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Objective: Obstructive sleep apnea (OSA) is considered a major sleep-related

breathing problem with an increasing prevalence rate. Retrospective studies

have revealed the risk of various comorbidities associated with increased

severity of OSA. This study aims to identify novel metabolic biomarkers

associated with severe OSA.

Methods: In total, 50 cases ofOSA patients (49.74 ± 11.87 years) and 30 controls

(39.20 ± 3.29 years) were included in the study. According to the

polysomnography reports and questionnaire-based assessment, only

patients with an apnea–hypopnea index (AHI >30 events/hour) exceeding

the threshold representing severe OSA patients were considered for

metabolite analysis. Plasma metabolites were analyzed using gas

chromatography–mass spectrometry (GC-MS).

Results: A total of 92 metabolites were identified in the OSA group compared

with the control group after metabolic profiling. Metabolites and their

correlated metabolic pathways were significantly altered in OSA patients

with respect to controls. The fold-change analysis revealed markers of

chronic kidney disease, cardiovascular risk, and oxidative stress-like indoxyl

sulfate, 5-hydroxytryptamine, and 5-aminolevulenic acid, respectively, which

were significantly upregulated in OSA patients.

Conclusion: Identifying these metabolic signatures paves the way to monitor

comorbid disease progression due to OSA. Results of this study suggest that

blood plasma-based biomarkers may have the potential for disease

management.
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Introduction

Obstructive sleep apnea (OSA) is defined as a partial or

complete obstruction of the respiratory flow through the

upper airway during sleep. The severity of OSA is

determined by calculating the number of episodes of

apnea–hypopnea/hour during sleep and is classified based

on the apnea–hypopnea index (AHI) as mild, moderate,

and severe. Severe OSA is associated with more than

30 episodes per hour, whereas moderate OSA is associated

with 15–30 episodes per hour. It ranges from 5–15 episodes

per hour for mild OSA patients (Goyal and Johnson, 2017).

The usual consequences of OSA lead to dysregulated

sleep–wake cycles, changes in intrathoracic pressure,

nocturnal hypoxemia, and confusional arousal (Patil et al.,

2007). The prevalence of OSA is also high in obese men and

women (Senaratna et al., 2017). It is believed that more than

20% of the adult population suffers from sleep-related

breathing disorders, with rates as high as 50% in some

countries (Heinzer et al., 2015).

Overall, the OSA population prevalence ranged from 9%–

38% and is higher in men. It increased with age; the prevalence in

the general adult population ranged from 6%–17% (Senaratna

et al., 2017). Despite its enormous prevalence, most people

remain underdiagnosed and untreated (Redline, 2017).

Evidence suggested that sleep disturbance causes a wide range

of physiological and psychological complications associated with

chronic health issues such as chronic obstructive pulmonary

disease, chronic kidney disease, and cardiovascular disorders

(McNicholas, 2017; Collen et al., 2020; Lin, Lurie, and Lyons,

2020). OSA has been identified as a major health concern

worldwide due to its rising prevalence, high burden of

associated illness, and resulting economic impact on

healthcare systems.

The gold-standard procedure to clinically diagnose OSA is

overnight polysomnography (PSG). Although conventional

respiratory polygraphy has helped simplify and ease the

diagnosis of OSA, it is still a time- and resource-intensive

endeavor. Questionnaire-based assessments are currently the

most validated tools for disease development and risk

screening, with the STOP-Bang questionnaire being the most

accurate (Chung, Abdullah, and Liao, 2016; Chiu et al., 2017).

Efforts to identify and deploy alternate ways to facilitate early and

successful OSA diagnosis are under investigation. With this

approach and therapeutic setting, practitioners would benefit

greatly from detecting metabolic biomarkers in conveniently

available bio-specimens. Despite this, there is a general lack of

clinical biomarkers that can precisely detect a patient’s severity

and disease pathophysiology.

Metabolomics is the new high-throughput analytic discipline

that attempts to analyze in depth the full metabolome present in a

biological specimen. It can help identify the novel diagnostic

biomarker to understand OSA and the complex overlap

syndromes. Changes in these traits, which act as molecular/

metabolic fingerprints of disease development, can aid in

discovering novel and promising metabolite-based biomarkers.

It can also provide useful information that can aid in

understanding disease pathophysiology. In the case of OSA, a

heterogeneous life-threatening disease, high-throughput

techniques such as metabolomics can provide a more precise

status of the physiopathology of the disease. In this study, we

investigated the whole plasma metabolome of patients with

severe OSA using untargeted metabolomics profiling to

identify diagnostic metabolic-based biomarker and elucidate

potential pathophysiological mechanisms underlying the

condition. We also investigated how other associated

comorbidities and disease severity affected the circulating

metabolomics profile.

Materials and methods

Chemicals and reagents

Ultrapure high-performance liquid chromatography

(HPLC)-grade reagents were used in this study. Acetonitrile

and methanol were obtained from Sisco Research Laboratories

(India). Internal standard D-ribitol and pyridine (PX 2020) were

purchased from Sigma Aldrich (St. Louis, MO, United States).

