canonical extension of the relative de Rham sheaf of the universal elliptic curve to the cusps. It is a vector
bundle of rank 2. H¢ is equipped with

1. Hodge filtration: 0 — wg — Hg — w(\g/ — 0,
2. Gauss-Manin connection: V: Hg — H5®0x9%€/zp (log(cusps)).

We note that away from the cusps, Hg can be identified with the contravariant Dieudonné module of the
p-divisible group of the universal elliptic curve.

Leti: Xp, < X be the closed immersion defined by p = 0. The Hasse invariant is a section Ha €
i*w?(pfl). Define the Hasse ideal to be Ha := Ha. - i*w?(lfp).

We recall the following theorem of Igusa.

Theorem 1.1.1 (Igusa). The Hasse invariant has simple zeroes.

Proof. See [KM85, Theorem 12.4.3]. O

1.1.2.1 Frobenius and Verschiebung

For any IF},-scheme S, the absolute Frobenius Fyps: S — S is the map of schemes that is identity on the
underlying topological space and induces = — zP on the structure sheaf.

Given a map of [F},-schemes X — S, the absolute Frobenius for X and S sit in a commutative diagram
as follows, simply because any map of [;,-algebras commute with the Frobenius ring map x + x?.

L

F, abs

|

F, abs

For any such map of IF},-schemes X — S, we denote by X () the base change of X along Fys: S — S.
Thus the following diagram is Cartesian.

X® 5 x

L



Then by definition of the fibre product, the absolute Frobenius of X, Fyp: X — X induces a unique
morphism Fy/g: X — X (P) such that the following diagram commutes.

Fab

X s
Q\

xX®) 5 x
|
STS

Definition 1.1.1. The arrow F'x /g as above is defined to be the relative Frobenius of X with respect to

S.
Proposition 1.1.1. For any abelian variety A — S of relative dimension g over a F),-scheme S, the relative
Frobenius F'y /g is an isogeny that is universally injective of degree p?.

Proof. [EGM, Proposition 5.15]. O

For any flat commutative group scheme G /.S where S is a [F,,-scheme, one can define a homomorphism
Vays: GP) — G of S-group schemes called the Verschiebung. For the detailed construction and def-
inition of this map we refer the reader to §4 of [Art+65, VII,] or to [EGM, §5.2]. Here we record the
properties of this homomorphism, quoting from [EGM, §5.2].

Proposition 1.1.2. Let S be a IF,-scheme. For a flat commutative group scheme G /.S, we have
L VG/SOFG/S = [p] G — G

2. If G is finite flat over S, then Verschiebung is the Cartier dual to the relative Frobenius, i.e. Vi 5 =
(Favys)".

Proof. [EGM, Proposition 5.19]. O

Proposition 1.1.3. For any abelian variety A — S of relative dimension g over a IF,-scheme S, the Ver-
schiebung V4 /g is an isogeny of degree p9 such that Vg 0 Fass = [plaand Fy 50 Vs = [Pl aw-

Proof. [EGM, Proposition 5.20]. O

In the following we often drop the subscript from the notation of Frobenius and Verschiebung and simply
write F' and V respectively when the abelian variety in consideration is clear.
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1.1.3 The partial Igusa tower

Fixan [ = [p%, pb]. Let X1 = X Xgpf 7, QU(I). We abuse notation to denote by Ha the Hasse ideal

inside Ox, /(«) where we recall « is the chosen pseudouniformiser depending on I. For every r > 1,
consider the inverse image of Ha”' ' under the map Ox , — Ox, /() and call this ideal Hdg,.. Locally

on Spf R C X where wg admits a generator w, and Ha admits a lift Ha (say), let Hdg = PfI\z;(E/R, w).
Here /R is the pullback of £ /X7 to Spf R. Then Hdg,.|syf r = (v, Hdg?"™ ).

Let g,: X, 1 — X1 be the admissible blow-up of X with respect to the ideal Hdg,., where the inverse

image ideal is generated locally by Hdgprﬂ. For any integer n with 1 < n < rif I = [0,1] and
n_1

1<n<a+rifl=I[p%p’ let\ = Hdgppfl . Note that § € Ox, .

Proposition 1.1.4. For I,r,n as above, the semiabelian scheme £ — X,  admits a canonical subgroup H,,
of order p™. This is a finite, locally free subgroup scheme that satisfies the following properties:

1. H, lifts ker F™ modulo p/\,

2. For any a-adically complete admissible A?-algebm R, together with a morphism f: Spf R — X, 1,

H,(R)={se€&p"](R)|smodp/A € ker F""},

3. Suppose Ly, = E[p"]|/ Hy. Then wr,, is killed by \ and we have wr,, ~ wg [/ we,
4 E[p"]/Hy, ~ H, through the Weil pairing and it is étale over the adic generic fibre X, 1 of X 1.

Proof. For a proof of these facts about the canonical subgroup we refer the reader to [AIP18, Appendice
Al O

Definition 1.1.2. For I, r, n as above define ZG,, , 1 — X, as the adic space classifying isomorphisms
Z)p"Z = H) . Define J&,, 1 — X, 1 to be the normalisation of X, ; in ZG,, . 1.

Proposition 1.1.5. ZG,, , 1 — X, 1 is an étale, Galois extension with Galois group (Z/p"Z)*. 3®, 1 —
X, 1 is well-defined, a finite morphism and is endowed with an action of (Z/p"7Z)*.

Proof. The first statement is obvious. The second statement uses finiteness properties of relative normali-
sation of excellent rings. For the proof we refer to [AIP18, Lemme 3.2]. The Galois action of (Z/p"Z)* on
ZGy, r,1 induces an action on J&,, ,. 1 over X, 1 by the universal property of relative normalisation. [

1.2 Splitting of de Rham sheaf

In the following we put an overline on the names of objects (semiabelian schemes, sheaves, morphisms
etc.) to denote they are obtained by base change along the closed immersion i: Xp, < X. So we have
a morphism 7: £ — Xr,. Let we = i*wg = wg. The Verschiebung V': EP) — £ induces a map on
the Lie algebra Lie(V'): wl\s'/(z’) — w;:—/ which gives the Hasse invariant Ha seen as an element in w?(p -,

Denote by Hg := i*Hg. Let j: Xﬁd — Xp, be the ordinary locus, which is the open subscheme where
Ha = Ox;,.

11



Let p: Xy, — X, be the absolute Frobenius. The Frobenius induces a (-linear endomorphism of He.

Proposition 1.2.1. Over the ordinary locus XI”Fr:, we have the unit root splitting which is a canonical splitting

YFrob® ] “He — J*we of the Hodge filtration that respects the Frobenius action. The kernel of Wy, is called the
unit root subspace. It is characterized by the property that it is stable under the Frobenius action and Frobenius
acts invertibly on it.

Proof. Suppose Spec R C X, is a Zariski local chart for which we and Hg are trivial. Choose a basis
{e, f} of Hg compatible with the Hodge filtration. With respect to such a basis we can write the matrix

of the Frobenius action on Hg as follows.
0 C
Frob = <0 Ha)

Here we abuse notation to write Ha for a generator of Ha obtained by evaluating the Hasse invariant at
the chosen generator of wg. For the change of basis of j.j*Hg (R) = Hg (R)[1/Ha/, given by the matrix

1 CHa !

0 O
—1 o
P "FrobP = <0 Ha) .

That is, the basis of He (R)[1/Ha] given by {e, (CHa ™ ')e + f} satisfies the property that the matrix of

Frobenius with respect to it is P~ Frob P as above. Hence we have a splitting as claimed. O

the matrix of Frobenius becomes

Consider the map ¢: Hg — j,7*He Yron, J«J*we. Here the first arrow is the unit of the adjunc-
tion, which in local chart Spec R C X, as in the above proof, is simply the inclusion of He (R) in its
localization Hg (R)[1/Hal. Then let Hy := ¢~ '@¢. The inclusion g — H admits a retraction by 1.

Lemma 1.2.1. The sheaf I:I’g sits in the following split exact sequence:
0 —we - Hy - Ha-wf —0 (1.1

Proof. Choose a local chart Spec R as above. Explicitly, suppose e, f form an R-basis of Hg such that
e spans &g and the image of f spans @Y. Also assume that the matrix of Frobenius with respect to this
basis is given as above. The map Yo : He[1/Ha] — we[1/Ha] sends e +— e and (CHa ')e + f +— 0.
Then ¢(e) = eand ¢(f) = (Id — P)(f) = —CHa 'e. Now Ha is a uniformiser of the local ring
at any supersingular point. Moreover since the unit root splitting does not extend beyond the ordinary
locus, CHa ! does not belong to the local ring of any supersingular point. Thus ¢~ 'we = Re@® RHaf.
This proves the lemma. O

Corollary 1.2.1. H, = &g & Frob(Hg), where by Frob(Hg) we mean the O Xz, -linear span of the image
of Frob.

12



Proof. We note that by the proof of Lemma 1.2.1, on the local chart Spec ?, we have Y '0g(R) = Re®
RHaf, which is the same as Re & R(Ce @ Haf). Now R(Ce + Haf) = Frob(Hg)(R). Hence locally
we have the splitting as claimed which then glues to give a global splitting since Frob(Hg) is globally
defined. O

In the following we will construct a locally free subsheaf Hy C Hg over X, 1, together with the induced
Hodge filration, such that its reduction modulo a small power of p will give us the split exact sequence

(1.1).
Leti: X;/(p) = X1 be the base change of X, — X to X1. Letig: f{,,’[/(pHdgfl) — X, 1 be the

closed subscheme defined by the ideal pHdg . Then we have a commutative diagram as follows:

X,r/(pHdg™") —2= X,.;

I &

X1/(p) ——— X1

Definition 1.2.1. Define H to be the inverse image of Hdg - wy under the projection He — wy, as
sheaves on X .

We have the following commutative diagram.

0 we H Hdg - wd —— 0
CL
0 WA He wg/ 0

Proposition 1.2.2. There is an isomorphism of Oy /(,pqg—1)-modules ig(Hdg - wY) = ¢*(Ha - @y),

that commutes with the induced maps to @g. (We abuse notation to denote q*@g by Qg. )

in(Hdg - wy) — ¢*(Ha - &Y)

| !

=V _ -V
We = We

Proof. Letw be the inverse image of Ha-wy under the mapwy — i,(g as sheaves over X . Thus Zariski
locally over X7, w{ = ﬁ(\i:gwg + pwy for alocal lift P/ﬂ/g of a generator of the Hasse ideal Ha. Then we
note that Hdg -wy! is the image of the map g@y — gFwy since pHdg ' € Ox,. ;- The natural surjective
map i*wy — Ha - @Y induces by pullback a surjective map ¢*i*0¢ = igiwd — ¢*(Ha - ©Y). We will
show that this map factors naturally as ifg;@0f — i (Hdg - wf) — ¢*(Ha - @f). As surjective maps
between line bundles, the second arrow will be an isomorphism. This will be the desired isomorphism.

Choose alocal chart Spf R = U C X that trivializes we. Let v be a generator of wy over Spf R. Abusing
notation, denote by Hdg a generator of the ideal over Spf R. Then d)g| vy = OvHdgv + Opypv. Thus
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there is a surjective map (’)2U — (DglU sending e; — Hdgv and e3 +— pv. Since w := i*(Hdgv) is a
basis of Ha, - wg over Spf R/(p), we have an isomorphism O;-1;; — Ha - @g\rlU’ that sends e; — w.
Let V = g 'U. Then we have a surjective map M : OZ,Q_IV
0
that induces the map i§gf@w¢ — ¢*(Ha - @Y ). On the other hand the image of g;:(Hdgv) is a basis for
Hdgw‘\g/. Then we have a surjective map N : (’)‘2, — Oy sending e — ej and es — H%;gel that induces

— Oz’glv givenby e; — e; andey — 0

the surjection g;wy! — Hdgwy. Now it’s obvious that M = iiN.
Summarising the above, there is a surjective map fo: (9@,2_1‘/
0

. Ny gk V . Nk —V : . 2
fi: Oz'glv — i (Hdg 'w8)|iglv and fo: Oz'glv —q (Ha‘ws)\igl\/' There is a map M : Oio_lv —
(9151‘/ that induces the natural map iag:a}gli(}lv — ¢*(Ha- ‘Dg)lz‘alv with respect to fy and fo. There

— 159 (DgliglV' There are isomorphisms

: XN . (D)2 : sk~ \/ -k Vv :
isamap i(V : Oiglv — (92.81‘/ that induces the natural map igg w¢ ity 10 (Hdg - w{ )%1‘/ with
respect to fo and fi. Moreover, M = i;jN. This proves the proposition. O

Proposition 1.2.3. The pullback of the exact sequence
0 — wsg — He —» Hdg - wy — 0
along ig: X,.1/(pHdg™") < X, 1 admits a canonical splitting induced by the splitting of (1.1).

Proof. This is immediate from Proposition 1.2.2. O

1.3 p-adic interpolation of modular and de Rham sheaves

Henceforth fix n a positive integer. Fix I = [p®, p°] such that k? is analyticon 1 + p”_lZp and 7 such
that H,, is defined on X, ;. Depending on the two cases [ = [0,1] or I = [p®, p’] for a,b € N, these
conditions are satisfied if

1. I1=100,1,r >2ifp#2and2<n<r,orr >4ifp=2and4d <n <r,

2. I:[pa,pb]witha,bGN,TZ1andr—|—a2b+2ifp7é2andb—|—2§n§a—i—r,orr22
andr+a>b+4ifp=2andb+4<n<r+a.

In the article [AI21], the authors construct overconvergent modular and de Rham sheaves, denoted 1oy,
and Wy, ; respectively for the universal character k: Z; — At. These are coherent sheaves on X, s that
interpolate wf and Sym” Hg for any classical character k € Z. Moreover, letk/ : (Z/qZ)* — Ly — A
be the torsion part of the character, and set mi = hOze,, [k‘f], where h: &1, 1 — X, forp # 2
and h: 36,1 — X, forp = 2. Thenwy 1 = m2,1®m£ and Wy, ; = W%I@mi where mg’l is a line

bundle and Wg 7 is the completion of a filtered direct limit of locally free sheaves.

The construction of the overconvergent modular sheaf is fairly natural and stems from the following
observation. Since we is a line bundle, we can view its isomorphism class as an element of H(X, G,,).

Now for any classical weight &, the k-th power wg corresponds to the image of the class of wg under

the map induced by change of structural group H' (X, G,,) LAY (X, Gy,). Now to do the same for
a weight k that is analytic on an open subgroup 1 + p"Z;, C Z,, one has to consider the change of
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structural group map induced by k: 1 + p"G, — @; In particular, one has to work with elements of
HY(X,14 p"G,). Now it is easy to see that the group H'(X, 1 + p"G,) classifies line bundles % on
X together with an isomorphism Oy /(p") = £ /p".%, in other words a "marked section” modulo p™.
This motivates the study of vector bundles with marked sections. What [AI21] shows is that over J&,, ;. 1,
there is a line bundle 2¢ C wg, that is naturally construc;cLed using the theory of canonical subgroups,

comes equipped with a marked section modulo p"Hdgr-1, and moreover coincides with wg over the
ordinary locus. Then the definition of w? follows by the process described above. This construction
already appears in their previous works with other authors, and even for Hilbert modular forms. The
novelty of [AI21] is in using the theory of vector bundles with marked sections to construct a vector
bundle of rank 2, denoted Hg C Hg, and using it to define p-adic interpolation of the symmetric powers
of Hg. These sheaves are then shown to be equipped with a connection V, coming from the Gauss-
Manin connection on Hg, and they prove p-adic iteration of V under some restrictions on the weight of
iteration and on k. However, the definition of Hg looks ad hoc at first sight and that leads to complicated
computations in the proof of the existence of p-adic iteration of V.

In this section, we will show that in fact using our technique of the splitting of de Rham sheaf as developed
in Section 1.2, the definition of H?g becomes quite natural. Moreover, this added insight allows us to give a
new definition of the interpolation sheaf W, ; which has better convergence properties for the iteration
of V. In particular, proving p-adic iteration of V with this new definition is much simpler and we can also
slightly relax the condition on the weight of iteration. The main theorem of this section is the following.

Theorem. For n,r, I as above, and k the universal weight on QB?, there are formal sheaves t’o;ﬁl and W;c,[
on J&, 1. W;“ 7 is equipped with an increasing filtration by locally free subsheaves FiliW;% 1 such that
FilgWy, ; = roj, . Moreover, W  is the p-adic completion ofligi Fil; Wy, ;. If [0, 1] C I, then for any clas-
sical weight m € N which is a point of WY, we have canonical isomorphisms oy, r[1/p) =~ wg™(1/p] and
Fily, Wi, 1 [1/p] =~ Sym™ He[1/p], where by k — m we mean specializing at the point corresponding to
the classical weight m.

Note that unlike [AI21] we do not define the interpolation sheaves over X, ;, but rather over J&,, . .
This has been done primarily for simplicity, although one can define the interpolation sheaves over X 1
even in our theory. See Remark 1.3.2 for further explanation.

1.3.1 Vector bundles with marked sections and marked splitting

In this section we recall the general formalism of vector bundles with marked sections following [AI21,
§2]. We then define a subfunctor of a vector bundle with a marked section, which we call “vector bundle
with marked sections and a marked splitting” and show representability of this functor.

Let S be a formal scheme with an ideal of definition .# which is invertible. Leti: S/.# < S be the
closed subscheme defined by the ideal .#. Let FSchg be the category of formal schemes f: T — S
such that f 1. - O is an invertible ideal in T".

Definition 1.3.1. A formal vector bundle of rank n is a formal vector group scheme X — S which is
isomorphic to G7 locally over S.

Definition 1.3.2. Let £ be alocally free sheaf of rank n on S. The formal vector bundle V(&) of rank n
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is defined as the functor on FSch

V(g)(t T — S) = gV(T) = HomoT(t*E, Or).

Lemma 1.3.1. V(&) is representable by the formal scheme Spf S;n'\g — S, where the completion is with
respect to the .7 -adic topology. This formal scheme is a formal vector bundle of rank n. Moreover, the con-
travariant functor V defines an equivalence between locally free sheaves on S of constant rank and formal vector
bundles of finite rank over S, and the equivalence preserves the notion of rank.

Proof. [AI21, Lemma 2.2]. ]
Let € be a locally free sheaf of rank n on S such that £ := i*& has sections s1, ..., 5, € ['(S/.Z,§)
for m < n, satisfying the following two properties:

1. The subsheaf & C & generated by s1, . .., 5, is locally free,

2. £/& islocally free.

Definition 1.3.3. Let £ be a locally free sheaf with marked sections s1, . .., S, as above. The formal
vector bundle with marked sections V(€ s1,. .., sp,) is defined as the functor on FSchg

Vo(E, 81,y 8m)(t: T — S):={f e V(E)T)|(f modt*.7)(t"s;) = 1Vi}

Lemma1.3.2. V (&, s1,. .., sp,) is represented by an open formal subscheme of an admissible formal blow-up

of V(E).

Proof. Thisis[AI21, Lemma 2.4]. We recall the construction. sy, .. ., 8, define anideal J CSym*E/S
givenby 7 :=(s;—1,...,8, —1).Let # be the inverse image of ¢ in Osy/ng. Let B be the blow-

up of V(&) along j . Then take the .# -adic completion of the open in B where the inverse image ideal of
¥ coincides with the inverse image ideal of .#. Then as shown in loc. cit. this formal scheme represents

V0(57 1y Sm)'

In local coordinates V (&, s1, ..., Sy,) can be described as follows. Let Spf R C S be an open which
trivializes £ and .7, and let X; be a lift of s; for all i and extend it to a basis of £. Then V() sps g =
Spf R(X1,..., Xy). Then Vo (&, 51, ..., Sm)|spt R 1S given by

X;—1

Spf R({Xi}i1)({ iz1) = Spf R({Zi}i%1, Xy, -, Xn)

where « is a generator for .#, and the projection V(€ s1, ..., 8my) — V(&) corresponds to the ring
map that sends X; — 1 + aZ; for 1 <17 < mand X; — X, otherwise. L]

Let € be alocally free sheaf of rank n with marked sections s1, . . . , Sy, as above. Suppose the short exact
sequence of locally free sheaves on S/.%

08 =E=E/E =0

admits a splitting ¢»: £ — £'. Here £’ is the subsheaf generated by the s;’s as above. Let Q := ker 1).
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Definition 1.3.4. Givenalocally free sheaf £ on S of rank n, marked sections s1, . . . , Sy, and a subsheaf
Q C & corresponding to a splitting as above, we define the vector bundle with marked sections and
marked splitting as the functor on FSchg

Vo€ 81,0y 8m, Q)T — S):={f €Vy(&, s1,...,5m)(T)| (f modt*.7)(t*Q) = 0}

Lemma 1.3.3. V(€. s1,...,8m, Q) is represented by an open formal subscheme of an admissible formal
blow-up of Vo (€, s1,. .., Sm).

Proof. The subsheaf Q C € defines an ideal in Sym*® E viz. O Sym*® E. Let Q’ be the inverse im-
age of this ideal in S;nTS. If f: Vo(E,81,.--,8m) — V() is the projection, let Q = f~10/ -
Oy, (,51,....sm) be the inverse image ideal inVy(&,s1,...,Sm). Consider blow-up of V(y (€, 51, ..., 5m)
along Q. Let X be the .#-adic completion of the open in this blow-up where the inverse image ideal of
Q coincides with the inverse image of .#. We claim that X represents V (&, s1, ..., Sm, Q).

To prove this, suppose : T — X be alift of ¢t: T — S. Then certainly  defines a point of V(&) and
hence corresponds to an element f € Homop,, (t*E, Or). Moreover this satisfies (f mod t*.7)(t*s;) =
1. Since over X, .# coincides with O, (f mod t*.#) kills t* Q. Conversely, to prove that for any element
f € Homop, (t*E, Or) seen as a point of V(&), that sends s; — 1 and kills Q modulo ¢*.7, there exists
aunique lift £: T — X, it will be enough to prove this when T = Spf R’ and t: T' — S factors through
an open Spf R C S where £, and £ /€’ are locally free. In that case picking lifts X; of s; as in the
proof of Lemma 1.3.2 and lifts Y,;, 41, ..., Y}, of abasis yy+1, . . ., Yn of Q, we can write

m n XZ —1 m Y; n
Xispr R = Spf RU{XG 12 {5 o) ({ i:l{gj}j:m+1>

e
~ R({Z:i}iy, {Wj}?:m+l>
where the projection X — V(&,s1,...,5p) corresponds to Z; +— Z; and Y; — aWV;. Now t*E =
O R (0 X5) @ D), B (¢7Y)). An R'-linear map f: ¢*E — R that satisfies f(X;) = 1 mod (a)
and f(Y;) = 0 mod () can be written uniquely as

m n
F=3 0 4an) X + S agt'y)"

=1 j=m+1
for r;, ¢; € R'. Then we can define a map R'({Z; }{W;}) that sends Z; — r; and W — ¢; for all ¢, j.
This determines a point £ € X (T'). O
Lemma 1.3.4. The functor V(E, s1,. .., Sm, Q) is functorial in tuples (€, 51,...,5m, Q), ie. given a
map of locally free sheaves of equal rank p: £ — &', where & (resp. E') is equipped with marked sections
S1y.vySm (resp. s, ..., sh,)and a subsheaf Q (resp. Q'), corresponding to a marked splitting, if p(s;) = s,
and p(Q) C Q’, then there are natural transformations V,(E', s}, ..., s, Q") = Vy(&,51,..., Sm, Q)
and Vo (&', sy, ...,80,) = Vy(E, 51, .., Sm) such that the following diagram commutes.

V(&' s, oy 80,, Q) —— V(€ 51,...,5m, Q)

| |

V(& s, o 8m) — Vo (€, 81,...,5m)
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Proof. Follows easily from the definition. O

1.3.2 The sheaves ()¢ and Hg«

The trivialization of H,Y over ZG,, , 1 induces an equality of groups HY (3®,,, 1) = HY(ZGp 1) =~
Z/p"Z. Let P*™ be the image of 1 € Z/p"Zin H)/(3&,,,.1). We have a Oy, , ;-linear map

we

dlog ®1 J p'—1

— wg, = we/p"Hdg » T we.

