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Abstract
For a general k-dimensional Brakke flow in Rn locally close to a k-dimensional plane
in the sense of measure, it is proved that the flow is represented locally as a smooth
graph over the plane with estimates on all the derivatives up to the end-time.Moreover,
at any point in space-time where the Gaussian density is close to 1, the flow can be
extended smoothly as a mean curvature flow up to that time in a neighborhood: this
extendsWhite’s local regularity theorem to general Brakke flows. The regularity result
is in fact obtained for more general Brakke-like flows, driven by the mean curvature
plus an additional forcing term in a dimensionally sharp integrability class or in a
Hölder class.

1 Introduction

A family of k-dimensional surfaces Mt ⊂ R
n parameterized by time t is a mean

curvature flow (abbreviated as MCF) if the normal velocity is equal to the mean
curvature vector of Mt . Given a smooth k-dimensional submanifold M0, there exists
a unique smooth MCF with initial datum M0 until singularities such as vanishing or
neck-pinching occur. To extend the flow beyond the time of singularity, numerous
notions of generalized solution to MCF have been proposed since the 1970s: we
mention, among others, the viscosity solutions produced by the level set method [3,
5], BV solutions [14], and varifold solutions [2, 21].

In the present paper, we focus on the varifold solutions known as Brakke flows,
proposed and studied in Brakke’s pioneering work [2]. One of the main results of
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[2] is the partial regularity theorem of Brakke flows [2, 6.12], which states that any
unit density Brakke flow is a smooth MCF for a.e. time almost everywhere. Since
a time-independent Brakke flow is a stationary varifold, and since in that case the
unit density hypothesis means that the multiplicity function is equal to 1, the result
may be seen as the natural parabolic counterpart of the well-known result established
by Allard in [1] in the context of stationary varifolds. For Brakke’s partial regularity
theorem, as in many similar problems, the key ingredient is the proof of a “flatness
implies regularity” type result, that is, an ε-regularity theorem. This is referred to as
Brakke’s local regularity theorem [2, 6.11] in this context. It states, roughly speaking,
that if {Mt }t∈(−�,�) is a Brakke flow in a cylinder

C2 := C(Rk × {0}, 2) := {(x, y) ∈ R
k × R

n−k : |x | < 2}

which is close to

Bk
2 := {(x, 0) ∈ R

k × R
n−k : |x | < 2}

in the sense of measure over t ∈ (−�,�), then, in the smaller cylinder C1, Mt

coincides with a smooth graph over Bk
1 evolving by MCF for t ∈ (−�/2,�/2), with

estimates on all the derivatives of such graph in terms of the overall height of Mt . The
constant � depends on how close Mt is to Bk

2 in measure. While the original proof
of Brakke’s local regularity theorem contained various gaps and errors, a rigorous
proof was provided in [11, 20] with a different approach than Brakke’s, and for more
general flows, allowing for an additive perturbation in the form of a forcing term in
the right-hand side of the underlying PDE.

Though this local regularity theorem is useful to prove the partial regularity of
Brakke flows, there is a drawback in that it does not provide the regularity of the flow
up until the “end-time”. Since the problem is parabolic in nature, one would expect the
validity of interior estimates away from the “parabolic boundary” of Bk

2 × (−�,�),
and thus that the graphical representation over Bk

1 together with the corresponding
estimates on the derivatives hold for t ∈ (−�/2,�) instead of (−�/2,�/2).

The present paper addresses precisely this problem, and proves that such estimates
are possible for Brakke flows, even when the aforementioned forcing term is present.
There are many more-or-less equivalent ways of stating the main regularity theorem
proved here: an illustrative form is the following, where, for convenience, we discuss
the simple case of Brakke flows with no forcing term and we change the time interval
from (−�,�) to [−2, 0]. For the sake of accuracy, the statement uses the varifold
notation Vt (see [1, 11]), but the reader may think of the support of the weight measure
spt‖Vt‖ as Mt .

Theorem 1.1 Corresponding to E0 ∈ (0,∞), there exists ε0 = ε0(n, k, E0) ∈ (0, 1)
with the following property. Suppose {Vt }t∈(−2,0] is a k-dimensional unit density
Brakke flow in the cylinder C3 = C(Rk × {0}, 3) ⊂ R

n satisfying:

(1) supt∈(−2,0] ‖Vt‖(C3) ≤ E0;

(2) ‖V−4/5‖(C1) ≤ 5
4 ωk, (ωk = volume of Bk

1 );
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(3) 0 ∈ spt‖V0‖;
(4) ∪t∈[−1,0] spt‖Vt‖ ⊂ {(x, y) ∈ R

k × R
n−k : |y| ≤ ε} for some ε ∈ (0, ε0].

Then, for every t ∈ [−1/4, 0), C1/2 ∩ spt‖Vt‖ is a C∞ graph over Bk
1/2 evolving

by MCF, and the space-time C�-norm of the graph on Bk
1/2 × [−1/4, 0) is bounded

by c(�, n, k, E0)ε for any � ≥ 1.

AnyBrakke flow locally satisfies the assumption (1) for some E0 > 0. The assump-
tion (2) excludes the case of two parallel k-dimensional planes, which is not a univalent
graph, while (3) excludes the sudden vanishing of Brakke flow before the end-time
t = 0. Since the definition of Brakke flow allows such irregularity, (3) (or some variant
of similar nature) is necessary. The last (4) assumes that the height is kept small for
t ∈ [−1, 0]. The conclusion is that the Brakke flow is a smooth graph away from
the parabolic boundary, and all derivatives can be controlled in terms of the height.
Note that spt‖V0‖ may not be a smooth surface due to a possible (partial) sudden
vanishing at t = 0, but we can smoothly extend spt‖Vt‖ as t → 0− in C1/2 due
to the estimates. As anticipated, the main result of the present paper is in fact more
general. Precisely, the assumptions on the flow can be relaxed in various ways. First,
the unit density assumption can be entirely dropped, and the theorem can be stated
requiring {Vt }t∈(−2,0] to be a k-dimensional integral Brakke flow in C3, instead. The
reason is that assumption (2) prevents the presence of higher multiplicity points in a
slightly smaller parabolic region, as one can see usingHuisken’smonotonicity formula
and a compactness argument, so that any k-dimensional integral Brakke flow satisfy-
ing (1)–(4) for sufficiently small ε0 is necessarily unit density in a smaller parabolic
region. Second, assumption (4) on the smallness of the height can be phrased in a
weaker measure-theoretic sense: for the result to be valid, it is in fact sufficient that
the (space-time) L2-distance of the flow from the plane Rk × {0} in C1 × [−1, 0] (a
quantity typically referred to as (L2-)excess) is sufficiently small. Furthermore, the
regularity result proved here is in fact valid for the larger class of Brakke flows with
forcing term; more precisely, in this case we obtain C1,ζ (ζ = 1 − k/p − 2/q) or
C2,α regularity estimates depending on whether the forcing is in the L p,q -integrability
class or in the α-Hölder class, respectively. There are several reasons, stemming both
from theoretical considerations and from the applications, leading one to consider
Brakke-like flows with additional forcing term. A major one is the study of Brakke
flows on a Riemannian manifold M : once M is (isometrically) embedded into some
Euclidean space RN , the extrinsic curvatures of the immersion act as a forcing term
in the corresponding definition of Brakke flow in M ; see Sect. 2 for further details on
this, and Theorems 2.2 and 2.3 for the precise statements of the main results.

We next discuss some related works. When the Brakke flow in Theorem 1.1 is a
smoothMCF or is obtained as a weak limit of smoothMCF, the result has been known
as a part of White’s local regularity theorem from [23], and it has been used widely in
the literature of MCF to analyze the nature of singularities. White’s theorem applies,
for instance, to Brakke flows obtained by the elliptic regularization method of Ilmanen
[9], and, since the class of such MCF is weakly compact (see [23, Section 7]), to their
tangent flows. The present paper shows that the same conclusions of White’s theorem
in various forms hold true even without the proviso of approximability by smooth

123



S. Stuvard, Y. Tonegawa

MCF, and can be derived solely from the definition of Brakke flow. As an illustration,
using the main regularity theorem, we can prove the following.

Theorem 1.2 There exists ε1 = ε1(n, k) ∈ (0, 1) with the following property. Let
{Vt }t∈(a,b] be a k-dimensional Brakke flow in a domain U ⊂ R

n (or an n-dimensional
Riemannian manifold). For any point (x, t) ∈ U × (a, b] with the Gaussian density
�(x, t) ∈ [1, 1 + ε1) (see Sect. 2.6), there exists r > 0 such that Br (x) ∩ spt‖Vs‖ is
a smooth MCF in Br (x) for s ∈ (t − r2, t) and can be extended smoothly to t in the
limit as s → t−.

We remark that there are, in the literature, existence theorems of Brakke flows for
which one cannot tell a priori whether they arise as weak limits of smoothMCF or not.
The examples include the limits of solutions to the Allen–Cahn equation [8, 18, 19] as
well as the flows obtained by means of time-discrete approximate schemes [2, 12, 16,
17]. In the case of Brakke flows with no forcing term, Lahiri [13] showed an analogous
end-time C1,ζ regularity result using some height growth estimates, a suitable con-
stancy theorem for integral varifolds, and higher order derivative estimates. The proof
is very different from that of the present paper, and it appears difficult to generalize
it to flows with forcing term. More recently, Gasparetto [7] showed the validity of a
similar end-time C1,ζ regularity result for Brakke flows with boundary, with a proof
based on viscosity techniques. About six months after the present manuscript was
made available as a preprint, De Philippis, Gasparetto, and Schulze provided in [4]
an alternative proof—again based on viscosity techniques—of the end-time regularity
result in the interior for Brakke flows possibly with forcing term in L∞.

Next, we describe the idea of the proof. The proof of Theorem 1.1 is achieved by
modifying suitable portions of the proof of the local regularity theorem in [11], so
to extend the graphicality and the relevant estimates up to the end-time. Just as in
many similar problems of this type, a fundamental step towards regularity is the proof
of a Caccioppoli-type estimate stating that a certain “Dirichlet-type energy” can be
controlled in terms of the L2-height of the solution. In the context of Brakke flows,
such Dirichlet type energy corresponds, roughly speaking, to the difference (excess)
of surface measure of ‖Vt‖within the cylinder C1 and the measure ωk of the unit disk.
Such difference is shown to be less than a constant times the L2-height of the flow by
means of an ODE argument, see [11, Section 5]: indeed, one proves, by appropriately
testingBrakke’s inequality, that the excess ofmeasure—as a function of time—satisfies
an ordinary differential inequality. The ODE argument implemented in [11], though,
requires some “waiting time” both near the beginning and the end of the time interval:
this is the main reason for the lack of estimates up to the end-time in [11]. A key point
of the present paper is the observation that such waiting time becomes shorter when
the height of the Brakke flow is smaller. The proof of the regularity then proceeds just
like in Allard’s regularity theorem: the Brakke flow is approximated by a (parabolic)
Lipschitz function, and one initiates a blow-up argument. The approximating Lipschitz
functions are rescaled by the height of the Brakke flow, but, thanks to the above
mentioned key observation, in the process of passing to the limit as the height goes to
0, also the waiting time becomes infinitesimal. One can then show that the rescaled
Lipschitz functions converge strongly in L2 to a solution of the heat equation as long
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as small neighborhoods of t = −1 and t = 0 are removed. The contribution to the L2-
norms of the rescaled functions coming from the neighborhood of t = 0 can be made
small, so that, in combination with the linear regularity theory of the heat equation, one
obtains decay estimates for the linearized problem. By iterating, one concludes C1,ζ

regularity and graphical representation of ‖Vt‖ on a parabolic region of space-time
which touches the origin. In particular, any point on the boundary of this parabolic
region is in the support of ‖Vt‖, so that one can repeat the same argument regarding
these points as the origin. This implies that the domain of graphicality with estimates
can be extended so that it covers the whole support of ‖Vt‖ in C1/2 × [−1/4, 0),
proving the C1,ζ estimate up to the end-time. Once this is done, C2,α regularity up to
the end-time can be obtained by repeating—with essentially no changes—the proof in
[20]. Once the C2,α end-time regularity is available, the classical parabolic regularity
theory gives all the higher derivative estimates for the Brakke flow with no forcing
term, while the regularity theory for inhomogeneous linear heat equation implies the
result when the forcing term is present.