Methoxylamine hydrochloride (89803) was purchased from

Merck (Darmstadt, Germany). Alkane standard mixture

(67444) was obtained from Supelco (Bellefonte, PA,

United States ). N-methyl-N (trimethylsilyl) trifluoroamide

(MSTFA) + 1% chlorotrimethylsilane (TMCS) (TS-48915) was

procured from Thermo Fisher Scientific (Waltham, MA,

United States).

Sampling

A total of 3–4 ml of blood samples were collected in ethylene

diamine tetraacetic acid (EDTA) vials. EDTA-plasma was

obtained after the clinical assessments and diagnoses of OSA

patients at the King George’s Medical University. Samples were

immediately centrifuged at 2,000 x g for 10 min and stored

at −80°C for further processing. The institutional ethical

committee approved the study (ref. code: 107th ECM II

B-Ph.D./P2). Volunteers having OSA and healthy controls
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were identified as the subjects for the proposed study. Before

enrolling in the study, all the volunteers provided written

informed consent, including patients and controls.

Study design and subject characteristics

The case-control study was performed by collecting plasma

samples from patients referred to King George’s Medical University

and the Midland Healthcare and Research Centre from March

2020 to November 2021 (Figure 1). According to the PSG reports,

patients with an apnea–hypopnea index (AHI) (>30 events/hour)

value exceeding the threshold were enrolled in the study. A total of

50 cases of OSA patients with a mean age of 49.74 ± 11.87 years

were enrolled. Additionally, 30 controls with a mean age of 39.20 ±

3.29 years were included in the study for the comparison of

metabolome profiling. This study exclusively focused on the

severe OSA group without any serious comorbidity; however,

few patients had hypertension. The samples were collected before

CPAP therapy or any other medication was initiated. The selection

criteria are based on questionnaires (for both groups) and clinical

diagnosis (polysomnography of the OSA group only).

Metabolite extraction

The metabolomic analysis was carried out on plasma samples

(30 µl) following the protocol proposed by He et al. (2018) with

some modifications (He et al., 2018). The plasma metabolome was

extracted using 350 µl of cold methanol (−20 °C); samples were

shaken using a vortex for 2 min and then centrifuged at 6,000 × g for

10 min, and the supernatant was collected and stored in a glass vial.

This procedure was repeated three times, and supernatants were

mixed. To the pellets, 300 µl of water (4°C) was then added, the

samples were again vortexed and centrifuged as previously

described, and the supernatant was mixed with the methanolic

fraction. To the extracted sample, 40 µl of ribitol (0.005 mg/ml) was

added as the internal standard, and the samples were dried. For

derivatizing the samples, 40 μl of methoxyamine solubilized in

pyridine (20 mg/ml) was added and the samples were incubated

at 60+C for 1 h in an orbital shaker (950 rpm). Aftermethoximation,

the samples were silylated by adding 60 μl ofMSTFA+1%TMCS for

1 h at 60°C.

Acquisition of GC-MS data

Derivatized samples were injected in the gas

chromatography–mass spectrometry (GC-MS) system, and

an alkane standard mixture (C10–C40 all even) was injected

at the start and end of the sample analysis for retention index

(RI) calculation. For the analysis of metabolites extracted from

plasma samples, 1 μl of derivatized samples was injected into

the splitless mode using a Triplus 100 autosampler (Thermo

Scientific) in the Trace 1300 gas chromatograph equipped with

a TSQ 8000 mass spectrometer. Metabolites were separated on a

TraceGOLD TG-5MS column (Thermo Scientific) with a

diameter of 0.25 mm, a thickness of 0.25 µm, and a length of

30 m. Ultra-high purity grade helium and argon were used as

the carrier gas and collision gas, respectively, with a flow rate of

FIGURE 1
Schematic representation of study design.
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TABLE 1 Baseline characteristics of case and controls.

Variable Controls Cases p-value

Mean ±SD Mean ±SD

Age Years 39.20 3.29 49.74 11.87 < 0.001*

Height cm 169.97 6.73 169.04 7.57 0.583

Weight kg 73.33 11.33 90.98 14.75 < 0.001*

Neck size cm 33.40 1.67 43.14 1.44 < 0.001*

N % n %

Gender (n,%) Male 30 100.0 50 100.0 -

Female - - -

Hypertension Yes 0 0.0 10 20.0 < 0.001*

No 30 100.0 40 80.0

BMI (> 35 kg/m2) Yes 0 0.0 18 36.0 -

No 30 100.0 32 64.0

High risk of OSA Yes 0 0.0 50 100.0 < 0.001*

No 30 100.0 0 0.0

EPWORTH Would never doze 24 80.0 0 0.0 < 0.001*

Slight change of dozing 6 20.0 0 0.0

Moderate change of dozing 0 0.0 0 0.0

High change of dozing 0 0.0 50 100.0

BERLIN (high risk) Yes 0 0.0 50 100.0 < 0.001*

No 30 100.0 0 0.0

FIGURE 2
Discrimination through principal component analysis (PCA) and ortho partial least square discriminant analysis (OPLS-DA) of the metabolites
patterns in controls and patients affected by OSA (A) PCA and (B) OPLS-DA plots that allowed groups discrimination by virtue of the first two
components (PCs); (C) VIP scores of the OPLS-DA analysis.
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1 ml min−1. The injector port temperature was set at 200°C,