Hr\L/ (jﬁn,r,l) Kz Oﬁ@ﬁ

n,r, I

Recall the definition of the dlog map: apoint P € H,Y (R) defines a group homomorphismyp: H, r —
G gr- Then dlog(P) := vp(dt/t) where dt/t is the canonical differential of G,.

Definition 1.3.5. Define ()¢ to be the inverse image under wg — wp,, of the image of dlog ®1. We call
this the modified modular sheaf.

The cokernel of dlog ®1 is killed by Hdgif’iil [AIP18, Proposition A.3]. Hence 2¢ = Hdgz’iil wg is aline

bundle. There is a canonical isomorphism

HY(36,,,.1) © Ose,, ., /p"Hdg7 T = Qg /p"Hdg v T.

Let 3, := p”Hdg;%l.

Letting s = dlog(P""), we have a line bundle with a marked section (£¢, s). Thus we have a morphism
of formal schemes v: V(Qg¢, s) = TG, . 1.

1.3.2.1 Formal group action on V(Q¢, s)

The formal scheme V,(€2¢, s) carries an action of the formal group T := 1+ 3,G, over IJ&,, ,. 1, which
realizes it as a torsor.

The action is described on points as follows. Let (p, f) € V;(€Q¢, s)(R) be an R-valued point. Here
p: Spf R — J®,,, 1 is a morphism of formal schemes, and f € Homp(p*Q¢, R). By definition

(f mod 8,)(p*s) = 1. Forany pointt € 1+ B, R, lett x (p, f) := (p,tf). Then clearly (p,tf)
defines an element of V,(Q¢, s)(R).

On local coordinates this action can be described in the following manner. We choose local coordinates
as described in Lemma 1.3.2, i.e. pick a lift X of the marked section S over an open Spf R C J&,, ;.
that trivializes {2¢. Then we have the following cartesian diagram.

38,1 V(Qg) +— V(Q¢, 9)

J J J
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The action of T on Z is such that ¢ * (1 + 8,2) = t(1 + $,Z). In other words, t x Z = =1 +1Z7.

/3

Recall we defined H (Definition 1.2.1) as a locally free subsheaf of Hg such that modulo pHdg ™! the
induced Hodge filtration on H); admits a canonical splitting.

Definition 1.3.6. Define Hi- = Hdgﬂ%1 H';. We call this the modified de Rham sheaf.

1
Since Hdg?-1 is an invertible ideal, Hﬁg is a locally free sheaf of rank 2 equipped with a Hodge filtration
as follows. .
0 — Q¢ — H: — HdgrTwy — 0
Moreover, this filtration splits upon pulling back via the closed immersion i: J&,, . /(pHdg™!) <
J&,, .1, and this splitting is induced by the splitting of H.

Remark 1.3.1. We note that as modules Hﬁ (by our definition) is the same as that defined in [AI21]. How-

ever we have the added information about the splitting of H’ ¢ in our case.

1.3.2.2 Functoriality

Consider the morphism F: I8, r41,1 — IB,, ;. 1 defined generically on the universal elliptic curve by
Er & :=E/Hy. Let \: £ — &' be the projection and let AV : £ — £ be its dual. Then AV induces an

~

isomorphism H,,(£') = H,, () over the generic fibre. This then induces an isomorphism Qg — Q¢
sending the marked section of {)¢ to the marked section of {2¢/. We note that Hdg,, = Hdgg since A
reduces to the relative Frobenius modulo pHdg™*

Lemma 1.3.5. There exists an 1 large enough such that the induced map (\V)*: Hg — Hes restricts to
a well-defined map (\¥)*: Hﬁg — H?S, that sends marked sections to marked sections. Moreover, let Q C

Hqg /pHdgg ®+D) be the kernel of the marked splitting, and let Q' C HY, / pHdgg(p U be the same for &'
Then (AV)* sends Q to Q.

Proof. Since (A\V)* maps Q¢ isomorphically onto ¢, it is enough to show that the induced map Hﬁg /Qe —
Hgr /Q¢r factors through the inclusion H?‘:, /Qer — Hgr /Qer. We have a diagram as follows.

2

P2
j lHdggfl
(AV)*

Hi/Qg E— Hg//Qg/ T Hg//(,«)g/ ~ wg,

N

P

Hdgg wy

The description of all the arrows above should be clear except perhaps the lower right diagonal arrow
Hdg & 'wy o — Her Jwer o~ wy, & Let us explain what this map looks like. Firstly, abstractly this map is the

P
restriction of the map (A*)¥: w¥ — wy, to the submodule Hdg2 " wy. For a choice of local basis € of
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we, F*eis alocal basis of wes. With respect to the dual basis €V and (F*e)¥ of wy and wy,, the map (\*)"
N 2 -
is given by sending " — pHdg *(F*e)". Hence with respect to the basis HdgZ "'e" and (F™*e)" of

Hdg 'wY and wy, respectively, the Oy, -linear map (A\*)" can be described as multiplication by

pHdg ™ 35

1, I

Let Hdg = Hdgg in this proof. Since multiplication by pHdg71+% is injective, we see that the im-
age of Hﬁ =/ under (AY)* does not intersect wgs /Qer. We first show that 7 o (AY)* factors through

Hdgv TwY,. For this it is enough to show that pHdg ™~ = Hdgp 1 ie pHdg™ (p+1) 036,111
which can be ensured by choosing large enough 7. This proves that the map (A" )* —i ! oo (AY)* fac-
tors through we/ /¢ which is a torsion module killed by Hdgp%l. Now since H‘ﬁg = Qe+ Hdgﬁ Hg,
the difference (\V)* — i1 o7 o (AV)* = 0. This proves the first claim.

The second claim follows from a local computation. Choose an open affine Spf R = U C X such that
Hg admits a basis {e, f} over U with e a basis of wg. Let {&, f} be their image over Spf R/p. The unit
root subspace is generated by a vector v = Cé + Haf for some C € R/p. Let p: R/p — R/pbe
the Frobenius. With respect to the basis {, f} of Hz and {e®) := ¢* (&), f®) := ©*(f)} of Hz(»), the
matrix of Verschiebung V': Hg — Hg(,) can be written as

Ha B
v_<0 O)_

Since Verschiebung kills the unit root subspace, V (Cé + Haf) = (CHa + BHa)é = 0. This shows
that B = —C. Let Spf Ry rp1 C IG,, p41,1 (resp. Spf Ry, C J&,, ;1) be the inverse image of U in
36, 41,1 (resp. IB,, ;. 7). Then as discussed in §1.2, Hg over J&,, ;11 1 is generated by the pullback of
eand aliftv = Ce + Hdg f of 0. For notational simplicity we will write these sections as {e, v} still.
Similarly, Hf, is generated by pulling back via F: Spf Ry r+1 — Spf Ry, the pullbacks of e and v to
Spf Ry, . We will write these as { F*e, F*v}. Then with respect to {e, v} and { F*e, F*v} the matrix
of (A\V)* can be described as

(V) = 1 —F*(CHdg ")\ (Hdg B (1 ¢
—\o  F*(Hdg™) 0 pHdg™! 0 Hdg
_ (Hdg CHdg + BHdg — pF*(C)Hdg P
L0 pHdg™P '

— 1 1
Here B is a lift of B modulo pHdg~'. Therefore with respect to the basis {Hdg?—1 e, Hdgr—Tv} and
p ~ P ~
{Hdg?-T F*e, Hdgr-1 F*v}, the matrix of (\V)*: Hfg — HE, is written as

(V) = 1 C+ B—pF*(C)Hdg~ )

This proves the second claim of the lemma. O
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Definition 1.3.7. Let Hg, (¢, s be the modified de Rham sheaf, modified modular sheaf and its marked
_p2 _.2
section respectively. Let Q C Hg / pHng%1 be the kernel of the marked splitting 1/ Hi / pHng%1 —
2

Q¢/ pHng%l. We call the marked splitting 1) as the modified unit root splitting and Q the modified unit
root subspace.

We remark that by Lemma 1.3.5 the modified unit root subspace is functorial for \V: £ — €.

2

Recall the notation 5, = andg%. Letn := pHdg%.
Associated to the data of (Hﬁg, s, Q) we can define a formal vector bundle with marked section and

marked splitting VO(HE, s, Q) as the functor on FSchgcé)n _, whose points are

Vo(Hh, s, Q)(t: T — 36,,,.) = {f € Homo, (tHY, O7) | (f mod 8,)(t"s) = 1,

(f modn)(t*Q) = 0}

A slight modification of the proof of Lemma 1.3.3 shows that V| (Hg, s, Q) is representable by a formal

scheme which is obtained as an open in a formal admissible blow-up of V) (Hg, s).

Let p: VO(H?S, 5, Q) — J&,, ;. 1 be the projection.

1.3.2.3 Formal group action on V, (Hi, s, Q)

The formal scheme VO(HﬁS, s, Q) carries an action of the formal group ¥ = 1+ 3,G, over J&,, .  that
is compatible with the action of T on V(§2¢, $), i.e. the natural map VO(HE, s, Q) — Vy(Qg, s) that
we get by composing the projection V|, (Hg, 5,Q) = V, (Hﬁg, s) with the natural map V, (Hﬁg, s) —
V(Q2¢, s) of Lemma 1.3.4, commutes with the action of T.

This action is defined on points as follows. Let (v, f) € V, (Hg, s, Q)(R) be an R-valued point. Here

v: Spf R — J&,, ;1 is a morphism of formal schemes, and f € HomR('y*Hg, R). By definition,
(f mod f3,)(v*s) = 1and (f mod n)(7*Q) = 0. For any pointt € 1 + B, R, lett * (v, f) := (v, tf).
Then clearly (v, tf) defines a point of VO(Hg, s, Q)(R).

We now give a description of this action in terms of local coordinates. Choose an open Spf R C J&,, ;.

such that we have a basis { X, Y} of Hﬁg|Spf g With X' € Q¢ (g g being alift of s and Y being a lift of a
generator of Qspf g/y- Then we have the following Cartesian diagram.

3G, —— V(Hﬁg) — VO(Hﬁg,s) — VO(Hg,s, Q)

J J J J

In terms of these local coordinates, t € T(R) actsviat x Z = tg—: +tZ,andt x W =tW.
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Remark 1.3.2. In the following subsection we will define the p-adic interpolation sheaves m§€7 7 and Wz,’ I
over J&,, ;1. There is an action of the group Z, on J&,, ;. over X, ;. The T action on Vj(2¢, s)
and on V, (Hg, s, Q) can be extended to an action of T := Z (1 + 3,G,) on the aforementioned
formal schemes over X, ;. For the case of V;(€2¢, s), this has already been discussed in [AI21, §3.2]. For
VO(H?S, s, Q) it is similar to the action of T on VO(HQ, s) as discussed in loc. cit. §3.3.1. It is necessary
to consider this action to define p-adic interpolation of modular and de Rham sheaves over X,  rather
than over J&,, ;. ;. Namely, the authors in loc. cit. define mg, ; as a line bundle over X,. ; by taking the
k-invariants for the action of Z; on the sheaf m§€7 ; over J&,, ;. 1. Similarly one should define a sheaf
Wg} 7 over X, 1 by taking the k-invariants of W;% 1 for the action of Z 7. Using this one can show that the
construction of m% rand W% ;7 does not depend on the choice of nn and is functorial with respect to r and
I. But for the purpose of this chapter, which is to prove convergence of p-adic iteration of the Gauss-
Manin connection on the generic fibre, it is not necessary to construct the p-adic interpolation sheaves
over X, 7, and it will be sufficient to work over J&,, ;. ;. The efficacy of using VO(H?S, s, Q) instead of

Vo (Hﬁg7 s) will already be evident in constructing the Gauss-Manin connection over J&, ,. ;. Hence we
ignore the residual action of Z,'. However we will discuss these issues in the next chapter when we deal
with Hilbert modular forms.

1.3.3 p-adic interpolation of ()¢ and Hg«

Let n, 7, I be as fixed in the beginning of the section. Recall we have projections p: VO(HE:v 5,Q) —
jﬁnﬂﬁ[ and v: VO(Qg, 8) — 3671,7”71'

Definition 1.3.8. For k = k:? : Z;; — A? the universal character over Qﬁ(}, define

mﬁu = V*OVO(Qg,s)[k]'
These are all functions f € V*OVO(QE7S) such thatt * f = k(¢t) f forallt € T.

Recall the description of V;(€2¢, s) in local coordinates as described in §1.3.2.1. Over an open Spf R C
I8, 1 that trivializes e, Vo (Qe, 5)spr g == Spf R(Z). The action of T on Z is given by t x Z =
156%11 + tZ. Note that since k is analytic on 1 + 3,G,, k(1 + 5, Z) is an element of R(Z).

Proposition 1.3.1. For Spf R C 3&,, ;. 1 as above, W), TR = R - k(1 + BnZ). In particular, w)_; is a
line bundle.

Proof. This is [AI21, Lemma 3.9]. O

Definition 1.3.9. For k = k?, define

Wi, = p.O [k].

Vo (HE,5,0)

These are all functions f € p.Oy, ( satisfying t * f = k(t) f forallt € T.
0

H%,5,0)
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Recall from §1.3.2.3 the description of VO(Hﬁg, s, Q) in local coordinates. Choose an open Spf R C

J®,, 1 such that we have a basis {X, Y} of Hg‘spr with X' € Qg spf g being a lift of s and Y be-

ing a lift of a generator of Qg g/y- Then VO(H(%, s, Q)ispr r = Spf R(Z, W) with the projection
VO(H?Sv 8, Q)(spf R — V(Hg)‘spr ~ Spf R(X,Y’) being givenby X +— 1+ 3,Z and Y — nW.

Proposition 1.3.2. For Spf R C J&,, ;. 1 as above, W;%I\spr = R<%> - k(1 + BnZ). In particular,
Wﬁc 1 is the p-adic completion of a direct limit of locally free sheaves.

Proof. Let W(R) := R<%> - k(1 + BnZ). Certainly W(R) C W§4J|Spf - In order to prove the

converse it will be sufficient to prove R(Z, W)*(F) = R(%), since k(1+ fn,Z) € R(Z,W)*. Let

V= % We note first that the inclusion R(Z, V') — R(Z, W) is an isomorphism of topological

rings. Suppose f € R(Z, V)* ) Write f = 3.0, bi(Z)V* with b;(Z) € R(Z). Thensincet * f = f
forallt € T(R), we have b;(Z) = b;(t x Z) for all . Writet = 1 + B,a for a € R. Then we
have b;(Z) = bi(a + tZ) forany a € R. Letting Z = 0, b;(0) = b;(a) for any a € R. By the
Weierstrass preparation theorem, this implies that b; € R. Thus f = >, b;V* € R(V). This proves the
proposition. 0

Lemma 1.3.6. Let fy: V, (Hg, $,Q) — Vy(Qg,s) be the projection. There is an increasing filtration
{Fil; };>0on fO*OVO(H”S,s,Q) with Filo(fO*OVO(Hﬁg,s,Q)) = OVO(QS’S). On local coordinates, if V (£2¢, 5)\spr =

Spf R(Z) and Vo(HE, 5, Q) g, = Spf R(Z, W), then

Fﬂn(fO*OVO(Hﬁ&s,Q))\Spr = Z R<Z>WZ
1=0

Proof. We only need to show that the description in local coordinate glues. This is obvious for Fily
by definition. Suppose {X,Y} and {X’, Y} be two bases of H?ﬂSpf p With X, X' being lifts of s and
Y, Y’ being lifts of a generator of Q|spt R/n- Then these choices give two local coordinate description of
Vo(HE, 5, Q) g o Viz- R(Z, W) == V(HE,5,Q) g p = R(Z, W) with Z = XL and W = &

and similarly for Z’, W'. Since every filtration contains Fily, we can assume without loss of generality

that X = X'. Then Y’ = uY + anX for some u € R* and a € R. The isomorphism R(Z, W') =
R(Z, W) is then given by W/ +— uW + a(1 + 3,,Z). Clearly this isomorphism respects the filtration
on both sides. g
induced

Theorem 1.3.1. The T action on p, OV ) is compatible with the filtration on p, OV (H
0 0

£.5,Q)
VO(Hﬁg,s,Q))) k],

(HE .0
from the one defined in Lemma 1.3.6 via pushforward. Then letting FiliW;C’ ;= (Fili(p*O

we have an increasing filtration of W) by locally free sheaves.
Moreover, W;%I = hgl FiliW;u.

We have FiloW}, ; = voj, ;, and Gr;Wj, ; ~ ro}, ;& (Hdg /n)'wg ™.
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If[0,1] C 1, then for any classical weight m € N which is a point of W?, specializing at this point gives an
isomorphism of sheaves

Sym™ He[1/p] ~ Filp Wy ., 1[1/p]-

k—m

over the generic fibre 1G,, ;. 1 X Wo

tion on the left.

Spf Qy, that preserves filtration on both sides considering the Hodge filtra-

Proof. All of the statements follows immediately from the local description of W, as in Proposition
1.3.2. For instance Fﬂ"W;%USpr =Y" R k(14 8,Z) - ViwithV = % as in the proof of

the Proposition. The last claim follows by observing that Hg[1/p] = H?g [1/p] and then using the local
description of Fil; W)_,. O

1.4 p-adiciteration of the Gauss-Manin connection

In this section we will define iteration of Gauss-Manin connection for analytic weights.

1.4.1 Gauss-Manin connection on Hﬁg

Let ZG,, . 1 — ZGn,r1 be the morphism classifying isomorphisms (Z)p"Z)? ~ E[p"]. Let I&!

n,r,I

be the normalization of J&,, ;. ; in Ig;w’ - Then [AI21, Proposition A.3] shows that the Gauss-Manin

connectionV: Hg — H5®9§®In LAY induces a connection V : H?‘: — Hi@g%eﬁ” /A9 OVer 36;17“[

such that the marked section is horizontal for V modulo [3,,. In this section we will show that the modified
unit root subspace Q is also horizontal for V mod 7. This will be necessary to apply Grothendieck’s
formalism of connections in our setting by using Lemma 1.3.4.

Lemma 1.4.1. The Gauss-Manin connectionV: He — Hg ®Q§ & /A0 restricts to a connection V : Hg —
n,r, I I
H?9®Q§QSLL7T,I/A‘} such that (V mod [3,,)(s) = 0and (V mod n)(Q) C Q®Qf1’®;m,1//\9/

ift € Qisalocal generator of Q that has been obtained as a pullback under the projection 3@5;”"7[ — I8 1
of a local generator of Q over IB,, ;. 1, then (V mod n)(t) = 0.

(n). In particular,

Proof. Let Spf R C J®&,, . 1 be an open that trivializes He and which is the inverse image of an open

1
affine Spf Ry in X, ;. Also assume that Hdg»—T is trivialized over Spf R. Let {w, (} be a basis of Hg
over Spf R which is a pullback of a basis from Spf Ry. So hoping to not cause much confusion, we will
often pretend that {w, ('} lives over X, ;. Then as shown in the proof of Lemma 1.3.5, there exists C' € Ry
1 1
and a choice of a generator of Hdg?—1 (to be also denoted by Hdgr—1 by an abuse of notation) such that

1
e := Hdgr—Tw is a lift of the marked section s and f := Ce + HdgﬁC is a lift of a generator of the
modified unit root subspace Q. Suppose

V(w)=w®@mb+(®H0, V() =w®qgl+ (0.

Here § = K S(w, () is the Kodaira-Spencer element associated to the basis {w, (}. Since {w,(} isa

. . . 1
basis over Spf Ry, 6 is a basis of Q%,;/A‘}‘
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1

It is shown in [AI21, Proposition A.3] that the restriction of V to ()¢ factors through p"He ®Qj®/ /A0
n,r,I I

Let Spf R’ C 3(’5%,,”, ; be the inverse image of Spf R. Then over Spf R’ we have

Vie)=w® (degG + degzv;) +(® Hdgplﬁg_

This implies by the above fact that § € p”Hdgzﬂ_T11 Q}%, /ag OF in other words the image of Q}% /A9 —

-1 N
Q}%'/A? lies in p"Hdgr-1 Q}%’/A‘}‘ This in fact shows why V: Hg — HS@Q%‘@%,TV,I/A? restricts to a
connection V: H?g — Hi@Q:l] & /A0 Rewriting the connection on H?g in terms of the local basis we

n,r, I I
have the following equations.
1 1 dHdg co p 0
= V(Hdgr-1w) = Hdgr-1? 0 — Ce + Hdgr-1 —_—
V(e) = V(Hdgr-1w) gr w®<m +(p—1)Hdg Hdg)—l—( e+ Hdgr C)®Hdg
dHdg co 0
= 0 — —_—.
e (m T p-1Hdg Hdg> 7% Hag

(1.2)

V(f) = V(Ce + Hdg 1)

C?9 CdHdg co pdHdg (1.3)
= H = .
e®<dC+q dgf + mC¥o Hdg Tdg >+f®<Hdg+(p—1)Hdg>

Since both C' and Hdg are defined over X, 1, this shows that V(f) = 0 mod 7. This proves the lemma.
O]

1.4.2 Gauss-Manin connection on p, OVO(Hﬁg 5.0)

. 1 ~ Ol .. 1 ~
We make the observation that Q(J@ﬁlml/(ﬁn))/A? o~ Qj@n,r,f//\‘}/(ﬁn) and similarly Q(stfn,r,I/(n))/A? o~
ch@nml//\?/(n). This follows from noting that d3,, € BnQéqﬁ;m]/Ag anddn € T)Q%@%’T’I/A?.

Let 7’;(;2; /A0 be the first infinitesimal neighbourhood of the diagonal embedding A: 3@5%77,7 ;=
38, .1 Xﬂﬁgj®;z,r,1' Letp;: 77%); e 38, . 1 be the two projections fori = 1, 2. Grothendieck’s

formalism of connection as discussed for example in [BO15, §2], allows us to view the connection V on

Hg as an isomorphism € : ngi. = pTHEtS of locally free sheaves over Py This € is charac-

38, /AT
terised by the properties that A*e? = id, V(z) = €/(1 ® 2) — = ® 1 and it satisfies a suitable cocycle

condition with respect to the three possible pullbacks of €* to 3@5;177,7[ X oy 305;7“ X gy 36%,7"71'

The observation made in the previous paragraph implies that p] /3, = p503, and pin = p5n as ideal

(1)

sheaves on P, .
38, . 1/A9

~ *

Lemma 1.4.1 implies that €’ : p%‘Hug — le?g is an isomorphism of locally free sheaves satisfying

(¢ mod B,)(p3s) = pis, (€ modn)(psQ) = pi Q.

Thus without any confusion we will write them as 3,, and 1 respectively. Then
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Therefore we have an isomorphism

co: (PiVo(HE, 5, Q) = Vo(piHE, pis, p1Q)) = (Vo(sHE, p3s,p3Q) = p3Vo(HE, 5, Q)

by Lemma 1.3.4, such that A*ey = id. Moreover we have a commutative diagram as follows.

pTVO(Hg‘a S, Q) L pEVO(H(ﬁgW S, Q)

! |

PiV(HE) — < psV(HL)

Letting p: VO(HE, 5,Q) — J&! . ; and g: V(H?S) — J®! . ;, we have isomorphism of sheaves over

n,r,I’ n,r,I’
'P(l), o as follows.
j®n,r,1/AI

#
€0
pEP*OVO(H‘i ,5,Q) pTP*OVO(H‘i ,5,Q)

| |

P29+Oy (ut —— pigs Oyt

Here € is induced by the ¢! on Hﬁg C g« OV(H” )
£
f

condition and so does eg. Thus € corresponds to a connection on O

. Hence in particular €* on g, OV( ) satisfies the cocycle

HE
Vo (H5,0)" We will study this
connection in local coordinates to define the connection on W;C -

1.4.3 Gauss-Manin connection on W/

Let Spf R’ C 365;1’,,71 be an open affine as in the proof of Lemma 1.4.1, and let {e, f} be a basis of Hg» as

mult

in that proof. Let I(A) := ker(R’@A(}R' 25 R Let R = R'®A(}R’/I(A)2. Then with respect
to the basis {1 ® e,1 ® f}and {e ® 1, f ® 1} we can write the matrix of €*: pZHﬂg — pTHﬂg as

Since A*e? = id, we see that a,d € 1 + I(A) and b,c € I(A). Moreover, letting ap = a — 1 and
do = d — 1, we have a% = d% = =c2=0. Using Equation (1.2) we see that ¢ - Hdg = 6.