The paper is organized as follows. In Sect. 2 we set up the notation in use through-
out the paper, and we provide the formal statements of the main results in their full
generality (see Theorems 2.2 and 2.3) as well as the proofs of Theorems 1.1 and 1.2
as a consequence of the general main results. Section3 contains the enhanced ODE
argument which gives energy estimates with short waiting time at the end of the time
interval. In Sect. 4 we produce a parabolic Lipschitz approximation of the flow with
good estimates up to the end-time, by suitably modifying the corresponding construc-
tion in [11, Section 7]. In Sect. 5, the main modification of the blow-up argument is
described and the main C1,ζ regularity on a parabolic domain touching the origin (a
subdomain of {(x, t) : |x |2 < |t |}) is obtained. In Sect. 6, we complete the proof of
Theorems 2.2 and 2.3.

2 Assumptions andmain results

2.1 Notation

Since the proof follows [11] very closely, we mostly adopt the same notation (see [11,
Section 2]), except for a few symbols of norms. Throughout 1 ≤ k < n are fixed, and
the dependence of constants on n and k is often not specified for simplicity. We set
R

+ := {x ∈ R : x ≥ 0}. For r ∈ (0,∞) and a ∈ R
n (or a ∈ R

k) we set

Br (a) := {x ∈ R
n : |x − a| < r}, Bk

r (a) := {x ∈ R
k : |x − a| < r},

and we often identify R
k with R

k × {0} ⊂ R
n . When a = 0, we may write Br and

Bk
r . For a ∈ R

n , s ∈ R and r > 0 we define two types of parabolic cylinders

Pr (a, s) := {(x, t) ∈ R
n × R : |x − a| < r , |t − s| < r2},

P̃r (a, s) := {(x, t) ∈ R
n × R : |x − a| < r , s − r2 < t < s}; (2.1)
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the first one was used in [11], whereas in the present paper we will prefer to work
with the second one. We denote by Ln the Lebesgue measure on Rn and byHk the k-
dimensional Hausdorff measure onRn . The restriction of a measure to a (measurable)
set A is expressed by �A. For an open set U ⊂ R

n , Cc(U ) is the set of continuous
and compactly supported functions defined on U , and Ck

c (U ) is the set of k-times
continuously differentiable functionswith compact support inU . The symbols∇ f and
∇2 f always denote the spatial gradient and Hessian of f , respectively, and ft = ∂t f
is the time derivative of f . For a function f defined on a domain in space-time
D ⊂ R

n × R and α ∈ (0, 1), define the following (semi-)norms to ease the notation
in [11, 20]:

‖ f ‖0 : = ‖ f ‖L∞(D),

[ f ]α : = sup{
| f (y1, s1) − f (y2, s2)|

max{|y1 − y2|, |s1 − s2|
1
2 }α

: (y1, s1), (y2, s2) ∈ D, (y1, s1) = (y2, s2)

}
,

[ f ]1+α : = [∇ f ]α + sup

{
| f (y, s1) − f (y, s2)|

|s1 − s2|
1+α
2

: (y, s1), (y, s2) ∈ D, s1 = s2

}
.

Let G(n, k) be the space of k-dimensional linear subspaces of Rn and let A(n, k)
be the space of k-dimensional affine planes inRn . For S ∈ G(n, k), we identify S with
the corresponding orthogonal projection matrix of Rn onto S. Let S⊥ ∈ G(n, n − k)
be the orthogonal complement of S. For A ∈ Hom(Rn;Rn), we define the operator
norm

‖A‖ := sup{|A(x)| : x ∈ R
n, |x | = 1},

and we often use this as a metric onG(n, k). For T ∈ G(n, k), a ∈ T , and r ∈ (0,∞)

we define the cylinder

C(T , a, r) := {x ∈ R
n : |T (x − a)| < r}.

Ageneral k-varifold onU ⊂ R
n is aRadonmeasure defined onGk(U ) := U×G(n, k)

(see [1, 15] for a more comprehensive introduction), and the set of all general k-
varifolds in U is denoted by Vk(U ). For V ∈ Vk(U ), let ‖V ‖ be the weight measure
of V (with no fear of confusion with the operator norm), that is the measure defined
on U by

‖V ‖(φ) :=
∫
Gk (U )

φ(x) dV (x, S) for every φ ∈ Cc(U ).

For a proper map f ∈ C1(Rn;Rn), the symbol f�V denotes the push-forward of
the varifold V through f . We say that V ∈ Vk(U ) is a rectifiable varifold if there are
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someHk-measurable and countably k-rectifiable setM ⊂ R
n aswell as a non-negative

function θ ∈ L1
loc(Hk�M ) such that

V (φ) =
∫
M

φ(x,Tanx M) θ(x) dHk(x) for all φ ∈ Cc(Gk(U )),

and in such case we write V = var(M, θ). Here, Tanx M is the approximate tangent
space to M at x , which exists for Hk-a.e. x ∈ M . When θ(x) is integer-valued for
Hn-a.e. x ∈ M , V is said to be an integral varifold. The set of all integral varifolds
is denoted by IVk(U ). When θ = 1 additionally, we say that V is of unit density.
For V ∈ Vk(U ), δV denotes the first variation of V and ‖δV ‖ denotes the total
variation of δV . When δV is bounded and absolutely continuous with respect to ‖V ‖,
the Radon–Nikodym derivative (times −1), −δV /‖V ‖, is denoted by h(V , ·) and is
called the generalized mean curvature vector of V . A fundamental geometric property
of integral varifolds, of great importance for the analysis of Brakke flows, is Brakke’s
perpendicularity theorem [2, Chapter 5]: if V ∈ IVk(U ) and h(V , ·) exists, then
S(h(V , x)) = 0 for V -a.e. (x, S) ∈ Gk(U ).

For a one-parameter family of varifolds {Vt }t∈[a,b], we often use ‖Vt‖ × dt to
represent the natural product measure on U × [a, b]; the latter is also expressed as
d‖Vt‖dt within integration.

Fix φ ∈ C∞([0,∞)) such that 0 ≤ φ ≤ 1,

φ(x)

⎧⎨
⎩

= 1 for 0 ≤ x ≤ (2/3)1/k,
> 0 for 0 ≤ x < (5/6)1/k,
= 0 for x ≥ (5/6)1/k .

(2.2)

For R ∈ (0,∞), x ∈ R
n and T ∈ G(n, k), define

φT ,R(x) := φ(R−1|T (x)|), φT (x) := φT ,1(x) = φ(|T (x)|) (2.3)

and set

c :=
∫
T

φ2
T (x) dHk(x). (2.4)

The functions φT ,R and φT will be used as smooth test functions to gauge the measure
deviation of ‖V ‖ away from T with multiplicity one. Notice that c is independent of
T .

2.2 Definition of Brakke flow

Since in this paper we are mostly interested in the end-time regularity, we consider
time intervals of the form [−�, 0] with � > 0 in the following.

Definition 2.1 Suppose thatU ⊂ R
n is a domain and 1 ≤ k < n. A family of varifold

{Vt }t∈[−�,0] ⊂ Vk(U ) is a (k-dimensional) Brakke flow if the following conditions
are satisfied.
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(1) For a.e. t ∈ [−�, 0], Vt ∈ IVk(U ).
(2) For all Ũ ⊂⊂ U , we have

sup
t∈[−�,0]

‖Vt‖(Ũ ) < ∞. (2.5)

(3) For a.e. t ∈ [−�, 0], δVt is locally bounded and absolutely continuouswith respect
to ‖Vt‖, and thus h(Vt , ·) exists. Furthermore, For all Ũ ⊂⊂ U ,

∫ 0

−�

∫
Ũ

|h(Vt , x)|2 d‖Vt‖dt < ∞. (2.6)

(4) For all ϕ ∈ C1(U × [−�, 0];R+) with ϕ(·, t) ∈ C1
c (U ) for all t ∈ [−�, 0], and

for all −� ≤ t1 < t2 ≤ 0, we have

∫
U

ϕ(x, t2) d‖Vt2‖(x) −
∫
U

ϕ(x, t1) d‖Vt1‖(x)

≤
∫ t2

t1
dt
∫
U

{(∇ϕ(x, t) − h(Vt , x)ϕ(x, t)) · h(Vt , x) + ϕt (x, t)} d‖Vt‖(x).
(2.7)

The condition (4) is a weak formulation of MCF due to Brakke [2]. While Brakke’s
original formulation of (2.7) is in the form of a differential inequality, nothing is lost if
one works in this integral formulation. In fact, the latter is advantageous, in that it may
easily accommodate the setting with additional unbounded forcing term as described
in the next subsection.

One may naturally consider a MCF and the corresponding notion of Brakke flow
in a general n-dimensional Riemannian manifold M . By Nash’s isometric embedding
theorem, we may always consider M to be a submanifold in a domain U ⊂ R

N

for some sufficiently large N . A Brakke flow in M can then be defined by asking
spt‖Vt‖ ⊂ M for all t , (1)–(3), and by replacing the inequality (2.7) by

∫
U

ϕ(x, t2) d‖Vt2‖(x) −
∫
U

ϕ(x, t1) d‖Vt1‖(x)

≤
∫ t2

t1
dt
∫
Gk (U )

{(∇ϕ(x, t) − h(Vt , x)ϕ(x, t)) · (h(Vt , x)

− HM (x, S)) + ϕt (x, t)} dVt (x, S).

(2.8)

Here, HM (x, S) = ∑k
i=1 Bx (vi , vi ) ∈ (Tanx M)⊥, where Bx (·, ·) is the second fun-

damental form of M ⊂ R
N at x ∈ M and the set {v1, · · · , vk} is an orthonormal

basis of S ∈ G(n, k). See [20, Section 7] for a further explanation. The term HM

is already perpendicular to M and, for all analytical purposes, can be regarded as a
locally bounded forcing term u as described in the next subsection.
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2.3 Assumptions

The following assumptions are the same as [11], and we list them for the reader’s
convenience.

For anopen setU ⊂ R
n , suppose thatwehave a family of k-varifolds {Vt }t∈[−�,0] ⊂

Vk(U ) and a family of (‖Vt‖ × dt)-measurable vector fields {u(·, t)}t∈[−�,0] defined
on U and satisfying the following.

(A1) For a.e. t ∈ [−�, 0], Vt is a unit density k-varifold.
(A2) There exists E1 ∈ [1,∞) such that

‖Vt‖(Br (x)) ≤ ωkr
k E1 for all Br (x) ⊂ U and t ∈ [−�, 0]. (2.9)

(A3) The numbers p ∈ [2,∞) and q ∈ (2,∞) satisfy

ζ := 1 − k

p
− 2

q
> 0, (2.10)

and u satisfies

‖u‖L p,q (U×[−�,0]) :=
(∫ 0

−�

(∫
U

|u(x, t)|p d‖Vt‖(x)
) q

p

dt

) 1
q

< ∞.

(2.11)

(A4) For all ϕ ∈ C1(U × [−�, 0];R+) with ϕ(·, t) ∈ C1
c (U ) for all t ∈ [−�, 0],

and for all −� ≤ t1 < t2 ≤ 0, we have∫
U

ϕ(x, t2) d‖Vt2‖(x) −
∫
U

ϕ(x, t1) d‖Vt1‖(x)

≤
∫ t2

t1
dt
∫
U

{(∇ϕ(x, t) − h(Vt , x)ϕ(x, t)) · (h(Vt , x)

+ u⊥(x, t)) + ϕt (x, t)} d‖Vt‖(x).

(2.12)

Implicitly in the formulation of (A4), it is assumed that the first variation δVt of
Vt is locally bounded and it is absolutely continuouswith respect to ‖Vt‖ (so that
h(Vt , x) exists) for a.e. t ∈ [−�, 0], and that h(Vt , x) ∈ L2

loc(U×[−�, 0]). For
a.e. t ∈ [−�, 0], u⊥(x, t) is the projection of u onto the orthogonal complement
of the approximate tangent space to Vt at x , which exists for ‖Vt‖-a.e. x due to
the integrality ofVt . The inequality (2.12) characterizes formally that the normal
velocity of theflow is equal to themean curvature vector h plusu⊥.Whenu ≡ 0,
(2.12) simply becomes (2.7), and thus {Vt }t∈[−�,0] is aBrakkeflow.More gener-
ally, (2.12) includes the casewhen {Vt }t∈[−�,0] is aBrakkeflow in aRiemannian
manifold M , which corresponds to u(x, t) := −HM (x,Tanx‖Vt‖): indeed, as
already explained, in this case u(x, t) ∈ (Tanx M)⊥, and thus in particular
u(x, t) ∈ (Tanx‖Vt‖)⊥ given that spt‖Vt‖ ⊂ M for all t . One technical point
to add is that (A1) may be replaced, for all purposes of the present paper, by
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(A1′) for a.e. t ∈ [−�, 0], Vt ∈ IVk(U ).