whereas the transfer line and ion source temperature were set at

250°C. The GC program was started with an initial oven

temperature of 50°C and held for 1 min; then, the

temperature was increased to 100°C at a rate of 6°C min−1,

ramped up to 200°C at 4°C min−1, and finally to 280 C at the rate

of 20°C min−1 which was kept constant for 3 min. All the

samples were run on full scan mode ranging from m/z 60 to

650 for the metabolite data acquisition, and raw data obtained

were collected for further analysis.

Data processing

Raw GC-MS mass spectra were converted into .abf using

Abf Converter (http://prime.psc. riken. jp/Metabolomics_

Software/MS-DIAL/index.html) and processed using MS

Dial 4.80 for smoothing, peak detection, peak spotting,

centroiding spectra, deconvolution of the MS/MS spectrum,

alignment, filtering, and annotation. For MS-DIAL data

annotations, we used an in-house library built with publicly

available MS spectra. For metabolite annotation and

assignment of the EI-MS spectra, we followed the

Metabolomics Standards Initiative (MSI) guidelines for

metabolite identification (Sansone et al., 2007), using level 2

(identification based on the spectral database) and level 3

(putatively characterized compound class based on spectral

similarity to known compounds of a chemical class as

suggested).

Metabolomic data were analyzed using Metaboanalyst 5.0

(Chong and Xia, 2020). Internal-standard normalized datasets

were transformed through “Log normalization” and scaled

through Pareto scaling. Multivariate analysis was then

performed to identify metabolites involved in the group’s

discrimination, combining principal component analysis

(PCA) plots with orthogonal partial least squares discriminant

analysis (OPLS-DA) plots. Selection of features with the highest

discriminatory power was based on their variable importance in

projection (VIP) score >1. The variation was reproduced in the

permutation test. Predictive relevance was considered when R2

and Q2 values were higher than 0.5 and p ≤ 0.05 (Moltu et al.,

2014).

A univariate response approach was used on log-

transformed Pareto-scaled data in the relative concentration

table to expand the results of the multivariate analyses. The

Student’s t-test (p ≤ 0.05) was used to compare controls and

OSA patient groups, followed by the application of the false

discovery rate (FDR) correction for multiple comparisons to

minimize false positives (p ≤ 0.05). A volcano plot analysis was

carried out using a fold-change (FC) > 1.5 and an FDR-

corrected p-value ≤0.05 to reduce significant feature

detection by focusing on those significant metabolites with

a high FC. Furthermore, to identify the metabolite coverage

and the main pathways altered by OSA, data were analyzed

using the enrichment analysis and the pathway analysis tool

METPA (Xia and Wishart, 2011). In the pathway analysis,

only pathways significantly affected (FDR-corrected

p-value ≤0.05) and with an impact higher than 0.2 were

considered affected by OSA .

Logistic regression model analysis

Receiver operating characteristic (ROC) curve analysis was

used to examine the discrimination potential of selected

metabolites between OSA and controls or the diagnostic

efficacy of the selected metabolite in OSA patients.

Figure 6A shows an ROC curve based on the best models,

and 1,000-time permutation shows the predictive accuracy

and true positive rate (p ≤ 0.003) of the created biomarker

model (Figure 6B).

FIGURE 3
(A) Model overview of the OPLS-DA model for the provided
dataset. It shows the R2X, R2Y, and Q2 coefficients for the groups;
(B) Permutation analysis, showing the observed and cross-
validated R2Y and Q2 coefficients.
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TABLE 2 Significantly different metabolites obtained through Student’s t-test (nominal p-value ≤ 0.05; FDR cut-off < 0.05), altered by OSA. Positive
t-stat indicates down-accumulated metabolites, whereas negative t-stat indicates up-accumulated metabolites.