Recall, since k is analytic on 1 + 3,,G,, there exists a unique element u;, € pl_”A(} such that k(t) =
exp(uy log(t)) forany t € 1 + 3,G,.

Theorem 1.4.1. There is an integrable connection on W,

Vi Wy — W;C,I®Q%®nm][1/a]
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which satisfies Griffiths’ transversality for the filtration Fil; on W)_ | defined on Theorem 1.3.1. Moreover the
induced linear map on the graded pieces

Gro(Vi): Grp, Wy, — GrmHW;’ﬁJ@Qé@n,M/N}[1/O‘]

is an isomorphism times (ug, — m).

) ) ) ) ' N
Proof. By the previous section, we have an isomorphism € : p3p« OVO(H‘%,S,Q) — D] P+ OVO(Hg,s,Q) that

induces a connection on p, OV (H Its restriction to W% 7 will give V.
0 b

L.5,0)

Writing p. O = R'(Z,W), we have W§€J|Spf o R{V) - k(1 + B,Z) with V =

Vo(Hus 5,Q) |Spf R’
%. Thus to describe the connection on W;c, ;1 it will be enough to describe eg onV and (1 + 3,2).
We have

(V) =n"tb+ndV)(a+ncV)™, €1+ B.2) = (a+ncV)(1+ BaZ).
From this one can deduce the following formula for Vi (z) = e%(l ®z)—xr® 1.

Vi (V™ k(L4 B,2)) = (mV™ @by + (w, —m)V™ @ ag

1.4
+mV" ®@do +n(ug —m)V" N @ ¢) (k(1+ B.Z2) ® 1) (19

The first part of the theorem follows by noting that the natural map Q} o — QL o is an
JQﬁn,T,I/A[ qun,r,l/AI

isomorphism on the generic fibre, since Ig;m 1 — LGy 1 is étale. The second statement follows be-
. . . . . 1 .
cause ¢ - Hdg = 6 is the Kodaira-Spencer element, which is a generator of QJQSH,M/A?[I/O‘] since

LG r 1 — X1 is étale. ]

1.4.4 The U operator

Consider the morphisms p1,p2: I8, 4111 — T, 1 defined generically by sending & — & and
& — &/ Hj respectively. Here po is the same as F'in §1.3.2.2. Let \: & — &’ = £/ H; be the projection
and let \V: & — & be its dual. The map ps is finite flat of degree p on the generic fibre and so induces

a well-defined trace map Tr: p2, Ose — Oss

n,r+1,1 n,r,I°

Proposition 1.4.1. There is a morphism U : pg*pTW% ;= pg*pEW;cy ; induced by the isogeny AV that
commutes with the Gauss-Manin connection and preserves the filtration on both sides.

Proof. The morphism \" induces a map pTHg — pEHﬁg as described in Lemma 1.3.5, which sends the
marked section to the marked section and the modified unit root subspace to the modified unit root
subspace. Then by Lemma 1.3.4 we get a morphism ngO(ng 5,Q) — pTVO(H’é7 s, Q). The required
map U is obtained by taking k-invariants for the T-action on the induced map on the structure sheaves.

O

Definition 1.4.1. The U operator is defined on the global sections of W;C’ ; as the composition

E

Uop} % ~
U: H (36,1, W} 1) =, HY(3&,,r.1,p2.05 Wy 1) HY(3&,,,.1, W, )[1/p].
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1.4.5 p-adic iteration of V

In this section we will iterate the Gauss-Manin connection defined above for analytic weights. Since V/,
maps WZ, /[1/p] — W 42, 7[1/p], and we are interested in iterating the connection, for simplicity of
notation we will write V instead of V. The strategy is the same as in [AI21]. We first study the rate of
convergence of V on the ordinary locus. Here it will be evident that based on our definition of W;C’ I

and in particular due to working with V, (Hﬁg, s, Q) instead of V| (Hg, s), V will converge faster than
in loc. cit. This will simplify computations to a great extent. In particular, one can completely avoid the
extremely complicated computations of [AI21, Proposition 3.41]. Then we will define the iteration of V
on a p-depleted overconvergent form by first defining the iteration on the ordinary locus, and then using
a trick similar to [AI21, Proposition 4.11] to prove overconvergence of the resulting modular form.

1.4.5.1 V| on g-expansions

We are going to study the effect of V on g-expansions. Let E = Tate(q" ) be the Tate curve over R =
A%((g)). Fix the canonical basis (Weans ean = V() (Wean)) of Hg = Hi(E/R). Here 0 = qdiq is
Serre’s differential operator. With respect to this basis, the matrix of V is given by

0 0
V= (dQ/q 0)'

Let W}, ;(q) be the pullback of W}, ; to Spf R via the structure morphism defining . Then W}, ;(¢) =
R(V) - k(1 + p"Z). Then it follows from Equation (1.4) that for any a € R,

V(aVh (1 +p"2)F) = 0(a)V (1 + p"Z2)F2 4 p(uy, — R)VITEHL 4 pn2)k+2. (1.5)

Let Vi p, = Vh(l + an)k.
Lemma 1.4.2. Let g(q) € Rand N > 1. Then we can write

N

VY (9@ Vin) =D 0 an O™ (9(0) Visan o
=0

We have an . ho = 1 and for j > 1,

i—1
N
AN k,h,j = <]> (up —h+ N —1—1).
i=1

1=

Proof. We prove the formula for ay  , j by induction on N. For N = 1 the statement follows from
Equation (1.5). Assume the statement is true for N = n. For j = 0 or j = n + 1, the statement is also
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clear. So we assume that 0 < j < m + 1. In this case Equation (1.5) again gives

Ui khg = Anhy + (U —h+n+n—7+1)apinj—1

n! 12 (up —h+n—3) (ug—h+n+n—j+1)
= —h4n—1-—i
g oy Ll =1 =) j " n—j+1
- y ﬁ _
= — (up—h+n—-1=49) (n+1)(ur — h+n)
_(n — G =D |
N7
:(”;r >H(uk—h+n+1—1—i).
i=1

O]

This proves the formula.

Let W(k) := 3, 50 Wi o, yand W := p, O,

is the projection.

o(HE 5,0) where we recall p: VO(H?€7 5,Q) — 36,01

Corollary 1.4.1. Forany g € H° (3@;’{:1[,
u € A?, we have

W} )U=0, and k = exp(uy log(t)) forallt € 1 + p"Z,, with

(VP —id)(g) € pH (389, W) N HO (38"

n,I»

W' (K)).

Proof. By the g-expansion principle, it will be enough to prove this for ¢ = g(q)Vj p, for some g(q) p-
depleted, i.e. g(q) = me a,q". By Lemma 1.4.2 it is enough to show that 9?~! (9() Vit2p-1),0 —
9(@) Vi € pHO (3835,
and 97~ 1(g(q)) = g(q) mod p for p-depleted g(q).

W). But this follows from the obvious congruences (1 +p"Z)P~! = 1 mod p
O

Remark 1.4.1. Compare Corollary 1.4.1 with [AI21, Proposition 4.10]. There the authors prove a similar
result, viz. for any g € HO(’J@‘T’;‘}, W/ )V=0, and k as above,

(V2™ —id)(g) € pH° (3G, W') N H (IS,

W' (k).

So one can see that our techniques yield faster convergence for p-adic iteration of V. Moreover the proof
of their result relies on the proof of Proposition 3.41 of loc. cit. which is extremely complicated. We can
avoid those computations entirely using our method.

1.4.5.2 Iteration of V

Before going further we need two preparatory lemmas.

Lemma 1.4.3. Let g, : 38,,, 1 — X, be the projection. Then the kernel and cokernel of the map g,’;QéT L
Q%Gﬁn _, is killed by a power of Hdg. Let hy, : 305;17“ — JB,, 1 1 be the projection. Then the kernel of the

map h;“lQ%anmI — Q%QS’R » is killed by a power of Hdg.
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Proof. The map g;be%ng — Q%an,r,l is an isomorphism over the ordinary locus. In particular the co-
herent sheaves kernel and cokernel are killed by tensoring with Oy, ., (H%lg). Since the completion

O36,.,.1 [%@] = 038, (= dg ) is faithfully flat, the claim follows.

For the second statement, we note that over the ordinary locus, 36%,1@ ; — JB, .1 is a torsor for a
group which is an extension of Z/p"Z* by ji,». Indeed we can form an intermediate Z/p"™Z* -torsor

J Q5”’°;d over JBod 7 that classifies trivializations of both the connected and étale parts of the p™ torsion

of elliptic curves. Then J QSI Ord — I8’ Ofd is the in -torsor classifying splittings of the extension 0 —

ppn — EP"] = Z/p"Z —> 0 away from the cusps. We only need to show the injectivity on Kahler
differentials for this fi,n -torsor J (‘5;10? -7 @Z °;d Since J&” 0; is smooth, this reduces to checking
injectivity on Kahler differentials for the map jn x A' — A, where it is obvious. This proves that the
map h Q%Qj o Qjﬁ,

n,r,I

is injective over the ordinary locus. Then the same argument as the first

part completes the proof of the claim. O

Lemma 1.4.4. Let C,, = p®*" 1 (n — 1) + 1, where we recall [ = [p®, p®] (this has to do with the fact that
p/Hdg P Ox,. ;). Then the kernel of the restiction map Oy, , ; /( 7) 2 Oj@grd]/(aj) is killed by
Hdgd @) +Cn

Proof. ltis clear from the local coordinates of X,. 7 that the kernel of O, , /(a/) o, O /(a?) iskilled

by Hdg’ (") The trace map Tr: g,,0z6, ,,; — Ox, ; then gives a commutative diagram as follows.

0 —— ker ¢1 E— Og@n’r’l/(ozj) E— O/~®ord /(aJ)

| [» Jr

0 — kel“ ¢)0 —_— O}:LI/(O[]) e O:{ord]/(a‘j)

Suppose & € ker ¢1. Then Tr(z) € ker ¢ and hence Tr(Hdg’ " i) x) = 0. In other words, for any
lift z € Oze,,, of 7, Tr(Hdg/®"" Dz I) € a/Ox, ;. Let D71 == {y € Frac(Osg,,,) | Tr(yz) €
O, forallz € Osg,,, ;}. Then Hdg](pr+1 T € oD~ as ker ¢1 is an ideal. By using normality of
the rings involved, the result follows by localizing at height 1 primes and noting that ® ! is the usual
inverse different in such extension of DVR’s. O

Remark 1.4.2. We note that the above Lemmaisa weaker version of [AI21, Lemma 3.4], where the authors
have a better estimate of the constant C, (prec1sely B-—P). Also in our proof we rely on the fact that p # 0
in A?, i.e. we are away from the point at “c0” in the welght space, which they don’t need to assume. But
as we shall see, this difference will not be much of a problem for our application, which is to prove the
convergence of p-adic iteration of V.

Assumption 1.1. Letk: Z; — (A9)™ be a weight such that there exists uj, € A9 satisfying k(t) =
exp(ug log(t)) forall t € 1+ pZy,. In particular, we assume that & is a point in W[% ) and hence we can
take o = p.
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By Lemma 1.4.3 and the explicit local description of V in Equation (1.4), we see that there exists an integer
D > 0 such that V(W}) C WW;H? In particular, forany N > 1

1
p(p—l)NHng(pfl)N

(vt —id)N (W), ;) C W (k).

Lemma 1.4.5. There exists an integer ¢ depending on r,n and p, and an integer C' > 0, such that for any
g € HY(36,,,.1, W) )V=Y, and every positive integer N, we have

N
p—1 . N p 0/~ / 0/~ /
(v —id) (@) e| o o | OO W) N8 W R))

Proof. By Corollary 1.4.1 we see that
N
PN (V7L =) (9) ey, € PPV HO(IGSS, W) (1 HOOES, W (K)).
Locally on J&,, ;. 1, we then have that
N
p=INHAgPW=DN (Pl —id) " (g) € ker (W'/("™) = Wowa/ (") ).

= W/ ory
‘jén,dl

by Lemma 1.4.4 this kernel is killed by HdgP” (") +Cn This implies that

Here W'

ord

. Recall that W’ /(p/) is a polynomial algebra over O36,.,.1/ (p’) for any j. Thus

” N
plr DN HAgN P DG C (el i) (g) € pY HO (38,0, WNHO (36,1, W (R)).
In particular, choosing C' > 0, such that CN > N (p"+2 + D(p — 1)) + C,, for all N > 0, we see that
N
g (V7! —id) " (9) € PN H (38,00, W) 0 HO (38,1, W' (R)).

Choosing £ > 7 such that p/HdgC € Ox,;, we get that

N
p—1 _ N p 0/~ ! 0/~ !
(V ld) (9) € HdgC H (380,01, W) N H (38,01, W' ().

O]

Proposition 1.4.2. Let s: Z — (A})* be a weight such that s = exp(us log(t)) forany t € 1+ p"Z,
and ug € A?. Then for any prime p > 3, there exists an integer { depending on T, n and p, such that for every
g€ HY(36,,,1, 21)(]:0, the sequences

o - _ 1 (VP —id)! (g)
A(g, 8)m = Z( 1) ;

J=1
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and if we write H; ,y, for the set of tuples (j1,- - , ji) of © positive integers with j1 + - - - + j; < m,

1 (2

B(gas)m = Z Z'(puj_sl)l Z H (_1)37(1_1 (VP 1_ )j1+ +7i (g)

=0 (.717’.71)€Hz,m a=1 .](1
converge in Ho(jﬁn,e,l, W) for all m > 0. Moreover, if we denote the limits

log (Vp_l) (9) == lim A(g,s)m

m—00

and

Vi(g) = exp(pzf 0 log(VP" 1) (g) := lim B(g,s)m

m—r0o0

then V*(g) € H*(3&,, 4.1, Wi o 1)- The same results hold for p = 2 if us € 4A9.

Proof. The convergence of A(g, S), is clear from Lemma 1.4.5. We prove convergence for B(g, s)m,
Let’s first deal with the case p > 3. Let

(VP=L —id)iit-+ii(g)
i[1ja ‘

Then by Lemma 1.4.5, X E (p/Hdg®)2=da=ve()=2v(ia) HO(38,, , 1, W'). Now vp(i!) < =1 <

X =

—
(Ja) < ] too Using these inequalities,
Z]a_vpz' vaja >Z<Ja___vp]a> Z]a(l__>
This proves convergence in this case. For the case p = 2 we note that the terms W do not

have poles and the term u’ /4! is divisible by 2¢, which gives convergence in this case. Finally V*(g) €
H°(36,,4.1, W;€+25,I) as can be seen from the fact that ¢ * V(g) = t*+2V/(g) forany ¢ € Ly O
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Chapter 2

Overconvergent Modular and de Rham
Sheaves for Resy /Q GLo 1,

2.1 The setup

Notation

Let L be a totally real number field of degree [L : Q] = g. Denote by 0 the different ideal of Op. Fix
an integer N > 4. Let p { N be a prime which is unramified in L. Suppose p splits as p = P - - - L,
and let their inertia degree be f(3;|p) = f;. Fix a finite unramified Galois extension K of Q, where L
is split and let ¥ := {0: L — K} be the set of embeddings of L in K. Letq = pifp # 2andq = 4
otherwise.

2.1.1 The weight space

Let T = Resp, /7 Gy. Then T(Z,) = (Op ® Zy)*. Denote by A := Og[T(Z,)] the base change
of the Iwasawa algebra Z,[T(Z,)] to Og. Then A = Ok [A][T(Zy)y] ~ Ok [A]|[T1,. .., Ty], where
A C T(Zy,) is the torsion subgroup and we choose an isomorphism T(Z, )« ~ Zj of the torsion free
part with Z$. Under this isomorphism, the standard basis elements e; of Zj are sent to 1 + 7. Let
AY = Ok[T(Z,)«] be the quotient of A that sends A — 1,and letm = (p, T, . .., T,) be its maximal
ideal.

Let 20 = Spf A and 20° = Spf A?. Let VW = Spa(A, A)* be the analytic adic space associated to 203 and
similarly define WY := Spa(A®, A%)3, W satisfies the following universal property: for any complete
Huber pair (R, RT) over (Qp, Z,),

Homgpa(g, 2,) (Spa(R, RT), W) = Homgy s (T(Zp) g+, Gmp+) = Hom§™ (T(Z,), (RT)™).
W0 satisfies a similar universal property with respect to T(Zp ), ie.

Homgpa (g, z,) (Spa(R, RT), W?) = Hom$™ (T(Z, ), (R1)*).
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Let 200 be the admissible blow-up of 25% along m. For o € m \ m?, let 20 be the open in 20 where
m is generated by a.. Suppose 200 = Spf BY. Let WY be the rational open in W obtained by taking the
generic fibre of 207, This is given by the affinoid adic Spa(B2[1/a], BY) and is thus the adic spectrum

of a Tate ring. The 2" cover WO for varying o and hence their adic generic fibre cover WY. In particular,
the map induced by 200 — 259 on the associated analytic adic spaces is an isomorphism.
The natural inclusion A? — A is finite flat and the induced finite flat morphism WW — WV realizes W

as a disjoint union of copies of YW indexed by A. For @ € m \ m? we let W, be the inverse image of
W0 under this morphism.

We remark that all classical weights can be realized as points in WV),.
For I = [p® p’] witha € NU {00} andb € NU {oc}, let WOOCJ C WY be the rational open subset
defined as follows:
a b
War = {z € Wy« [p(@)] < la(2)P" # 0, |a(z)|” < |p(z)| # 0}.
Let A ; = F(Wg,l,(’);“vgl) and Aa,1 = TWa,1, Oy ). Let WY ; == Spf A ; and Wa, o=
Spf A 1.

For o varying in m \ m?, the different Qﬂg’ 7 glue together to form a formal scheme QU? with adic generic
fibre W?. W? can be described as follows.

WY = {z e WO : a €m,|ply < [0 |, #0) A (Vo €m, [0 |, < |pla # 0)}

Then W[%’l] = Wg and WBOO] = WO, At the level of formal models, QU?M] = Qﬁg and Qﬁ([)lyoo] = %.

We fix one such a. For the purpose of defining the p-adic iteration of the Gauss-Manin connection,
which is the technical heart of this work (§2.4.4) we need to assume v = p. For everything before that
section we can choose any a. But we should also mention that the construction of the main objects of
this work, i.e. the interpolation sheaves of modular forms and de Rahm classes of varying weight k, all
take place over a weight space where p # 0. In particular we do not study the perfect overconvergent
modular forms of [AIP18] or [AIP16b].

Analyticity of the universal character:

Let k"": T(Z,) — A be the universal character. Denote by k*: T(Z,) — A — A the character
obtained by composing the universal character with the projection onto the component of the trivial
character, and let k& 1 T(Zy) — A — Ag’ ; be its restriction to Wg, I

Lemma 2.1.1. For I C [0, g~ 'p"], the restriction of kO ; to 1+ qp™~ (O, ®Z,,) is analytic. Thus it extends
to a character
E WY x T(Z,)(1 +gp" 'R GI) - G},
ol VVa,l D ap €501,/2 Ja m

which restricts to a character

ng: WS,I x (1+ gp" 1 Reso, /7 Gf) = 1+ ¢p"G.
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Proof. This is an adaptation of the proof of [AIP18, Proposition 2.1]. See also [AIP16b, Proposition 2.8].
O

Since k:g’ 7 is analytic, and 1 + qp" ! Resp 1/2Ga = [lpex 1+ qp" ' G,, the universal character splits
into components k:& 1= 1,ex ko

Remark 2.1.1. Note that the analyticity of the character does not depend on cv. So we can glue the different
ng together to obtain a character k% : WY x T(Z,)(1 + qp"~! Reso, /2, Gy) = G,

2.1.1.1 The weight space for the group Res; ;o GL2 1,

In the literature there are two distinct notions of Hilbert modular forms. The first one is realized as
sections of a modular sheaf on moduli of abelian varieties with real multiplication and additional data.
The associated weight space is the one we defined above. There is also the notion of arithmetic Hilbert
modular forms which are sections of automorphic line bundles on the Shimura variety associated to the
group G := Resp, g GLg . Itis necessary to consider these modular forms for arithmetic applications.
The relation between these two different notions will be clarified in the next section. Here we will define
the weight space associated to the group G.

Let AY := Ok[T(Z,) x Z, ]|, and let Q0 := Spf AC. Let W& := Spa(AF, A%)* be the associated
analytic adic space. There is a natural morphism 20¢ — 20 given by the map A — A induced by
(OL®Zy)* = (OL®Zy)* X L) sendingt — (t*, Ny, /g(t)). This induces a map on the corresponding
analytic adic spaces. On classical points this map can be described as sending (v, w) € WG(Cp) —
v? - (w o Ny ), where v: (O X Zp)* — CJ is a continuous character and so is w: ZS — CX.

Denote the universal character by k¢7': (O, X Zp)* X Z; — (AG)*.

2.1.2 The Hilbert modular variety

Let ¢ be a fractional ideal of L and let ¢ be the cone of totally positive elements. Let M (uy, ¢) be the
moduli scheme over Z,, classifying tuples (A /g, ¢, A, 1) consisting of (1) an abelian scheme A — S for
any Zjp-scheme S, (2) an embedding ¢: O, — Endg(A), 3)if P C Homp, (A, AY) is the étale sheaf
of symmetric Oy -linear homomorphisms from A to its dual A, and P is the cone of polarizations,
then an isomorphism A: (P, PT) ~ (¢, ") of étale sheaves of invertible Of,-modules with a notion of
positivity such that the induced map A ® ¢ — A" is an isomorphism (the Deligne-Pappas condition),
and (4) a closed immersion ¢ : py ® 97! < A[N] compatible with O -action.

Let [¢] € CIT(L) be the class of ¢ in the strict class group of L. Any two representatives of a class
are related via multiplication by a totally positive unit, and hence the corresponding moduli problems
are isomorphic. Using this, we henceforth fix ¢ coprime to p, since that will ensure upon a choice of
a generator of ¢ ® Zj as an O, ® Zp,-module, the p-divisible groups of c-polarized abelian varieties
satisfying the Deligne-Pappas condition are principally polarized.

Let M (p1, ¢) be a toroidal compactification of M (1, ¢) and let M* (g, ¢) be the minimal compact-
ification. There is a semi-abelian scheme m: A — M (un, ¢) which restricts to the universal abelian
scheme over M (pu, ¢) and degenerates to a torus at the cusps. Let w 4 be the canonical extension of the
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sheaf of invariant differentials of the universal abelian scheme to the cusps. There is a largest open sub-
scheme M2 (1, ¢) C M(puy, ¢), called the Rapoport locus where w 4 is an invertible O, QOMR(uy 0)”
module. Since we assume p is unramified in L, the complement of the Rapoport locus is empty and
M (un, ¢) is projective and smooth over Spec Z,, [DP94]. The boundary D := M (un, ¢) \ M (un, c) is
a relative normal crossings divisor. The minimal compactification M *(p, ¢) is normal and projective.

Henceforth denote My, ¢) by X. Let X be its p-adic completion. Let H 4 be the canonical extension
of the relative de Rham sheaf of the universal abelian scheme to the cusps. It is a locally free Of, ® Ox-
module of rank 2 and it is endowed with an integrable connection V: Hy — Hy ® Q;/ZP (log(D))
called the Gauss-Manin connection. It also fits in an exact sequence

0= wa—Hs—wiv—0 (2.1)
which defines the Hodge filtration. The maps in the sequence are Op -linear. We also use the principal
polarization of the p-divisible group of A to henceforth identify w 4v and w 4.

Fix @ € m\ m? and [ as above. Let Xa,1 = X Xsptz, QUgJ. Since L splits in K, O, ® Ox, ; ~
[I,ex Ox, ;- Later it will be useful to collect the o’s in 7 different groups according to the valuation
they induce on Oy, (recall p = By - - - P, in L). Hence over X, 1, the exact sequence (2.1) splits into g
exact sequences

0= wa(o) = Hy(o) = wi(o) =0

where each w4 (0 ) is an invertible Ox,, ,-module and H 4(0) is a locally free O, ;-module of rank 2.