The reason for this is that the assumptions of the main theorems essentially allow
only unit density varifolds.Wewill nonetheless adopt (A1) as our working hypothesis,
in order to be consistent with [11]. As already mentioned, there are in the literature
various results guaranteeing the existence of (generalized)MCF (possiblywith forcing
term u) satisfying (A1)–(A4).

2.4 Main results

The first theorem is the basic ε-regularity theorem, and it corresponds to a parabolic
version of Allard’s regularity theorem; the second theorem gives aC2,α estimate. They
are the end-time regularity counterpart of [11] and [20], respectively.

Theorem 2.2 Corresponding to ν ∈ (0, 1), E1 ∈ [1,∞), p and q satisfying (2.10),
there exist ε2 ∈ (0, 1) and c1 ∈ (1,∞) depending only on n, k, p, q, ν, E1 with the
following property. For R ∈ (0,∞), T ∈ G(n, k), and U = C(T , 2R), suppose
{Vt }t∈[−R2,0] and {u(·, t)}t∈[−R2,0] satisfy (A1)–(A4). Suppose furthermore that we
have

‖V−4R2/5‖(φ2
T ,R) ≤ (2 − ν) c Rk, (2.13)

(C(T , νR) × {0}) ∩ spt(‖Vt‖ × dt) = ∅, (2.14)

μ :=
(
R−(k+4)

∫ 0

−R2

∫
C(T ,2R)

|T⊥(x)|2 d‖Vt‖dt
) 1

2

< ε2, (2.15)

‖u‖p,q := Rζ ‖u‖L p,q (C(T ,2R)×[−R2,0]) < ε2. (2.16)

Let D̃ := (
BR/2 ∩ T

) × [−R2/4, 0). Then there are C1,ζ functions f : D̃ → T⊥
and F : D̃ → R

n such that T (F(y, t)) = y and T⊥(F(y, t)) = f (y, t) for all
(y, t) ∈ D̃,

spt‖Vt‖ ∩ C(T , R/2) = image F(·, t) for all t ∈ [−R2/4, 0), (2.17)

R−1‖ f ‖0 + ‖∇ f ‖0 + Rζ [ f ]1+ζ ≤ c1 max{μ, ‖u‖p,q}. (2.18)

As discussed in the Introduction, (2.13) excludes the possibility that Vt consists of
multiple sheets in C(T , R), and it can replace the assumption that Vt be unit density.
Notice that (2.13) is stated as a property valid at time−4R2/5; nonetheless, the validity
of (2.12) implies that in fact ‖Vt‖(φ2

T ,R) is an almost-decreasing function of t , even
when the forcing term u is present. As a consequence, the mass estimate in (2.13)
remains valid when ‖V−4R2/5‖ is replaced by ‖Vt‖ for t > −4R2/5, modulo replacing
ν with ν′ ∈ (0, ν), provided ε2 is sufficiently small depending on ν′. The assumption
(2.14) prevents sudden vanishing of the flow prior to the end-time. Finally, (2.15)
is a smallness requirement on the (space-time) L2-height of the flow, namely of the
space-time L2-distance of the flow from the given k-dimensional plane T . We notice
explicitly that, as a consequence of (2.17)–(2.18), one can naturally extend f and F to
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t = 0 as C1,ζ functions. Nonetheless, C(T , R/2) ∩ spt‖V0‖ ⊂ image F , but equality
may not hold in general.

When u is α-Hölder continuous, we have the C2,α-regularity estimate as follows.

Theorem 2.3 Corresponding to ν ∈ (0, 1), E1 ∈ [1,∞) and α ∈ (0, 1), there
exist ε3 ∈ (0, ε2) and c2 ∈ (1,∞) depending only on n, k, α, ν, E1 with the fol-
lowing property. For R ∈ (0,∞), T ∈ G(n, k), and U = C(T , 2R), suppose
{Vt }t∈[−R2,0] and {u(·, t)}t∈[−R2,0] satisfy (A1), (A2), (A4) and in place of (A3), assume
u ∈ C0,α(C(T , 2R) × [−R2, 0]). Furthermore, assume (2.13), (2.14), (2.15) with ε3,
and in place of (2.16),

‖u‖α := R‖u‖0 + R1+α[u]α < ε3.

Then the conclusion of Theorem 2.2 holds in the C2,α class, that is (2.18) can be
replaced by

R−1‖ f ‖0 + ‖∇ f ‖0 + R(‖∇2 f ‖0 + ‖ ft‖0)
+R1+α([∇2 f ]α + [ ft ]α) ≤ c2 max{μ, ‖u‖α}. (2.19)

Moreover, image F satisfies in the classical (pointwise) sense the motion law that
normal velocity = h + u⊥.

Here one can extend f and F as C2,α functions to t = 0 on BR/2 ∩ T . Once
the regularity goes up to C2,α and the surfaces satisfy the PDE pointwise, then the
parabolic Schauder estimates can be applied in the case that u is more regular. In
particular, we will deduce Ck+2,α estimates if u ∈ Ck,α . In the case of Brakke flow,
when u = 0, we have all the derivative estimates in terms of μ.

In the next sections, we prove how the results stated in the Introduction, namely
Theorems 1.1 and 1.2 can be deduced from Theorems 2.2 and 2.3.

2.5 Proof of Theorem 1.1

Let E0 ∈ (0,∞), and suppose {Vt }t∈(−2,0] is a k-dimensional Brakke flow satisfying
(1)–(4) in Theorem 1.1 with ε ∈ (0, ε0]. We prove that, if ε0 is chosen sufficiently
small, then {Vt }t∈[−1,0] satisfies the hypotheses of Theorem 2.3. We set R = 1, T =
R
k × {0}, and U = C(T , 2) =: C2, and we notice that (A1)(A3)(A4) are satisfied

by assumption. To check (A2), let t ∈ [−1, 0] and Br (x) ⊂ U : it is then a classical
consequence (see e.g. [21, Proposition 3.5]) of Huisken’s monotonicity formula that

r−k‖Vt‖(Br (x)) ≤ c sup
s∈[−2,t]

‖Vs‖(C3) ≤ cE0,

where c is a universal constant. This proves (A2). Next, using that

φ2
T ≤ 1C1 and c ≥ 2

3
ωk,
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we see that (2) implies

‖V−4/5‖(φ2
T ) ≤ ‖V−4/5‖(C1) ≤ 5

4
ωk ≤ 15

8
c,

that is (2.13) holds with ν = 1/8. Also, (2.15) with ε3 is an immediate consequence of
(4) as soon as ε0 ≤ ε3, whereas (2.14) follows from (3) and Huisken’s monotonicity
formula (see, for instance, [21, Proposition 3.6]). Hence, Theorem 2.3 applies, and
Theorem 1.1 follows from the fact that the forcing field u ≡ 0 is smooth. ��

2.6 Proof of Theorem 1.2

In order to simplify the presentation, we will work under the assumption thatU = R
n ,

and that spt‖Vt‖ ⊂ BR for every t ∈ (a, b], for some R > 0. The general case
can be obtained with simple modifications, but the underlying idea is the same; see
Remark 2.4.

Before proceeding with the proof, let us recall the classical definition of Gaussian
density in the context ofBrakke flows; see for instance [22] for a thorough presentation.
Under the above assumptions, and setting V = {Vt }t∈(a,b], for any point (x0, t0) ∈
R
n × (a, b] we define

�(V , (x0, t0)) := lim
τ→0+

1

(4πτ)
k
2

∫
Rn

exp

(
−|y − x0|2

4τ

)
d‖Vt0−τ‖(y). (2.20)

The existence of the above limit is guaranteed by the fact that the function

τ ∈ (0, t0 − a) �→ 1

(4πτ)
k
2

∫
Rn

exp

(
−|y − x0|2

4τ

)
d‖Vt0−τ‖(y)

is monotone increasing as a consequence of Huisken’s monotonicity formula.
Step one. Assume first that �(V , (x0, t0)) = 1, and let V ′ = {V ′

t }t∈(−∞,0) be any
tangent flow to V at (x0, t0). We then have

1 = �(V , (x0, t0)) = �(V ′, (0, 0)),

so that, in particular, �(V ′, (y, s)) ≤ 1 for every (y, s) ∈ R
n × (−∞, 0). Since it is

a general fact that �(V , (y, s)) ≥ 1 for an integral Brakke flow V (see Appendix A),
for every (y, s) ∈ spt(‖V ′

t ‖ × dt), we have

�(V ′, (y, s)) = 1 = �(V ′, (0, 0)) for all (y, s) ∈ spt(‖V ′
t ‖ × dt).

This immediately implies (see e.g. [22, Theorem 8.1]) that there exist a ∈ [0,∞] and
T ∈ G(n, k) such that

V ′
t = var(T , 1) for every t ∈ (−∞, a) ,
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namely that V ′ is a static k-dimensional plane with unit density. Therefore, there
exists ρ > 0 such that the hypotheses of Theorem 2.3 are satisfied with R = ρ by the
flow {(τx0)�Vt0+s}s∈[−ρ2,0], where τx0 is the translation τx0(x) := x − x0. Thus, by

Theorem 2.3, for all t ∈ [t0 − ρ2/4, t0
)
, spt‖Vt‖ ∩ (x0 + C(T , ρ/2)) coincides with

the graph of a C∞ function

f : Bρ/2(x0) ∩ (x0 + T ) ×
[
t0 − ρ2/4, t0

)
→ T⊥

which satisfies themean curvatureflow in the classical sense andwhich canbe extended
smoothly on Bρ/2(x0) ∩ (x0 + T ) up to t = t0. This completes the proof in case
�(V , (x0, t0)) = 1.

Step two. The proof that the same result holds when �(V , (x0, t0)) ≤ 1 + ε1 for
some sufficiently small ε1 is by a standard blow-up argument. First, notice that it
is sufficient to prove that there exists ε1 > 0 such that if V is a tangent flow1 and
�(V , (0, 0)) ≤ 1 + ε1 then V is a static k-dimensional plane with unit density.

To see this, let {V j } j∈N be a sequence of tangent flows such that �(V j , (0, 0)) ≤
1 + 1/ j , and notice that, for each j , the function

τ ∈ (0,∞) �→ 1

(4πτ)
k
2

∫
Rn

exp

(
−|y|2

4τ

)
d‖(Vj )−τ‖(y)

is constant, so that, in particular

1

(4π)
k
2

∫
Rn

exp

(
−|y|2

4

)
d‖(Vj )−1‖(y) = �(V j , (0, 0)) ≤ 1 + 1

j
.

Apply next the compactness theorem for Brakke flows, and let V be the limit Brakke
flow of a (not relabeled) subsequence of {V j } j . We have then

1 ≤ �(V , (0, 0)) ≤ 1

(4π)
k
2

∫
Rn

exp

(
−|y|2

4

)
d‖V−1‖(y)

≤ lim inf
j→∞

1

(4π)
k
2

∫
Rn

exp

(
−|y|2

4

)
d‖(Vj )−1‖(y) ≤ 1,

and thus �(V , (0, 0)) = 1. By Step one, spt‖Vt‖ is a smooth graph evolving by mean
curvature in some Bρ(0) for all t ∈ [−ρ2, 0

)
, and the flow can be extended smoothly

in Bρ(0) up to t = 0. Since V is the limit Brakke flow of V j , then for all sufficiently
large j also the flow V j satisfies all assumptions of Theorem 2.3 (with u ≡ 0) in a

1 That is, V = {Vt }t∈(−∞,0) satisfies ‖(ιr )�V−r2‖ = ‖V−1‖ for every r > 0, where ιr (x) := r−1x , as
well as

h(Vt , x) = S⊥(x)

2t
for Vt -a.e. (x, S) ∈ Gk (R

n), for a.e. t < 0.
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parabolic domain C(T , ρ/2) × [−ρ2/16, 0], and thus V j is a smooth mean curvature
flow in a neighborhood of x = 0 until the end-time t = 0. Since V j is a tangent flow, it
must then be a static k-dimensional plane with unit density, and the proof is complete.