Metabolite name t-stat p-value -log10(p) FDR

Xylitol −4.9060 4.98E-06 5.303 9.06E-06

Beta-ketoadipic acid −4.8109 7.19E-06 5.143 1.21E-05

Indoxyl sulfate −4.6746 1.21E-05 4.9164 1.78E-05

Tryptamine −4.5753 1.77E-05 4.7533 2.46E-05

Diglycerol −4.3967 3.43E-05 4.4643 4.61E-05

5-hydroxytryptamine −4.3299 4.39E-05 4.3578 5.62E-05

Threonic acid −3.97 0.000159 3.7992 0.000193

L-Malic acid −3.9014 0.000202 3.6957 0.000241

Myristic acid −3.3816 0.001129 2.9474 0.001253

5-Aminolevulinic acid −3.0052 0.003568 2.4475 0.003648

Methyltetrahydrophenanthrenone −2.7417 0.007577 2.1205 0.007661

DL-Isocitric acid −2.2315 0.02852 1.5448 0.02852

Pyroglutamic acid 3.0179 0.003437 2.4638 0.003554

1_5-Anhydro glucitol 3.0749 0.002902 2.5373 0.003035

Glucose 3.0760 0.002893 2.5387 0.003035

Leucine 3.1537 0.002289 2.6403 0.002451

Hexaric acid 3.1979 0.002001 2.6988 0.002167

Meso-erythritol 3.3020 0.00145 2.8387 0.00159

Lysine 3.5545 0.000647 3.1891 0.000727

Glucose-1-phosphate 3.7512 0.000337 3.473 0.000383

Palmitic acid 3.8664 0.000227 3.6434 0.000262

Glycine 3.8842 0.000214 3.6699 0.000249

Succinic acid 3.8846 0.000213 3.6706 0.000249

Citric acid 4.0874 0.000105 3.9784 0.000129

D-fructose 4.1308 9.01E-05 4.0454 0.000112

Glutamic acid 4.2437 6.00E-05 4.2216 7.59E-05

Cadaverine 4.3617 3.90E-05 4.4085 5.08E-05

D-galactosamine 4.3644 3.87E-05 4.4127 5.08E-05

Tyrosine 4.3959 3.44E-05 4.463 4.61E-05

Tryptophan 4.5722 1.79E-05 4.7482 2.46E-05

Maltose 4.5724 1.78E-05 4.7485 2.46E-05

Indole-3-acetic acid 4.5838 1.71E-05 4.7672 2.46E-05

Dopamine 4.6748 1.21E-05 4.9168 1.78E-05

L-norvaline 4.6788 1.19E-05 4.9234 1.78E-05

Hexadecanoic acid 4.7221 1.01E-05 4.9951 1.56E-05

1_4-Benzenedicarboxylic acid 4.7701 8.42E-06 5.0749 1.32E-05

Lactitol 4.7717 8.36E-06 5.0776 1.32E-05

Lauric acid 4.7929 7.71E-06 5.113 1.25E-05

Ornithine 4.8053 7.35E-06 5.1336 1.22E-05

Threonine 4.8117 7.17E-06 5.1444 1.21E-05

Ethanolamine 4.8631 5.88E-06 5.2308 1.03E-05

Alanine 4.8983 5.13E-06 5.2901 9.15E-06

N-acetyl-d-glucosamine 4.9239 4.64E-06 5.3332 8.62E-06

Phenylalanine 4.9323 4.49E-06 5.3476 8.52E-06

2-Aminoethanol 4.9348 4.45E-06 5.3519 8.52E-06

L-serine 4.9353 4.44E-06 5.3526 8.52E-06

Methionine 5.0035 3.40E-06 5.4686 6.87E-06

(Continued on following page)
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TABLE 2 (Continued) Significantly different metabolites obtained through Student’s t-test (nominal p-value ≤ 0.05; FDR cut-off < 0.05), altered by OSA.
Positive t-stat indicates down-accumulated metabolites, whereas negative t-stat indicates up-accumulated metabolites.