Let£: X4 1/(or) — Xq,1 be the closed subscheme defined by v = 0. The Hasse invariant is a section
Ha € (A9(€*w4))®®—1). Define the Hasse ideal to be Ha := Ha - (A9(£*w 4))®0—P).

Theorem 2.1.1. The Hasse invariant vanishes with multiplicity one along the irreducible components of its
divisor.

Proof. [AGO5, Corollary 8.18]. O

With the notation above, for each r > 1, consider the inverse image of @Z’TH under the map Ox, , —
Ox, 1/(«) and call this ideal Hdg,.. We call a local lift of a generator of Ha as Hdg. Then locally Hdg, is

the ideal (v, Hdg”

7‘+1)'

Recall a classical weight is an element of Z[Y]. The Hilbert modular sheaf of a classical weight & =
Y ngo is defined as

wh = ®wA(U)”“.
ag
Note that wi is obtained as the image of w 4 under the map induced by change of the structural group

Hl(%a,_h (OL (029 O}:QJ)X) £> Hl(%a,fa Oga,l)‘
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2.1.2.1 The Shimura variety associated to ¢

Let Shi (G) be the Shimura variety associated to the group G = Resy, /g GLz 1, and level subgroup
K = Ki(N),

Kq(N) = (CCL 2>€GL2(@L)\a:1,c:0modN

whose complex points are Shx (G)(C) = G(Q)\(h)* x G(A>®)/K. Here b is the Poincaré upper-
half plane endowed with the usual action of GL2(R) via Mobius transformation. The Shimura variety
Shi (G) is defined over its reflex field Q. For a weight (v, w) € Z[X] X Z, one can define the auto-
morphic line bundle w(**) on Shy (G)(C) as follows. Let k = 2v + wty, where t;, = > rex T is the
generator of parallel weights. Consider the compact dual IP’(IC of b, and let w be the dual of the tautological
quotient bundle on IP’(%:. There is a natural action on w of GLy(C) for which the projectionp: w — ]P’(lc
is equivariant. Consider the line bundle

£ = Q) pr; (w®’“7 ® det wsz>

TED

N
onPg. Let Z, = ker(Resy, g G BLZLN Gm). The action of G(C) = GLz(C)* on.Z factors through

the quotient of G' by Z,. Hence the pullback of .Z to h*™ x G(A™) via the Borel embedding descends
to a line bundle on Shx (G)(C) and it has a canonical model over the Galois closure of L [Mil90]. We
define this line bundle to be g(”’w).

The determinant map det: G — Resy g Gy, gives a bijection between the set of geometrically con-
nected components of Sh ¢ (G) and the strict class group C17 (L) [TX16, §2.3]. For any fractional ideal ¢
coprime to p, let Sh% (G) be the connected component of Sh (G) corresponding to the class of ¢. This
space is related to the moduli of c-polarized abelian varieties in the following manner.

The moduli scheme M (j1, ¢) is defined over Z[1/N]. Consider the action of O} on M (pux, ¢) de-
fined on points by € - (A, 1, A\, 1)) = (A4, ¢, e\, ). Notice that for € = %, withn € Uy := 1 + NOy,
the isomorphism 77: A — A induces an isomorphism € - (A, ¢, \,¥) = n*(A, 1, \, ) =~ (A, ¢, \, ).
Thus the action of (’)z " factors through the finite quotient I' := (’)z a JU ]2\, We have then the following
proposition.

Proposition 2.1.1. There exists an isomorphism between the quotient M (puy, ¢)(C) /I and Sh-(G)(C). In
other words Shi; (G)(C) is a coarse moduli space over C of c-polarized abelian varieties with real multiplication
by Or.. Moreover the quotient map p: M (un, ¢) — M (un, ¢)/T is finite étale with Galois group T".

Proof. For the first part see [TX16, Proposition 2.4]. For the étaleness of the quotient see [AIP16b, Lemma
8.1]. O

Using this one can define integral models of the automorphic sheaves w(*®). Let LS be the Galois
closure of L. Let Rbe an Lg;’)l-algebra. For (v, w) a classical weight for the group G with k = 2v+wtp,

consider the sheaf w®, = ®,wA(7)* on M (pun, ¢) g. Define an action of O; ™" on w¥, as follows. For a
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section f of wﬁ, define € - f as the section whose evaluation at points (A/R, L, A\, w) foran O @ R-
generator w of w 4 satisfies

(6 ’ f)(A’ t )\’ ’(ﬁ,w) = U(eil)f(fh Ly 6)\,1#,(4}).

We can then check that the action of U]%, is trivial on wi. Indeed, for n € Uy and € = n? we have

FA 6 A, w) = F(A, 1 X, mw) = k()7 (A, 1, €A, ,w) = v(€) T f(A, 1, €A, 9, w)
which proves the claim. We remark that this action only depends on k and not the pair (v, w).

Definition 2.1.1. Define the sheaf of Hilbert modular forms for the group G of tame level uy, c-
polarization and weight (v, w) with coefficients in R to be

Wiy = (ki p)"

where p: M (upn,c¢)r — M (pn, ¢)g/T is the quotient map. Alternatively we will sometimes call them
arithmetic Hilbert modular forms.
Let M(pn, ¢, k; R) := T'(M(pun, ¢)g,w") be the space of geometric Hilbert modular forms. Let

M (¢, (v,w); R) = T(M(un,¢)r/T, gg’w)) be the space of arithmetic Hilbert modular forms.
If #T" € R*, then M® (uy, ¢, (v,w); R) = M(pun, ¢,k = 20 4+ wtp; R)' can be realized as the image

of the projector:
1
€= ﬁ E €.

~

Let z € L% be coprime to p. Then we have an isomorphism L, o) : M%(un, ¢, (v,w); R) =
ME (uy, zc, (v, w); R) given by

L(;rc,c) (f)(A> 2 >‘> 1/}’ UJ) = ’U(‘T)f(Aa Ly x_l)\a TIZ),CL))-

Moreover this isomorphism only depends on the principla ideal (z). Let Frac(L)® be the group of
fractional ideals which are coprime to p and let Princ(L)+’(p) be the group of positive elements which
are coprime to p. Then Frac(L)®) /Princ(L) ™) ~ CI*(L).

Definition 2.1.2. Define the R-module of Hilbert modular forms for GG of tame level N and weight
(v, w) to be

MG ) ) aR = MG IAg] ) ; R <L - ) .
(v, (v,w); ) GFG(BW (o (0w} B) |/ (Baea (D = T) oo
C rac
Upon choosing representatives ¢, . . ., ¢, + of C1™(L) in Frac(L)®) we have a non-canonical isomor-
L

phism

)

MY (un, (v, w); R) ~ @MG(MN, ¢i, (v,w); R)
i=1

which shows that M (pu, (v, w); R) is a finite R-module.
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Remark 2.1.2. For (v, w), (v',w’) satisfying 2v 4+ wty, = 2v’ + w'ty, the autormorphic sheaves w(*"*)

and w®%") on Shi (G)(C) are related by W@ W) = W) @ det “T, where the determinant factor
should be thought of as a Tate twist. In particular the underlying function spaces of automorphic forms
of weight (v, w) and weight (v/, w’) are isomorphic. In the definition of Hilbert modular forms for G,
we have ignored this discrepancy coming from the determinant.

Remark 2.1.3. For ¢ = 0~ !, the moduli scheme M (g1, 9~ 1) is an integral model for the Shimura variety
associated to the group G* := G XRes, /0Gm G,,, where the arrow G — Resp, /Q Gy, is the determinant
and Gy, — Resy /g Gy, is the diagonal embedding [Rap78].

2.1.3 The partial Igusa tower

Fixan I = [p?, p’| and @ € m\ m2. We now work over X, ;. Recall the ideal Hdg,. was given locally by

(a, HdngH) for alocal lift Hdg of the Hasse invariant. Let g, : X, o, — X4, be the open subscheme
of the blow-up of X ; with respect to the ideal Hdg,., where the inverse image ideal is generated by

r p"—1
Hdg? ™ For any integernwith1 <n <rifI = [0,1]and1 <n <a+rletA = Hdgppf1 . Note
that § € Ox

rya,l "

Proposition 2.1.2. For I,r,n, « as above the semiabelian scheme A — X, o 1 has a canonical subgroup
H,, of order p™ [AIP18, Appendice A]. This is a finite, locally free subgroup scheme that satisfies the following
properties:

1. H, lifts ker F™ modulo £,

2. For any a-adically complete admissible Ag} s-algbera R, together with a morphism f: Spf R — X, o 1,

Ho(R) = {s € Ap"](R) | s mod § € ker F"}.

3. Suppose Ly, = A[p"]/Hy,. Then wr,,, is killed by A, and we have wr,, ~ w4/ w .
4 AV[p"|/Hp(AY) ~ H) through the Weil pairing and it is étale over the adic generic fibre X, o, 1 of
%r,a,l-
Proof. [AIP18, Appendice A]. O

Definition 2.1.3. For every 7, n as above define ZG,, . 1 — X o 1 to be the adic space classifying iso-
morphisms O, /p" O, = H, of the group scheme H,' — Xy.o,1. Define J&,, . 1 — X, o 1 to be the
normalization of X, ;1 in ZG,, ;. 1.

Proposition 2.1.3. ZG,, ;1 — X, o 1 is an étale, Galois morphism with Galois group (Or,/p™Opr)*. The
morphism I&,, . 1 — X, o1 is finite and is endowed with an action of (O, /p™Or)* induced by the action
on the generic fibre.

Proof. Similar to Proposition 1.1.5. O

(Note we suppressed the index « in our notation for the partial Igusa tower to avoid clumsiness.)
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2.2 Splitting of de Rham sheaf

In this section we redo the theory developed for elliptic curves in §1.2 more generally for abelian schemes.
In the following we put an overline on the names of objects (abelian schemes, sheaves etc.) to denote they
are obtained by base change along the closed immersion ¢: X, < X. Denote by 7: A — X, the
base change of 7 along ¢. Let w4 1= i*w 4 = w4. The Verschiebung V': A®P) — Ainduces a map on
the Lie algebra HV : w,\é/UP) — w}%, whose determinant is the Hasse invariant Ha € (A90,4)®®~1). Let
Ha := Ha - (A9@4)®(1P) be the ideal generated by the values of Ha. This is an invertible ideal with
zeroes of order 1 along each of the prime divisors that appear in Div(Ha) (Theorem 2.1.1). Denote by
H 4 the pullback of H 4 along 7. Let j : Xﬁd — Xp, be the ordinary locus, which is the open subscheme

of X, where Ha = OXFp'
Let ¢: X, — Xy, be the Frobenius. The Frobenius induces a ¢-linear endomorphism of H4.

Proposition 2.2.1. Over the ordinary locus Xﬁf we have the unit root splitting which is a canonical splitting
YFrob® J *Hy — J% 4 of the Hodge filtration on H 4, that respects the Frobenius action. The kernel of Vg, is
called the unit root subspace. It is characterized by the property that it is stable under the Frobenius action and
Frobenius acts invertibly on it.

Proof. Suppose Spec R C Xp, isalocal chart for which @ 4, H 4 are trivial and choose a basis compatible
with the Hodge filtration. With respect to such a basis we can write the matrix of the Frobenius action

onH 4 in g x g blocks as follows.
0 C
Frob = (0 HW.)

Here we abuse notation to write W for the matrix corresponding to the (-linear map induced on (I)J\f\
by Faps: A — A. For the base change of j.j*H 4(R) = H4(R)[1/Ha| given by the matrix

Id C-HW-1
(e

the matrix of Frobenius becomes

1 {0 0
P~ "FrobP = (O HW

Note that P is only defined over the ordinary locus. Hence we have a splitting 1prop : 7*H4 — j%@04
of the Hodge filtration over the ordinary locus that respects the Frobenius action. The kernel of this
splitting is uniquely characterized by the fact that it is stable under the Frobenius action and Frobenius
acts invertibly on it. O
Consider the map ¢: Hy — 7,j*H4 M Jej*@4. Thenlet H, := ¢~'@ 4. The inclusion w4 —
§ '\ admits a retraction given by the map ). As a subsheaf of H 4 containing @ 4, ﬁ;‘ is equipped with
the induced Hodge filtration. In the following lemma we describe the 1st graded piece of this Hodge
filtration.
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Lemma 2.2.1. The sheaf H;l sits in the following split exact sequence.

0— w4 —Hy » HW(wY,)) = 0. (2.2)
Proof. Choose a local chart Spec I as above. Explicitly, suppose e1, ..., eq, f1,. .., fq form an R-basis
of H;‘ suchthateq,. .., e; spaniy4 and the images of f1, ..., f; span (D}f‘. Also assume that the matrix of

Frobenius with respect to this basis is given as above. Then ¢(e;) = ¢; and ¥ (f;) = (Id — P)(f;) forall
i.Let V' = ). Rf;. By an abuse of notation we will denote by C' the linear map it defines C': V' — @ 4.
Then, denoting by Ha a generator of Ha over Spec R, we have

Vo NV ={feV|C -HWYf) € 04}
={feV|C-adj(HW)(f) € Ha-wa}
={f eV |adj(HW)(f) € C~'(Ha @)}

1

Ha
_ Hia L HW (C™'(Ha - @) Nadi(HW)(V)).

CHW(C™'(Ha wa)) NV

Now suppose f € C~H(Ha-w4) Nadj(HW)(V). Then, f (mod Ha) lies in the kernel of C ® 1: V ®
R/Ha — w4 ® R/Ha as well as in the kernel of HW ® 1. Thus in particular, denoting by Speck(y) —
YF, ageneric point of a prime divisor of Ha, f lies in the kernel of Frobenius acting on H&R(flk(y) JEk(y)).
But the image of Frobenius has rank g, and hence its kernel is precisely wz, W Thus ker(C' ® 1) N

ker(HW ®1) = 0. Hence f € Ha- V. Thisimplies that "', NV = - HW(Ha-V) = HW (V).

This proves the lemma. 0

Corollary 2.2.1. The sheaf I:I’A is stable under the O, action. It is a locally free O, @ O X, -module of rank
2and H'y = @4 ® Frob(H ).

Proof. The subsheaf Frob(H 4) is the image of the map Fy: Hiwy — H 4 induced by the relative
Frobenius. I'E is killed by the unit root splitting and maps surjectively onto H W(w}(p) ). Hence ﬁ;‘ =
@A @ Frob(H 4). Since the relative Frobenius commutes with the O -action, HW (w;, ) is stable un-
der the Oy -action and hence so is H;l Moreover HW : wjfi(ﬁ) — wyisan Op ® OX]F;; -linear map
of invertible Oy ® O X, -modules such that No, 20 e, /O HW = det HW = Ha is a non-zero

divisor. Hence H W(w}l(p)) is an invertible O, ® Ox, -module. O

In the following we will construct a locally free Of, ® Ogx, , ; subsheaf H'y C Hy of rank 2, together
with the induced Hodge filtration such that its reduction modulo a small power of p will give us the split
exact sequence (2.2).

Leti: Xqo,1/(p) < Xa,1 be the base change of Xp, — Xto X4 1. Let ig: %nmj/(pHdg_l) — Xra,1
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be the closed subscheme defined by the ideal HLdg' Thus we have a commutative diagram as follows.

%T,a,f/(pHdg_l) — :{r,a,l

[ &

%a,l/(p) —Z> xa,[

Let 0% o := HW (w 44)) where we now denote by A the pullback of A along i: Xo,1/(p) — Xa,1.
Let @Y = (i%) 71 (ix034 o) where i*: WY — ixi*w is the unit of the adjunction. Note that &Y is stable
under the Oy,-action.

Lemma 2.2.2. w) o 1= im (g;@}y — gyw}) is a locally free Or, @ Ok, -module of rank 1.

rya, I
Proof. Choose alocal chart Spf R = U C X, 1, such that wy is free as an O, ® R-module over Spf R,
and Ha is free over Spec R/(p). Let v be an O, ® R basis of wv\f”U andlet (O, ® R) - v = ®J_, Ry;
be the decomposition induced by the splitting of O, in R. Let ¥ be the image of v in @} := i*w}. Let
w = HW () and pick a lift w of @. Let w = (w;); be its components. Then@y = >-7 ;| Opw; +pwy.
Consider the Oy -linear map H W which sends v — w and which reduces to HW mod p. Thendet HW
is a lift of Ha = det HW. Keeping with previous notation, we will call this lift Hdg. Consider now
V=g (U) = Spr(ﬁ) Using HLdg € Ox, ;, we see that over Spr(ﬁ% p-giwy C
> i1 Ov gy (w;) as submodules of gyw}y. Thus wy o = > i Oy gy (w;). The sum is direct because
Hdgisanon-zero divisorin Oy, . Itis clearly stable under the O -action. Since locally H TV can be seen
as a non-zero divisor in O, ® O%a, /(o) the same is true of the lift ATV , and since wJVLLO — HW - wjf‘,

the lemma follows. O

Following the proof of Lemma 2.2.2, let HW be the Of, ® Ox,. . ;-ideal sheaf defined by w}fw = HW -
v

Wy

Definition 2.2.1. Define H'; to be the inverse image of w ; in H 4 under the projection coming from
the Hodge filtration.

We have the following commutative diagram of sheaves over X , .

0 WA H/, wig — 0
I l l
0 WA H 4 w 0

Proposition 2.2.2. There is an isomorphism of Of, ® anT,aJ/(pHdgfl)‘m"d”l“ isw,\ft,o = q*“—),\é/l,o’ that
commutes with the induced maps to (I)J\f‘. (We abuse notation to denote q*(Dj{l by @J\{l')



Proof. In fact we prove the following. The natural surjective map Z*@J\f‘ — @XO induces by pullback a
surjective map ¢*i*@wY = ifgroy — q*wio that commutes with the induced maps to @Y. We will
show that this map factors naturally as i§gr@y — igwx"o — q*@it,o’ and the last two sheaves being
both locally free of rank g, the last arrow is an isomorphism. Also since ifg @} — q*@}fm is O -linear
and igg @) — igw}) o is surjective O -linear, the induced isomorphism is O -linear too. This will be

the isomorphism claimed in the proposition.

We use the notation of the proof of Lemma 2.2.2, except that to avoid clumsiness we write v; (resp. w;)
instead of g;(v;) (resp. g;(w;)). Since @} is generated by the w; and pv; fori = 1,..., g, thereisa
surjective map (’)‘2/9 — gr@} that sends e; — w; for 1 < i < g,ande; — pvjforg+1 < j < 2g.
29
gtV
1<i<g,ande; — Oforg+1 < j < 2g and which induces the map igg;fd)x — q*d)x’o. On the other

Using the basis @; for @Y, we have a surjective map M : O — (’)f,lv given by e; +— e; for
’ 0

hand, the images of ¢ (w;) form a basis for w,\fl,()‘ With respect to this basis, pv; = HLdgadj(ﬁﬁ/)(ei).

Thus the surjective map gy} — w;\f&q is induced by the map IV : (’)%/g — O, that sends ¢; > ¢; for

1 <i<gandeirg = ggadj(HW)(e;) for 1 < i < g. Suppose (a1, ..., azg) € ker N. Since

N( E?iﬁl (’)Vei) C HLdg - O, we see that a; € HLdg for 1 < i < g. Thus M kills the kernel of the

pullback of N to X, 7/(pHdg ™), it N : O

Sy Oigflv' This proves the proposition. O
0 0

Proposition 2.2.3. The pullback of the exact sequence
0= ws—Hy s wiyg—0

along ig: Xyo.r/(pHAg ™) < X, 4.1 admits a canonical splitting induced by the splitting of (2.2) which
moreover commutes with the splitting induced by the decomposition Or, ® Ox, , ; =~ [Les Oz, o1

Proof. This is immediate from Proposition 2.2.2 and the Oy -linearity of the splitting. U

2.3 p-adic interpolation of modular and de Rham sheaves

Henceforth fix n a positive integer. Fix I = [p®, p®] such that kgé’ ;isanalyticon 14 p" (O, ®Z,) and
7 such that H,, is defined on X, , ;. Depending on the two cases I = [0,1] (i.e. « = p) or I = [p?, p”]
for a,b € N, these conditions are satisfied if

1. I1=100,1,r >2ifp#2and2<n<r,orr >4ifp=2and4 <n <r,

2. I:[pa,pb]witha,bEN,rZ1andr+a2b—|—2ifp7£2andb—|—2§n§a—|—r,orr22
andr+a>b+4ifp=2,andb+4<n<r+a.

In this section we construct overconvergent modular and de Rham sheaves, denoted tv, , ;and W, _ ;
on the Hilbert modular scheme X;,a,7 Xqno W, for the universal weight k = k" (OL®Zy)* —

A ;, as we did in §1.3 for the case of elliptic curves. The modular sheaf interpolates wﬁl for classical
weights k. The techniques are essentially similar to the elliptic case in the following sense. By passing
to a partial Igusa tower depending on n, we construct a modified modular sheaf €24 and a modified
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de Rham sheaf H& together with a modified unit root splitting. We decompose the universal character
into its components induced by the splitting of Of, in Og. We decompose €2 4 and H& likewise. On
each component we carry out the construction of interpolation for the corresponding component of
the universal weight following the technique developed in §1.3. Finally we define tv,,  ; and W,  ; by
taking the tensor product of these individual components. o o

The construction of to k.1 appears in the joint work of Andreatta, lovita, Pilloni and Stevens [AIS14],
[AIP16a], [AIP16b]. Our construction is similar to [AIP16b]. However using the theory of vector bundles
with marked sections we make it more explicit by actually constructing sections that generate 1o kol
locally. This is inspired by the work of Andreatta-lovita [AI21]. At the end of the section we compare
our construction of tv,  ; with the construction in [AIP16b] and show why they are isomorphic. The
definition of W, _ ;is héw, but as we will see it is inspired by loc. cit. and the improved technique of
using modified unit root subspaces as discussed in Chapter 1. The main theorem of this section is the
following.

Theorem. Forn,r,c, I asabove and k = k"" the universal weight on 20, 1, there are formal sheaves v, , ;
and Wk,a,[ on 95?7,7%1 = Xra,1 Xguo , W, 1. For o = pand I = [0, 1], viewing a classical weight £ as a
point of W, 10.11(C,) = Wy (C,,), the restriction of the sheaf vo,. ., ;[1/p] ks, on the associated analytic adic
space X, X WO me gives the sheaf w'y of classical Hilbert modular forms of weight k. The sheaf W,  is
equipped with a filtration by coherent Ogy -modules {Fil; W, , ;}i>0, and W, 1 is the a-adic completion
ofligi FiliWh%I. Moreover FiIOWkQJ =1,

Remark 2.3.1. Note that we cannot relate the sheaf W, , ; with symmetric powers of H 4 at classical
points in an obvious way like we did for elliptic curves.

2.3.1 The sheaves ()4 and H&

The trivialization of H,Y on ZG, ,  induces an equality of groups HY (38, 1) = HY(ZGp 1) =~
OL/p"OL. Let P*™ be the image of 1 € Or,/p" O, in H, (38, 1). We have amap of O, @ I8,, , -
modules,

WA

dlog ®1 l p"

_p -1
=H/(3®,,1) ®z O3s,,; — wH, = wa/p"Hdg 7 Twa.
(2.3)

HT\L/ (Ign,r,l) ®z O3

n,r,I

Definition 2.3.1. Define the sheaf €2 4 to be the inverse image under the map w4 — wp,, of the image
of dlog ®1. We call this the modified modular sheaf.

Proposition 2.3.1. The sheaf §2 4 is a locally free O1, @ O5¢. ., sheaf of rank 1. The cokernel of Q4 C w4

n,r,I

is killed by Hdgp%l. Moreover dlog induces an isomorphism
dlog@1: HY (38,,,.1) ® Oe, , ,/p"Hdg #1 55 Q4 @ Ose,, ,, /p"Hdg 71,

Proof. [AIP16b, Proposition 4.1]. O
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Since 24 C w4 is an invertible O ® Oy, , - module, there exists an invertible ideal § C O ®
O36,,.,.1» such that Q4 = Ew .

Definition 2.3.2. Define the sheaf H& = §H£4 We call this the modified de Rham sheaf.

Corollary 2.3.1. We have a short exact sequence of locally free O1, ® O3g,, . ;-modules
0—>QA—>H&—>§@{LO—>O (2.4)

which splits upon pulling back via i,,: 3, ,.1/(pHdg ™) < 38, . 1.