��
Remark 2.4 In case {Vt }t∈(a,b] is a k-dimensional Brakke flow in a domain U ⊂ R

n ,
the same proof goes through, except that we need a suitably modified monotonicity
formula to make sense of the Gaussian density. More precisely, if (x0, t0) ∈ U ×
(a, b] and B2r (x0) ⊂ U then for any function ψ : B2r (x0) → [0, 1] that is smooth,
compactly supported, equal to 1 on Br (x0) and satisfying a bound of the form r |∇ψ |+
r2‖D2ψ‖ ≤ b, the limit

lim
τ→0+

1

(4πτ)
k
2

∫
Rn

exp

(
−|y − x0|2

4τ

)
ψ(y) d‖Vt0−τ‖(y)

exists and it is independent ofψ . This limit is theGaussian density�(V , (x0, t0)). The
same limit also exists in the case whenV = {Vt }t∈(a,b] is a k-dimensional Brakke flow
in a domainU of an n-dimensional Riemannian manifold M , or, more generally, when
V = {Vt }t∈(a,b] is a flow with a locally bounded forcing term u, with the only caveat
that the proof of existence of the limit involves a more complicated monotonicity
formula. Once the existence of the density has been established, tangent flows to such
a V at (x0, t0) are Brakke flows in R

n (in the manifold case, we are identifying R
n

with Tanx0M), and the proof proceeds verbatim. For the proof of the monotonicity
formulas needed in these cases, the interested reader can consult [22, Sections 10 and
11].

3 Energy estimates

The main result of this section is the following theorem, which establishes that the
deviation of the k-dimensional area of surfaces that are L2-close to a plane T and
move by (forced) unit-density Brakke flow from the area of a single k-dimensional
disk can be estimated in terms of the L2-height with respect to T . An analogous result
was proved in [11, Theorem 5.7], but the version we are going to present here has an
important advantage, which is ultimately the key to unlock the end-time regularity.
More precisely, while [11, Theorem 5.7] concludes the validity of the estimate up to
some waiting time both at the beginning and at the end of the time interval where
the L2-height is assumed to be small, here we extend the estimate arbitrarily near the
end-time as long as we know that the area of the moving surfaces is a sufficiently
large portion of the area of the disk (namely, as long as we know that the flow is
not vanishing). The price to pay is that the estimate comes with a constant which
deteriorates while approaching the end-time. The end-time regularity will result from
appropriately balancing the size of this constant with the vanishing of the L2-height
along a blow-up sequence.

Theorem 3.1 Corresponding to E1 ∈ [1,∞) and τ ∈ (
0, 1

2

)
, there exist ε4 =

ε4(E1, τ ) ∈ (0, 1) and K = K (E1) ∈ (1,∞) independent of τ with the follow-
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ing property. Given T ∈ G(n, k), suppose that {Vt }t∈[−1,0] and {u(·, t)}t∈[−1,0] satisfy
(A1)–(A4) with U = C(T , 1). Assume also that

∃C > 0 : spt‖Vt‖ ⊂ C(T , 1) ∩ {|T⊥(x)| < C} ∀ t ∈ (−1, 0] ; (3.1)

μ2∗ := sup
t∈[−1,0]

∫
C(T ,1)

|T⊥(x)|2 d‖Vt‖(x) ≤ ε24; (3.2)

‖V−1‖(φ2
T ) − c ≤ ε24; (3.3)

C(u) :=
∫ 0

−1

∫
C(T ,1)

2 |u|2 φ2
T d‖Vt‖dt ≤ ε24 . (3.4)

Then,

sup
t∈
[
− 1

2 ,0
] ‖Vt‖(φ2

T ) ≤ c + K (μ2∗ + C(u)). (3.5)

Furthermore, if

sup
t∈[−τ,0]

‖Vt‖(φ2
T ) − c ≥ −ε24, (3.6)

then

sup
t∈
[
− 1

2 ,−2τ
]
∣∣∣‖Vt‖(φ2

T ) − c
∣∣∣ ≤ K

τ 3
(μ2∗ + C(u)). (3.7)

Before coming to the proof of Theorem 3.1, we record here the following result,
which is [11, Proposition 5.2].

Proposition 3.2 Corresponding to E1 ∈ [1,∞) and ν ∈ (0, 1) there exist α2 ∈ (0, 1),
μ1 ∈ (0, 1), and P2 ∈ [1,∞) with the following property. For T ∈ G(n, k) and a unit
density varifold V ∈ IVk(C(T , 1)) with finite mass, define

α2 :=
∫
C(T ,1)

|h(V , x)|2 φ2
T (x) d‖V ‖(x) , (3.8)

μ2 :=
∫
C(T ,1)

|T⊥(x)|2 d‖V ‖(x) . (3.9)

Suppose spt‖V ‖ is bounded and

‖V ‖(Br (x)) ≤ ωkr
k E1 for all Br (x) ⊂ C(T , 1). (3.10)

(A) If ∣∣∣‖V ‖(φ2
T ) − c

∣∣∣ ≤ c
8
, α ≤ α2, and μ ≤ μ1, (3.11)
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then we have

∣∣∣‖V ‖(φ2
T ) − c

∣∣∣ ≤
{
P2(α

2k
k−2 + α

3
2 μ

1
2 + μ2) if k > 2,

P2(α
3
2 μ

1
2 + μ2) if k ≤ 2.

(3.12)

(B) If, instead

c
8

<

∣∣∣‖V ‖(φ2
T ) − c

∣∣∣ ≤ (1 − ν)c and μ ≤ μ1 (3.13)

then α ≥ α2.

The following is an immediate corollary of Proposition 3.2, and it is [11, Corollary
5.3]

Corollary 3.3 Let α2, μ1, and P2 be as in Proposition 3.2. Set μ2 := min

{μ1,
(

c
32P2

)1/2}. For V and T as in Proposition 3.2, define α and μ as in (3.8) and

(3.9). Also define

Ê := ‖V ‖(φ2
T ) − c. (3.14)

Assume (3.10) as well as

μ ≤ μ2, and 2P2μ
2 ≤ |Ê | ≤ (1 − ν)c. (3.15)

Then, we have

α2 ≥

⎧⎪⎨
⎪⎩
min

{
α2
2, (4P2)

− k−2
k |Ê | k−2

k , (4P2)−
4
3 μ− 2

3 |Ê | 43
}

if k > 2,

min
{
α2
2, (2P2)

− 4
3 μ− 2

3 |Ê | 43
}

if k ≤ 2.
(3.16)

Proof of Theorem 3.1 The general scheme follows the proof of [11, Theorem 5.7]. We
define the function

t ∈ [−1, 0] �→ E(t)

:= ‖Vt‖(φ2
T ) − c −

∫ t

−1

∫
C(T ,1)

2|u|2φ2
T d‖Vs‖ds − K2μ

2∗(1 + t), (3.17)

where

K2 := 80 sup{5|∇φT |4φ−2
T + |∇|∇φT ||2}.
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Arguing precisely as in the proof of [11, (5.53)], namely by testing Brakke’s inequality
(2.12) with ϕ = φ2

T , we conclude that

E(t2) − E(t1) ≤ −1

4

∫ t2

t1

∫
C(T ,1)

|h(Vt , ·)|2 φ2
T d‖Vt‖dt

for every − 1 ≤ t1 < t2 ≤ 0. (3.18)

We first prove (3.5). Towards a contradiction, suppose that there exists t∗ ∈ [− 1
2 , 0
]

such that

‖Vt∗‖(φ2
T ) − c > K (μ2∗ + C(u)), (3.19)

where 1 < K < ∞ will be chosen later. In particular, from the definition of E(t) we
have for every t ∈ [−1, t∗] that

‖Vt‖(φ2
T ) − c ≥ E(t)

(3.18)≥ E(t∗) > K (μ2∗ + C(u)) − C(u) − K2μ
2∗ ≥ K

2
μ2∗

(3.20)

if we choose K ≥ max{1, 2K2}. On the other hand, we also have, due to (3.18), (3.2),
(3.3), and (3.4),

‖Vt‖(φ2
T ) − c ≤ E(t) + C(u) + K2μ

2∗ ≤ E(−1) + C(u) + K2μ
2∗ ≤ (K2 + 2) ε24 ≤ ε4c

for ε4 suitably small. In particular, if P2 is the constant from Proposition 3.2 corre-
sponding to E1 and, for instance, ν = 1/2, then choosing also K ≥ 4P2 we have
that

2P2μ
2∗ ≤ ‖Vt‖(φ2

T ) − c ≤ ε4c for every t ∈ [−1, t∗] . (3.21)

Hence, we can apply Corollary 3.3 with V = Vt for all t ∈ [−1, t∗], and conclude
that for a.e. t ∈ [−1, t∗] it holds

1

4

∫
C(T ,1)

|h(Vt , ·)|2φ2
T d‖Vt‖ ≥

⎧⎨
⎩P min{1, E(t)

k−2
k , μ

− 2
3∗ E(t)

4
3 } if k > 2,

P min{1, μ− 2
3∗ E(t)

4
3 } if k ≤ 2,

(3.22)

where

P := 1

4 · 24/3 min{α2
2, (4P2)

− k−2
k , (4P2)

− 4
3 },
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and α2 ∈ (0, 1) is the same constant as in Proposition 3.2 corresponding to E1 and
ν = 1/2. Let us consider the case k > 2, as the case k ≤ 2 is easier and can be treated
similarly. Note that, since ε4 < 1,

P min{1, E(t)
k−2
k , μ

− 2
3∗ E(t)

4
3 } =

⎧⎪⎪⎨
⎪⎪⎩
P if E(t) ≥ 1,

PE(t)
k−2
k if μ

2k
k+6∗ ≤ E(t) ≤ 1,

Pμ
− 2

3∗ E(t)
4
3 if E(t) ≤ μ

2k
k+6∗ .

On the other hand, for t ∈ [−1, t∗] we have

E(t) ≤ E(−1) = ‖V−1‖(φ2
T ) − c ≤ ε24 < 1,

so that the first alternative does not occur. Let t̄ be the supremum of s ∈ [−1, t∗]
such that μ

2k
k+6∗ ≤ E(t) ≤ 1 for t ∈ [−1, s]. Then, (3.18) and (3.22) imply that the

differential inequality E ′(t) ≤ −PE(t)
k−2
k is satisfied a.e. on

[−1, t̄
]
. Integrating and

using (3.3), we find then that

t̄ ≤ −1 + kε
4
k
4

2P
.

In particular, for ε4 suitably small it is t̄ < − 3
4 . By the monotonicity of E(t), we then

have that the differential inequality E ′(t) ≤ −Pμ
− 2

3∗ E(t)
4
3 is satisfied a.e. on

[
t̄, t∗
]
,

so that, integrating, we find

E(t∗) ≤
(

3

P(t∗ − t̄)

)3
μ2∗. (3.23)

Since t∗ − t̄ ≥ 1/4, (3.23) is in contradiction with (3.20) as soon as we choose
K ≥ 4

P3 12
3. This completes the proof of (3.5). Assume now that (3.6) holds, and let

t̄ ∈ [−τ, 0] be such that

‖Vt̄‖(φ2
T ) − c ≥ −3

2
ε24 . (3.24)

Towards a contradiction, assume that (3.7) is violated: due to (3.5), this means that
there exists t∗ ∈ [− 1

2 ,−2τ
]
such that

E(t∗) ≤ ‖Vt∗‖(φ2
T ) − c < − K

τ 3
(μ2∗ + C(u)). (3.25)

We then have

E(t) ≤ − K

τ 3
(μ2∗ + C(u)) for every t ∈ [t∗, t̄] (3.26)
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by monotonicity, and thus

‖Vt‖(φ2
T ) − c ≤ E(t) + C(u) + K2μ

2∗ ≤ −K

2
μ2∗ for every t ∈ [t∗, t̄] .