Metabolite name t-stat p-value -log10(p) FDR

Uridine 5.0048 3.38E-06 5.4708 6.87E-06

L-cystine 5.0682 2.64E-06 5.5791 5.58E-06

Melibiose 5.0771 2.54E-06 5.5945 5.51E-06

Tyramine 5.0827 2.49E-06 5.604 5.51E-06

Glucuronate 5.1141 2.20E-06 5.6581 5.00E-06

Hydroxyproline 5.1464 1.93E-06 5.7137 4.51E-06

Pipecolic acid 5.215 1.47E-06 5.8325 3.52E-06

D-arabinose 5.2574 1.24E-06 5.9062 3.05E-06

Isoleucine_major 5.3024 1.04E-06 5.9848 2.62E-06

Gluconic acid 5.3346 9.10E-07 6.041 2.37E-06

Mannitol 5.3588 8.25E-07 6.0835 2.21E-06

Iminodiacetate 5.379 7.60E-07 6.119 2.10E-06

L-glutamic acid 5.3809 7.55E-07 6.1223 2.10E-06

Ribose 5.3902 7.27E-07 6.1387 2.10E-06

Alpha-tocopherol 5.3906 7.26E-07 6.1393 2.10E-06

1-Hexadecanol 5.4139 6.60E-07 6.1804 2.07E-06

Myo-inositol 5.4149 6.57E-07 6.1822 2.07E-06

Norleucine 5.4274 6.25E-07 6.2043 2.07E-06

Inositol 5.4758 5.13E-07 6.2898 1.80E-06

Pentadecanoic acid 5.4765 5.12E-07 6.2911 1.80E-06

L-aspartic acid 5.4877 4.89E-07 6.3109 1.80E-06

Alpha-lactose 5.527 4.16E-07 6.3806 1.65E-06

Dodecane 5.5303 4.11E-07 6.3865 1.65E-06

Uric acid 5.5543 3.72E-07 6.4292 1.61E-06

L-valine 5.6082 2.98E-07 6.5253 1.36E-06

L-iditol 5.6147 2.90E-07 6.5369 1.36E-06

Elaidic acid 5.6284 2.74E-07 6.5615 1.36E-06

Benzoic acid 5.6409 2.61E-07 6.5838 1.36E-06

Glycerol 5.6857 2.17E-07 6.6642 1.23E-06

L-ascorbic acid 5.6988 2.05E-07 6.6876 1.23E-06

Creatinine 5.7135 1.93E-07 6.7141 1.23E-06

Oleic acid 5.9324 7.75E-08 7.1104 5.43E-07

D-trehalose 5.9751 6.48E-08 7.1884 4.91E-07

Asparagine 5.9801 6.35E-08 7.1976 4.91E-07

Cholesterol 5.9942 5.98E-08 7.2233 4.91E-07

Ethanol phosphate 6.1663 2.89E-08 7.5393 2.92E-07

2-Deoxy-d-glucose 6.183 2.69E-08 7.5702 2.92E-07

Icosanoic acid 6.2759 1.81E-08 7.7419 2.36E-07

Proline 6.3523 1.31E-08 7.8839 1.98E-07

Stearic acid 6.3935 1.10E-08 7.9605 1.98E-07

Octadecane 6.564 5.25E-09 8.2794 1.20E-07

Heptadecanic acid 6.6815 3.16E-09 8.5004 9.58E-08

Glyceric acid 7.4731 9.80E-11 10.009 4.46E-09

Putrescine 8.7257 3.68E-13 12.435 3.35E-11
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Results

Multivariate exploratory data analysis
reveals metabolic signatures in severe
OSA and control groups

All the patients were classified as severeOSApatients based on the

AHI index (>30 events/hour) or a correlation of OSA with different

parameters, including questionnaire assessment (Supplementary Data

1). The characteristics of OSA patients and controls are listed in

Table 1. The analysis revealed grouped and individual metabolites that

allowed sample discrimination. Among all the analyzed samples, the

metabolomic analysis allowed us to relatively quantify 92 putatively

annotated metabolites and extract 3,065 unknown EI-MS shared

features. The unsupervised PCA, built by virtue of the first two

components (PCs), accounted for 94.5% of the total variance. In

particular, PC1 described 93.4%, whereas PC2 described 1.1% of the

total variance (Figure 2A). The overlapping samples show similarities

in the metabolite level among OSA and controls (22 out of 50).

Therefore, to increase group separation and obtain maximal

covariance between the metabolite levels, the OPLS-DA model was

applied (Figure 2B). The OPLS-DA-derived loadings’ variable

importance in the projection (VIP) scores revealed that more than

30 metabolites with a VIP score higher than 1 contributed to group

separation, and all of them were significantly low in OSA patients

(Figure 2C). In particular, putrescine, glyceric acid, heptadecanic acid,

proline, octadecane, and stearic acid, among others, were the features

with the highest VIP scores (Figure 2C). The model was validated to

avoid overfitting through a permutation test characterized by

significant (p ≤ 0.05) R2 (0.841) and Q2 (0.923). The OPLS-DA

improved group separation, pointing out separate clustering

between control and OSA patients (Figures 3A,B).

Univariate analysis and metabolite
paneling for prediction of OSA severity
and comorbidities

The univariate analysis carried out on all the annotated

metabolites through the t-test pointed out that 91 metabolites

were significantly altered in OSA patients (Table 2). Looking at

the t-stat, it was possible to highlight that 12 out of 91 metabolites

were significantly accumulated (negative t-stat values) in OSA

patients, whereas 79 metabolites were decreased in their

concentrations (positive t-stat values) (Table 2).

Data were further analyzed through the volcano plot using an

FC of 1.5, and an FDR-corrected p-value ≤ 0.05 to reduce the

number of significant metabolites, restricting the attention only to

those characterized by a high difference between the two groups.

The analysis allowed the identification of 58 significant metabolites

FIGURE 4
Important features selected by volcano plot with fold change threshold (x) 1.5 and FDR corrected t-tests threshold (y) P ≤ 0.05. The red (up-
accumulated) and blue (down-accumulated) circles represent features above the threshold. Note both fold changes and p values are log
transformed. The further its position away from the (0,0), the more significant the feature is. (N = 50 OSA and 30 = Controls).
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out of 91. In particular, 12 were up-accumulating whereas 46 were

down-accumulating in OSA patients (Figure 4).

Among them, 5-hydroxytryptamine (5-HT), indoxyl sulfate, 5-

aminolevulinic acid (5-ALA), DL-isocitric acid, and malic acid were

present in significantly higher concentrations than the control. Indoxyl

sulfate is a tryptophan derivative produced through intestinal

microbiota, and its accumulation increases cellular fibrosis and

oxidative stress (Lu et al., 2021). It was evident that higher levels of

indoxyl sulfate represent a slowdown of the glomerular filtration rate,

increased risk of chronic kidney disease, and adverse cardiovascular

events (Ellis et al., 2016). Another significantly alteredmetabolite was 5-

ALA, which has an indirect association with cellular energy generation,

whichmight have various impacts ranging fromcellular to endocrine to

neurologic to behavioral (Perez et al., 2013). Furthermore, 5-ALA has

been shown to affect tryptophan and serotonin levels (Daya et al., 1989).