Proof. This is immediate from Proposition 2.2.3. O

Letting s = dlog(P"™) € QA/p”Hng%l Q) 4, and taking its o-components s, for ¢ € X, we get a
vector bundle with marked sections (24, {Ss }sex). Associated to this pair, one can consider the geo-
metric vector bundle with marked sections V(€2 4, {55 }sex) in the sense of Definition 1.3.3. We will
show that the points of this geometric vector bundle have a natural interpretation as O -linear functions
on {) 4 that evaluate to 1 on s. But before that we need to study functoriality of the sheaf Hi‘ with respect
to the U correspondence. Note that we are not interested in H& solely for its structure as a vector bundle
with marked sections, but we are also interested in the splitting modulo some small power of p. We have
already seen above that such a splitting exists modulo pHdg ™. In studying functoriality of H& for the
U correspondence, we will pin down the small power of p for which the splitting is functorial too.

Let 3, := pHdgfﬁ.

2.3.1.1 Functoriality

Consider the projection A\: A — A’ := A/Hj. Let X': A"V — A be the isogeny such that ' o A =
[p]. Then X maps H,,(A’) to Hy,(.A) and induces an isomorphism of canonical subgroups H,,(A’) ~
H,,(A) on the generic fibres. The generic trivialization of H,' (.A’) induced by this isomorphism defines
a map F: 31,1 — I&q,_1 1 that sends A — A’ together with this trivialization of the generic fibre
of the dual of the canonical subgroup. Note that a priori if A is c-polarized then A’ is pc-polarized. But
since multiplication by p induces a canonical isomorphism M (un,¢) — M (un,pc), we indeed get
a map F as above. By abuse of notation we also denote by F the map X, o1 — X,_1,q,7 induced by
sending A — A’. The following diagram is commutative with / and k' being the usual projections.

~ F_ ~
I6 1,1 —— TG1,-11

I

F
xr,a,[ — 3':'r—l,oz,]

The functoriality of the dlog map provides the following diagram:

0 Q4 wA
J/: l()\/)*
0 Q.A’ WA



The map (\')* is the adjoint of a lift of the Hasse-Witt map HW : wx, modulo

1wy, 1
/(pHdg™") A/(pHdg™")
pHdg ! because X is a lift of the Verschiebung. As a map between invertible Of, ® Oj, , ,-modules,

(X')* corresponds to multiplication by an invertible O, ® Oje, . ; ideal HW. Since Q4 = Ewa, we
have the following relation between O, ® Os5g, ,. ; ideals.

Lemma 2.3.1. F’*§ = §I§\W
Proof. Follows from the discussion above. 0

Definition 2.3.3. Define the o-components HW (o) of HW as the partial Hasse ideals.

Corollary 2.3.2. ], HW (o) = Hdg.
Proof. Immediate as the determinant of HW is Hdg. g

We will prove a result relating the o-components of £ and HW. For that we need to choose a numbering
of X. Recall p splits as p = P - - - P, in O, with their inertia degree f(P;|p) = f;. Choose a bijection
Eit {i1,...,45} ~ D(%;) of the decomposition groups for each i.

Corollary 2.3.3. (F*w4)(i;) = F*(wa(ij—1)). In particular, F*(£(i;_1)) = £(i;) HW (i),

Proof. Recall that forany O, ® Oy, , ,-module F, F (i) is the component on which Oy, acts via Z; (i;).

The claim follows immediately by noting that modulo pHdg !, F induces a morphism such that the
following diagram commutes with ¢ being the Frobenius.

361 ,.1/(pHdg™") —E— 36,1/ (pHdg ™)

| !

%a,l/(p) - %a,l/(p)

Lemma 2.3.2. X, , ; and I8, 1 are normal schemes.

Proof. For the case of X, 1 see [AIP16b, Corollary 3.8]. The map ZG1 1 — X o 1 is finite étale. Hence
ZG1 1 is normal. Thus J& . ; is normal being the normalization of X, 1 in ZG1 1. ]

In the next lemma and the remark following it, we record a result that seemed interesting to us, even
though it is not used for any argument further ahead.

Lemma 2.3.3. Forall ij, F*(£(i;)) is a p-th power at all height I localizations.
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Proof. Since this is an equality of ideals in a normal scheme it is enough to check the statement locally
at height 1 primes. So choose an affine open U in X, 1 such that the pullback of w 4 to U/(p) is trivial
asan O ® (’)xml/(p)—module. Let Spf R,_1 and Spf R, be its inverse image in X,_1 o7 and X, o 1
respectively. Let S,_1 and S, be their respective inverse images in J&1 ,_1 7 and J&1 ;. 1. So F induces
a commutative diagram as follows.

F\*
Srfl E— Sr

o

Rr—l L Rr
Pick a height 1 prime p € Spf S, that contains a local generator of £(i;). Since [, ; £(i;)P~! = Hdg
[AIP18, Proposition A.3], p € V(Hdg). Let ¢ = h~!p. Then q is a height 1 prime containing Hdg.
In particular q R, is generated by Hdg as Hdg has simple zeroes along degree 1 divisors in X, 7/(p)
(Theorem 2.1.1). Let p’ = (F*)"'pand ¢’ = (F*)~'q. Localizing at the primes gives a diagram as
follows. .
Sty —— Sy

q

F\*
erlq/ — qu
All the rings are DVR. The bottom arrow has ramification index p. h and h’ are tamely ramified. This
forces the upper arrow to be ramified of index p. This proves the lemma. O

Remark 2.3.2. Ttseems that in fact F*(£(i;)) = £(i;)P. This would imply that & (i;_1)P = £(i;) HW (i;)
which reflects the fact that the partial Hasse invariant of degree ij is of weight (p,—1) concentrated at
degree (ij—1,1;) [Gor01, Theorem 2.1]. Moreover this shows a posteriori that [, ; £(ij)P~ = Hdg.
But as of now we are not able to prove this.

Proposition 2.3.2. There exists an 1 large enough such that the map (\')*: Hgq — H.y restricts to a
well-defined map (\')*: H& — H&, that sends marked sections to marked sections. Moreover, let Q C
H&/pHdg (A)~P+1) be the kernel of the marked splitting, and let Q' C H ,/pHdg (A)~P+1) be the same
for A'. Then (X')* sends Q to Q.

Proof. Since (\')* maps € 4 isomorphically onto (2 4 sending the marked section to the marked sec-
tion, it is enough to show that the induced map H& /a4 — Hy /Qy factors through the inclusion
H&, /Qar — Hy /Q . Choosing suitable local generators & of (A) and HW of HW (A) respec-
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tively as O, ® Ojg,, . ,-modules, we have a diagram as follows.

HYy /Qu —S— F*(E(A)HW(A)) - w,

j | (e

() n
H&/QA —_— H.A’/Q.A’ _— HA//wA/ :wxv
\ 4§HW
AHW(A) - w

Here the bottom right diagonal arrow is the map induced on the Lie algebra by \: A — A’. Choosing

e |
asis of w and of wY,, this O, 36 -linear map is multiplication by p upto a unit. Hence
b fw and of wY,, this O ® Osg,, -1 p Itiplication by pHW  upt t. H
we get a description of the arrow as in the diagram.

Let Hdg = Hdg(.A) in this proof. Since multiplication by p¢ is injective, we see that the image of
Hi‘ /4 under (X')* does not intersect w 4/ /2 4/. We first show that 7 o (\’)* factors through the sub-
module F* (§(A)I§\ﬁ/(¢4))wx, C w. For this it is enough to show that p¢(A) C F* (§(A)I{I\T/T/(A))
Using Lemma 2.3.1 this reduces to showing p/(fﬁ/f/ﬁ* (ﬁ/)) C O ®0s3s,, ., which can be ensured
by choosing large enough r since det HW = Hdg. This proves that the map (X ) —i~tomo(\)* fac-
tors through w 4/ /€ 4 which is a torsion module killed by F™* (E(A) = E(A)H ( ) (Lemma 2.3.1).
Now since H& =Qq+£(A YHW (A) - H 4, the difference (X')* — i~! o o (X)* = 0. This proves
the first claim.

The second claim follows from a local computation. Choose an open affine Spf R = U C X, j such that
H_4 admits an Of, ® R basis {e, f} over U with e a basis of w 4. Let {&, f} be their image over Spf R/p.
The unit root subspace is generated by a vector v = C& + HW f for some C € (O ® R)/p. Let
©: R/p — R/pbe the Frobenius. With respect to the basis {&, f} of H g and {¢) := ©* (&), fP) :=
©*(f)} of H 4(»), the matrix of Verschiebung V': H g4 — H () can be written as

HW B
v_<0 0)_

Since Verschiebung kills the unit root subspace, V(Ce+ HWf) = (CHW + BHW)é = 0. This
shows that B = —C'. Let Spf R,, , C J&,, ;. (resp. Spf R,, »—1 C JB,, 1 1) be the inverse image of
Uin3J®,, ;1 (resp. I, -_1,1). Then as discussed in §2.2, H£4 over J&,, ,. 1 is generated by the pullback

of eand aliftv = C'e + HW f of v. For notational simplicity we will write these sections as {e, v} still.
Similarly, H';, is generated by pulling back via F: Spf Ry r — Spf Ry ;1 the pullbacks of e and v to
Spf Ry, 1. We will write these as { F*e, F*v}. Then with respect to {e, v} and { F*e, F*v} the matrix

48



of (A\')* can be described as

()" | —F(CHW ) HW B 1 C

_ (CHW ) B (<
0 FrHW ) 0 pHW 0 HW

HW CHW + BHW — pE*(CHW )

0 pE(HW )

Here B isalift of B modulo pHdg ™ *. Therefore with respect to the basis { e, £v} and { F*(€e), F* (€v)},
the matrix of (A\)*: Hi\ — H&, is written as

| C+B—pF*(CHW HYHW '

(\) = P N
0 pHW F*(HW )

Since det HW = Hdg, this proves the second claim of the lemma. O

Definition 2.3.4. Let H&, Q 4, s be the modified de Rham sheaf, the modified modular sheaf and the
marked section respectively. Let @ C H& /pHdg™? * be the kernel of the splitting v : H& /pHdg™? i

Qa/ pHdg_pZ. We call this marked splitting the modified unit root splitting and Q the modified unit
root subspace.

We remark that by Proposition 2.3.2 the modified unit root subspace is functorial for \': A" — A.

Recall the notation 5, = p”Hdg;%l. Letn := pHdg™? .

2.3.2 Formal O -vector bundles with marked sections and marked splitting

In this section we define the relevant vector bundles with marked sections and marked splitting enriched
with an action of Op,. Although we focus on the sheaves relevant for our purpose, i.e. 24 and H’,, the
theory can be developed more generally.

Recall s = dlog(P2™) € Q .4/, 4 is the image of the universal generator of HY (J&,, ,. ;) under the
dlog map. Let s, be its -component under the splitting Q4 = [], .5, ©24(c). Following the VBMS
formalism explained in §1.3.1 we define the following formal O, -vector bundles with marked sections.

Definition 2.3.5. Define VO () 4) as the functor that associates to any a-admissible formal scheme
3% J&,, 1 the following set:

VOL(Q4)(3 5 T60,r.1) = Homo,c0, (7" 04, OL ® O3).
Similarly, define VO (H&) as the functor

VO (HY)(3 5 36,,,.1) := Homo, o, (Y*HY, O @ O3).
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Definition 2.3.6. Define VOOL (Q.4, s) as the functor that associates to any c-admissible formal scheme
3% J&,, .1, the following set:

VSJL(QA, s)(3 N 38,r1) == {h € Homo, g0, ('y*QA, Or ® (93) | (h mod~*f3,)(7*s) = 1} .
Similarly, define Vgg L (Hi‘, s) as the functor

VG (I, )3 5 38,00) = {h € Homo, g0, (vHE, O © O3) | (hmod " B,)(775) = 1.

Proposition 2.3.3. 1. We have natural isomorphisms of functors
VO (Q4) ~ =[] V(Qu(o VO (H,) ~ =[] v(H, (o
oeN oeX

where V(&) for any locally finite free sheaf £ is defined as in Definition 1.3.2.

2. We have natural isomorphisms of functors

VEE(Qu,s) = [ Vo(Qalo).so),  VEHEE,s) =~ ] Vo(Hy(0), o).
oeY oeX

where Vo (E,s) C V(E) for any locally finite free sheaf € with a marked section s is defined as in
Definition 1.3.3.

Proof. We note that since p is unramified in L, the natural map O, ® Og — C’)IE{ is an isomorphism.
The claims of the proposition then follow immediately from the definitions. O

Taking into account the modified unit root subspace Q@ C H& /pHdg™? 2, we define a geometric O -
vector bundle with marked section and marked splitting as follows.

Definition 2.3.7. 1. Forany o € 3, define V, (H&(U), Sors Q(U)) as the functor that associates to

any a-admissible formal scheme 3 2 J&,, 1 the following set:

Vo(Hi(0), 5, Q(0))(3) := {h € Vo(H,(0).50) (3) | (7 mod ") (v Q(r)) = 0} .

2. Define V(()Q L (H&, s, Q) as the functor that associates to any a-admissible formal scheme 3 N
J8,,r1 the following set:

VO (Y5, Q)(3) i= {h € V§H (I, 5)(3) | (hmod 7 "n) (77 Q) = 0}

Proposition 2.3.4. We have a natural isomorphism of functors

Vo (H ~ T Vo (I (0), 50, Q(0)).

oeY
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Proof. Clear from the definitions. O
Proposition 2.3.5. The functors V(()QL (Qa,s), V(?L (H&, s) and VOOL (H&, s, Q) are representable.
Proof. Follows immediately from the discussion in §1.3. 0

2.3.2.1 Formal group action on formal Oy -vector bundles

The vector bundles VS)L (Qa,s), V(()OL (Hﬁ47 s) and V(?L (Hﬁ47 s, Q) carry an action of the formal group
T =1+ BnResp, /7 Go over &, ;. 1. This action realizes V(?L (Q4, s) as a T-torsor over I&,, . 1.
Moreover, there is a natural action of T(Z,,) = (O, ® Z,) ™ on the aforementioned formal vector bun-
dles over X, o r which we will describe too. Together we getan action of T := Zy (1+Bn Reso, /2 Ga)
on these vector bundles over X, .

1. T action on V?L (Qa,8) :Let (p,h) € V(()QL (Q.4, s)(R) be a R-valued point of V(()QL (Q4,8).
Here p: Spf R — J&,, ;. 1 is amorphism of formal schemesand h € Homp, g r(p*Q4, OL®R).
Then A € T(R) actsas A * (p, h) := (p, Ah). Let A € T(Z,). Denote its class in Oy, ® Z/p"Z
by . Then ) induces an isomorphism [A]: 3&,, , = J&,, 1 that induces the map

H,/(R) — H,/(R)
P—\lp

on the R-valued points of J&,, . 1. There is a natural isomorphism 7y : [A]*Q4 = Q4 such that
(vx mod B,)([A]*s) = A~Ls. Then we define the T(Z,)-actionas A (p, h) := ([A]op, Ahovy).

2. T=-action on V(?L (H&, s) :Let (p,h) € VOOL (Hﬁ47 s)(R), with p: Spf R — J®,, . 1 a mor-
phism of formal schemes and h € Hom@L®R(p*Hﬁ4, Or ® R). Then A € T(R) acts as \ *
(p,h) == (p,Ah). If A € T(Z,), then as before we have an isomorphism [A]: 3&,, .1 —
J&,, - 1. This gives a natural isomorphism 7, : [)\]*H& = H& such that (v, mod 3,)([A]*s) =
A~ 1s. Then we define the T(Z,)-actionas A x (p, h) := ([A] o p, \h o 7)).

3. T=-action on V(()QL (Hﬁ47 s, Q) : This is defined by restricting the action defined on V(()Q L (Hﬁ47 s).

Lemma 2.3.4. The formal group T decomposes as T = [ [, 5 (1 + $n.Gq) over I&,, . 1. The action of T on
VE)QL (Q4,s)and VE)DL (H&, s) is compatible with the splitting of ¥ and the vector bundles. That is to say, if A =
() € TL (14 BuCa) (), and (p. ) € VO (0, 8)(R), with h = (hy) € 1, Homp(p* Q). R),
then A x (p, h) = [[,(p, Aoho). Similarly for VS)L (H&, s).

Proof. This is clear. O

‘T-action in terms of local coordinates:
Based on Lemma 2.3.4, the action of T on Vé% (.4, s) and on VSJL (H&, s, Q) can be described on local
coordinates in the following manner.
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Let Spf R < J&,, ;. 1 be an open subscheme such that {2 4 and Hi‘ are trivialized as O, ® qu‘jnmI'

modules, and such that Q is trivial too over Spf R/7. Let X € Q4(R) bealiftof sand Y € H&(R)
be a lift of a local O, ® Oz, , generator t of Q. Let X, Y, be their o-components. The formal

schemes V,(24(0), s») and VO(H&(U), Sy, Q(0)) are realized as admissible blow-ups of V(2 4(c))

and V(H&(O’)) respectively. Then as elaborated in §1.3 the blow-ups are described by the following
diagrams.

381 V(Qu(0)) +—— Vy(Qa(0),50)

! ] I

Spr S Spr<Xo—> m Spr<ZO—>

36,1 —— V(H (0)) +—— Vo (H (0),55) — Vo(HY, 55, Q(0))

! ! ] ] e

Spf R «———— Spf R(X;, Yo) i Spf R(Z5, Yo) oy Spf R(Z,, Wo)

Let A € T(R) and let A = (A, ), be its decomposition into coordinates. The action of A, on Z, is such
that Ay * (1 + B, Zs) = Ao (1 + BnZ5). In other words,

Ao — 1

n

Ao ¥ Lg =

+ Ao Zys.

Similarly, A, acts on W, via

Ao ¥ W = AW

233 p-adic interpolation of (4 and HY,

Let n, 7, a, I be as fixed in the beginning of the section. Denote by p’: V(?

L(HY,5,Q) = 36, and
v V(()QL (Q4,5) — I, , | the projections.

Definition 2.3.8. 1. Fork = k:& 12 (O ®Zy)" — A?% ; the universal character, define
’ L
Wk a1 = V*OVE)?L (Qa,5) [k]
The sections of this sheaf by definition are the functions f € v/, OVO L (@) that transform via
0 )

Ak f = k(\) f under the T-action.
2. Fork = k‘g’f define

/ Y
ko, " p*OV?L (Ht,s,0) [k]

Let ky,: 1+ 3,G4 — G, be the restriction of k:gJ to the o-component of T = [[_ (1 + 3,G,).
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Proposition 2.3.6. Let v/ V(Q4(0), So) = TB,, 1. 1 be the projection for each o. Then

mgc,ozl ®U( ) Oy 0(Qa(0), sg)[k ]

In particular, w)__  is a line bundle on IB,, ,. 1.

Proof. Denote ®,(v)),Oy 4(24(0),50) ko] by @. Then indeed @ C tvy. , 1 as follows from Lemma 2.3.4.

Take a Zariski open Spf R C J®,, , s that trivializes {2 4. Then (2.5) shows that (2/ ) L(SpfR) ~
Spf R({Z,}sexn)-
The description of the %-action on V(()D L (4, s) in terms of local coordinates imply by [AI21, Lemma

3.9]
O(SpfR)=R- Hk 1+ BnZs)

Denote [ [ ko (1 + BnZs) by k(1 + Bn2).
If f € wj, ;(SpfR), then f/k(1 + B,2) € R({Zs}o > . Then the problem reduces to showing

that the ¥ invariant functions are simply R.

For the one variable case, this follows from an application of the Weierstrass preparation theorem. If
1+ BpRactson R(Z) viat x Z = tﬁ_—nl + tZ, then take f € R(Z) invariant under the action of
1 + B,R. Suppose f = > a,Z". Thenforanya € R, > ap,Z" = (1 + fpa) x (O a,Z") =
Y>an(a+ (1 + Bra)Z)". Letting Z = 0, we see that ag = ) _ a,a” for any a € R, which shows that
ap = 0foralln > 0.

For the general case the result follows by induction on the number of variables. Choose a bijection > ~
{1,..., g} Suppose f = > a,Zy € R(Z, ..., Zg>T(R), witha, € R(Z1,...,Z4_1) for all n. Then
for any element A = ();) € T(R), suchthat \y = 1, f = A% f = > (A x a,)Zy. This shows that
A% ap = ay for all n, and then by induction a,, € R. Finally a,, = 0 for allm» > 0 by the same argument
as above. O

Remark 2.3.3. The isomorphism classes of O, ® Oj3g,, . ; line bundles can be naturally identified with
elements of H'(3&,, . 1, Reso, /7 Gm). The subgroup HY(38,,,.1,1+ 5, Resp, /z Ga) classifies pre-
cisely Or, ® O3e,, ., line bundles 2 with a marked section s € £ /Bn-ZL. Thus the isomorphism class
of (4, dlog(PiV)) defines an element of H'(J®,, ;. 1, T). Then 1}, ., ; defined as above is nothing but

its image under the map induced by extension of structural group H'(3®,, . 1, T) 5o (3.1, Gm).

Next we give a local description of W;ﬁ al

Proposition 2.3.7. Let p. VO(Hi‘(U), S¢, Q(0)) = IB,, 1 1 be the projection for each 0. Then
Wk al = ®0<p0) O (H&(U),Smg(g))[ka}-

Proof. Let W = @,(p).O [ko]. Then clearly W C Wi ot

Vo (HY (0),55,9(0))
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Take a Zariski open Spf R C J&,,, 1 that trivializes Hi‘ compatibly with a trivialization of {24 and
of @ modulo 7. Choosing coordinates as in the local description (2.6), we see that (p’)~!(Spf R) ~

SPf R({Zm WU}UEE>'

The description of T-action on Vég L (H&, s, Q) in local coordinates, together with Proposition 1.3.2

shows that
o k(1 ﬁnZ

where we recall from the previous Proposition that k(l +6nZ) =11, ko (1+BnZs). Since k(14 5, Z)
is a unit, in order to prove the reverse inclusion, it will be sufficient to show that R({Z,, Wy }5)¥() =
R({{ H‘gﬁ}geg) We prove this by induction on the cardinality of X.

W(SpfR) = R{{

For the one variable case, this has been proved in Proposition 1.3.2. For the general case, choose a bijec-
tionX ~ {1,...,¢g}. Let V, := 1+5 *7-- The inclusion R{Z;, W;}i— ><Zg, Vo) = R{Z;, Wi }_,)
is an isomorphism of topological rings. Let f € R{{Z;, W;}_)*). Write f = > om0 An(Zg)Vy
for An(Zy) € R{Z;, W;}i_ >< ). Forany A € T(R) with \; = 1 forall i # g, we have A4,,(Z,) =
Ap(Ag * Zg) for all n. Thus for Ag =1+ Bpafora € R, wehave A, (Zy) = Ap(a+ A\gZg). Putting
Zy = 0, we have A,,(0) = Ap(a) for any a € R. The Weierstrass preparation theorem then implies
that Ay (Z,) = An(0) € R{Z;, W;}{_}). Thus f = 3 A,V with A, € R({Z;, W;}!_). The
induction hypothesis then implies that A,, € R({%}f;l ). This proves the claim. O

Corollary 2.3.4. Let Spf R C J&,, ;. 1 be a Zariski open subset where Hi‘, Q4 and Q are trivialized. Then
with the notation of (2.6),
Wo

koot (Sof B) = B {{Vo}oes) k(L4 BnZ). Vo= rom

Let v: VOE(Qu,8) 2> 36,0 2 Xparand p: VOE(HY, 5, Q) £ 36,1 2% X0 be the

projections.
Definition 2.3.9. 1. For k = & ; define w} , ; := <V*O oL (04 )> [k]. This by definition is

the sheaf of sections f € v, OVO L(O9) that transform via k& for the action of T, This is the
0 )

interpolation sheaf of Hilbert modular forms for the universal weight k.

2. Fork =k°  define W? ol <p* OV?L (H&,s,g)) [k]. This by definition is the sheaf of sections

S *(9 o that transform via k for the action of . This is the interpolation sheaf of
p L (Hﬁ Q) p
A7 bl

de Rham classes for the universal weight k.