On the other hand, again for t ∈ [t∗, t̄] we have
‖Vt‖(φ2

T ) − c ≥ E(t) ≥ E(t̄) ≥ −
(
5

2
+ K2

)
ε24 ≥ −ε4c,

for ε4 sufficiently small, where we have used (3.24) together with (3.2) and (3.4). We
can then apply again Corollary 3.3 with V = Vt , t ∈ [t∗, t̄], and conclude that for a.e.
t ∈ [t∗, t̄]

1

4

∫
C(T ,1)

|h(Vt , ·)|2φ2
T d‖Vt‖

≥

⎧⎪⎨
⎪⎩
2
4
3 P min{1,

(
c − ‖Vt‖(φ2

T )
) k−2

k
, μ

− 2
3∗
(
c − ‖Vt‖(φ2

T )
) 4

3 } if k > 2,

2
4
3 P min{1, μ− 2

3∗
(
c − ‖Vt‖(φ2

T )
) 4

3 } if k ≤ 2.

(3.27)

On the other hand, as a consequence of (3.26) we have that for every t ∈ [t∗, t̄]
c − ‖Vt‖(φ2

T ) ≥ −E(t) − C(u) − K2μ
2∗ ≥ −E(t) − K (C(u) + μ2∗)

≥ (−1 + τ 3)E(t) ≥ 1

2
(−E(t)),

and thus

1

4

∫
C(T ,1)

|h(Vt , ·)|2φ2
T d‖Vt‖ ≥

⎧⎨
⎩P min{1, (−E(t))

k−2
k , μ

− 2
3∗ (−E(t))

4
3 } if k > 2,

P min{1, μ− 2
3∗ (−E(t))

4
3 } if k ≤ 2.

(3.28)

Arguing as above, we only treat the case k > 2, and we notice that −E(t) = |E(t)| <

1. Assume that t̂ is the infimum of s ∈ [t∗, t̄] such that |E(t)| ≥ μ
2k
k+6∗ for all t ∈ [s, t̄].

Then, (3.18) and (3.28) imply that the differential inequality E ′(t) ≤ −P (−E(t))
k−2
k

is satisfied a.e. on
[
t̂, t̄
]
. Integrating we find that

2P

k
(t̄ − t̂) ≤ (−E(t̄)

) 2
k − (−E(t̂)

) 2
k ≤ (ε4c)

2
k .

In particular, for ε4 sufficiently small (depending on τ ) we have t̂ ∈ [− 3
2τ, t̄

]
. Now,

by monotonicity of E(t), it holds |E(t)| ≤ μ
2k
k+6∗ on

[
t∗, t̂
]
, and thus the differential
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inequality E ′(t) ≤ −Pμ
− 2

3∗ (−E(t))
4
3 holds a.e. on

[
t∗, t̂
]
. We integrate to find that

E(t∗) ≥ −
(

3

P(t̂ − t∗)

)3
μ2∗ ≥ −

(
6

Pτ

)3
μ2∗,

which contradicts (3.25) if K ≥ 2(6/P)3 and completes the proof of (3.7). ��

4 Lipschitz approximation

The following proposition states the existence of a Lipschitz approximation of the flow
in space-time, with good estimates up to the end-time. The result is similar to [11,
Theorem 7.5], the only difference being that the Lipschitz approximation is obtained
up to the end-time. In the next Sect. 5, t = 0 in Proposition 4.1 will correspond to a
time slightly before the end-time, up to which we have a good excess estimate.

Proposition 4.1 Corresponding to E1 ∈ [1,∞), p and q, there exist ε5 ∈ (0, 1),
r1 ∈ (0, 1) and c3 ∈ [1,∞) with the following property. For U = C(T , 1), suppose
that {Vt }t∈[−3/5,0] and {u(·, t)}t∈[−3/5,0] satisfy (A1)–(A4). Write Vt = var(Mt , 1) for
a.e. t and identify T with R

k × {0}. Suppose that we have
∫
C(T ,1)×[−3/5,0]

|h(Vt , ·)|2φ2
T d‖Vt‖dt ≤ ε5r

2
1/4, (4.1)

∣∣‖Vt‖(φ2
T ) − c

∣∣ ≤ ε5 for all t ∈ [−3/5, 0], (4.2)

spt ‖Vt‖ ∩ C(T , 1) ⊂ {|T⊥(x)| ≤ ε5} for all t ∈ [−3/5, 0], (4.3)

‖u‖L p,q (C(T ,1)×[−3/5,0]) ≤ 1. (4.4)

Set

β2 :=
∫
Gk (C(T ,1))×[−3/5,0]

‖S − T ‖2φ2
T dVt (·, S)dt (4.5)

and

κ2 :=
∣∣∣∣
∫ 0

−3/5

(
‖Vt‖(φ2

T ,1/2) − c
2k

)
dt

∣∣∣∣ . (4.6)

Then there exist maps f : Bk
1/3 × [−1/2, 0] → R

n−k and F : Bk
1/3 × [−1/2, 0] →

R
n × [−1/2, 0] such that for all (x, s), (y, t) ∈ Bk

1/3 × [−1/2, 0],

F(x, s) = (x, f (x, s), s),

| f (x, s) − f (y, t)| ≤ c(n, k)max{|x − y|, |s − t |1/2},
| f (x, s)| ≤ ε5,

(4.7)
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and with the following property. Define

X : = (∪t∈[−1/2,0](Mt ∩ C(T , 1/3)) × {t}) ∩ image F,

Y : = (T × IdR)(X).
(4.8)

Then

(‖Vt‖ × dt)((C(T , 1/3) × [−1/2, 0]) \ X)

+Lk+1((Bk
1/3 × [−1/2, 0]) \ Y ) ≤ κ2 + c3β

2. (4.9)

Proof Tobe consistentwith the notation in [11, Section 7],we change the time intervals
[−3/5, 0] and [−1/2, 0] in the statement above to [0, 1] and [1/4, 1] respectively in the
following,which does not change the proof in any essentialway.With this replacement,
we discuss the proof. We simply describe the exact locations where we need to change
in [11, Section 7] and the equation numbers are those of [11] in the following for
the rest of the proof. For [11, Proposition 7.1], one replaces the parabolic cylinder
Pr (a, s) in (7.3) and (7.4) by P̃r (a, s) defined in Sect. 2 and the same conclusion (7.6)
follows by the same proof. Next, no change is required in [11, Lemma 7.3], where one
obtains a small constant r1 ∈ (0, 1) depending only on E1, p and q. In the proof of
[11, Theorem 7.5], one replaces (1/4, 3/4) by (1/4, 1) and P by P̃ in (7.58), (7.59),
(7.62), (7.65) and (7.66). The only essential modification is the part following (7.66)
on the covering argument. The modified statement (7.66) is the following: For each
(x, s) ∈ B, there exists some r(x, s) ∈ (0, r1) such that

∫
P̃r(x,s)(x,s)

‖S − T ‖2 dVt (·, S)dt ≥ γ (r(x, s))k+2.

This follows from the definition of A, (7.58). Thus {P̃r(x,s)(x, s)}(x,s)∈B is a cover-
ing of B. Here, unlike Pr (x, s), since P̃r (x, s) is not a metric ball with respect to
the metric d((x1, s1), (x2, s2)) := max{|x1 − x2|, |s1 − s2|1/2}, we cannot invoke the
standard Vitali covering lemma as given. On the other hand, by following the same

proof of the Vitali lemma applied to {P̃r(x,s)(x, s)}(x,s)∈B (see for example [15, The-

orem 3.3]), one can prove that there exists a countable subset {P̃r(x j ,s j )(x j , s j )} ⊂
{P̃r(x,s)(x, s)}(x,s)∈B such that it is pairwise disjoint and

B ⊂ ∪(x,s)∈B P̃r(x,s)(x, s) ⊂ ∪ j (R
n × (0, 1]) ∩ P5r(x j ,s j )(x j , s j ).

123



S. Stuvard, Y. Tonegawa

Note that the right-hand side are the closed metric balls with respect to the parabolic
distance. Then, using the above inequality and the property of the covering,

(‖Vt‖ × dt)(B) ≤
∑
j

(‖Vt‖ × dt)((Rn × (0, 1] ∩ P5r(x j ,s j )(x j , s j ) )

≤
∑
j

5k+22E1r(x j , s j )
k+2

≤
∑
j

5k+22E1γ
−1
∫
P̃r(x j ,s j )(x j ,s j )

‖S − T ‖2 dVt (·, t)dt

≤ 5k+22E1γ
−1
∫
C(T ,13/24)×(0,1)

‖S − T ‖2 dVt (·, S)dt ≤ 5k+22γ −1β2.

The rest of the proof is the same. ��

Remark 4.2 In [11], the generalized Besicovitch covering theorem in [6, 2.8.14] was
invoked for parabolic cylinders at the bottom of page 40. After the publication of [11],
UlrichMenne communicated the second-named author that the parabolic cylinders do
not satisfy the assumption in [6, 2.8.14] (called directionally ξ, η, ζ limited), so that
the theorem is not applicable. However, one can fix the proof in [11] by using the Vitali
covering lemma, which holds true for any metric balls, instead of using Besicovich.
Later it was proved that, even though the precise assumption in [6] is not satisfied, the
Besicovich covering theorem still holds true for parabolic cylinders of type P (not P̃),
see [10] for the proof.

5 Blow-up argument

We first state the regularity result for a domain which is at positive distance away
from the end-time t = 0. This is a direct consequence of [11, Theorem 8.7] with
modifications to shorten the waiting time near the end-time.

Proposition 5.1 Corresponding to E1 ∈ [1,∞), ν ∈ (0, 1), p, q and ι ∈ (0, 1/4),
there exist ε6 ∈ (0, 1), c4 ∈ (1,∞) with the following property. For T ∈ G(n, k),
R ∈ (0,∞),U = C(T , 2R), suppose {Vt }t∈[−R2,0] and {u(·, t)}t∈[−R2,0] satisfy (A1)–

(A4) and (2.13)–(2.16)with ε6 in place of ε2. Write D̃ := (BR∩T )×[−R2/2,−ιR2].
Then there are f : D̃ → T⊥ and F : D̃ → R

n such that T (F(y, t)) = y and
T⊥(F(y, t)) = f (y, t) for all (y, t) ∈ D̃ and

spt ‖Vt‖ ∩ C(T , R) = image F(·, t) for all t ∈ [−R2/2,−ιR2], (5.1)

R−1‖ f ‖0 + ‖∇ f ‖0 + Rζ [ f ]1+ζ ≤ c4(μ + ‖u‖), (5.2)

where the norms are measured on (BR ∩ T ) × [−R2/2,−ιR2].

Proof We may assume that R = 1 by the parabolic change of variables. We first use
the L2 − L∞ height estimate [11, Proposition 6.4] with R = 1, � = 1, U = B1(a)
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with a ∈ T ∩ B1 (and the time-interval [0, 1] translated to [−1, 0]), so that there exist
c5 = c5(k, p, q) and c6 = c6(n, k) such that, for all t ∈ [−4/5, 0], we have

spt ‖Vt‖ ∩ B4/5(a) ⊂ {x : |T⊥(x)| ≤ μ̃}, (5.3)

where

μ̃2 := c6μ
2 + 3c5‖u‖2E1−2/p

1 . (5.4)

In particular, by moving a within T ∩ B1, (5.3) shows

spt ‖Vt‖ ∩ C(T , 3/2) ∩ {x : |T⊥(x)| ≤ 1/2} ⊂ {x : |T⊥(x)| ≤ μ̃} (5.5)

for all t ∈ [−4/5, 0]. Using the lower density ratio bound (see [11, Corollary 6.3]),
for all sufficiently small ε6 depending only on E1, p and q, one can show that

spt ‖Vt‖ ∩ C(T , 3/2) ∩ {x : |T⊥(x)| > 1/2} = ∅ (5.6)

for all t ∈ [−4/5, 0]. Thus, (5.5) and (5.6) show

spt ‖Vt‖ ∩ C(T , 3/2) ⊂ {x : |T⊥(x)| ≤ μ̃} (5.7)

for all t ∈ [−4/5, 0]. Next, we use [11, Theorem 8.7]. Corresponding to E1, p and
q with ν = 1/2, there exist ε7 ∈ (0, 1) (ε6 in [11]), σ ∈ (0, 1/2), �1 ∈ (2,∞) (�3
in [11]) and c7 ∈ (1,∞) (c16 in [11]) with the properties stated there. We identify T
with Rk × {0} in the following. We fix a small 0 < R̃ ≤ 1/6 depending only on ι and
�1 (for example, R̃ = √

ι/(4�1)) so that, for any (x, t) ∈ Bk
1 ×[−1/2,−ι], we have

Bk
3R̃

(x) × (t − �1 R̃
2, t + �1 R̃

2) ⊂ Bk
3/2 × (−3/5,−ι/2). (5.8)