In this study, we also identified a higher level of 5-hydroxytryptamine

reported as a possible target of OSA in retrospective studies

(Jagannathan et al., 2017; Maierean et al., 2021). Serotonin receptors

are also present in central respiratory neuronal groups, with 5-HT (1A)

(inhibitory) and 5-HT (2) receptors being the most common.

Stimulation of the 5-HT (2A), 5-HT (2C), and 5-HT (3) receptor

subtypes in the periphery inhibit respiration by acting on the nodose

ganglion. The clinical impact of 5-HT (2A) and 5-HT (3) antagonists

on OSA is now being studied in trials (Veasey, 2003).

Interestingly, some important metabolites have lower

accumulation, such as tryptophan, glutamic acid, glycine,

proline, asparagine, and norvaline, in association with OSA. It

is well-established that the amino acid metabolism is significantly

altered in OSA patients (Humer, Pieh, and Brandmayr, 2020).

Previously, it was hypothesized that the alteration in tryptophan

metabolism might play an important role in cardiovascular

comorbidities and intermittent hypoxia in OSA patients

(Boulet et al., 2015). Additionally, altered levels of glutamic

acid, glycine, proline, asparagine, and norvaline have also been

reported in OSA patients (Lebkuchen et al., 2018; Kiens et al.,

2021). Therefore, the metabolic pattern of altered metabolites

may be used for better performance in the screening of OSA and

propose an OSA biomarker panel.

Enrichment and pathway analysis
correlated with OSA severity and
comorbidities

We performed an enrichment analysis (Figure 5) and pathway

analysis (Table 3) based on the Kyoto Encyclopedia of Genes and

Genomes (KEGG) to determine which metabolic pathways were

affected. When OSA plasma metabolomics data were compared

FIGURE 5
Summary plot of the Quantitative Enrichment Analysis (QEA). Enrichment ratio: the dimension of the bubble indicates the enrichment level.
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with control plasma metabolomics data, 22 enriched metabolic

pathways with impact scores >0.05 were identified (Figure 5). They
belong to a wide range of metabolic pathways, including

carbohydrate metabolism (tri-carboxylic acid cycle, starch and

sucrose metabolism, galactose metabolism, and glyoxylate and

dicarboxylate metabolism), amino acid metabolism

(phenylalanine, tyrosine glutamine, glycine, serine, threonine,

alanine, aspartate, phenylalanine tyrosine, tryptophan, arginine,

proline, glutamate, cysteine, methionine, and tryptophan

biosynthesis), metabolism of cofactors and vitamins (ascorbate

and aldarate metabolism), lipid metabolism (glycerolipid), and

other metabolism (pentose and glucuronate interconversions,

glutathione, amino sugar and nucleotide sugar metabolism, and

inositol phosphate metabolism) (Table 3).

Identification of metabolite-based
potential biomarkers for OSA

The onset of OSA has been known to predispose individuals

to comorbidities and metabolic disorders (Gleeson and

McNicholas, 2022). We used log regression analysis with

Metaboanalyst to validate the efficacy of our highlighted

metabolites as metabolic biomarkers in severe OSA patients

compared with controls. Using a 10-fold cross validation,

indoxyl sulfate 5-hydroxytryptamine, 5-aminolevulinic acid,

DL-isocitric acid, and malic acid, the ROC of the study model

shows an area under curve (AUC) of 0.808, sensitivity of 0.740,

and specificity of 0.833. Figure 6 shows the potential of these

metabolites to discriminate two groups and may act as a

biomarker for OSA severity and progression.

Discussion

For the first time, this study presents the snapshot of

comparative metabolic changes that occur in patients

diagnosed with severe OSA AHI (>30 events/hour) and the

control group. The relative number of altered metabolites in

patients with higher AHI represents the dysregulated

functional endpoint of otherwise normal metabolic

pathways. The frequent episodes of apnea/hypopnea are

pronounced to develop intermittent hypoxemia, which

causes systemic inflammatory responses, consequently

accelerating disease complications (Lévy et al., 2015;

Maspero et al., 2015). Inflammation has been noted as a

TABLE 3 Result from the “pathway analysis” (topology + enrichment analysis) carried out on the metabolites identified in the blood of control and
OSA patients.