Lemma 2.3.5. m%aJ = (hn)«10y, , ;[k] and W%QJ = (hn)« W, , 1[k] for the residual action of (O, ®
Zp)*

Proof. This is clear. O
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Remark 2.3.4. Note that the universal weight k& = kg ; kills the torsion group A C (O ® Zp)*. We
will later take care of the torsion part of the character and define the interpolation sheaves tv,  ; and
W, ,  for the univeral weight ko 1: (O, ® Zp)* — A ;, as promised in the beginning of the section
by tensoring mg o7 and Wg o1 Tespectively with an appropriate coherent sheaf on X, o, 1 Xgy0 E W, 1.
In particular, m% o7 and Wg o7 Will be the restriction of to, , ;and W, _ ; to the connected component
of the trivial character.

Filtration on Wg: An important result of this work is the following.

Theorem. The sheaf Wg a1 comes equipped with a natural Hodge filtration induced by the Hodge filtration

on H 4 such that the Gauss-Manin connection V on Wg’ o1 Satisfies Griffiths” transversality with respect to the
Hodge filtration.

We define the Hodge filtration on W% o later in Lemma 2.4.1 and prove Griffiths’ transversality for V
in Theorem 2.4.1. The way we show that Wg o is equipped with a Hodge filtration is by producing a
filtration locally on coordinates, and then préving that it glues. But before we prove these results, we
will introduce a finer filtration on Wg o1 that will eventually help us to prove that the Hodge filtration
is well-defined. o

Choose a bijection ¥ ~ {1, ..., g}. Consider the lexicographic order on N¥:

(a1,...,aq) > (b1,...,by) if and only if

(1) Z a; > Z b;, or

(2)if >~ a; = > b;, then for the first index where a; # b;, a; > b;.

Since this defines a well ordering on NY we get an order preserving bijection =: N ~ N9, This allows us
to define a natural filtration on Wg.

Lemma 2.3.6. Let fy: V(()DL (Hjj .8, Q) — VBQL (Q.4, s) be the projection. There is an increasing filtration
{Fil; }i>0 on fO*OVOL with Fﬂo(fo*OVOL ) = OVOL . On local coordinates as in
0 0 0

(1Y 5,0) (Q4.8)
(2.6),

(H%,,5,Q)

Fil; <f0*OVOOL (H&,S,Q)(Spr)> = Z R({Zl, RN Zg}> . WE(])

J<i

Proof. We follow the proof of Lemma 1.3.6. We need to show that the local description glues. For Filgy
this is obvious by definition. For two different choice of O, ® R-basis of H% spf B2 SAY X,Yand X' Y/,
with X, X’ being lifts of the marked section and Y, Y” being lifts of some generator of Q, we get two
different local coordinate description of Véo L (H&, s, Q)|spt - Since all the filtered pieces contain Fily,
we may assume X = X'. Then the components of Y and Y are related by Y/ = u;Y; + a;nX; for all
i, with u;, a; € R. This implies that the isomorphism R({Z;, W/}_,) = R{{Z;, W;}{_,) is given
by sending W/ — u;W; + a;(1 + $3,,Z;). Clearly, this isomorphism respects the filtration given by the
lexicographic ordering. O

O

Recall p': V" (Hti ,8, Q) — J&,, . 1 was the projection.
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Lemma 2.3.7. The filtration on p, OVO L induced by taking direct image of the filtration defined in
0

(HY.5,Q)
Lemma 2.3.6 is stable for the action of T. Therefore, we can define a filtration on W;@ a1 9 FiliW;€7 al =

Fil; <p;OV(()9L(Hﬁ ,s,Q)> (k] with the property that FiloW}_, ; = vy ;and Gr;W) , ; ~ w} , ; ®
n~t@) (HW-wZQ)E(i), wherefor (i) = (ay,...,az) welet0(i) = 3" ay, and HW=) = T[] HW (k).

Proof. This is clear from the description of the action on local coordinates. O

Here we collect a few results that will allow us to prove that m,% o1 18 a line bundle and the filtration on

' o7 descends to a filtration on Wg o7 Which then can be realized as the completion of the colimit of

its filtered pieces, which are locally free sheaves of finite rank.

Lemma 2.3.8. Let g%lm[ be the ideal of topologically nilpotent elements in O3, , ;. With I, 1 as fixed in
the beginning of the section, forany 2 <1 < a 4+,

[—1 pl;p oo
k(]- +p (OL ® Zp)) - 1 C Hdg p—1 Oj@jl,r,]‘
Proof. [AIP16b, Lemma 4.4]. O

Lemma 2.3.9. The natural T'-equivariant map Oz, , — OVOL(Q s induces an isomorphism
” 0 A,

)
Oj@n,r,]/qoje}n,'r,l l> m;ﬁ?/qm;C
Proof. [AIP16b, Lemme 4.5]. ]

Lemma 2.3.10. Let h: 3&,, .1 — T&,,_1 .1 be the projection for any n. h is finite and the trace map
Trp: heOs6 — Os8 induced by the trace on the adic generic fibre satisfies

n,r,I n—1,r,1

n—1
Hdgp OJ@n—l,r,I C Trh(h*ojﬁn,nl)

forany2 <n < a4+
Proof. [AIP16b, Proposition 3.4]. ]

Lemma 2.3.11. Let Spf R C X, o1 be an open where Hdg is trivialized. Letting co = 1, for every 1 < n <
p"—

a + r, there exists ¢, € Hdg ™ 1 036, (Spf R) satisfying Try(cn) = cp1.
Proof. Immediate from Lemma 2.3.10. O

Recall p: VOOL (Hjj , 8, Q) — X, o1 was the projection and W = pxOyor, 4 [k].
, &y fle 0 (H.A’S’Q)

Theorem 2.3.1. The action of T on p,O 0, preserves the filtration {Fil; }; induced by taking
0

(Y 5,Q)
direct image of the filtration defined in Lemma 2.3.6. Let Fﬂiwg ;= Fil; | p+O 0 11 [k].
NS Vo b (HY,5,Q)
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L Filiwg o1 18 a finite locally free Ox, , ,-module.
2 Wg,a,l is the a-adic completion of h%mz Fﬂin’aJ.

3 FilgW) ;= w} , and Gr;W)  ; ~wf @ n "OHW - w )0,

Proof. We already know the similar results for W;ﬁ a1+ Also it is clear that Filp is preserved by the T~
action and FiIOW%a’I = mg,a,l' By Lemma 2.3.5, W%,a,[ = (hn)« W, , 1[k] for the residual action
of (O ® Zp)*. The idea is to pick generators of GriW% «,7 and modify them to produce generators
of GriW% o7+ To that intent, recall we have a T equivariant isomorphism Ose,, , ,/q =~ Wy , /4
by Lemma 2.3.9. Let Spf R C X, 1 be a Zariski open that trivializes w 4 and let w be a O, ® Ox
generator. Let V be the pullback of Spf R to 3&,, . ;. This gives a T*' equivariant isomorphism

ryo,

Oss, (V) /g2 OEHW - w220 Z Gr, Wi (V) /g = wi (V) /g @ n "O(HW - w7 2)=0.

n,r,I
Let 5; be the image of the class of =) (HTV - w;ﬁ)g(i). In particular t x5; = §; forallt € (O, ®Zy)*,
since n_é(i) (HW - wVZQ)E(") is defined over X, o 1. Pick a lift s; of 5; to Fil;W)__ ;.

Choose lifts 7 of 7 € (O, /p"Or)* in (Of, ® Zp)*. With ¢, as in Lemma 2.3.11, define

- N _p'-p

S; = Z k(’]’) 17’(0”81') € Hdg »-! W;c,a,l(v)'

TG(OL/p”OL)X

We claim that 3; € Fil;W} (V) and its image generates Gr; W, ;. Moreover since (Of, ® Zj)*
acts on §; via k, it descends to Wg. To prove the claim we note that

§Z' — §; = Z k(?)_lT(cnsi) — S;

TE(OL/p"OL)X
€ > k(F) M r(ensi) — T(en)si) + RPFILW
TE(OL/p"OL)X
c > k(7)1 (cn)(7(5:) — 5i) + ROFiLW), ,
TG(OL/p”OL)X

C R°FilW}, o ; + Fili_ W} .

Here we used the fact that Y k(7) ~'7(c,) € 1+ R°°Oyg,, ., whose proof we refer to [AIP18, Lemme
5.4]. The fact that §; generates Gr;Wj_  ; follows by noting that it does so modulo R°°.

So we have produced a local basis of FiliW;C’ a1 for each 7 that descends to W% a7+ This proves that the

filtration on p, OVO LI, 5,0) is preserved by the T**'-action and so the filtration on W, ; descend to
0 A s &by

a filtration on Wg o.1- The rest of the claims in the theorem follow immediately. O
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Let x: A C (O ® Zyp)* LN A | be the finite part of the universal character. Forp # 2, A =
(OL ® Zp)* /1 +p(OL ® Z),) and for p = 2, Ais a quotient of (O ® Z)* /1 +4(Of, @ Zp). Using
this we view x as a character of (O /qOp)*. Letp: M, o1 1= Xy a1 Xgmo . W1 — Xy, be the

projection induced by the finite flat base change 20, ; — QU& I
Definition 2.3.10. Fori = 1ifp # 2and¢ = 2if p = 2, define a coherent sheaf mza ;=
(p*(fi)*(’)g@ml) [x ] for the action of (O,/qOL)* on f;: 38,1 — Xral

Definition 2.3.11. 1. Define the sheaf of overconvergent Hilbert modular forms of weight & = k"
to be W, 7= P*mg,a,l ® m%,a,]‘

2. Define the sheaf of overconvergent de Rham classes tobe W, ; = pWY al ® mfga I

Proposition 2.3.8. The sheaf W, , | is equipped with a filtration by coherent Ogy, ., modules Fil; iWe o1
and moreover W, is the a- -adic completzon of lg Fil; W, , ;. We have Fl]ng 7= W and

GryW, 1y, @0 O HW - w?)=0),

Proof. Define Fi,W,  , := p*FiliW%aJ @ wy ;. The rest of the claims follow immediately from
Theorem 2.3.1. U

We remarked in the introduction to the section that the construction of tv,, , ; appears in the previous
work of Andreatta-lovita-Pilloni [AIP16b]. Here we compare our construction to theirs and show why
we get isomorphic sheaves.

In [AIP16b] the authors consider a torsor §, . 1 over J&,, ;. 1 for the group T. This torsor is defined on
points Spf R N J&,, 1 for any normal admissible A& s-algebra R as follows.

Snri(R) ={w e was|w=7"(s) € v"Q4a/Bn}.

The action of T on §y, ;. 1 is the obvious one, i.e. A € T(R) acts via A * w = Aw. Moreover there is an
action of T on §, . 1 over X, o 1. This is given by first noting that any point of §y, , 7 (R) can be seen
as a pair (P,w) where P € HY(R) andw € wa(R),w = dlog(P) mod 3. Then A € (O, ® Z,)*
acts via A * (P,w) = (AP, \w), where \ is the class of A in (O, /p"Op)*. Then they define the sheaf
of Hilbert modular forms for universal weight k& = kgé’ ; as follows. Let v/: §p 1 — X, .1 be the
projection.

Definition 2.3.12. The sheaf of Hilbert modular forms for weight £ = ko 1 is defined as mg old . —

V.Og,. . [k™!] for the action of T,

We now show why the sheaf to? k.o, 18 naturally isomorphic to mz ‘idl

Proposition 2.3.9. There is an isomorphism of formal schemes over X, o 1, @ Sp .1 = V(()Q E(Qa, s). This
isomorphism interacts with the T action in the following manner: for any point x € Ty, » 1(R), A x a(x) =

a(A"tx ).

Proof. Define a by sending a point (P, w) — (P,w"). Then it is easy to check the rest of the claims. [J
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Proposition 2.3.10. There is a natural isomorphism m% ad X WL

Proof. Letv: VBQL (Q4,5) = X, o1 be the projection. Then the isomorphism induced by q,

~ 1,
V*OVgL (Q.A75) — V*Ogn,r,l

. . . 1 .
induces an isomorphism mg ol = mg’zdl due to Proposition 2.3.9. O

Here we recall an important result about the surjectivity of the specialization map for cusp forms.

Let X7, — Qﬂg} ; be the blow-up spaces constructed exactly as X, ; but now starting from the
minimal compactification M* (i, ¢). These are formal models for overconvergent neighbourhoods
of M*(pup, ¢c). Let M =X X0, W, 1. Thereisa natural map f: M, 1 — M7, ; induced

by the projection M (pun, ¢) — M*(un,¢). Let My 1, M. , 1 be their adic generic fibre. Recall that
D was the boundary divisor of M (i, ¢). By an abuse of notation we denote by D its inverse image in

My o1

Theorem 2.3.2. We have Rif*mk a1(=D) =0foralli > 0. Let g: MnaJ — W1 be the projection to
the weight space. Then for any weight k € W, 1,

K gatog o1 (=D)[1/a] = HO (M1, 5%10;, o (=D)[1/a])

is the space of r-overconvergent Hilbert cuspforms of tame level pipy, c-polarization and weight k.

Proof. The first part follows from [AIP16a, Corollary 3.20]. For the second part we remark that the pro-

jection g factors through M, 1 ER M a1 = Wa,r,and M7 | is affinoid. Then the claim follows
from the first part. 0

2.3.4 Overconvergent arithmetic Hilbert modular forms

Recall that we defined the notion of arithmetic Hilbert modular forms in §2.1.2.1. These were Hilbert
modular forms associated to the group G = Resr g GLg . With I' = O;’Jr JUZ,, we saw that the
quotient M (pup,¢) — M (uun, ¢)/T is finite étale. Given a classical weight (v, w) € 20 the sheaf of
arithmetic Hilbert modular forms of tame level y1, c-polarization and weight (v, w) with coefficients in
R was defined to be g%”w) = (p*wj R)F. The definition of overconvergent arithmetic Hilbert modular
forms is given in a similar manner. We follow [AIP16b].

ol

9)??7&71 is finite étale. Consider the pullback of tv, , , along f: 95?7,70[7] Xop WE — M
of I' on 95?7,70[71 Xon W can be lifted to an action on f*mk:,a,l as follows. Let (vq,1,Wa,1): (O ®
Lp)* X Ly — (A 1ONNG)X = (Agl)X be the universal character. Any € € (’)Z’+ induces an iso-
morphism M*f*mk,a,l — f*ro, , ;- Wedefine theactionon f*ro, , ; by multiplying this isomorphism

Let ME_ | = (95?747&,[ X gy 2F) /T'. By Proposition 2.1.1 the quotient map p: Dfnr,a,f Xqp WE —

rol- The action

by Ua,[(e_l). That is, viewing a section g of f*mk,a,l by Koecher’s principle as a rule that associates to

any tuple (A, ¢, \, ¥, w) avalue g(A4, 1, \,Y,w) € Ag,]! the action of € is given by

(6 . g)(A7 L, A7 1/)7 w) - Ua,[(eil)g(Aa Ly 6)‘7 wv W)
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Definition 2.3.13. The sheaf of r-overconvergent arithmetic Hilbert modular forms of tame level py,
¢-polarization and weight /{:S[ = (Va,I, Wa,1) is defined to be

Ge . r
mk,oi,] = (P 0p 0 1) -

Similarly one defines the sheaf of r-overconvergent arithmetic Hilbert cuspforms of tame level pp, c-
polarization and weight k‘g ; tobe

G7 . *
w3 (=D) = (pf Wy .7 (—D))

We have a surjectivity result about the specialization map of arithmetic Hilbert cuspforms analogous to
Theorem 2.3.2.

Let qu,a, ; be the adic generic fibre of ME  Letg: MC , — Wg 7 be the projection to the weight

ronl” r.onl

space, where WCCJ:I = Spa(Ag[[l/a]?AgI)'

Theorem 2.3.3. For any weight k¢ € WCC:I, (k:G)*mg’;J(—D)[l/a] is the space of r-overconvergent
arithmetic Hilbert cuspforms of tame level jup;, c-polarization and weight k.

Proof. We need to show that Rig*mg’oi ;(=D)[1/a] = 0foralli > 0. This follows from Theorem

2.3.2 by noting that over the generic fibre applying the invariant functor (-)' to a Cech resolution of

psf*ro, ., ;(—D) is exactsince (-) is obtained by the application of the projector e = # Yoeer€ O

Let g. denote the projection to the weight space Qﬂg ; from the formal model EfRSm I

moduli of abelian schemes with c-polarization. For z € L* coprime to p, consider the isomorphism
. G,C G,CL'C .

L(xc,c) “G9ex 0y o 1 T GueklVy g BIVEN by

corresponding to the

L(xc,c)(f)(Av LA, w) = ’U(IB)f(A, Ly [BilAv (OB w)'
The isomorphism depends only on the principal ideal () and preserves cuspidality.

Definition 2.3.14. Define the sheaf of r-overconvergent arithmetic Hilbert modular forms of tame level
v and weight kg,l to be

mkG,a,I = @ gc*mgg,[ / (L(xc,c)(f) - f)

cEFrac(L)(®) w€Princ(L)+ (@)

One defines similarly the subsheaf of r-overconvergent arithmetic Hilbert cuspforms, which we denote
by mg a, ;(=D). (Note the D is the notation does not have anything to do any boundary divisor, but we
choose this notation to stay consistent with our previous notation when the polarization module was
fixed and we were working over a fixed toroidal compactification.)
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2.4 p-adic iteration of the Gauss-Manin connection

In this section we will define iteration of the Gauss-Manin connection for analytic weights. For simplicity
of notation we will ignore the log poles at the cusps. The first main result of this section is the following.

Theorem. There is a filtration {Fil; };>0 on Wg o1 Such that the graded pieces over the generic fibre are
GrnW%mI[l/a] o~ m%a’l ® Sym" w2®2[1/a]. There is a connection
. 0 0 501
Vi: Wi o r[1/a] = Wk,aJ@meJ/AgJ[l/a]

induced by the Gauss-Manin connection on H 4, which satisfies Griffiths’ transversality with respect to the fil-
tration Fil; above. Moreover, it also induces a connection

Wk,a,[[l/a] - Wk,a,1®951yjim7,//\a,,[1/a]

that satisfies Griffiths’ transversality with respect to the filtration defined by tensoring Fil; with o} _ .

2.4.1 The Gauss-Manin connection on H&

Let IQ;M’ 1 — ZGy, .1 be the analytic adic space classifying trivializations (Or,/p" O L)? = Alp"Y
compatible with the trivializations Or, /p" Or, 5 H V. Let ’305;77,7 1 — J&, ;1 be the normalization.

Proposition 2.4.1. The Gauss-Manin connection on H 4 over 3(’5/%,1’ 1 restricts to a connection

RS f 501
Vi HA — HA®Q§®:L,T,I/AS4,I

such that (V mod 3,)(s) = 0and (V mod n)(Q) C O ® Q%Qs, /A0 I/(n).

Proof. We have a commutative diagram as follows coming from the functoriality of the dlog map.

dl
(OL/pnOL)2 I w#f,n @0t

5 |
Al (38, , 1) — s wa/pr

n,r,

The bottom arrow dlog 4(,»)v composed with the projection on to w4 /Bn =~ wH, /Bn factors through

dl . . . = . .
Alp"]Y — H) B N i, The connection on H 4 modulo p™ is the connection V on the invariant

differentials of the universal vector extension of A[p"]". Since i,n is isotrivial, the functoriality of the
Gauss-Manin connection and the commutativity of the diagram shows that V(dlog(P™")) = 0. This

— 501 : t 501
shows that V(2 4) = 0 mod ﬁnHA@QjQS{n,T,I/Ag,I‘ In particular V(2 4) C HA@Qj@fn,r,[/Ag,I‘
On the other hand since H& =04+ §ﬁ/ - H 4 we are left to show that V maps §ffﬁ/ -Hyto H&
Since the Gauss-Manin connection is functorial, it commutes with the splitting of H 4 into the g different
components. Recalling the notation from Corollary 2.3.3 we need to show that

V (§6)HW (i) - Ha(iy)) € By ()80 0 -

61



To show this note that by Lemma 2.3.3, §(2J)ﬁﬁ/(zj) = F* (£(4j-1)) is a p-th power at all height 1
localizations. Thus V maps it to Hi‘ +pH 4. Since p € §(i; )I;T\ﬁ/(zj) for all i; we conclude. This proves
the first two claims of the proposition. Now we show that (V mod 7)(Q) C Q ® 956/ /AL, /(n).

Let Spf Ry C X, 4,1 be an open such that H 4 is trivialized over Spf R as O, ® Ry-modules. Let Spf R C
38, rand Spf R’ C 3(’5;#7 7 beits inverse image in J&,, ;. ; and ’JQS;W’ 7 respectively. Assume also that

H& is trivialized over Spf R. Pick O, ® Rg-basis w,  of H 4 such that e := £w is alift of s for some local
generator & of § and such that f := C'e + ({HW)( is a lift of a generator of Q for some local generator

HW of HW and some C € Or, ® R as in the proof of Proposition 2.3.2. Assume also that the image of
(in wx is the dual of w.

Let wy, (s be the o-components of w and ¢. Let ©, = K S(wy, (,) be the Kodaira-Spencer class in

0L » corresponding to the image of w®? under the Kodaira-Spencer isomorphism
X0/ P g g o P P

., ®2 1
KS LL)A — Q%r,a,I/A(OL['

The O, thus form a basis for Q;E /A0 - Suppose that
Ty, a,l
V(wy) = ng ®a%0; + ( ® Oy 2.7)
T

()= wo®BI0, + Y (®170, (2.8)

foraZ, 52,72 € Ox Therefore we have

V(ea) = V(g(O') 'wo)
0)> wo®alO0; +£(0)  (r ® Oy + £(0) - wo @ dlog &(o)

=Wy ® ({(J) Z a0, + dg(g)) + ¢ ®E(0)O, (2.9)

g ag (—:)O'
—e, ® <Z a2, + dlog (o) — ;W(?U)) o ® s

V(fo) =V(Coes +&(0 ) ( )+ Go)
= V(Cyey) + £(0) Z%@ﬁaewg Zg@%
+&(0)HW (o) - (o & dlog(é(a)H W(o))

(2.10)
= V(Coes) + e @ (ZHW 50@»—cazvseT—dlog@(a)HW(a)))

+h® (Z 176, + dlog@(a)HW(a»)
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Now the proof of the previous part of the proposition shows that over J&’ V(Qa) C BrHA®

n,r,I’
Qé@fn,r,[/Ag,I. Then the third equality of (2.9) implies that ©, € 3,0} for all 0. In other

st,n,T,I/AgL,I
words the image of Q. -0l 1
& xrya»I/Ag,I quiz,r,l/Ag,I 36;77"1//\8‘ I

true of d¢(c). This implies together with the explicit formula of (2.10) that V( fU) = 0 mod (n), proving
the final part of the proposition. O

is contained in 3,2 . Moreover the same is

2.42 The Gauss-Manin connection on WY _;

Recall that the universal character k = kg’ ;is analyticon 1 + p" (O, ® Z,). In particular there are
Uy € plangJ such that k. (t) = exp(u, log(t)) forallt € 1 + (3,,G,. In this section we will define
the connection on Wg’ a.1- We would like to have Griffith’s transversality for some filtration on W% al
But the filtration given in Theorem 2.3.1, i.e. the filtration given by lexicographic ordering for a choice of
numbering of the set 3, doesn’t satisfy this. Thus as promised before, here we define the Hodge filtration
on W% al

Lemma 2.4.1. Let p': VOOL (H&, 5,Q) = 36, . rand hy: IG,, . 1 — X, o 1 be the projections. Then the
filtration on p!, OVOL (B, 5.0) defined on local coordinates Spf R C I3, ;. 1 by
0 19

Fil; <p;OV(()9L (H&,S,Q) (SPfR)> = FﬂiR<{Za) WU}UGE> = @ R<{ZU}JGE> ®R Symj R[WJ]UGE
j=0

is well-defined. Moreover, (hy,).Fil; is stable under the action of T for all i. In particular it induces a fil-

tration on WY _ ;, by defining Fil, W _, := Fil, (p*OVO 5 [k], where p = hy, o p'. This is
’7 s 0

(H.5,9)
defined to be the Hodge filtration. The graded pieces over the generic fibre are Griwg agll/a] ~ m% ol @
Sym* w;\@’?[l/a] o~ m%a,I ® Sym" (Bew.a(—20))[1/al.