The choice of such R̃ depends ultimately only on ι, E1, p and q. We use [11, Theorem
8.7]with R = R̃ and (x, t) ∈ Bk

1×[−1/2,−ι] as the origin.There are four assumptions
in [11, Theorem 8.7], the smallness of height [11, (8.83)] and ‖u‖ [11, (8.84)], and
the existence of t1 and t2 in [11, (8.85)] and [11, (8.86)] with respect to Bk

3R̃
(x)× (t −

�1 R̃2, t + �1 R̃2) and ν = 1/2. The first two conditions are fulfilled if we restrict ε6
so that ε6 R̃−(k+4)/2 < ε7. In the following, we prove that the latter two are satisfied by
using a compactness argument. Let φT ,R̃,x be defined by φT ,R̃,x (y) := φT ,R̃(y − x).
We claim that, given any δ > 0, for all sufficiently small ε6 > 0 depending only on
ι, E1, ν, p, q and δ, we have

R̃−k‖Vt‖(φ2
T ,R̃,x

) ≤ c + δ (5.9)

for all (x, t) ∈ Bk
1 ×[−3/5, 0]. Note that, by using the monotone decreasing property

of E(t) corresponding to φT ,R̃,x in place of φT in (3.18), the increase of ‖Vt‖(φ2
T ,R̃,x

)

in time can be made small by restricting μ and ‖u‖ appropriately depending on δ and
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R̃ (in the following, we may refer to this fact as “almost monotone property”), so we
need to prove R̃−k‖V−3/5‖(φ2

T ,R̃,x
) ≤ c+δ for all x ∈ Bk

1 . Assume for a contradiction

that there exist {V (m)
t }t∈[−1,0] and {u(m)(·, t)}t∈[−1,0] satisfying the assumptions of the

present theoremwith ε = 1/m, and xm ∈ Bk
1 such that R̃

−k‖V (m)
−3/5‖(φ2

T ,R̃,xm
) > c+δ.

Again by the almost monotone property, we have

inf
t∈[−4/5,−3/5] R̃

−k‖V (m)
t ‖(φ2

T ,R̃,xm
) ≥ c + δ/2 (5.10)

for all large m. Since

∫ −3/5

−4/5

∫
C(T ,3/2)

|h(V (m)
t , ·)|2 d‖V (m)

t ‖dt

is uniformly bounded by (3.18) and (A2), using Fatou’s lemma and (A1) we con-

clude that for almost all t0 ∈ [−4/5,−3/5], there exists a subsequence V
(m j )

t0 ∈
IVk(C(T , 2)) such that the L2(‖V (m j )

t0 ‖)-norms of {h(V
(m j )

t0 )} j are bounded uniformly
in C(T , 3/2). Then, by Allard’s compactness theorem of integral varifolds, a further
subsequence converges to V ∈ IVk(C(T , 3/2)), and due to (5.7), it is supported on T .
Since the L2-norm of the generalized mean curvature is lower-semicontinuous under
varifold convergence, V has h(V , ·) ∈ L2(‖V ‖) in C(T , 3/2) and the multiplicity of
V on T has to be a constant function with integer value, and by (5.10), the integer has

to be ≥ 2. But this implies that lim inf j→∞ ‖V (m j )

t0 ‖(φ2
T ) ≥ ‖V ‖(φ2

T ) ≥ 2c. Since
t0 ≥ −4/5 and by the almost monotone property, one can obtain a contradiction to
(2.13) for all large m j . This proves (5.9). Similarly, we claim that, given δ > 0, for
small ε6 > 0,

R̃−k‖Vt‖(φ2
T ,R̃,x

) ≥ c − δ (5.11)

for all (x, t) ∈ Bk
1 × [−3/5,−ι/2]. Again by the almost monotone property, we

need to prove the claim at t = −ι/2. The similar contradiction argument applied
to the time interval [−ι/2,−ι/4] in place of [−4/5,−3/5] (with the same notation)
shows that, for almost all t0 ∈ [−ι/2,−ι/4], there exists a subsequence such that

lim j→∞ ‖V (m j )

t0 ‖ = 0 on C(T , 3/2). But then, with the clearing-out lemma (see [11,

Corollary 6.3]), one can show that (‖V (m j )

t ‖ × dt)(C(T , 1) × (−ι/8, 0)) = 0 for all
large j (where ι needs to be smaller than a constant depending only on k, n, p, q and
E1 for the clearing-out lemma). This is a contradiction to (2.14). This proves (5.11).
Now we are ready to apply [11, Theorem 8.7]: we choose a small δ > 0 so that
c− δ > c/2 and c+ δ < 3c/2 and let ε6 be restricted so that we have (5.9) and (5.11).
Then for each T−1(Bk

3R̃
(x))× (t −�1 R̃2, t +�1 R̃2) with (x, t) ∈ Bk

1 ×[−1/2,−ι],
all the assumptions for [11, Theorem 8.7] are satisfied. Thus the support of ‖Vt‖ can
be represented as the graph of aC1,ζ function in T−1(Bk

σ R̃
(x))×(t− R̃2/4, t+ R̃2/4)

with estimate in terms of μ and ‖u‖. Since C(T , 1)×[−1/2,−ι] can be covered by a
finite number of such domains, the support of the flow is represented as a C1,ζ graph
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over Bk
1 × [−1/2,−ι] with estimates in terms of μ and ‖u‖. The resulting constant

c4 depends only on E1, ν, p, q, ι. This concludes the proof. ��

The constants in the claim of Proposition 5.1 deteriorate as ι approaches to 0, and
we will use it with a fixed ι depending only on E1, ν and ζ in Proposition 5.3. We next
prove the main decay estimate under the parabolic dilation centered at the end-time,
which will be iterated to obtain the desired C1,ζ estimate.

Proposition 5.2 Corresponding to E1 ∈ [1,∞), ν ∈ (0, 1), p and q there exist ε8 ∈
(0, 1), θ ∈ (0, 1/4) and c8 ∈ (1,∞) with the following property. For W ∈ G(n, k),
0 < R < ∞ and U = C(W , 2R), suppose that {Vt }t∈[−R2,0] and {u(·, t)}t∈[−R2,0]
satisfy (A1)–(A4). Suppose

T ∈ G(n, k) satisfies ‖T − W‖ < ε8, (5.12)

A ∈ A(n, k) is parallel to T , (5.13)

μ :=
(
R−k−4

∫ 0

−R2

∫
C(W ,2R)

dist (x, A)2 d‖Vt‖dt
)1/2

< ε8, (5.14)

‖u‖ := Rζ ‖u‖L p,q (C(W ,2R)×(−R2,0)) < ∞, (5.15)

(C(W , νR) × {0}) ∩ spt (‖Vt‖ × dt) = ∅, (5.16)

R−k‖V−4R2/5‖(φ2
W ,R) ≤ (2 − ν)c. (5.17)

Then there are T̃ ∈ G(n, k) and Ã ∈ A(n, k) such that

Ã is parallel to T̃ , (5.18)

‖T − T̃ ‖ ≤ c8μ, (5.19)(
(θR)−(k+4)

∫ 0

−(θR)2

∫
C(W ,2θR)

dist (x, Ã)2 d‖Vt‖dt
)1/2

≤ θζ max{μ, c8‖u‖}.
(5.20)

Moreover, if ‖u‖ < ε8, we have

(θR)−k‖V−4(θR)2/5‖(φ2
W ,θR) ≤ (2 − ν)c. (5.21)

Proof Wemay assume that R = 1 after a parabolic change of variables. The outline of
proof is similar to [11, Proposition 8.1], with the crucial difference that we work with
(5.16) and that the result is for a domain centered at the end-time point (x, t) = (0, 0).
We give a description on the different points on the proof for this result. The proof
proceeds by contradiction.Wewill fix θ ∈ (0, 1/4) later depending only on E1 and ζ . If
the claimwere false, then, for eachm ∈ N there exist {V (m)

t }t∈[−1,0], {u(m)(·, t)}t∈[−1,0]
satisfying (A1)–(A4) on C(W (m), 2) × [−1, 0] for W (m) ∈ G(n, k) such that, by
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assuming T = R
k × {0} after suitable rotation,

‖T − W (m)‖ ≤ 1/m, (5.22)

μ(m) :=
(∫ 0

−1

∫
C(W (m),2)

|T⊥(x)|2 d‖V (m)
t ‖dt

)1/2
≤ 1/m, (5.23)

(5.16) and (5.17), but for any T̃ ∈ G(n, k) with ‖T − T̃ ‖ ≤ mμ(m) and Ã ∈ A(n, k)
which is parallel to T̃ , we have

(
θ−(k+4)

∫ 0

−θ2

∫
C(W (m),2θ)

dist (x, Ã)2 d‖V (m)
t ‖dt

)1/2
> θζ max{μ(m),m‖u(m)‖}.

(5.24)

By taking Ã = T̃ = T in (5.24), we obtain

θζ ‖u(m)‖ < θ−(k+4)/2m−1μ(m),

which shows in particular that

lim
m→∞(μ(m))−1‖u(m)‖ = 0. (5.25)

By (5.25), (5.4) and (5.7), we have

lim sup
m→∞

{ |T⊥(x)|
μ(m)

: x ∈ spt‖V (m)
t ‖ ∩ C(T , 1)

}
≤ √

c6 (5.26)

for all t ∈ [−4/5, 0], where √
c6 = c(n, k). The same argument used to prove (5.9)

combined with (5.17) shows

lim sup
m→∞

‖V (m)
−7/10‖(φ2

T ) ≤ c. (5.27)

Using (5.22) and the similar argument leading to (5.10), one can prove that

lim inf
m→∞ ‖V (m)

−θ6/2
‖(φ2

T ) ≥ c. (5.28)

Then, with (5.26)–(5.28), for all sufficiently largem, we may apply Theorem 3.1 with
τ = θ6/2. Thus there exists a constant c9 = c9(θ, ν, p, q, E1) such that

lim sup
m→∞

(
sup

t∈[−3/5−θ6,−θ6]
(μ(m))−2

∣∣‖V (m)
t ‖(φ2

T ) − c
∣∣) ≤ c9. (5.29)

We now apply Proposition 4.1with the time interval shifted from [−3/5, 0] to [−3/5−
θ6,−θ6]. For all sufficiently largem, note that (4.2)–(4.4) are all satisfied due to (5.29),
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(5.26) and (5.25). The smallness condition of (4.1) can be proved by (A4) and (5.29)
as it was done for (3.18). Thus we have Lipschitz functions f (m) and F (m) defined
on Bk

1/3 × [−1/2 − θ6,−θ6] with quantities (4.5) and (4.6) defined in terms of V (m)

and where f (m) and F (m) satisfy (4.7)–(4.9). Once we achieve this, arguing exactly
as in [11, p.45], one can prove that the right-hand side of (4.9) corresponding to V (m)

can be bounded by c(μ(m))2 with c depending only on θ, ν, E1, p, q. We define the
blowup sequence by

f̃ (m) := f (m)/μ(m) (5.30)

for all sufficiently large m on Bk
1/3 × [−1/2 − θ6,−θ6]. Writing �′ := Bk

1/3 ×
(−1/2− θ6,−θ6], the verbatim proof for [11, Lemma 8.3, 8.4] gives the existence of
a subsequence { f̃ (m j )} and f̃ ∈ C∞(�′) such that

lim
j→∞ ‖ f̃ (m j ) − f̃ ‖L2(�′) = 0 and

∂ f̃

∂t
− � f̃ = 0 on �′. (5.31)

At this point, it is important to note that (5.26) gives

‖ f̃ ‖L∞(�′) ≤ √
c6, (5.32)

where c6 = c(n, k). We then define T (m) ∈ G(n, k) as the graph of the map

x ∈ R
k �→ μ(m)∇ f̃ (0,−θ6) · x ∈ R

n−k,

which is the tangent space to the graph {(x, μ(m) f̃ (x,−θ6)) : x ∈ Bk
1/3} at x = 0, and

also define the affine plane A(m) ∈ A(n, k) by A(m) = T (m) + (0, μ(m) f̃ (0,−θ6)).
By the standard estimates for parabolic PDE, all the partial derivatives of f̃ on Bk

2θ ×
[−θ2,−θ6] are bounded in terms of constant multiple of

√
c6. In particular, there

exists a constant c10 = c(n, k) such that

∫
B2θ×[−θ2,−θ6]

| f̃ (x, t) − f̃ (0,−θ6) − ∇ f̃ (0,−θ6) · x |2 dHk ≤ c10θ
k+6.