Pathways Total cmpd Hits Raw p FDR Impact

Phenylalanine tyrosine and tryptophan biosynthesis 4 2 9.93E-06 1.37E-05 1

D-glutamine and D-glutamate metabolism 6 1 6.00E-05 6.98E-05 0.5

Ascorbate and aldarate metabolism 8 2 7.55E-07 2.10E-06 0.5

Glycine serine and threonine metabolism 33 5 6.77E-07 2.10E-06 0.48704

Arginine and proline metabolism 38 5 4.18E-09 1.04E-07 0.4441

Alanine aspartate and glutamate metabolism 28 6 1.73E-06 3.59E-06 0.42068

Phenylalanine metabolism 10 2 9.93E-06 1.37E-05 0.35714

Glycerolipid metabolism 16 2 1.99E-09 9.93E-08 0.33022

Pentose and glucuronate interconversions 18 3 6.80E-06 1.06E-05 0.29688

Tyrosine metabolism 42 3 6.55E-06 1.06E-05 0.29407

Tryptophan metabolism 41 4 1.39E-05 1.83E-05 0.28789

Glyoxylate and dicarboxylate metabolism 32 6 9.16E-07 2.41E-06 0.25927

Arginine biosynthesis 14 3 1.79E-06 3.59E-06 0.17766

Citrate cycle (TCA cycle) 20 3 0.0001042 0.00011578 0.16723

Aminoacyl-tRNA biosynthesis 48 15 1.09E-06 2.58E-06 0.16667

Starch and sucrose metabolism 18 2 5.78E-07 1.98E-06 0.13486

Amino sugar and nucleotide sugar metabolism 37 3 1.84E-05 2.35E-05 0.13466

Inositol phosphate metabolism 30 2 7.55E-07 2.10E-06 0.12939

Cysteine and methionine metabolism 33 3 1.88E-06 3.62E-06 0.1263

Glutathione metabolism 28 6 6.38E-08 4.56E-07 0.12267

Galactose metabolism 27 4 5.95E-07 1.98E-06 0.12027

Total Compound: the total number of compounds in the pathway; Hits: thematched number from the uploaded data; Raw p: the original p-value, FDR: the false discovery rate applied to the

nominal p-values to control for false-positive findings; Impact: the pathway impact value calculated from pathway topology analysis. Only pathways with an impact higher than 0.05 were

reported.
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critical factor in the pathophysiology of OSA and its

complications and comorbidities (Maspero et al., 2015;

Kimura et al., 2019). Anatomical predispositions make the

subject prone to OSA (Mohit and Chand, 2021). However, the

onset of OSA occurs at an advanced stage with comorbidities

and metabolic syndromes. Meanwhile, metabolomics is a

promising approach in the field of personalized medicine

and care. Metabolites are closely linked to pathological

disorders because they represent the essential metabolic

activity and status of a biological system (DeBerardinis and

Thompson, 2012). There is no defined molecular and

metabolomics basis for OSA, and being a heterogeneous

chronic disorder, it is very difficult to pinpoint a specific

biomarker reliably. Using spectrometry-based metabolomics

and untargeted analysis, we detected many metabolites (amino

acids, fatty acids, and carbohydrates) that correlate with the

transitional changes for normal to OSA subjects. Furthermore,

based on these altered metabolites, we constructed a model of

altered metabolite pathways that encompass the

pathophysiology of OSA.

Our study exclusively focused on a group of severe OSA

patients (AHI >30 events/hour) and their metabolic changes;

compared to controls, these traits are strongly correlated with

associated comorbidities. Remarkably, we identified a total of

92 metabolites which are differently abundant in both groups.

Indeed, after the fold-change induction analysis, we identified the

top 23 altered metabolites independently linked with several

known comorbid factors. The bookmarks of this untargeted

metabolomics approach mainly comprise amino acid, sugar,

lipids, and their derivatives. Particularly, the pathway analysis

revealed that the alteration in these molecules is strongly

associated with several interlinked pathways. Obesity is the

most common factor in OSA patients (Jehan et al., 2017).

Collectively, in the pathway enrichment analysis, we identified

the top 25 pathways that are most affected; glycerolipid

metabolism and biosynthesis of fatty acids are found to be

associated with obese and severe OSA patients. Additionally,

amino acid metabolism and biosynthesis are remarkably affected

in OSA patients.

We found that the indoxyl sulfate level was higher in patients

with OSA than in the controls. The repetitive episodes of apnea/

hypopnea in OSA patients increase the level of glucocorticoids

and inflammatory cytokines, resulting in increased oxidative

stress (Stanek, Brożyna-Tkaczyk, and Myśliński, 2021; Wang

et al., 2021). Consequently, oxidative stress and redox imbalance

lead to an accumulation of reactive oxygen species (ROS). It is

well-reported that indoxyl sulfate induces oxidative stress by

modifying the balance between pro- and antioxidant

mechanisms in endothelial cells (Dou et al., 2007). Indoxyl

sulfate has been documented to exhibit nephrotoxicity and is

FIGURE 6
(A) The logistic regression ROC analysis for controls versus OSA and distribution of metabolite concentration used for model building; (B) Box
plot of the predictive accuracy of the created biomarker model; (C) The plot shows the AUC of all permutations, highlighting the actual observed
AUC in blue, along with showing the empirical p-value.
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associated with the accelerated progression of chronic kidney

disease (CKD) (Dou et al., 2007). Quantifying the plasma indoxyl

sulfate level may have great meaning in clinical research and

applications for the risk assessment of CKD in OSA patients.