Proof. We note that @&%_, Sym’ R[W,],cx contains all polynomials in {W; }yey; of degree < i. In
7=0 poly g

particular, choosing an ordering Z: ¥ ~ {1,..., g}, there is a greatest element in Sym® R[W,],cx
corresponding to the multi-index (i, 0, ..., 0). Let ig := Z71(4,0, .. ., 0). Denoting by Fil} the lexico-
graphic ordering of Theorem 2.3.1, we then have Fil; = Fil;o. The lemma follows. O

Convention: Henceforth, unless otherwise stated { Fil; };>0 will denote the Hodge filtration of Lemma
2.4.1, and not the filtration induced by a lexicographic ordering on X. Also we will denote by Fil; the
filtration induced on W, ; by tensoring the above filtration with wj _ ;.

Let 77%)% /A2, be the first infinitesimal neighborhood of the closed subscheme of 305;w7 I X0,

3@;%] defined by the diagonal embedding A: 3@%’,4’1 — 3(’5;”,’1 XspfAD 3(’5;”,71. Let p1, p2 be

. - (1)
the first and second projections Pj@; /A2,

connections [BO15, §2], we get an O, ® O

— 3@5;7“ 7. Then using Grothendieck’s formalism of

p() -linear isomorphism € : ngi‘ = pTH& asso-
Je! /A0
WY Ko §

ciated to the connection V: H& — H& ® Ok

. ﬁ . . .
36, 1 /AD ) This €* is characterized by the properties that
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At =id, V(z) = (1 ® ) — 2 ® 1 and it satisfies a suitable cocycle condition with respect to the
three possible pullbacks of €f to jﬁim,l Xm0 | 3(’5;77471 Xqn0 | J®!

n,r,I*

Let : 9*V§" (HY, 5, Q) — J&/, . rbe the pullback of o' : V™ (HY,, 5, Q) — TB,,.,. rtod: TS, | —
J&,, 1. Sometimes we will drop the notation 1 for simplicity.

Lemma 2.4.2. The connection V : H& — H&@Q% & JAD induces an isomorphism associated to a con-
n,r,I a,l

nection (in the sense of Grothendieck) on p, (’)Vgo L (1, 5,0)

o~ ~ * >
P2P+Oy0L 15, 4.0) e Pf oL s, .0

Proof. The isomorphism € : pEH?A = p’l‘H?4 splits by O -linearity into e p;H&(O’) = pTH&(O’)
foralloc € X. Let g, : VO(H&(J), Sq,Q(0)) — J&], . be the g-component of /. Each ¢!, induces

a connection 6?7702 p;(ﬁa)*OVO(H&(O'),Sg,Q(O')) = pT(ﬁa)*OVO(H&(o'),sO—,Q(J)) by §1.4.2. Then eg is
defined by the tensor product ®6g,0. O

Lemma 2.4.3. The action of (O, ® Zy,)™ on V(()QL (Hﬁ , 8, Q) over X, o1 as defined in §2.3.2.1 can be lifted

O

to an action on 9*V " (Hti , 8, Q) over X, o 1 such that the induced action commutes with eg.

Proof. The map IQ;MJ — X} .1 is a torsor for the group

(OL/P"OL)* i @071
0 (OL/p"OL)* |

Then (O, ® Zy,)* acts on J&], . ; through the quotient

y 1 0
(OL ® Zp) - (O (OL/pnOL)X>

and this action lifts the action on 3&,, ;. 1. For A € (O, ® Zj)* we get an isomorphism [A]: 7&], . ; —
qu;w, 7 over X, o 1, that induces an isomorphism ) : H& — H& sending the marked section s

A~ !s and the marked subspace Q to itself. Since the connection on H& is induced by the Gauss-Manin
connection on H 4, by functoriality of the Gauss-Manin connection, V commutes with ~y. The last

claim follows by noticing that the action on 19*V69L (H&, s, Q) is induced by the isomorphism H& 2,

H& RN H& which obviously commutes with V. O

Theorem 2.4.1. There is an integrable connection on Wg ol
. 0 0 501
Vit Wi = Wia 1@y a0 1/l
for which the filtration on Wg o1 defined in Lemma 2.4.1 satisfies Griffith’s transversality.
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Proof. We use the notation of the proof of Proposition 2.4.1. Recall Spf R’ C 3(’5;7T7 7 was an open that

was the inverse image of an open Spf Ry C X, that trivializes H 4, and such that over Spf R/, Hi‘ is
trivial with O, ® R'-basis {e, f} adapted to the marked section s and modified unit root subspace Q.

mult

Let I(A) = ker (R'@y0 R’ == R'), and let RV = R&y0 R/I(A).

Then in terms of the basis {e, f}, ¢ is given by a matrix

A= <Cc‘ Z) € GLy (OL ® R(1)> .

Decomposing into components, we get matrices

we= () con ()

with respect to the basis e,, fo of H&(U) for each 0.

Since A*(e*) = id, we have that a;, = 1 4+ a2 and d, = 1 + d% with a2, d?, by, c, € I(A) forall .
Moreover, the squares of a2, d2, b,, ¢, are all 0 in R ).

Comparing the expression of V in terms of a, b, ¢, d on the one hand and that in (2.9) and (2.10) on the
other, we see that ¢, HW (o) is the Kodaira-Spencer class ©,,.

1.

By Lemma 2.4.2 there is an isomorphism ¢ pQ,o*(’) OL (1Y, 5,0) = pipeO VoL ( induced by

H%,5,Q)
_A7 ’

pQHg4 o~ le&. We show that eg restricts to a connection on W), ;. We show this on local co-

ordinates. So recalling the local description of W;“ a1 from Corollary 2.3.4, we have ng,a, Tspf =

R {Vo})k(1+ 5,Z), where we recall V, = H_Vﬁvﬁ and k(1 4 f3,,Z) was the notation for [ [ k(1 +
BnZs). Thus 6% is described by its action on V,; and 1 + (3, Z,. We have

(Vo) =17 Wby +ndy Vi) (ao +1¢6Ve) ™ (1 + BuZs) = (a0 + 166V ) (1 + BnZs).

From this one can deduce the following formula for Vi (z) = eg(l ®Rz) -zl

Vi (H Vie . k(1 + 5nZ)> =1[ Vv (Zigvgl Rbon '+ (s —ig) ® a)

+Zza®d0 +Z o —ig)Vs ®nca> (k(1+ B.2) ®1)
(2.11)
This connection descends to J&,, ,. 1 after inverting c, by the formula above. Then we descend V, to

X, o1 by taking k-invariants for the (O, ®Z,,) ™ action using Lemma 2.4.3 and noting 3&,, , 1 — X, . 1
is generically étale. 0
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Corollary 2.4.1. The connection V: Wg,a,l — Wg,mI@Q;Er,a#[/Ag . [1/a] induces a connection which

we still denote by Vi,
Vk;3 Wk,a,l — Wk,a,I®Qf_%tha’I/AaJ [1/0[]

that satisfies Griffiths transverality with respect to the filtration on W, ; defined by tensoring Fil; of Lemma
24.1with oy | .

Proof. Recallmiiajl was defined as ((fi)*(’)j@iml ®Ag . Aa,[) [X_l} for f;: 38, .1 — X, o1 the pro-

jection withi = 1if p # 2and i = 2if p = 2. The universal derivation (f;)«O5s, , ; ®p0 Ao —

(fi)*Q‘lw‘ L/A0 ® Aq,; commutes with the action of (Or,/qOr)* and thus induces a connection
i,r, o,

mg’m[ — m?c(,a,l®ﬂ$?nn [1/a] by taking x !

, -invariants and upon inverting «v. This along with V,

defined on Wg’ o1 above induces the required connection on W, , . O

The Kodaira-Spencer isomorphism w%z = Q; induces a decomposition of Q; cor-

0 0
'ma,I/Aa’[ r,a,I/Aa’[
responding to the decomposition wﬁZ =11, wi{’. Here the tensor product is taken as O, ® Ox_ ;-

modaules. This induces an isomorphism Q5 [1/a] ~ [], w?[1/a].

Definition 2.4.1. Define Vj(0): W) , — W)_,  ;[1/c] as the map obtained by composing V,

with the projection onto the o component of Q; [1/a] ~ ], w¥, followed by the natural map

0
to Wk+2a,a,['

0
TvaaI/Aa,I

Vv 5 S o
vk(a): W%a,[ ‘k_) W27a71®911{ma’1//\0 [1/0&] — Wg,a,l(@wi [1/@] — Wg—‘,—QU,a,I[l/a]

a, I

Similarly denote still by Vi (o): Wy s — Wit26.q,1[1/c] the map obtained by twisting V(o)
as above with the connection on mz‘ o1 followed by the projection onto the o-component under the
Kodaira-Spencer isomorphism.

Corollary 2.4.2. The Oy, , ,-linear map induced by the connection V() on the graded piece
Vi(o): Grnwg,a,f[l/a] - Grn+1W2+2a,a,1[1/a]
sends an element w2 € m%a’l ® Sym" w;\®2[1/a] to (g — io)wP 2 fori= (iy)rex € NY.
Proof. Follows from (2.11) above. O

243 V| on g-expansions

For simplicity of notation, in this section we drop «, I from the notation ng o,7 and simply write Wg.
Also since we want to iterate the connection, and the connection V,(c') maps W} [1/o] to W) _, [1/a],
in our notation we forget the dependency of the connection on the weight k, and simply write V(o).
Later we will need to compose V(o) and V(7) for o # 7 € ¥. Lemma 2.4.4 below will show us that
the order of composition does not matter.
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In this section we will study the effect of V;, on g-expansions. We begin by reviewing the definition of
Tate objects for Hilbert-Blumenthal abelian varieties following [Kat78].

Fix fractional ideals @, b such that ¢ = ab™!. Let S be a set of g linearly independent Q-linear forms
¢;: L — Q, such that £;(x) > 0 for all x > 0, where by & >> 0 we mean  is a totally positive element.
We say an element is S-positive if £;(z) > 0 for all i. Let abg = { € ab | x is S-positive} be the set of
S-positive elements in ab. abg is a finitely generated monoid.

Definition 2.4.2. Define Z[ab, S| to be the ring of all formal series » _ 5y agq’. Define Z((ab, S)) =
Z[ab, S][1/¢°] for some 3 > 0.

We remark that inverting ¢° for some 8 >> 0 inverts g7 for all 4 >> 0. So Z((ab, S)) is well-defined. In
particular, Z((ab, S)) is the collection of all formal series » |5 ., @ 5G” such that for some integer n >> 0,
we have /;(3) > —n whenever ag # 0.

Over the ring Z((ab, S)), we have the g-dimensional algebraic torus G,,, @0~ *a~! together with an O -
linear group homomorphism ¢: b — G,,, ®0~'a~! defined as follows. To give such a group homomor-
phism is the same as giving an O -linear group homomorphism ab — G,,, ® 9~ 1. This is equivalent to
giving a group homomorphism ab — G,,, which we define to be 8 — ¢ € G,,(Z((ab, S))). The rigid
analytic quotient G,,, ® 9~ 'a~!/q(b) is algebraizable to a Hilbert-Blumenthal abelian variety denoted
Tateq p(q) over Z((ab, S)) which carries a canonical ¢ = ab~! polarization

Aean - Tateayb(q)v = Tateq p(q) ® ab~ !~ Tatep o(q).

We quickly recall that there exists canonical isomorphisms as follows [Kat78, (1.1.17), (1.1.18)].

L. Wiateq 4(q) = @ @ Z((ab, 9)); w¥ateu,b(q) ~ 0 ta~t @ Z((ab, S)).
2. O p.5) = ab ® Z((ab, S); Der (Z((ab, S), Z((ab, 5))) ~ 2-la—1b @ Z((ab, 5)).

We now base change to AgJ, so that Tateq (q) is defined over R := AgJ((ab, S)).

For simplicity assume a, b are coprime to p. Everything that follows holds true with appropriate mod-
ifications in the general case by choosing an isomorphism O, ® Z,, ~ al® Z,, which amounts to
choosing a I'gp (p°°)-structure on Tate, p(q) [Kat78, (1.1.15)]. When a is coprime to p, we have the nat-
ural equality O, ® Z,, = al® Zyp inside L ® Q, which induces a canonical I'go (p>°)-structure on

Tatea,b (Q)

Forany o0 € X, lete, € Op ® R be the corresponding idempotent. Let wean (o) be the image of
o € a®R = O1® R under the canonical identification wrye, () =~ Q1. Let O, = KS(w®2(0))be
the corresponding Kodaira-Spencer class. Then ©,, is the image of e, € O, ® R under the identification

Q}%/A&I ~ ab ® R = Of ® R. The homomorphism e : Q}Q/AgJ — R that is dual to e, induces the

derivation 6, € Der(R, R) defined as

0o ( > %’qﬁ) = o(B)asq’.
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Having recalled generalities about the Tate objects, we go back to computing the effect of Vj, on ¢-
expansions.

Let V(Wean(0)) = Cean(0) ® O4. Then V((an(0)) = 0. Let wean and (ean be the O ® R-basis

i
of HTatea,b (Q)

respect to this basis the matrix of V = (V). is thus given as follows.

0 O
VU - (60 0)

(@) (U)®Q}%/Ag . is just the o component of V. In particular, it

= Hj;(Tatey5(q)/R), whose o-components are weyn (o) and Cean(0) respectively. With

(Note V: Hi, (o) — H
should not be confused with V(o) of Definition 2.4.1).

Let WY (q) be the pullback of WY to Spf R along the structure morphism defining Tateq (¢) together
with the canonical T (p™)-structure defined as above. Then we can write W9 (g) ~ R({V,},) - k(1 +
p"Z) as in Corollary 2.3.4. Then formula (2.11) gives us

V(o) <a [Tvi -k + p”Z)) = 0,(a) [T Vi - (k+20)(1 +p"2)
- p (2.12)
+p(ug —ie)Vo [ [ Vi - (k+20)(1 +p"2)

foranya € R.

Lemma 2.4.4. Forany 0,7 € ¥, the maps V(o) and V,(T) commute, i.e.

Vit20(7) © Vi(0) = Vip2r(0) 0 Vi(7)
as maps Wy, — W), . [1/a].
Proof. It is enough to check this on the ordinary locus %gj‘}, as the ordinary locus is dense in X, o ;.

On the ordinary locus the result follows by verifying on g-expansions using (2.12) and the g-expansion
principle. (See also [Kat78, (2.1.14)]) O

Lemma 2.4.5. Let g(q) € Rand N > 1. Then we can write

N

V(@) (9@ [TV k(1 +9"2)) = 3" Pawpin 63 (a(@)V3 [[ Vi - (k+2N0)(1+p"2).
T 7=0 T

Here an ki, 0 = 1 and for j > 1, we have

M
AN kig,j = < > H(ug —ie+ N —1—13).

J i=1
Proof. This is the exact same computation as Lemma 1.4.2. O
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Let W) (o) := >, W), andlet WO = p*OVSL (1, 5,0) where p: VSJL (H&, 5,Q) = X, o1 is the
projection. Let Wy () = W) (0) ® w) , ;andlet W = W° ® §. Here § := (fi)+Ozs,,.; @0 A
where f;: 38, , 1 — X, o 1is the projection withi = 1forp # 2and 7 = 2 otherwise. We have defined

the U operator in the next chapter (Definition 3.1.1) which we will use now.

Corollary 2.4.3. Let f, be the inertia degree for the embedding o. Let k = x - kO with x = k| the torsion
part of the character and k° = kx 1. Assume kQ(t) = exp(u,logt) fort € 1 + 3,G4 and u, € A ;.

Let Smgfil = nglj Xago  Wa,r. Forany g € Ho(iﬁt‘gfipwk)U=0,
V pfo'—l o d HO Sjtord W HO Sitgrd W
(V(o) id)(g) € pH® (MY, W) N HO (MGG, Wi (o).

Proof. We recall that W;, = Wgo ® mfg o7 and the connection V on Wy, is defined by the composite of

the connection on Wgo as defined in Theorem 2.4.1 and the connection on mi‘ o7 Which is defined by the
..y for i as above. Let Ay 1((ab, S)) = A1 ®p0 , B. The base change of

Spf Aq 1((ab, S)) to I&; ;.1 — X, o 1 isjust copies of Spf Ay 1((ab, S)) indexed by (Or/qOr)*. Hence
the universal derivation on Aq,7((ab, 5) ®o,  Oje, ., is determined by the universal derivation on

universal derivation on O5g

a7,
Ao.1((ab, S)). The g-expansion of any section g € HC (M, 4.1, W)V =0 at Tate, s (¢) corresponds to a
tuple (i) ie (0, /q0.)* With gi € Ao 1(ab, S)({Vs}o) - k°(14p"Z). Moreover, for each i, U (g;) = 0.
By the g-expansion principle it will be enough to prove the corollary for ¢ = g(q) [, Vi~ - k(1 +
p"Z) for g(q) € Ay 1((ab,.S)), such that g(q) is p-depleted. By Lemma 2.4.5, it is enough to show

nga_l(g(q)) (E+2(pfe — 1)1 +p"2) = g(q)k(1 + p"Z) mod p, which is clear. O

2.4.4 Iteration of V

In this section we will finally define the p-adic iteration of the Gauss-Manin connection. We begin with
a preparatory lemma.

Lemma 2.4.6. For I = [p®, pY],

1L AgJ = Ok|[T1, ..., T )|(2, Q,...,%,u, v) /(o v — p,uv — apb_a) if b # oo.

«

2 AgJ = OK[[Tl,...,Tﬂ](g,ﬁ,...,%,u>/(apau—p) if b = o0.

Let U := Spf A be a Zariski open in X where w 4 is trivial. Then

r+1

U xx Xr; = Spf ABAD, (w)/(wHdg?

—a).
Proof. See [AIP16D, §3.4.1]. O

Lemma 2.4.7. Let Cy = #(Op/pOr)*. Then the kernel of the restriction map Ose, . ,/(a?) 2N
O /(ad) is killed by Hdg/® ")+ The kernel of the restriction map O3, ., /(a?) On, Oj@urd[/(aj)
is killed by Hdgj(pwrlHCn where Cy, = C1 + z;’%lp.
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Proof. The formulas of Lemma 2.4.6 show that the kernel of O, , /() 2o, Oot /(a?) is killed by

I . o
Hdg/®™""). The trace map Tr: Oj¢,, , — Ox, , then gives a commutative diagram as follows.

0 —— ker gbl — quslm[/(aj) — Oj@({rc}/(a‘j)

l | [

0 —— ker gbo _— OxT’I/(Oéj) E— Oxord[/(aj)

Suppose = € ker ¢1. Then Tr(z) € ker ¢y and hence Tr(Hdgj(pTH)x) = 0. In other words, for any
lift # € Osg, ., of z, Tr(Hdgj(pTH)i) € &0y, ,. Let D71 := {y € Frac(Ose,,,) | Tr(yz) €

Ok, forallz € Oy, ,}. Then Hdgj(prﬂ):i* € a?®~! as ker ¢ is an ideal. By using normality of
the rings involved, the first claim then follows by localizing at height 1 primes and noting that ® ! is the
usual inverse different in such tamely ramified extensions of DVR’s. For the second part, we note that
J8,, 1 is the normalization of ) := J&1 ;.1 X gy H,\L/ where 361 ;. — Hi/ is the universal generator
of HY. The faithfully flat extension HY — HY has different D(HY/H)) that contains Hdg 71
[AIP18, Proposition 3.5]. By flatness the kernel of Oy /() — Ogara /(@) is killed by Hdg/ (" ™)+C1,
Since J&,, . s is the normalization of 9), it is finite and in particular J&,,,.; C D~ (9) /IS, ). Thus

Hdg r=. O3 C Oy, which proves the second claim. O

n,r, I

Lemma 2.4.8. Let g,: 38, ;.1 — X, o 1 be the projection. The kernel and cokernel of g;"ZQ;E L/A0 —

o o, I
Qéanyr’l//\g . is killed by a power of Hdg. Let ¥: 3(’5;”471 — TGy, 1 be the projection. The kernel of
QL — 0l is killed by a power of Hdg.

jq‘jnml/Ag,l jﬁfn,r,l/Ag,I

Proof. This is similar to Lemma 1.4.3. For the second part one views J&'’" rld as a torsor over %gr‘} for the
@ "Op)* n®@d 1 . ~
group ( ( L/po L) (Olip/p%OL)X >, and argues as before using smoothness of J Qﬁ‘,’ff}. U

Assumption 2.1. Letk: T(Z,) — (Aa.r)” be aweight such that k = yk® where y = k|a is the finite
part of the character and KO = kx~!. Assume that for all ¢ € ¥, there exists u, € Ag 7» such that KO
factors as

0
K2 (0p @ Z,)" = (0p @ 0g)* = [[ 05 L2 (A )"

with k2(t) = exp(u, logt) forallt € Ox..
Let s: T(Z,) — (A2 ;)™ be a weight such that for all ¢ € %, there exists v, € A ; such that s factors
as
51 (0L @Z,) = (0 ® 0)* = [J O L% (A2))".
with s, (t) = exp(vg logt) forallt € Oj.
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In particular, we can take I = [0, 1] and o = p.

Note that the explicit description of the Gauss-Manin connection in (2.11) together with Lemma 2.4.8

implies that there exists an integer D such that V(o) (Wy) C WW;HQU forallo. LetV(o): W —

pHégD W be the map defined by V(o)|w, = Vi(o). In particular, forall N > 1,

1
(pHdg?)®’" DN

(V(o) 1 —id)N (W) ¢ W ().

Lemma 2.4.9. There exists an integer { depending on r,n and p, and an integer C' > 0, such that for any
ge H° (O, . 0,1]5 W) V=9, and every positive integer N, we have

N
o1 i)Y b HO(9m W) N HO(Mm W
V(o) id) (9) € HdgC (Mg 10,17 W) O H (DM, 10,17, Wr(0)).

Proof. By Corollary 2.4.3 we see that
fo_ . N YY}OT YOI
(V™= —id) (g)le, , € PV HO (M 1 W) 0 HOOI 1 Wi(0).
Locally on ?innp’[o’l], we then have that
N
(pHAg?)?” DV (V (o)1~ id) " (g) € ker (W/ (""" N) - W /(p"7N) ).

Here Werd = ngﬁord[o " By Corollary 2.3.4 W’ /(p’) is a polynomial algebra over O3, ., /(p’) for any
o, "

j. Since W = WO ® §, we first deal with W, Here we see by Lemma 2.4.7 the kernel of W0 /(p?’" V) —
Wyosord/ (ppfg N iskilled by Hdgpfa N @) +Cn By the same lemma ker (3/ (PPN — Ford /(pp' N))

is killed by Hdg? f7N ™) +02 Therefore
PP DN N @7 (") +D(p 7 —1)+Cn+Co (v(a)pf"—l _ id)N(g) c pprNHO(S:_nT’aJ?W).

In particular, choosing C' > 0, such that CN > N (2p/e (p"*1) + D(pfs —1)+C,, + Co forall N > 0,
we see that

N
Hdg“™ <V(0)p - id) (9) € PV HO(My .1, W).