(5.33)

Following the verbatim proof in [11], this leads to

lim sup
m→∞

‖T − T (m)‖ ≤ c10,

lim sup
m→∞

(μ(m))−2
∫
C(T ,2θ)×(−θ2,−θ6)

dist (x, A(m))2 d‖V (m)
t ‖dt ≤ c10θ

k+6.

(5.34)
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Thus, for all large m, we have

θ−(k+4)
∫
C(T ,2θ)×(−θ2,−θ6)

dist (x, A(m))2 d‖V (m)
t ‖dt ≤ c10θ

2(μ(m))2. (5.35)

On the integral over the time interval (−θ6, 0), since dist (x, A(m)) ≤ c(c10)μ(m) on
the support of ‖V (m)

t ‖, combined with (A2), we have

θ−(k+4)
∫
C(T ,2θ)×(−θ6,0)

dist (x, A(m))2 d‖V (m)
t ‖dt ≤ c11θ

2(μ(m))2 (5.36)

where c11 depends only on c10 and E1. Then (5.35) and (5.36) show

θ−(k+4)
∫
C(T ,2θ)×(−θ2,0)

dist (x, A(m))2 d‖V (m)
t ‖dt ≤ (c10 + c11)θ

2(μ(m))2.

(5.37)

Now, choosing θ small enough depending only on n, k, E1, ζ , we may assume that
(c10 + c11)θ2 < θ2ζ /2. Since T can be replaced by W (m) for the limit (see [11]) in
(5.37), we have a contradiction to (5.24). This completes the proof of claims (5.18)–
(5.20). For (5.21), since θ is fixed, we may argue as for the proof of (5.9) and restrict
ε8 to make sure that (5.21) holds. This completes the proof. ��
It is possible to apply Proposition 5.2 iteratively; in combination with Proposition 5.1,
we have then the following.

Proposition 5.3 Corresponding to E1 ∈ [1,∞), ν ∈ (0, 1), p and q, there exist ε9 ∈
(0, 1) and c12 ∈ (1,∞)with the following property. For T ∈ G(n, k), R ∈ (0,∞) and
U = C(T , 2R), suppose that {Vt }t∈[−R2,0] and {u(·, t)}t∈[−R2,0] satisfy (A1)–(A4).
Suppose

μ :=
(
R−k−4

∫ 0

−R2

∫
C(T ,2R)

|T⊥(x)|2 d‖Vt‖dt
)1/2

< ε9, (5.38)

‖u‖ := Rζ ‖u‖L p,q (C(T ,2R)×(−R2,0)) < ε9, (5.39)

(T−1(0) × {0}) ∩ spt(‖Vt‖ × dt) = ∅, (5.40)

R−k‖V−4R2/5‖(φ2
T ,R) ≤ (2 − ν)c. (5.41)

Identifying T as Rk ∼= R
k × {0} ⊂ R

n, let D̃ := {(x, t) ∈ R
k × [−R2/2, 0) : |x |2 <

|t |}. Then there exist f : D̃ → T⊥ and F : D̃ → R
n such that F(x, t) = (x, f (x, t))

for (x, t) ∈ D̃ and

(1) spt‖Vt‖ ∩ C(T ,
√|t |) = Image F(·, t) for all t ∈ [−R2/2, 0),

(2) R−1‖ f ‖0 + ‖∇ f ‖0 + Rζ [ f ]1+ζ ≤ c4c12 max{μ, c8‖u‖}.
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Proof We may set R = 1 without loss of generality. With E1, ν, p and q given, we
use Proposition 5.2 to obtain ε8, θ and c8. Setting ι = θ2/2, we use Proposition 5.1
to obtain ε6 and c4. We choose ε9 so that

ε9 ≤ min{ε6, ε8}, (5.42)

c8ε9 < ε8, (5.43)

(c8)
2(1 − θζ )−1ε9 < ε8. (5.44)

We first use Proposition 5.2 withW = A = T , and note that (5.12)–(5.17) are satisfied
due to (5.38)–(5.41) and (5.42). Thus there exist T1 ∈ G(n, k) and A1 ∈ A(n, k) such
that (5.18)–(5.20) are satisfied with R = 1, W = T , Ã = A1 and T̃ = T1. Similarly,
we may use Proposition 5.1 since (2.13)–(2.16) are satisfied with R = 1 and ε6, so
that we have f1 and F1 defined on Bk

1 ×[−1/2,−θ2/2] satisfying (5.1) and (5.2). We
next claim that Proposition 5.2 can be inductively used for R = θ j , j ∈ N, where we
obtain Tj ∈ G(n, k) and A j ∈ A(n, k) satisfying

‖Tj − Tj−1‖ ≤ c8θ
( j−1)ζ max{μ, c8‖u‖}, (5.45)

where T0 := T , and writing μ j as μ in (5.14) corresponding to A j and R = θ j ,

μ j ≤ θ jζ max{μ, c8‖u‖}. (5.46)

The case j = 1 follows from Proposition 5.2. Assume that it is true until j ≥ 1. Then
we check that (5.12)–(5.17) are true for W = T , T = Tj , A = A j and R = θ j . We
have

‖Tj − T ‖ ≤
j∑

l=1

‖Tl − Tl−1‖ ≤ c8

j∑
l=1

θ(l−1)ζ max{μ, c8‖u‖}

≤ (c8)
2(1 − θζ )−1ε9 < ε8 (5.47)

where we used (5.45), (5.38), (5.39) and (5.44). Thus (5.12) is satisfied. Since A j and
Tj are parallel, (5.13) is fine. By (5.42), (5.43) and (5.46), we have μ j < ε8, so that
(5.14) is satisfied. The condition (5.16) follows from (5.40), and (5.42), (5.39) and
(5.21) give (5.17) for j . Thus, we may apply Proposition 5.2 with R = θ j , and obtain
Tj+1 and A j+1 which are parallel and

‖Tj+1 − Tj‖ ≤ c8μ j ≤ c8θ
jζ max{μ, c8‖u‖}, (5.48)

where we used (5.46), and

μ j+1 ≤ θζ max{μ j , θ
jζ c8‖u‖} ≤ θ( j+1)ζ max{μ, c8‖u‖} (5.49)

by (5.20) and (5.46). This closes the inductive step and proves (5.45) and (5.46) for
all j . We next prove that we can apply Proposition 5.1 on each domain C(Tj , 2θ j ) ×
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[−θ2 j ,−θ2( j+1)/2] for all j ≥ 1. Note that for each j ≥ 0, by the same argument
leading up to (5.7), we have

spt‖Vt‖ ∩ C(T , 3θ j/2)} ⊂ {x : θ−2 jdist(x, A j )
2 ≤ c6μ

2
j + 3c5θ

2 jζ ‖u‖2E1−2/p
1 }

⊂ {x : dist(x, A j ) ≤ θ j(1+ζ )c13ε9} (c13 = c13(n, k, E1))

(5.50)

for all t ∈ [−4θ2 j/5, 0). To apply Proposition 5.1, we need to have T there replaced
by A j , so we need to tilt the plane whose tilt is estimated by (5.47). For this rea-
son, we may actually need to use a slightly smaller cylinder than C(Tj , 2θ j ) so
that the smallness of corresponding μ j (with respect to the distance function to
A j ) can be assured from (5.46). Inductively, we know that the support of ‖Vt‖ in
C(Tj−1, θ

j−1)×[−θ2( j−1)/2,−θ2 j/2] is aC1,ζ graph, so that the condition (2.13) is
satisfied. Condition (2.14) follows from (5.40), and (2.15) follows from (5.46), (5.42)
and (5.43). Thus we may apply Proposition 5.1 and obtain a graph representation
f̃ j over A j with the C1,ζ estimate of the form c4θ jζ max{μ, c8‖u‖}. Note that, by
the implicit function theorem, one can equally represent the same set as a graph f j
over T . The norm ‖∇ f j‖0 over Bk

θ j × [−θ2 j/2,−θ2( j+1)/2] can be different by a
constant multiple of ‖Tj − T ‖ which is bounded as in (5.47). The Hölder semi-norm
[ f ]1+ζ has two terms, [∇ f ]ζ and the (1 + ζ )/2-Hölder semi-norm in time. The first
is seen as the variation of the tangent space and one can see that it is bounded by
a multiple of constant (which is close to 1) under the small rotation. The estimate
for the latter is obtained by applying [11, Proposition 6.4] with the gradient Hölder
norm, and the small rotation affects little. Hence we can obtain the desired C1,ζ esti-
mate for f j representing spt‖Vt‖ over the domain Bk

θ j × [−θ2 j/2,−θ2( j+1)/2], by
2c4θ jζ max{μ, c8‖u‖}. We next observe that

D̃ = {(x, t) ∈ R
k × [−1/2, 0) : |x |2 < |t |} ⊂ ∪∞

j=0B
k
θ j × [−θ2 j/2,−θ2( j+1)/2],

(5.51)

so that we have a representation of spt‖Vt‖ as the graph of a single function f
over D̃. The estimate ‖ f ‖0 + ‖∇ f ‖0 ≤ 2c4 max{μ, c8‖u‖} is immediate. For the
Hölder semi-norm [ f ]1+ζ , we proceed as follows. Let (y1, s1), (y2, s2) be points
in D̃ with (y1, s1) = (y2, s2), assume without loss of generality that s1 ≤ s2, and
let h, l ≥ 0 be such that (y1, s1) ∈ Bk

θh
× [−θ2 h/2,−θ2(h+1)/2] and (y2, s2) ∈

Bk
θh+l × [−θ2(h+l)/2,−θ2(h+l+1)/2]. By the triangle inequality, we estimate

|∇ f (y1, s1) − ∇ f (y2, s2)| ≤ 2c4 max{μ, c8‖u‖}
⎛
⎝|y1 − y2|ζ + 1

2

h+l∑
j=h

(θ2 j )ζ/2

⎞
⎠

≤ c4c12 max{μ, c8‖u‖}θhζ

≤ c4c12 max{μ, c8‖u‖}|s1 − s2|ζ/2,
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where c12 = c12(k, p, q). The estimate for the second summand in [ f ]1+ζ is analo-
gous. The proof is now complete. ��

6 Proof of themain results

We are now ready to prove Theorems 2.2 and 2.3.

Proof of Theorem 2.2 By scaling, we may assume R = 1. Given ν ∈ (0, 1), E1 ∈
[1,∞), p and q, let ε9, c4, c12 and c8 be as in Proposition 5.3. Let now ε2 ∈ (0, 1)
and c1 ∈ (1,∞) be such that the following conditions are satisfied:

ε2 ≤ ε9

2k+4 , c1 ≥ 4 max{2k+4c4c12, c4c12c8} . (6.1)

For T ∈ G(n, k), and U = C(T , 2), suppose that {Vt }t∈[−1,0] and {u(·, t)}t∈[−1,0]
satisfy (A1)–(A4) as well as (2.13)–(2.16). We identify, as usual, T with R

k ∼= R
k ×

{0} ⊂ R
n , and we claim the following: for every j ≥ 1, setting

σ j :=
j∑

i=1

1

i
, τ1 := 1

2
, τ j+1 := 1

4σ j
, (6.2)

Dj :=
{
(x, t) ∈ R

k × [−τ j , 0
) : |x |2 < σ j |t |

}
, (6.3)

there exist f j : Dj → T⊥ and Fj : Dj → R
n such that Fj (x, t) = (x, f j (x, t)), and

(1) spt‖Vt‖ ∩ C(T ,
√

σ j |t |) = Image Fj (·, t) for all t ∈ [−τ j , 0
)
,

(2) ‖ f j‖0 + ‖∇ f j‖0 ≤ c1 max{μ, ‖u‖p,q}.
Assume the claim for the moment. It is then an immediate consequence of (6.2) that√

σ j |t | ≥ 1/2 for all t ∈ [−τ j ,−τ j+1
)
,

which implies that

Bk
1
2

× [−τ j ,−τ j+1
) ⊂ Dj . (6.4)

Since lim j→∞ τ j = 0, (6.4) and (1)–(2) imply that one can define a function f : Bk
1
2
×[− 1