Indoxyl sulfate is also known to be a predictive marker for

cardiovascular risk in CKD patients (Fan et al., 2019).

Understanding the pathophysiology of cardiovascular risk and

CKD in OSA patients might help develop new treatment

strategies and interventions to reduce its morbidity and

mortality.

Neurobehavioral disorders are significantly associated with

OSA, such as loss of memory, lack of concentration, and poor

attention span. This may even result in an increased risk of road

accidents (Day et al., 1999).We also detected an increased level of

serotonin (5-hydroxytryptamine) in severe OSA patients. Serotonin

is a neurochemical that is actively involved in sleep modulation.

However, the role of serotonin in sleep modulation is still very

controversial. Preliminary studies suggested that serotonin is

essential to acquire and maintain behavioral sleep (permissive

role on sleep) (Portas, Bjorvatn, and Ursin, 2000). Serotonin has

been linked to fatigue because of its well-known effects on

sleep, drowsiness, and loss of concentration; these symptoms are

experienced by most OSA patients (Meeusen et al., 2006; Lal et al.,

2021). According to the revised central fatigue hypothesis, we

suggested that an increased level of serotonin is associated with

feelings of tiredness and accelerates the onset of fatigue in severe

OSA patients. At the same time, a low serotonin level favors

improving sleep quality (Meeusen et al., 2006).

In our study, we found some important amino acids that are

significantly altered in severe OSA patients, such as tryptophan,

glycine, and proline. Tryptophan metabolism is a key regulator of

several pathways associated with intermittent hypoxia in OSA

patients (Meeusen et al., 2006). Recent studies have suggested

that an alteration in tryptophan metabolism may play an

important role in comorbidities related to cardiovascular risk

and might be interlinked with cancer progression in OSA (Boulet

et al., 2015). On the other hand, our study suggested that reduced

amino acid levels in OSA patients may indicate that this

metabolic disorder appears to be associated with the

acceleration of nucleic acid biosynthesis in OSA patients.

Increased levels of 5-aminolevulinate were significantly

identified in severe OSA patients. Alteration in 5-

aminolevulinate has been shown to reduce the saturation of

tryptophan and serotonin in the brain. Tryptophan is also known

to be a precursor of melatonin; thus, the alterations in tryptophan

metabolism have been associated with depressive disorders in

humans (Daya et al., 1989).

In this study, we also identified that several intermediate

metabolites associated with the TCA cycle, such as isocitrate and

malate, were significantly increased in the plasma sample of

severe OSA patients. The body’s energy is mainly obtained from

the TCA cycle (Lima, Martins-Santos, and Chaves, 2015). It is

hypothesized that the accumulation of these intermediate

metabolites is significantly associated with energy metabolism.

In addition, branched-chain amino acids are another source of

energy which are also altered and associated with energy demand

in OSA patients. This study also suggested that the alterations in

plasma amino acids, fatty acids, and intermediate TCA cycle

metabolites are directly or indirectly associated with energy

production to meet the growing demand for energy in OSA

patients, especially in severe cases. Together, these untargeted

metabolomics results are aligned and show that the observed

metabolite changes could indicate OSA progression and

impairment in CKD and other comorbidities.

Some limitations are worth noting in this study.

Considering the infancy of this field, an exploratory

approach was adopted to gain new insights from which new

hypotheses could be developed. We need further development

of a confirmatory targeted analysis to validate our findings to

determine the absolute concentration (only relative

concentrations were used in this work) of metabolites in

other independently selected groups. Another potential

limitation is that the sample taken from control subjects

was young, with a lower BMI and without hypertension.

However, these differences are because OSA is more

frequent in patients with higher BMI and older age. In

addition, an orthogonal technique such as liquid

chromatography–mass spectrometry (LC-MS) with more

comprehensive metabolic coverage and less complex sample

preparation steps (i.e., drying and derivatization) may have

been helpful in the identification and relative quantification of

a higher number of metabolites belonging to more pathways or

increasing the coverage of the pathways already identified to

be involved in OSA responses.

Conclusion

In this GC/MS-based untargeted metabolomics study, we

found out the metabolite-based biomarker concerning the

severity of OSA. This novel “omics” strategy and analytical

analysis will be helpful in exploring the associated role of

metabolite alteration in a population at a great risk of OSA.

As several metabolisms and pathway-based mechanisms of OSA

have been put forward, the exact mechanism of translational

relevance remains elusive. The identified metabolites are mainly

the group of amino acids, lipids, and carbohydrates, which might

be associated with disease severity and comorbidities, when

compared with the control group. Additionally, we identified

several metabolites for the first time in severe OSA patients. The

increased level of these metabolites can predispose OSA patients

to oxidative stress resulting in tissue injury, cardiovascular

disorders, and CKD. This study is framed to understand the

theoretical basis of metabolomics and molecular factors;

information would be beneficial in exploring therapeutic

intervention possibilities.
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