Choosing £ > 1 such that p/HdgC € Ox,;, we get that

N
(V(a)pf“*l —id)N(Q) € <H5g0> HO(My 0.1, W).
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Proposition 2.4.2. Let k, s be as in Assumption 2.1. Then for any prime p > 3, there exists an integer {
depending on v, 1 and p such that for every g € HO (M, o 1, W )V=0 the sequences in m

i1 (V)P —id)i(g)
J

m

Alg,s0)m = 3 (-1)

=1

and if we write H; ,y, for the set of tuples (j1, . .., ji) of @ positive integers with j; + - - - + j; <m,

m ot i \ja—1 ] 4 )
B(g,80)m = Z m Z ( H &) (V(U)pf -1 _ idy Tt | (g)

=0 Growdi)€Him a=1 9
converge in H°(9My o, 1, W). Moreover, if we denote the limits

log (V(0)"™") (g) = lim_A(g. 50}

and
Vo

Vo) (0) = e (77

then V()% (g) € HY(Myp 0.1, W25, ). The same results hold for p = 2 if v, € 4AgJ.

log <v<a>Pf"—1>> (9) = lim B(g.50)m

m— 00

Proof. The convergence of A(g, Sy ), is clear from Lemma 2.4.9. We prove convergence for B(g, S5 )m.
Let’s first deal with the case p > 3. Let
(V{07! — id)ir i (g)

i'Tla '

Thenby Lemma 2.4.9, X € (p/Hdg®)2=Ja=vp()=2vela) O, , 1, W). Now v, (i!) < ;):11 < pil'

X =

Hence vy (j,) < j;%ll too. Using these inequalities,

. . . , 1 . , 1
S e w@) =S i) =Y <ja e vpua)) >3 (1 - 1) .
a=1 a=1 a=1 p a=1 p
(V(0)'7 1 —idyit -+ (g)
. , [Tja

do not have poles and the term v’ /i! is divisible by 2*, which gives convergence in this case. Finally,

V(0)%7(g) € HO(My.a.1, Wi2s, ) as can be seen from its expansion as a power series and the fact that
txV(o)(g) = (k+20)()V(o)(g)- O

This proves convergence in this case. For the case p = 2 we note that the terms

Thus given any g € H° (95?7«704, 1, W;)VU=0, there exists a large enough ¢ depending on 7, n and p such
that one can consider [[, V(c)" (g) as an element of H(My 4 1, Wy 125). Here [, V(0)*" means
the composition of the different V(0)%’s in any order. Note the order of composition does not matter
since they mutually commute by Lemma 2.4.4. Thus we fix such an £ and define the following.

Definition 2.4.3. For s: T(Z,) — (Ag’ ;) as in Proposition 2.4.2 and k as in Assumption 2.1, define
V4(g) for g € HY (M, 0.1, Wi)V=" tobe T[], V(0)*(9) € H* (M, 0,1}, Wi2s) for some £ for

which the expression makes sense by Proposition 2.4.2.

72



Chapter 3

Hecke operators and overconvergent
projection

In this chapter we always assume that « = pand I = [0, 1].

3.1 TheU and V operators

Let p1: Xpp1,0,0 — Xparand pa: Xpq10,1 — Xr o1 be the two maps defined on the generic fibre
by sending A — A and A — A/H; respectively. The map ps is the one denoted F in §2.3.1.1. The
quotient A\: A — A/H; =: A’ induces via the unique isogeny \': A" — A such that \' o A = [p]
an isomorphism H,,(A’) ~ H,(A) on the generic fibre. Hence they induce an isomorphism on the
duals of the canonical subgroups, and the functoriality of the dlog map gives an isomorphism pj{2 4 =~
p3Q40f O ® O3, ., , invertible modules. This isomorphism extends to a map p’l‘Hii4 — p§H§4 that
respects the marked section and marked splitting by Proposition 2.3.2. The map ps is finite flat of rank
p? on generic fibres and so induces a trace map Tr: p2, Ox, ., ;
normality. The maps p1, p2 have obvious lifts to maps p1: 38, 1.7 — IO, randpo: TG, 11 —
36,1

— Ox, . ; on the formal models by

. . . 0 0 .
Lemma 3.1.1. There is a morphism U : p2,pyWy ,  — p2,05Wy , 1 of Ox, , -modules induced by the
isogeny N which is an isomorphism on the modular sheaf mg o] and which preserves the filtration and commutes
with the Gauss-Manin connection. We also have a morphism U : p2, piW,. | ; — p2,05W, _ 1 of Oz .
&y y&y o

modules satisfying the same properties as above. Moreover, the induced map on the m-graded pieces is 0 modulo
(p/Hdg" )™,

Proof. The first claim follows simply from the definition of Wg o7 and the morphism p’l‘Hﬁ4 — QDEHE4
defined above. Considering the {/-correspondence on mz o1 We get the required map for W, ;. For the

last claim we observe that by Proposition 2.3.2, the induced map Hi‘ /Q4 — H&, /2y is multiplication
by p/ HW (¢)P** on the o-component. The claim then follows from the local description of Wg o U
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Definition 3.1.1. Define the U operator as the composition

U HOR W, ) PP o op w7 g W
: ( ra, I k,a,l)—> ( o, P2+D2 k,a,[)—> ( ra, D k,a,f)[ /p]-

Corollary 3.1.1. Forany g € Ho(f)j?na’[, Wy, 1) with g-expansiong = 3 agq” atacusp AgJ ((ab, .S)),
U(g) =4 apsq” on g-expansions.

As noted above the isomorphism (X)*: piQ4 = p3Q4 induces an isomorphism U : pfmk,a,l =
p;mk,a,l'

Definition 3.1.2. Define the V' operator as the map

. 05 Ulops 110
V. H (mr,a,bmk,a,[) —2> H (mr+l,a,1’mk,a,1)'

Corollary3.1.2. Foranyg € HO(9%,__ ;,w, ) withq-expansiong = >, agq® atacusp A° ;(ab, ),
V(g) =D w aﬁqpﬁ on q-expansions.
Corollary 3.1.3. L UoV =idon HO(E)ana 0L o)

2 Forg € H'(M, o.1> W o 1) if we denote by glP! := (id — V o U)(g) the p-depletion of g, then
U(gP)) = 0. Moreoverif g = 3", agq®, then glP! = PR agq®.

Proposition 3.1.1. For every non-negative rational h, the Ao 1[1/]-Banach module HO (M. o 1, Wy o1)
admits a slope h decomposition which restricts to a slope h decomposition on H° (/\;lna,j, Fiank’aJ) for all
n € N. Moreover, the inclusion H° (./\;lna’], Fﬂnwk’a’[)gh c HY (/\;lna,[, Wha,l)gh is an isomorphism
for m large enough (depending on h).

Proof. The operator U is compact on the coherent sheaf Fil, W,  ;, and so by the usual formalism of
slope decomposition we have locally on the weight space a slope h decomposition

H(Mya,1, Fily Wy, 1) = H* (Mya1, Fil, Wy, )" @ HO (M, 0 1, Fil, Wy, )7

By Lemma 3.1.1, the U operator on H° (Mya1s W, ., ;/Fil, W, ;) is divisible by ph*1 for n large
enough. It follows that H(M,. 1, Wk,a,[/Fﬂanz,a,I) also admits a slope h decomposition and that
HY(Mya1, Wy o 1 /Fil W, )= =0. O

3.2 Hecke operators

In order to define Hecke operators we work over the non-compactified moduli scheme M (1, ¢) instead
of the toroidal compactification to avoid problems of finding toroidal compactifications stable under the
correspondences. Instead we will use Koecher principle to extend these operators to the cusps.

Let M,  ; C ffTIT o1 be the inverse image of M (v, ¢) C M (p1n, ¢) under the projection zfrtm ;I

M(pn,c), and let M, o1 beits generic fibre. Let { C Op, be an ideal. If £ divides pN, assume it is
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aprime. Let Y C M, X Mﬁfa,] be the subspace classifying pairs (A, ¢, A, ¢) and (A", /, N, ¢'),
together with an isogeny my: A — A’ compatible with ¢, ¢/, A\, X', 1), 1/, such that ker 7 is étale locally
isomorphicto O, /O, ker myNImp = {0} and ker myNH; = {0} where H is the canonical subgroup
oflevel 1of A. Letpy: Y — M, yandpy: Y — Mf,faJ be the two projections defining the Hecke
correspondence. LetY) C M. ;X ilnf,fa’ 1 be the normalization of the Hecke correspondence. We note
that if £ is prime to p/V, then p; is finite étale of degree gy + 1 := N g (£) 4+ 1, and otherwise it is finite

flat of degree g := Ny, o(¢).

Lemma 3.2.1. The universal isogeny m; defines an isomorphism 77 : 5o ., ;[1/p] = piw, a1ll/p)of
invertible sheaves over the generic fibre.

Proof. [AIP16b, Corollary 8.6]. ]

c
ol

We now define the Hecke operator 7}. By abuse of notation let g be the structural maps for both M

and Mﬁfa, 1 to the weight space ), and let g be their restriction to the opens M. | ; and Mffa, ] re-
spectively. Then Koecher’s principle tells us that go, 0, , ; =~ g« , ; [AIP16b, Proposition 8.4].

Definition 3.2.1. Define the Hecke operator T} for £ as above as the map from an invertible sheaf over

/\;lfica ; to an invertible sheaf over /\;l; ol

Ly

7.(.*
9:10;, o 1[1/P] = (P05 0 1[1/P]) = Gu(P1.DiW o 1 [1/D]) —— gutvy o ;[1/D)-

. . . 2 o .
For / an ideal prime to p.N, define amap Sg: M,  ; — 917?;6& 1 as the normalization of the map induced

on generic fibres by sending A — A®¢~ ! together with the induced real multiplication, polarization and
level structure. As before it is easy to see that there is a morphism 7} : ng,ifi’f[l/p] — g, 7[1/p].
The Hecke operator Sy is defined as

171'*

2 Sx 2 g2t
Se: gutofl o 1[1/p] == guSivoit, 1[1/p] —— gutvf, o 1[1/p].

The Hecke operators induce maps on the sheaf of arithmetic Hilbert modular forms, which we still denote
by Ty: mgml[l/p] — mgml[l/p] for ¢ 4 pN and similarly for Sy. For ¢ = ‘B;, where we recall
i is a prime above p, choose an ; € L** such that vy, (2;) = 1 and vy, (;) = 0 for j # i.
Then multiplication by z; induces a positive isomorphism M (py, ‘,Bixi_lc) = M (un,Bic). We let
Ug, : mkG,g,I[l/p] — mkc’gi;m;lc[l/p] be the induced map. Then the T} and Usp, define operators on
mkG’aJ[l/p]. We warn that although [[,B; = (p), [[; Up, = van(p [ ;1)U where we recall kG, =

(Vun, Wyn) is the universal weight on WE .

Fora € (O /N)*, define the operator T'(a, 1) as the map induced by the action of (Or,/N)* on the
level structure.

Definition 3.2.2. Define the Hecke algebra 7{ as the AS'-subalgebra of End(mﬁ .1(=D)[1/p]) gener-
ated by the Ty, Sy for £ 1 pN, Uy for £|pN and T'(a, 1) fora € (Or/N)*.
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3.2.1 Adelic g-expansion

Next we turn our attention to classical complex Hilbert modular forms. Let )1 be an ideal deep enough
such that the moduli of c-polarized abelian varieties with pg;-level structure is representable [Hid04,
§4.1.2]. Consider the following compact open subgroups.

Ki(M) = <‘C” Z) € GLy(Op) | a =1mod NOp

Kii(M) = (Z 2) € GLy(Op) |a=d=1mod NOp

Let us briefly discuss the Shimura varieties associated to the group G at these levels.

In §2.1.2.1 we already showed that Shy, (x(G)(C) is a disjoint union

Shi, (v)(G) = |_| Shi¢, (v (G)(C)
[Ject

where each connected component Shi ) (G)(C) is the étale quotient of the moduli scheme My, ¢)
by the action of I' = O;,+ JUZ. The same result is true for N replaced by any 9 deep enough.
Let C1; (9N) be the strict ray class group modulo N. Then [Hid04, §4.1.3] shows that Shy, , o (G)(C)is
a disjoint union Shg | (o) (G)(C) = Ll[c]eCIJL’ o) Shic,, (o) (G)(C) of connected components indexed
by C1} (M). Here each connected component Shic,, (o) (G)(C) is an étale quotient of M (um, ¢) by
(det K11 (M)NO; ) /(K11 (M)NOF)?. Therefore the projection Shic,, (o) (G)(C) — Shig, ) (G)(C)
is an étale Galois quotient under the action of the group O} /(det K11(9) N O} ™).

The c-polarized Hilbert modular forms of weight (v, n) and level K71 (1) can then be realized as the
sections HO(M (s, ¢), wfjl)r/ for k = 20+ nty, and TV = (det K11(M) N O} ) /(K11 (M) N OF)2.

Viewed as an automorphic form, a Hilbert modular cuspform of weight (v, n) and level K7;(N) is a
function f: G(A) — C satisfying a bunch of properties that we list below. First note that choosing a
square root i € C of —1, we have an identification HY ~ G(R)*/CL, where by G(R)" we mean the
connected component of 1 € G(R), and C is the stabilizer of i = (i,...,i) € H for the action of
G(R)™ via Mobius transformations. Then the cuspform f satisfies:

1. flazu) = f(2)j(uso,i) ! fora € G(Q), u € K11(9)CL, and the automorphy factor is
J((28),2) = (ad — be)™(cz + d)* for k = 2v +ntr, z € HYand (¢ 4) € G(R).

2. For every finite adelic point z € G(A>°), the well-defined function f,: HY — C defined as
J2(2) = f(2Us0)J (oo, 1) is holomorphic, where we choose 1o, € G(R)™ such that usei = 2.

3. For all adelic points 2 € G(A) and for all additive measures on F'\ A ,, we have

/ f <(1] ?)x da = 0.
F\A,
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Letay,...,ap+m) € Azo’x be representatives of ClZ(‘ﬁ) and assume that a; is coprime to p91 for all
1. Let a; be the ideal generated by a;. Then we have the following decomposition.

Rt () ol 0
G(A) = |_| GQtKii(MGR)T, t; = ( 6 1) )
i=1

Fix a finite extension Lo of L such that for any ideal a C Oy, and any embedding 7 € %, a”Oy, is
principal. Choose a generator {q"} € Op, of q” Op, for each prime ideal q, and extend it to all fractional
ideals multiplicatively. Fix an idele d € A%O’X whose ideal is the different ? of L/Q.

Given a Hilbert cuspform f of weight (v, n) and level K11 (1), the discussion above implies that f corre-
sponds to a tuple (f1, ..., fy+ (o)) where f;isan a; 10-polarized Hilbert modular form of weight (v, n)
and ps-level structure. Then the holomorphic function f;: HY — C has a Fourier expansion

filz) =yl f (y;; "””f)t,- = Y al& fes(€a).

g€(ap 1)y

Everyideley € A} L= AZO’XL(Z(O7+ can

Here 2z = Too + iyoo and ef(£2) = exp(27i ) o5 T(§) 7).
bewrittenasy = £a; 'duforé € L andu € det K1 (D)L

f %,+- Define two functions (-, f): Af | —
Cand¢y(-, f): AL, — Qpasfollows.

c(y, ) = al&, fi)ly ™Y aila,  ep(€ ) = al€, fi)yy T NL(an) T

ify € (’A)LL§07+ and 0 otherwise. Here V7, is defined by i — 3, "% |y> \&i The function ¢, (-, f) makes
sense only if the coefficients a(&, f;) are algebraic for all 7. Moreover, for our choice of the a; as being
coprime to p, we have

cp(y, f) = ely, Iy g

Theorem 3.2.1. Consider the map er,: C* — C* defined by ey, (z) = exp(2mi Y. .. 2-) and the unique
additive character of the ideles x1,: A /L — C* which satisfies X1,(To0) = €r(Zo0). Each Hilbert cuspform
of weight (v, n) has an adelic q-expansion of the form

f (g "f) =lyla, > c(€yd, H{EYD)= " HEYoo) ™ er (iYoo) X1 (E2)
geLy

ory € A |z € AY, wherec(-, f): A%, — C vanishes outside O, Log 1 X and depends only on the coset
L+ L L+ i+ p 3
y>° det K11(N). The adelic q-expansion agrees with the Fourier expansions of the f; in the following sense.

f (ygo xi)o)tz =y Y, alé fier(€2).

ge(apt)y

Proof. [Hid91, Theorem 1.1]. O
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In [Hid91], Hida uses adelic g-expansions to define Hecke operators on the space of cuspforms. These
are defined in the following way. Let @ be an uniformizer of the localization of Oy, at a prime g. Then
define the double coset operators

To(w) = {wvitL} KH(‘)‘() (? (1)> Ku(‘ﬁ) ifq)(‘)"(

Up(@) = {1} | K1 () (? ‘f) Ku@)|  itqm

and fora € Ozm = qu OZW the double coset operator

T(a.1) = |Ku(M) (g ﬁ’) Ky (9)

If the prime ¢ is coprime to the level, then Tj () is independent of the choice of o and we simply denote
it as Tp(q). For any finite adelic point z € AEO’X, we define the diamond operator associated to it by
fi¢z) (@) = f(xz) where z acts through the embedding of A7”” into the center of G/(A*).

Remark 3.2.1. The Hecke operators defined by Hida as above should match with the ones defined earlier
in the section using Hecke correspondences. But unfortunately we cannot confirm this yet.

The Hecke algebra H(A) is defined to be the A-subalgebra of Endc (S(K11(N), (v,n), C) generated
by the T (q) for q + N, Up(w) for primes dividing M, T'(a, 1) for a € O ;, and the diamond operators.
Here S(K11(M, (v, n), C) is the space of cuspforms of weight (v, n) and level K11 (1) with coefficients
in C.

Theorem 3.2.2. For any finite extension /L% and any Oy, subalgebra A of F, there is a natural isomor-
phism S(K11(M, (v,n), F) ~ S(K11(M, (v,n), A) @4 F. Moreover, if A is an integrally closed domain
containing Or,, finite flat over Or, then S(K11(M), (v,n), A) is stable for the action of Ho(A), and the
pairing of A-modules

HO(A) X S(Kll, (v,n),A) — A
(h7 f) = C(l) f\h)

is a perfect pairing.

Proof. [Hid91, Theorem 2.2]. O

3.3 Overconvergent projection

In this section we will define the overconvergent projection in families upon studying the cohomology of
the complexof O iy sheaves obtained by the connection V which is described as follows. In particular
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in this section all sheaves are considered over the analytic adic spaces. Hence to simplify notation we will
still write W, _ ; but it is to be understood that this is a sheaf over M, , ;. Consider the complex

\Y A ~1 \v4 ~
Wk,a,[ — Wk’a’I®QMr,a,I/Aa,I e —> Wk‘va’l(@Qg\hr,a,I/Aa,l' (31)
Denote by W} , | the complex obtained by tensoring the above complex by O Moot (—D) where we
recall D is the boundary divisor. By Griffiths’ transversality we obtain a complex corresponding to the
filtration on W, ; as follows.
. v . ~ 1
Flank’aJ — Flln_,_ka’aJ@QM

<+ Fily g Wy o 00, (32)

r,a,I/Aa,I O/,I/A(X,I‘

Denote by Fil) W, , ; the complex obtained by tensoring the above complex with O, o (—=D). By
taking quotient of the first complex by the second we obtain a third complex <Wk, al / Fil, W, )
which sits in a short exact sequence of complexes on M, ,, 1 that gives a long exact sequence of hyper-
cohomology groups.

0— H(?R(Mr,a,lv Fil;wk,a,]) - H(?R(Mﬁa»bw;,a,[) - Hc(I]R(MT,OéJv (Wk,a,I/Fiank,a,]).)

— Hc}R(MT‘,a,Ia FiR Wy 1) = Hc}R(Mna,IaW;,a,I) —
(3.3)

Lemma 3.3.1. The cohomology of the de Rham complex of coherent sheaves Fil, W, | can be computed using
global sections.

Proof. We recall that if f: ./\;lr,m 7= /\/l; a1 18 the projection to the minimal compactification, which
is an affinoid adic space, R’ f,to k.o, ;(—=D) = 0. We note that in order to prove the lemma, it will be
enough to prove that each sheaf in the complex Fil) W, is acyclic for the direct image functor f..
Because then an injective resolution of Fil? W, will givé an acyclic resolution of f,Fil} W, , and
since (M., , ) is exact, the lemma will follow. o

We first show that Fil, W, _ ;(—D) is acyclic for f,. By Lemma 2.4.1, the sheaf Fil, W, _ ;(—D) is
equipped with a finite filtration such that the graded pieces are finite direct sums of sheaves of cvuspforms.
Thus the graded pieces of the filtration are acyclic for f, by what we just recalled above. Then a simple
spectral sequence argument proves that Fiank7 a, ;(=D) is fy-acyclic. Moreover, using the Kodaira-

Spencer isomorphism, this same proof shows that Fil,,; W, _ I(_D)®Q§\}1,, . is also fy-acyclic
forall0 < i < g. S O

Lemma 3.3.2. Lett;, = Y o be the generator of the parallel weights. There exists an exact sequence
0 — HY (M1, Whp2e, (— D)) = H (Mo, FISW,. 1) — cokeri — 0

where i is U-equivariant and coker i is killed by [ [, H?:ngl (ug — 7).
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Proof. We first note that

HY(My.1, Filyy gWiy o, (—D))

VH (MT,OQI? Fﬂn'i-g—lwk(_D)@Qg ja 1/ Aq, 1)

The U-equivariant inclusion of HOY (M1, 08121, (=D)) inside HO(M, o1, Fily gWyio, (—D))
induces a map H° (Mya,1,0p49¢, (—D)) = Hg (M, o 1, Fil W) which is an inclusion as can be

seen from the local description below. We are left to understand the cokernel of the inclusion, and in
particular to show that the cokernel is killed by [ ], H"+g Yuy — ).

H{ (Mo, FilNW,,) =

The proof relies on the local description of the connection (2.11). Choosinganumberingo: {1,...,g} ~
2., we first write the sheaf Fil,, ;4 1Wk®Qg e on local coordinates as

Fily g1 We@Q5 s @ "NV L Vld X
Here dX; corresponds via Kodaira-Spencer to a generator of wi‘(tL =74 and the superscript < n+g—1

denotes we take the polynomials in V}’s of degree at most n + g — 1.

The map V: Fil, ;g1 Wi (—D)® Qg ! hes Fil,4gWi2t, (—D) can be described as the twist
by Oy, . ,(=D) of amap

P W, VX, Y, Wil Vi, ..., V).

that can be described using formula (2.11). In particular, the image of V consists of polynomials in V; of
positive total degree and hence the map

Fil, 1 gWyyor, (—D)

VFilyy g1 Wi (—D)&Q ,1a,/Aa1

W42t (=D) —

is injective. Thus taking global sections we get H*(M,. o, 1, Wk 19¢, (—D)) — HgR(Mr,a,Ia Fil? Wp).

We prove the claim about the annihilator of coker ¢ by induction on n, the base case beingn = 1 — g.
Forn =1 — g we have Fil; Wy o, /(VIog, + 10191, ) ™ @it0g404, Vi/uivg1 o, Vi. This proves the
base case. We have a diagram as follows with exact rows.

0 —— Fily1goWr&Q9™! —— Filyy g 1 W9 —— Grypp g1 W91 —— 0
v v v
0 —— Fﬂn+g—1Wk+2tL E— Fﬂn+gwk+2tL — Gl‘n+ng+2tL —— 0

To complete the induction, we need to understand the connection on the graded pieces. Letting k(1
BnZ) be alocal generator of toy, the map V on the graded pieces can be described as follows.
oy, L VA, S Wil Vis. ., V)

K1+ 8,2) [TV X5 = (uj = ny)(k +2t0) (1 + B Z)V; [T V™
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1

r,a,I/Aa,I
I, szrdq “!(uy — i). The lemma then follows by applying Snake lemma to the diagram above and by
the induction hypothesis. ]

This shows that the cokernel of V: Grn+g_1Wk®Qi—; — GryygWy o, is annihilated by

Lemma 3.3.3. For h > 0, there exists n > 0 such that the map
HgR(MT,aJ’ Fﬂ:zwk,a,l)gh - HgR(MhaJ? W%,a,[)gh
is an isomorphism.

Proof. Arguing as in Proposition 3.1.1, the sheaf H'y (M. o 1, (W /Fil, W},)®) admits slope decompo-
sition locally on the weight space. Moreover, by the same proposition Hiy (M o1, (W /Fil, Wy)®) sh —
0 for large enough n. The lemma then follows from the long exact sequence (3.3). O

Definition 3.3.1. For i > 0, let n be as in the above lemma. Let A\ = [], H?:Og_l(ug —1). For
the finite slope h > 0, define the overconvergent projection in families to be the map induced by the
isomorphisms as follows.

HT : HgR(MT,a,Ia WZ)Sh & Aa,][)\_l] l> HgR(Mr,a,Ia Fll;LWk:)Sh & Aa,I[A_l]
l> HO(MT,Q,I7 mk+2tL (_D))Sh & Aa,[[)\il}
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