4 , 0
) → T⊥ such that, setting F(x, t) = (x, f (x, t)) for (x, t) ∈ Bk

1
2

× [− 1
4 , 0
)

one has

spt‖Vt‖ ∩ C(T , 1/2) = image F(·, t) for all t ∈ [−1/4, 0) ,

‖ f ‖0 + ‖∇ f ‖0 ≤ c1 max{μ, ‖u‖p,q} .

that is (2.17) and part of the estimate in (2.18). In what follows, we will first prove
the claim; then, we will show that the resulting function f also satisfies [ f ]1+ζ ≤
c1 max{μ, ‖u‖p,q}.
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The proof of the claim is by induction on j ≥ 1. The induction base, j = 1, is
Proposition 5.3. We then assume that the claim is true for j , and prove it for j + 1.
Fix any point (x0, t0) ∈ ∂Dj , and translate in space-time so to consider the flow
{Ṽs}s∈[−1−t0,0], with Ṽs := (τx0)�Vs+t0 where τx0(y) := y − x0. Set R̃2 = R̃2

t0 :=
1
4 + t0

4 , and notice that C(T , x0, 2R̃) ⊂ C(T , 0, 2). In particular, {Ṽs} satisfies (A1)–
(A4) in U = C(T , 2R̃) corresponding to the forcing term ũ(y, s) = ũ(x0,t0)(y, s) :=
u(y + x0, s + t0). We next claim that (5.38)–(5.41) are satisfied. We clearly have

μ2
(x0,t0) := R̃−k−4

∫ 0

−R̃2

∫
C(T ,2R̃)

|T⊥(y)|2 d‖Ṽs‖(y) ds ≤ R̃−k−4μ2 ≤ 4k+4μ2 < ε29

by (2.13) and (6.1). Moreover, (T−1(0)×{0})∩ spt(‖Ṽs‖×ds) = (T−1(x0)×{t0})∩
spt(‖Vt‖ × dt) = ∅, because for any sequence (xh, t0) ∈ Dj such that xh → x0
we have (xh, f j (xh, t0)) ∈ T−1(xh) ∩ spt‖Vt0‖ by (1), and thus (T−1(x0) × {t0}) ∩
spt(‖Vt‖×dt) contains all subsequential limits of (xh, f j (xh, t0), t0). We also readily
estimate

‖ũ‖L p,q (C(T ,2R̃)×(−R̃2,0)) ≤ ‖u‖L p,q (C(T ,2)×(−1,0)),

so that (2.16) implies (5.39). Finally, we have

R̃−k‖Ṽ−4R̃2/5‖(φ2
T ,R̃

) = R̃−k‖V−1/5+4t0/5‖(φ2
T ,R̃,x0

) ≤ c + δ,

using the same argument leading to (5.9). We can then apply Proposition 5.3 and
conclude after translating back the origin to (x0, t0) that, setting

D̃(x0,t0) :=
{

(x, t) ∈ R
k ×

[
t0 − R̃2

t0

2
, t0

)
: |x − x0|2 < |t − t0|

}
,

there exist functions f (x0,t0) : D̃(x0,t0) → T⊥ and F (x0,t0) : D̃(x0,t0) → R
n such that

F (x0,t0)(x, t) = (x, f (x0,t0)(x, t)) for all (x, t) ∈ D̃(x0,t0) and

(1)� spt‖Vt‖ ∩C(T , x0,
√|t − t0|) = Image F (x0,t0)(·, t) for all t ∈

[
t0 − R̃2

t0
2 , t0

)
,

(2)� R̃−1
t0 ‖ f (x0,t0)‖0 + ‖∇ f (x0,t0)‖0 + R̃ζ

t0 [ f (x0,t0)]1+ζ ≤ c4c12 max{μ(x0,t0),

c8‖ũ(x0,t0)‖} .
In particular, there is a well posed extension of the functions f j and Fj to the region

Dj ∪
⋃

(x0,t0)∈∂Dj

D̃(x0,t0).

We let f j+1 and Fj+1 denote such extensions, and we proceed with the proof that
conditions (1)–(2) hold true with j + 1 in place of j . To this aim, it is sufficient to
show the following: for t ∈ [−τ j+1, 0

)
and σ j |t | ≤ |x |2 < σ j+1|t |, there exists
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Fig. 1 An illustration of the first two parabolic regions Dj : the region D2 is a subset of the union of D1

with suitable parabolic regions D̃(x0,t0) having vertices at points (x0, t0) ∈ ∂D1 (black dots in the graph).
The region D3 will be a subset of the union of D2 with parabolic regions D̃(x0,t0) having vertices at points
(x0, t0) ∈ ∂D2. As j grows, the opening of the regions Dj increases, as it is defined by the parameter

σ j ↑ ∞. The union of the regions Dj contains the cylinder B
k
1/2 × [−1/4, 0), over which we can conclude

graphical parametrization and corresponding estimates for the flow

(x0, t0) ∈ ∂Dj such that (x, t) ∈ D̃(x0,t0). Once this is established, indeed, one
immediately gains that

Dj+1 ⊂ Dj ∪
⋃

(x0,t0)∈∂Dj

D̃(x0,t0), (6.5)

see Fig. 1, and (1) at step j + 1 follows immediately from (1) at step j and (1)�, while
(2) at step j + 1 follows from (2) at step j and (2)� thanks to (6.1)

To prove the above claim, let then (x, t) ∈ R
k × [−τ j+1, 0

)
be such that σ j |t | ≤

|x |2 < σ j+1|t |, and set

t0 := t

α
, x0 :=

√
σ j |t |
α

x

|x | (6.6)

for some number α = α j > 1 to be determined. Notice that (x0, t0) ∈ ∂Dj by
construction. We then only need to prove that there exists α > 1 such that (x, t) ∈
D̃(x0,t0). On the other hand, by the definitions of t0 and x0 it holds that

|x − x0| = |x | −
√

σ j |t |
α

<
√|t |

(√
σ j+1 −

√
σ j

α

)
√|t − t0| = √|t |

√
1 − 1

α
,
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so that, recalling the definition of σ j , (x0, t0) ∈ D̃(x0,t0) provided α > 1 is chosen so
that √

σ j + 1

j + 1
−
√

σ j

α
≤
√
1 − 1

α
. (6.7)

We now show that (6.7) has a solution α = α j > 1 for every j . Direct calculation
shows that α = 2 is a solution to (6.7) when j = 1 and j = 2. On the other hand, it
holds √

σ j + 1

j + 1
−
√

σ j

α
= σ j

(
1 − 1

α

)+ 1
j+1√

σ j + 1
j+1 +

√
σ j
α

≤ σ j
(
1 − 1

α

)+ 1
j+1√

σ j
,

so that solutions to

σ j

(
1 − 1

α

)
+ 1

j + 1
≤
√

σ j

(
1 − 1

α

)
(6.8)

also solve (6.7). Changing variable

ξ :=
√

σ j

(
1 − 1

α

)
,

(6.8) reduces to

ξ2 − ξ + 1

j + 1
≤ 0,

which admits ξ = 1
2 as a solution for every j ≥ 3. Going back to the original variables,

we have that the number α = α j > 1 such that 1
α

= 1 − 1
4σ j

is a solution to (6.7) for
j ≥ 3. This concludes the proof of (6.5).
We are only left with the proof of the estimate on the Hölder semi-norm [ f ]1+ζ .

Given that spt‖Vt‖ ∩ C(T , 1/2) is the graph of a function defined on Bk
1/2 for all

t ∈ [−1/4, 0), we know now that for every (x0, t0) ∈ Bk
1/2 × [−1/4, 0) the flow

{Ṽs}s∈[−1−t0,0] with Ṽs = (τx0)�Vs+t0 as above satisfies the assumptions of Propo-
sition 5.3 with, say R = 3/4. In particular, we have C1,ζ estimates for f with
c4c12 max{μ, c8‖u‖p,q} in the parabolic region D̃(x0,t0) = {(x, t) ∈ R

k × [t0 −
1/4, t0) : |x − x0|2 < |t − t0|}. To prove the desired Hölder estimate, let now (y1, s1)
and (y2, s2) be points in Bk

1/2×[−1/4, 0)with (y1, s1) = (y2, s2), and assumewithout

loss of generality that s1 ≤ s2. Consider the parabolic region D̃(y2,s2) with vertex at
(y2, s2). If |y1 − y2|2 < |s1 − s2|, then (y1, s1) ∈ D̃(y2,s2), and the estimate is a con-
sequence of Proposition 5.3 and (6.1). Otherwise, if |y1 − y2|2 ≥ |s1 − s2| = s2 − s1,
we use the triangle inequality to estimate
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|∇ f (y1, s1) − ∇ f (y2, s2)| ≤ |∇ f (y2, s2) − ∇ f (y2, s2 − |y1 − y2|2)|
+ |∇ f (y2, s2 − |y1 − y2|2) − ∇ f (y1, s2 − |y1 − y2|2)|
+ |∇ f (y1, s2 − |y1 − y2|2) − ∇ f (y1, s1)|

≤ c4c12 max{μ, c8‖u‖p,q }
(
|y1 − y2|ζ

+|y1 − y2|ζ + 2ζ/2|y1 − y2|ζ
)

,

which yields the estimate for [∇ f ]ζ thanks to (6.1). The estimate for the second
summand in [ f ]1+ζ is analogous, and we omit it. The proof is complete. ��

Proof of Theorem 2.3 Here we briefly record the outline of the C2,α regularity of [20]
and point out the key estimates. The idea is to look at a graphical distance function
from the solution of the heat equation g, denoted by Qg ( [20, Definition 4.1]) and
one shows a decay estimate of the L2-norm of Qg by the blowup argument. The key
identity is Lemma 4.2, which shows certain “sub-caloric” property of Qg , and the
resulting L∞ estimate Proposition 4.3, both of [20]. Note that the latter is an estimate
up to the end-time. Since this is the basis of the blowup argument, if we have already
C1,ζ graph representation up to the end-time, all the following argument in [20] works
verbatim with obvious modifications of changing the domain of integration to the one
with center at the end-time point from the center of the space-time domain. The second
order Taylor expansion of the blow-up should be changed to the end-time point as well.
The end result is the estimate away from the parabolic boundary, as stated in the claim.
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Appendix A Gaussian density lower bound

We include the following Lemma for the reader’s convenience. The localized version
can be proved similarly.

Lemma A.1 Suppose that V = {Vt }t∈(a,b] is a Brakke flow as in Definition 2.1 and
that spt‖Vt‖ ⊂ BR for every t ∈ (a, b] for some R > 0. Then for any (x0, t0) ∈
spt(‖Vt‖ × dt), we have �(V , (x0, t0)) ≥ 1.

Proof The proof is by a contradiction argument. If �(V , (x0, t0)) < 1, by the def-
inition of the Gaussian density and the continuity of the integrand, there exist some
τ0 > 0, δ0 > 0 and ε0 > 0 such that |(x0, t0) − (x ′, t ′)| < ε0 implies

1

(4π(t ′ − t0 + τ0))
k
2

∫
Rn

exp

(
− |y − x ′|2
4(t ′ − t0 + τ0)

)
d‖Vt0−τ0‖(y) < 1 − δ0.

(A.1)

By the definition of Brakke flow, we can choose an arbitrarily close point (x ′, t ′) to
(x0, t0) such that Vt ′ ∈ IVk(U ) and Vt ′ has, at x ′, the approximate tangent space with
integer-multiplicity, say, j ′ ∈ N. Then, by the property of the approximate tangent
space, one can prove that

lim
τ→0+

1

(4πτ)
k
2

∫
Rn

exp

(
−|y − x ′|2

4τ

)
d‖Vt ′ ‖(y) = j ′. (A.2)

In particular, (A.2) implies that

1 − δ0

2
≤ 1

(4πτ)
k
2

∫
Rn

exp

(
−|y − x ′|2

4τ

)
d‖Vt ′ ‖(y) (A.3)

for all sufficiently small τ > 0. Since t ′ may be arbitrarily close to t0, we may assume
that t ′ > t0 − τ0, and by the monotonicity and (A.3), we have

1 − δ0

2
≤ 1

(4π(t ′ + τ − t0 + τ0))
k
2

∫
Rn

exp

(
− |y − x ′|2
4(t ′ + τ − t0 + τ0)

)
d‖Vt0−τ0‖(y).

(A.4)

Since τ is arbitrarily small, we may assume |(x0, t0) − (x ′, t ′ + τ)| < ε0, and (A.4) is
a contradiction to (A.1). This proves the claim. ��
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